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Community Structure and Multi-Modal Oscillations in
Complex Networks
Henry Dorrian, Jon Borresen*, Martyn Amos

School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, United Kingdom

Abstract

In many types of network, the relationship between structure and function is of great significance. We are particularly
interested in community structures, which arise in a wide variety of domains. We apply a simple oscillator model to
networks with community structures and show that waves of regular oscillation are caused by synchronised clusters of
nodes. Moreover, we show that such global oscillations may arise as a direct result of network topology. We also observe
that additional modes of oscillation (as detected through frequency analysis) occur in networks with additional levels of
topological hierarchy and that such modes may be directly related to network structure. We apply the method in two
specific domains (metabolic networks and metropolitan transport) demonstrating the robustness of our results when
applied to real world systems. We conclude that (where the distribution of oscillator frequencies and the interactions
between them are known to be unimodal) our observations may be applicable to the detection of underlying community
structure in networks, shedding further light on the general relationship between structure and function in complex
systems.
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Introduction

The problem of relating the structure of a network to the

dynamical behaviour it supports is of significant interest in a large

number of domains. Many different systems may be represented as

networks of connected entities, from friends communicating via

social media [1,2], to groups of neurons [3] and chemical reactions

[4]. The fundamental issue we address here is how to link the

observed dynamics of a system to certain properties of its

underlying network structure. The hope is that, by deepening

our understanding of how particular types of network behave (in a

global sense) over time, we may gain the ability to predict the

behaviour of so-far unknown networks with similar structures. In

addition, by studying the recurring features of complex networks

from a number of different disciplines, we may gain a deeper,

more over-arching theoretical understanding of network dynam-

ics.

Early work in this area focused on the development of

model systems, which were used to analytically study the onset

of certain behaviours (such as oscillations) [5,6] (see also [7,8]

for reviews). These model systems have been successfully applied

in a number of different disciplines, including chemistry [9],

ecology [10] and sociology [2]. Of particular interest are networks

which possess some form of community structure [11–15]; for an

overview of methods for determining such community structure,

see [16]. These are generally characterised as having groups of

nodes that are tightly knit (i.e. highly connected) with less dense

connections existing between these groups [17]. Such structures

are interesting because many ‘real world’ networks (e.g. social,

biological, technological) are naturally partitioned into sets of

loosely-connected ‘communities’, or ‘modules’ [18–22]. Moreover,

we do not restrict ourselves to networks which are static (i.e. we

consider the possibility that connections are added and removed

and nodes update their state) since such structures capture the fact

Figure 1. Example graph with community structure (one level
of hierarchy). For such a network there exist parameter regimes
where the smaller, globally connected sub-graphs may synchronise but
the network as a whole does not (partial synchronisation or clustering).
doi:10.1371/journal.pone.0075569.g001
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that links between individual nodes - and the properties of nodes -

may change over time. Recent work [23] on community structure

in dynamic networks has shown that allowing nodes to influence

the state of other nodes facilitates the spontaneous emergence of

dynamic equilibrium (that is, the community structure of the

network remains stable, even as group composition changes over

time) [24]. The idea of nodes influencing one another leads

naturally to the notion of synchronisation. The ability of

connected dynamic elements to synchronise their behaviour

through interaction is ubiquitous (see [25] for a general

introduction) and has profound implications for a wide variety of

systems. We are particularly interested in the situation where the

connected elements are oscillators [6], as their synchrony is

observed in many settings, from the human heart [26] and brain

[27], to insect locomotion [28] and novel forms of computation

[29]. Previous work [30] has established a strong correlation

between the connectivity of groups of nodes and the time required

for oscillators to synchronise. However, given that full synchro-

nisation does not (and, indeed, should not) occur in many networks

(for example, the abnormal synchronisation in neurones is known

to be a feature of epilepsy [24]) we are interested in the possible

relationship between structure and dynamical behaviour for

oscillator networks where the coupling between oscillators is weak

enough and the connectivity in the graph is sparse enough, such

Figure 2. Kuramoto simulation for the network in Figure 1.
Time series for order parameter, x, showing oscillatory dynamics for a
network of Kuramoto oscillators coupled as in Figure 1. The coupling
strength k~0:2 and the frequencies are normally distributed with
standard deviation s(v)~0:02. Note, for such parameter values it is
possible to observe full synchronisation or oscillating dynamics as
shown above depending on the individual frequencies of the
oscillators. The example demonstrated here, although fairly typical, is
not the only observable dynamics for such a network.
doi:10.1371/journal.pone.0075569.g002

Figure 3. Kuramoto simulation for increasingly pertubed hierarchical network. Time series of global order parameter, x, for increasingly
perturbed hierarchical network of Kuramoto oscillators. New links are highlighted by arrows, demonstrating the robustness of dynamics to symmetry
breaking, with k~0:2,s(v)~0:02. Each simulation uses the same initial conditions and oscillator frequencies as in Figure 2. Similar observations
occur whether the simulations are conducted as individual runs (as shown here) or with the network structure being perturbed as the simulation is
performed. Note: Although the time series for C and D appear very similar they are simulations from their respective graphs.
doi:10.1371/journal.pone.0075569.g003

Figure 4. Kuramoto simulations for rewired hierarchical networks. Time series for global order parameter, x, for various networks of coupled
Kuramoto oscillators. Each network has been rewired using the Xswap rewiring algorithm which maintains the degree of each node. Two pairs of
edges have been rewired from one graph to the next from A through to E and that the oscillating behaviour begins to break down as the hierarchical
structure is decreased. k~0:2,s(v)~0:02. Again the same initial conditions and internal oscillator frequencies are used as in Figure 2.
doi:10.1371/journal.pone.0075569.g004
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that synchronisation does not occur. In this paper, we precisely

address this question.

Network topology has a strong effect on the observed dynamics

of oscillator networks [31–34]. Previous work has mainly focused

on whether or not a network will synchronise, relating this to

graphical measures such as the eigenvalues of the Laplacian [31]

or clustering coefficients [35]. This work suggests that the ability of

an oscillator network to synchronise is enhanced by homogeneity

in the distribution of connections [31].

Many complex networks have been shown to demonstrate

periodic dynamics. Neural systems, for example, display modes of

oscillation at particular frequencies and this has in turn been

linked to the hierarchical organisation of the brain network itself

[36].

In coupled oscillator networks with all-to-all coupling, oscillating

waves of synchronization have been observed in systems with

bimodal and trimodal frequencies [37,38] and in systems of

interacting populations of oscillators [39]. Such oscillations may

also be observed in globally coupled oscillators, where there is both

an excitatory and inhibitory component to the interactions, as

observed in [40,41]. However, in each of these cases the global

oscillations are in some way attributable to the individual nodes in

the network and not to the network structure itself.

In this paper we show how the community structure of a

complex network may actively drive periodic dynamics and that

such periodic dynamics occur in real world networks. The

remainder of this paper describes our methodology in detail,

showing how a simple model system is capable of a variety of

dynamical behaviours. We then give the results of experimental

investigations into the effect of network topology on oscillatory

dynamics and how the latter may be used to detect the former. In

particular, we demonstrate how our methodology may be applied

to two real world networks. We conclude with a discussion and

suggestions for future work.

Methods

In order to rigorously establish the relationship between

network structure and dynamics, we require a model system that

is broadly applicable, but which supports a wide range of

dynamical behaviours. We also need to be able to measure the

global network dynamics in a way that readily admits analysis. The

well-established Kuramoto model [5,42,43] meets all of these

requirements and is widely used in related work [44–47].

The model describes a system of coupled oscillators described

by ordinary differential equations (ODEs) where interaction terms

between oscillators are connected according to the specific

network topology:

Lhi

Lt
~viz

k

N

X

j~1

sin (hj{hi),i~1::::N ð1Þ

where N is the number of nodes in the network, vi is the natural

Figure 5. Coupling strength bifurcations for order parameter x for networks of clustered random networks Each network contains 3
clusters of 45 randomly connected nodes with approximately 130 connections in each cluster. Here the frequencies are normally distributed with
s(v)~0:01. (A) 50 additional random connections over the whole network; (B) 100 additional connections; (C) 150 additional connections. Note: The
oscillatory regions indicate the parameter regimes where oscillatory behaviour will be observed.
doi:10.1371/journal.pone.0075569.g005

Figure 6. Kuramoto simulations for networks of clustered random networks Time series for global order parameter, with k~0:4 (A), 0:1 (B),
and 0:06 (C) showing multi-modal dynamics. The simulations are for networks described in Figure 5 and the parameter values taken from the
oscillating regions.
doi:10.1371/journal.pone.0075569.g006
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frequency of oscillator i, k is the coupling strength between

connected oscillators and hi is some oscillatory phase [½0,2p�.
This original model of Kuramoto assumes mean-field interac-

tions. In the absence of any external noise, the global dynamics are

determined by the coupling strength k, the distribution of natural

frequencies s(v) and the connectivity within the underlying

network. In general, the coupling strength k acts to synchronise

the oscillators, the wider the distribution of v, the harder it is for

the oscillators to synchronise and higher connectivity within the

graph also serves to cause the oscillators to synchronise (i.e. all to

all coupling will synchronise more easily than sparsely coupled

networks).

Many variations of the original Kuramoto model have been

developed; of particular interest is the introduction of a phase lag, a,

between oscillators, which can give rise to so-called chimera states

[48–50]. These occur when oscillators form into clusters, some of

Figure 7. Example graph with community structure (two levels of hierarchy). For such a network there exist parameter regimes where the
smaller, globally connected sub-graphs may synchronise but the network as a whole does not (partial synchronisation or clustering).
doi:10.1371/journal.pone.0075569.g007

Figure 8. Kuramoto simulation and corresponding Fourier spectrum for the network shown in Figure 7. (A) Time series of global order
parameter x for a network with two levels of hierarchy with s(v) = 0.0012 and k~0:12. (B) Fourier spectrum for the signal in A demonstrating the
modes of oscillation in the signal. Two strong peaks can be seen (22 and 46) followed by their respective echoes (66 and 93).
doi:10.1371/journal.pone.0075569.g008
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which are synchronised and some of which are desynchronised.

Chimera states are inherently interesting, because they describe a

situation in which a collection of identical oscillators splits into two

domains, one coherent and the other incoherent. As Abrams and

Strogatz [48] observe, ‘‘Nothing like this has ever been seen for

identical oscillators.’’

Chimera states can arise as a direct result of network topology;

specifically, the existence of community structure [51]. The

observations we describe in this paper, although in many respects

similar to such Chimera states in that global observations can be

directly attributed to topology, are significantly different.

Motivated, in part, by the realisation that many naturally-

occurring networks have complex topologies, recent studies have

been extended to systems where the pattern of connections is local

but not necessarily regular [52]. Due to the complexity of the

analysis, further assumptions have generally been introduced. For

example, it is usually assumed that the oscillators are identical.

Obviously, therefore, in the absence of disorder, (i.e. if vi~v,Vi)

there is only one attractor of the dynamics: the fully synchronised

regime, where hi~h,Vi. This scenario suggests that, starting from

random initial conditions, a complex network with a non-trivial

connectivity pattern will exhibit the following behaviour: first, the

highly interconnected units that form local clusters will synchro-

nise; second, in a sequential process, increasingly large synchro-

nised spatial structures will emerge, until, finally, the whole

population is synchronised [30]. However, for many dynamical

complex networks, synchronisation is neither realised nor desir-

able. In these instances, weakly coupled oscillators may display

partial synchronisation or clustering, but not full synchronisation.

More formally, Equation 1 can give rise to a variety of dynamical

behaviours. For strongly coupled networks (those with high

connectivity and coupling strength k) the phases of all oscillators

quickly synchronise. With weak coupling, the oscillators appear to

move randomly. Between these regimes, we observe partial

synchronisation, where some oscillators are synchronised and

others form clusters, but no global synchronisation is evident.

We use a global order parameter [47]:

x~
1

N

XN

j~1

eihj

�����

�����, ð2Þ

Figure 9. Graphical representations of two versions of the same human metabolic network. (A) Non-partitioned representation of human
metabolic network. (B) Partitioned representation of human metabolic network in which the network is partitioned into sub-cellular networks. The
Mathematica spring algorithm is used to display the network structures, it is apparent that the two versions have a very different structure.
doi:10.1371/journal.pone.0075569.g009

Figure 10. Kuramoto simulation and corresponding Fourier spectrum for the unpartitioned human metabolic network. (A) Time
series of global order parameter x for the network shown in Figure 9 A with s(v)~0:02,k~30:63. As no region of oscillation was found in the
bifurcations for this network, parameter values were set to the same as those for the partitioned network, for the purposes of comparison. (B)
Corresponding Fourier spectrum showing no strong peaks due to the signal not showing oscillatory behaviour.
doi:10.1371/journal.pone.0075569.g010
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as a measure of coherence over the entire network. This is the

average phase of all oscillators within the network; for fully

synchronised networks, x~1; for networks where the phases of all

oscillators are equally distributed around ½0,2p�, x~0 and for all

other states, x[(0,1). In what follows, we use the global order

parameter to investigate the effect of network topology on

synchronisation.

Results

We now present the results of our experimental investigations.

The over-arching aim is to show how global oscillatory behaviour

may be related directly to the community structure of the

underlying complex network.

Artificial networks
We first study two classes of graph; those with and those without

any community structure. For example, consider the typical

community structured graph in Figure 1. Given weak coupling,

the dynamics of such a graph allow for the possibility of

synchronisation within the smaller globally connected clusters,

while the entire graph remains only partially synchronised. As

such, any global measure of synchronisation appears to oscillate

(Figure 2) the oscillation being dependent upon the differences in

the frequencies of oscillations between each of the clusters.

Figure 2 shows the order parameter oscillating between

relatively low levels of synchronisation and almost full synchroni-

sation. We emphasise, though, that the internal frequencies of the

oscillators, v, have been specifically selected in order to

demonstrate such dynamics and that this will not occur in all

cases. In graphs without any community structure, we fail to

observe any discernible oscillation above that of the natural

frequency of the oscillators.

In order to demonstrate that the oscillating dynamics shown

above are not simply an artefact of network symmetry, we perturb

the original network by repeatedly adding random connections.

Figure 3 demonstrates the structural stability of the modal

dynamics when the network structure is no longer symmetric,

but the community structure is retained.

Figure 3 demonstrates that the global oscillations observed are

not due to symmetry of the graph structure. Although the

asymmetric graphs no longer produce strong regular oscillations,

the dynamics are not significantly affected by symmetry-breaking

through the addition of connections. For this particular graph, it is

Figure 12. Graphical representations of two underground railway networks. The London Underground (A) and New York Metro (B)
networks, represented as non spatially-arranged graphs (i.e. they represent station connectivity, rather than the actual geographical locations of
stations). Note the presence of two central clusters in the New York graph, which represent the concentration of stations in South Manhattan and
Brooklyn. Both of these networks representations were generated using the Mathematica spring algorithm.
doi:10.1371/journal.pone.0075569.g012

Figure 11. Kuramoto simulation and corresponding Fourier spectrum for the partitioned human metabolic network. (A) Time series
of global order parameter x for the network shown in Figure 9 (B with s(v)~0:02,k~30:63. These variables were optimised to obtain a strong
oscillatory dynamic. B) Corresponding Fourier spectrum showing a strong peak in the Fourier transform at mode = 7, followed by an echo at
mode = 15, demonstrating the oscillatory behaviour of the signal.
doi:10.1371/journal.pone.0075569.g011
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possible to add a further 5 connections before the onset of global

synchronisation.

Figure 4 shows another example of network rewiring, in this

case using the Xswap algorithm [53], in which the network is

randomised, with the degree of each node remaining constant.

This is achieved by randomly selecting a pair of edges in the

network, (i,j) and (k,l). If (i,l)~(k,j)~0 then (i,j)~(k,l)~0 and

(i,l)~(k,j)~1. It should be noted that in the unperturbed network

the nodes are self connected, so on some iterations these edges are

swapped. The oscillations break down as the network is

randomised demonstrating that it is the overall graphical structure

that causes this behaviour.

To further develop the study of non-symmetric networks, we

consider a large, idealised network of oscillators arranged such that

three highly coupled sub-networks of oscillators are connected via

a sparse network of random connections. We report the results of

simulations for subgraphs of 45 oscillators with approximately 130
connections within each cluster.

We first investigate the effect of varying coupling strength, k,

using standard bifurcation techniques. Figure 5 shows typical one

parameter bifurcation diagrams of the global order parameter, x,

as k is increased from an initial value of k~0 to k~1. Here, the

initial phases of the oscillators are drawn from a uniform

distribution, hi[½0,2p�. At each iteration of the simulation the

value of k is increased in small increments, typically of around

2|10{6 and we show bifurcations using 50, 100 and 150 random

additional connections (see Figure 5).

In common with networks lacking community structure, these

networks synchronise above a critical coupling strength; for small

values of coupling strength, the oscillators are incoherent. In the

first example there exists a specific region for k[½0:23,0:6� for

which the order parameter, x, appears to oscillate between the

ordered and disordered state. Figure 6 shows the time series of the

order parameter for the three networks described above, with a

distribution of internal frequencies of 0:01 and respective coupling

strengths of 0:4 (A), 0:1 (B) and 0:06 (C).

We now consider a more complex network, which displays an

additional level of hierarchy (Figure 7). For optimised parameter

values of s(v)~0:0012,k~0:12 we observe multi-modal oscilla-

tions of the global order parameter, x, within a range of 0:1 to 0:5.

A Fourier spectrum of this time series demonstrates two modes of

oscillation, at modes 22 and 46, with strong echoes at modes 66
and 93 (Figure 8). The relationship between these oscillating

modes strongly mirrors the graphical structure of the network, in

that the two levels of hierarchy cause a bimodal oscillation and

therefore two peaks in the Fourier spectrum.

‘Real world’ networks
In the previous section, we established the feasibility of using a

global order measure to detect community structure in artificial

networks. We now validate this approach against two classes of

‘real world’ network, both of which present examples that may or

may not possess community structure.

In order to provide a metric for comparison, we use the

standard measure of Q modularity [54]. The measure

Q[½{1=2,1� gives a sense of community structure and is defined

as the proportion of the edges that fall within any cluster, minus

the expected proportion if such edges were distributed at random.

Other metrics for determining such modularity have also been

proposed (see [55], for example); however we use the most well

known (the MATLAB program to calculate Q modularity was

downloaded from VisualConnectome [56]).

Human metabolic network
The metabolic network of a cell or microorganism describes the

connections between various cellular processes that are essential

for sustaining function [4]. Metabolic networks often exhibit

strong community structure [57–59] and existing examples are

usually examples of pseudo-hierarchical networks, in that their

structure is not fully hierarchical [60]. In this Section we use our

method to correctly identify community structure in metabolic

networks.

We use metabolic pathway networks in SBML format [61],

taken from the BiGG database [62]. These are imported to

MATLAB using libSBML [63]. In this analysis, the Homo Sapiens

Recon 1 (human) metabolic network is used, as this is perhaps the

most interesting example available. Similar results have been

observed on other metabolic networks formulated in a similar

manner.

In order to establish a relationship between community

structure and dynamics, we consider two versions of this network.

The first comprises the global connectivity matrix of all chemical

reactants in the cell, a connection being present if two or more

components are involved in a known reaction (we exclude water

and ATP, as these occur in almost all reactions). The second

formulation of the metabolic network partitions reactions into sub-

cellular networks, each representing different regions of the cell

(nucleus, golgi bodies, etc.) which are connected in turn by

Figure 13. Kuramoto simulation and corresponding Fourier spectrum for the London Underground. (A) Time series of global order
parameter x for the network shown in Figure 12 A with s(v)~0:0021,k~3:6. These values were chosen to maximise the oscillatory behaviour. (B)
Corresponding Fourier spectrum for signal in A.
doi:10.1371/journal.pone.0075569.g013
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reactions. Graphical representations of these networks are shown

in Figure 9.

From a graph theoretical perspective, these two networks are

very similar. Standard graph metrics such as the clustering

coefficient, mean and maximum path length do not distinguish

between the two. Furthermore, the eigenvalue spectrum (as

described in [30]) also shows no discernible difference.

The main difference between these two networks lies in the

values for Q modularity, with the compartmentalised version

having a value of Q~0:41 and the non-compartmentalised

version having a value of Q~0:29. Due to the higher modularity

of the compartmentalised version, we would expect to see regular

oscillations in this representation.

Simulations for optimised coupling strengths and frequency

distributions are conducted on both forms of the metabolic

network. For the non-partitioned network, we fail to observe

multi-modal oscillations in the global order parameter. However,

for the partitioned network we observe strong modal dynamics

(See Figures 10 and 11 for a comparison) which is consistent with

the results for Q modularity. This demonstrates that our method of

community detection is a viable method for use on complex real-

world networks, where the underlying structure is not as regular as

those formed using generative models.

Transport networks
We now investigate a completely different type of network;

those describing mass transit systems in major cities. Specifically,

we compare the network of the London Underground and the

New York Subway systems, as both are large enough to be

interesting, but they have very different underlying geographical

structures. In particular, stations on the London Underground are

more evenly distributed than in New York, where the presence of

islands in the geography of the city gives rise to clusters of stations,

particularly in South Manhattan and Brooklyn (Figure 12). Taking

the Q modularity of both of these networks gives London a value

of Q~0:36 and New York a value of Q~0:77. From this, we

predict that our method will generate a regular oscillating pattern

for New York, but not for London. The London underground and

New York Subway maps were taken from the ‘Transport For

London’ [64] and the ‘Metropolitan Transportation Authority’

[65] websites respectively. Using these maps we constructed, by

hand, adjacency matrices in which stations are represented by

nodes, with an edge connecting pairs of nodes if there exists a

direct line between stations.

Structurally, these networks are significantly different from the

previous examples. Notably, there exist many long chains, the

overall graph connectivity is low and there exists very few ‘small

world’ effects. As such, we are confident that these networks

present a novel challenge, over and above that offered by both the

artificially-generated networks and the metabolic networks.

As before, we run numerical simulations in order to optimise

model parameters, in an attempt to maximise any oscillatory

dynamics. On the London network, we observe a small amount of

oscillatory behaviour, although the amplitude of such oscillation is

small - the maximum observed oscillation has an amplitude of

0:05. The resulting Fourier spectrum has a peak strength of

2:8|106 (Figure 13).

On the other hand, experiments on the New York network yield

a significantly more pronounced oscillation, which displays very

strong periodicity. The primary oscillatory mode has a strength of

8:5|107 - and a strong echo. A second oscillatory mode is also

observed (Figure 14).

In order to demonstrate that this oscillating behaviour is indeed

caused by the underlying hierarchy of the network, the New York

subway network was rewired using the Xswap algorithm

previously described. We observe that as the network is rewired

and the modularity reduced to below Q&0:4, oscillations no

longer occur. As the Xswap algorithm maintains the degree

distribution of the network but reduces modularity, this precisely

demonstrates that modularity directly causes the oscillations in the

order parameter of the phase.

Discussion

In this paper, we have demonstrated a robust and structurally

stable relationship between form and function in complex

networks whereby global oscillations are shown to be a factor of

network topology. We observe modal oscillations in a measure of

global synchronization which can be directly related to the

community structure of the network itself.

By applying the method to two types of real world networks -

whereby examples exist with significantly different community

structures but with similar underlying topology, we show that this

method also works on realistic, more irregular structures. We

demonstrate the breakdown in oscillatory behaviour when

Figure 14. Kuramoto simulation and corresponding Fourier spectrum for the New York Metro. (A) Time series of global order parameter
x for the network shown in Figure 12 B with s(v)~0:0028,k~6:5. These values were chosen to maximise the oscillatory behaviour. (B)
Corresponding Fourier spectrum for signal in A.
doi:10.1371/journal.pone.0075569.g014
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networks are rewired (with the degree of each node remaining

constant). This confirms that network modularity drives oscilla-

tions, as reducing the degree of modularity causes these oscillations

to break down. We should note, however, that for the real world

examples given, the underlying dynamics of the nodes on the

network (chemical reactions and subway trains) are considerably

more complex than the simple Kuramoto oscillators used to

demonstrate the principle. As such, it is not possible to directly

attribute any observed oscillatory dynamics in such systems to the

network structure alone.

Many real world networks (e.g. transport, the brain) are

examples of pseudo-hierarchical networks, in that their structure

is not fully hierarchical [60]. In the particular example of the

brain, for instance, multi-modal oscillations (observed as Gamma

(w30(Hz) Beta (13{30Hz) and Alpha (8{12Hz) waves etc in

EEG measurements) may attribute to structural hierarchies in the

neural connectivity. As such, for systems where the dynamics of

the individual elements of a complex network are known to be

unimodal and the interactions between them are likewise, global

observations of oscillatory behaviour may give some indication as

to underlying structures and network connectivity, yielding novel

methods of community detection.
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10. Montoya J, Solé R (2002) Small world patterns in food webs. Journal of

Theoretical Biology 214: 405–412.

11. Girvan M, Newman ME (2002) Community structure in social and biological
networks. Proceedings of the National Academy of Sciences 99: 7821–7826.

12. Hu C, Yu J, Jiang H (2010) Synchronization of complex community networks
with nonidentical nodes and adaptive coupling strength. Physics Letters A.

13. Gulbahce N, Lehmann S (2008) The art of community detection. Bioessays 30:

934–938.

14. Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and
hierarchical community structure in complex networks. New Journal of Physics

11: 033015.

15. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization,

development and function of complex brain networks. Trends in Cognitive
Sciences 8: 418–425.

16. Fortunato S (2010) Community detection in graphs. Physics Reports 486: 75–

174.

17. Newman M (2003) The structure and function of complex networks. SIAM

Review 45: 167–256.

18. Newman ME (2006) Modularity and community structure in networks.
Proceedings of the National Academy of Sciences 103: 8577–8582.

19. Litvin O, Causton H, Chen B, Pe’Er D (2009) Modularity and interactions in the

genetics of gene expression. Proceedings of the National Academy of Sciences
106: 6441.

20. Ravasz E, Somera A, Mongru D, Oltvai Z, Barabási A (2002) Hierarchical
organization of modularity in metabolic networks. Science 297: 1551.
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