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Abstract

Recent efforts in synthetic biology have focussed on the implementation of logical functions within living cells. One aim is
to facilitate both internal ‘‘re-programming’’ and external control of cells, with potential applications in a wide range of
domains. However, fundamental limitations on the degree to which single cells may be re-engineered have led to a growth
of interest in multicellular systems, in which a ‘‘computation’’ is distributed over a number of different cell types, in a
manner analogous to modern computer networks. Within this model, individual cell type perform specific sub-tasks, the
results of which are then communicated to other cell types for further processing. The manner in which outputs are
communicated is therefore of great significance to the overall success of such a scheme. Previous experiments in distributed
cellular computation have used global communication schemes, such as quorum sensing (QS), to implement the ‘‘wiring’’
between cell types. While useful, this method lacks specificity, and limits the amount of information that may be transferred
at any one time. We propose an alternative scheme, based on specific cell-cell conjugation. This mechanism allows for the
direct transfer of genetic information between bacteria, via circular DNA strands known as plasmids. We design a multi-
cellular population that is able to compute, in a distributed fashion, a Boolean XOR function. Through this, we describe a
general scheme for distributed logic that works by mixing different strains in a single population; this constitutes an
important advantage of our novel approach. Importantly, the amount of genetic information exchanged through
conjugation is significantly higher than the amount possible through QS-based communication. We provide full
computational modelling and simulation results, using deterministic, stochastic and spatially-explicit methods. These
simulations explore the behaviour of one possible conjugation-wired cellular computing system under different conditions,
and provide baseline information for future laboratory implementations.
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Introduction

The growing field of synthetic biology [1–4] is concerned with

the application of engineering principles, concepts and techniques

to the modification and/or construction of biological systems. This

(re-)engineering may be motivated by a desire to better understand

the underlying biological substrate, or by novel applications of

biological ‘‘devices’’. Although the field traces its roots back to

early work on genetic engineering, it emerged as a serious research

area at the turn of the century, with the simultaneous publication

of two significant papers. The first, by Elowitz and Leibler [5],

described a fully-synthetic genetic oscillator engineered into the E.

coli bacterium. Their ‘‘repressilator’’ relied on mutual repression of

a ‘‘loop’’ of connected genes in order to achieve oscillation. The

other paper, due to Gardner, Cantor and Collins [6], outlined the

design and construction of a synthetic toggle switch (also in E. coli),

the state of which could be ‘‘flipped’’ from outside by either

chemical or thermal induction. Both of these constructions are

now standard motifs in the design of synthetic biological systems,

and provided inspiration for the construction of a number of

genetic devices [7–9]. However, just as the pioneers of computer

technology quickly incorporated the early transistor into larger

circuits in order to build the first solid-state computers, researchers

in synthetic biology rapidly sought to build ever larger devices

using these gene-based components.

There exists, though, a fundamental limitation on the amount

and type of novel genetic ‘‘circuitry’’ that may be introduced into a

single living cell. As the authors of [10] argue, ‘‘…establishing the

wiring of an electronic circuit just requires linking each pair of

connected elements by a wire (e.g. a piece of copper). But inside a

cell, the cables need to have a different implementation: different

proteins must be used for each different pair. Additionally, because

of the intrinsic difficulties of implementing them, the resulting

constructs are usually specific for the given problem and cannot be

reused afterwards’’. Because of these related issues of cross-talk

and lack of modularity, many researchers now seek an alternative

approach. By expanding the scope of synthetic biology beyond

single-cell solutions, and into the domain of multicellular systems, we

seek to harness the inherent power of biological ‘‘nanotechnolo-

gy’’, but in a way that readily allows for scalability, noise tolerance

and component reusability. With this in mind, attention is turning

to the engineering of microbial consortia [11]; multiple populations of

microbes that can interact to perform functions beyond those
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achievable by individual populations. The power of such consortia is

derived from both their robustness and their ability to perform

complex tasks in a distributed fashion. These attributes are due to

two main features; communication between consortium members

(that is, the exchange of information between individuals), and

division of labour (the overall behaviour of the system is the result of

combining many sub-tasks, each performed by individuals or sub-

populations) [11].

Recently, the notion of distributed, multicellular computation

using engineered cells has gained increasing traction [10]. One of

the first such systems was demonstrated by Basu et al. in 2005 [12],

in which the authors demonstrated programmed pattern forma-

tion, using populations of engineered ‘‘sender’’ and ‘‘receiver’’

cells. More recently, Tamsir et al. [13] showed how simple logic

gates may be constructed by programming communication

between bacterial colonies, and Regot et al. [14] demonstrated a

similar system in yeast. Central to the implementation of

multicellular computation is controlled communication between cells

and populations of cells. So far, this has generally been implemented

using the global communication capabilities offered by quorum

sensing (QS) [13–15] (although the use of bacteriophage has also

recently been proposed [16]). Within the QS system, one cell

(sender) uses small signalling molecules that diffuse over distance

and thus reach other cells (receivers) [17]. Apart from the

implementation of logical functions, QS has been used for other

purposes, such as the synchronization of engineered oscillators

[18]. However, we believe that multicellular computation will

greatly benefit from a more varied range of communication

protocols. As Ortiz and Endy highlight [18], QS-based commu-

nication is limited by both the type and content of messages that are

possible using chemical signals.

We therefore propose a scheme for multicellular computation

based on a local communication protocol. The foundation for this

is the process of genetic exchange between bacteria known as

bacterial conjugation [19], which has often been likened to ‘‘bacterial

sex’’ [20,21]. During conjugation, two cells establish a direct,

bridge-like connection, called the pilus, which brings the cells

together. A separate channel is then opened in the respective cell

walls, through which a single DNA strand is transferred from the

donor cell to the recipient cell [20]. The importance of this transfer

process is that it facilitates the transmission of large, specific

genetic messages, which can have arbitrary content. We therefore

seek to harness its potential in order to facilitate communication

within an engineered cellular population.

In order to achieve this goal, we use site-specific recombination

systems [22], which allow individual cells to dynamically rewrite

their DNA ‘‘message’’. Recently, three bacterial site-specific

recombination systems have been used to implement biocomput-

ing devices. The Cre/lox system was used to engineer a genetic

switch [23], and the fim system was used to engineer both a

multiplexer [24] and a sequential switch-based memory [25,26].

The latter example made use of the Hin/hix system, which was

also used to solve various small instances of mathematical

problems in bacterial populations [27,28]. These implementations

demonstrate the power and applicability of such site-specific

recombination systems. Futhermore, as this manuscript was under

preparation, Siuti et al. [29] published their recombinase-based

approach to the implementation of logic and memory functions in

E. coli, underlining the utility of this approach. We present the

results of extensive simulation-based experiments, which support

the in-principle feasibility of our approach. This work offers a firm

foundation for experimental investigations into distributed multi-

cellular computation using conjugation as a core ‘‘technology’’.

Results

We first describe the communication mechanism through

conjugation by showing how it may be used, in principle, to

implement a single Boolean NOR function. Secondly, we expand

the concept by designing a distributed population to implement

the exclusive OR (XOR) function, based on mixing three bacterial

strains with individual NOR functionality. While using only one

site-specific recombination system is sufficient for the NOR-based

approach, a combination of two is necessary for the adequate

functioning of the XOR computation. For clarity of description,

we use abstract labels for the components (except those involved in

the recombinase-based logic systems).

Wiring with conjugative plasmids: 2-strain NOR
population

Recall that the two-input NOR function is a negated OR, and

thus returns the value 1 if and only if both inputs are zero, and 0 in

all other cases. Figure 1A shows how a NOR gate may be

constructed using two engineered bacterial strains that communi-

cate via the QS molecule AHL (as in [13]). The evaluation of the

NOR function is executed by a sender strain, and the output is sent

to the receiver strain via QS. In this way, QS acts as a wire

connecting the two components. When no inputs are present (top

row of 1A), gene G1 is off (not being transcribed), and the AHL

signalling molecules (controlled by a repressible promoter) are

expressed by G2. These molecules arrive at the receiver cell and,

after binding to the corresponding transcription factor, induce

expression of gene G3 (the reporter gene). This latter product is

read as the output of the NOR logic function (fluorescence

detection of the amount of green fluorescent protein, GFP). On the

other hand, when one or more inputs are present (bottom row, ‘‘A

and/or B’’), their corresponding promoter is activated (pA and/or

pB), and gene G1 expresses a repressor, which in turns inhibits the

production of AHL. Thus, the receiver cells are off, and no

fluorescence is observed.

Our alternative design for a distributed NOR gate using

conjugation as wiring is shown in Figure 1B. As before, the

sender cell computes the NOR function and communicates the

result to the receiver cell. The key difference with the previous

scheme lies in the communication mechanism; here, we use

conjugative plasmids [30], rather than QS, to transmit a result.

Conjugative plasmids are circular strands of DNA that may be

transferred between bacterial cells during the process of conjuga-

tion [20,31]. Although, in the wild, these plasmids allow bacteria

to exchange potentially useful genes, here we use them for the

transmission of logical values.

When no inputs are present (Figure 1B(top row)), promoters pA
and pB are not induced, and the expression product of G1 (in this

case, protein Cre) is not present in the cell. As a result, a

constitutive promoter in the plasmid pmdi (a plasmid that

produces inducers) expresses its downstream gene, which results

in inducer F2.

When the sender cell comes into contact and conjugates with a

recipient, thus forming a ‘‘wiring’’ connection, the plasmid is

transferred into the receiver cell. Inducers F2 are then produced

inside the receiver by plasmid pmdi, which are in charge of

inducing the expression of the reporter gene (G2). If the resulting

product is the green fluorescent protein (GFP), the fluorescence

(output) is turned on. Otherwise (one or more inputs, bottom row),

the protein Cre is expressed, which deletes a specific DNA segment

surrounded by lox sites in the plasmid. As a result, the plasmid

pmdi is converted into pmd (a plasmid that is unable to produce

inducers, due to the lack of the lox-flanked DNA segment). When

Multicellular Computing Using Conjugation
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transferred into the receiver cell, this plasmid will not express

inducer F2, and fluorescence emission will be switched off. Thus,

the conjugation wire successfully transmits the signal via aplasmid.

It is important to note that when the modified plasmid pmd is

produced - via deletion - in the sender and transferred to the

receiver, it cannot coexist in the latter strain with the previously-

introduced unaltered plasmids pmdi (before the input signals were

introduced to the population). Incompatibility is a property of

plasmids that contain the same replication genes [32], and is used

here to induce ‘‘competition’’. In this scenario, the population of

plasmids in the receiver cells gradually shifts towards the ‘‘new’’

(transmitted) plasmid, as the latter gradually replaces the original.

Since both plasmids are viewed as identical from the point of view

of replication control, the copies of pmdi and pmd compete for an

effective resource - the number of plasmids that are allowed in the

cell, referred to as the copy number. Since copies of pmd are

continuously ‘‘pumped’’ to receiver cells, in practical terms they

eliminate pmdi. As we see later, this fact has been incorporated

into the model, and results in a progressive change in the plasmid

population of the receiver, from pmdi to pmd .

Single cell behaviour. The simulated single-cell behaviour

of this design is observed, over time, in Figure 2, where the logic

case 1-1 (both inputs present) is applied to a population initially in

the 0-0 state. In this idealised set of simulations, we consider the

existence of only one cell of each kind (sender and receiver). We

also assume a constant conjugation process (as if the wire was

permanently connected), so that both cells share the plasmid

populations (a theoretical ideal state induced in order to test the

individual components of the system). As we observe in both

deterministic (top) and stochastic (middle) plots, we see a short flash

from the receivers (GFP initially being expressed), while the

expected output should be ‘‘0’’ (corresponding to the NOR 1-1

case). This is due to the fact that from time 0, the senders transfer

plasmid pmdi (in its initial configuration) into the receivers. Thus,

inducer F2 is initially expressed. As Cre is produced, it transforms

the plasmid pmdi into pmd (the transformation of pmdi being seen

in the bottom graph). When no pmdi plasmids remain in the ideal

system studied in Figure 2, the amount of GFP is controlled only

by degradation, and the desired output is reached. Other

molecular relations corresponding to the deterministic simulation

are shown in Figure S1.

Multicellular behaviour. A more realistic simulation, which

considers physical interactions between cells of a population, is

shown in Figure 3. While the cell’s logic is simulated via

deterministic equations, plasmid numbers (pmdi and pmd) are

Figure 1. Intercell connection of a NOR logic function. A. Traditional wiring through AHL signalling. When no inputs (A and B) are present
(upper row), the AHL quorum-sensing effectors (expressed by gene G2 and controlled by a repressible promoter) are produced by the Sender cell
and the light (green fluorescent protein, GFP, transcribed by an inducible promoter) is switched on in the Receiver cell. On the other hand, when one
or more inputs are present (lower row), AHL production is repressed (via the expression product of gene G1) and the fluorescence switched off. B.
Wiring by using conjugation. In the 0-0 case (no inputs, upper row) the plasmid pmdi (i = inducer) travels from the Sender to the Receiver cell without
modification and induces the expression of GFP. In any other case, the protein Cre is expressed (from gene G1) in the Sender, which irreversibly alters
the plasmid by deleting the segment between lox sites (red triangles). The modified plasmid cannot produce inducers (F2), and the Receiver is
switched off.
doi:10.1371/journal.pone.0065986.g001

Figure 2. Deterministic and stochastic time evolution of the 1-1
logic case. These results show the simulation of Figure 1B with input
molecules (A and B) set up to 500 (each) (k11 = k12 = 500 molecules
min21) and the copy number of the plasmid to 5. By monitoring
(deterministically, upper graph, one run; stochastically, middle graph,
ten runs) proteins Cre (in the Sender) and GFP (in the Receiver) we see
how GFP production is initially triggered by those plasmids that have
not been modified yet (pmdi). When Cre has been functioning long
enough (t^57 min in this simulation) the remaining GFP is only
controlled by degradation rates, as no more fluorescent proteins are
being expressed. Lower graph shows the stochastic evolution of pmdi

over time, which determines the delay in displaying the correct output
according to the NOR logic function (0 output for the 1-1 case).
doi:10.1371/journal.pone.0065986.g002

Multicellular Computing Using Conjugation
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discrete (see Section Methods for details on discretization).

Importantly, deterministic behaviours are not appropriate for

low molecular concentrations, and can result in unrealistic

behaviours (Figure S2 shows a further study on this issue). Two

populations are grown into surfaces with a different distribution of

inputs over 24 h. The first (Figure 3A top) has no inputs present

and, as a result, recipient cells (receivers) display green light (GFP)

corresponding to a logic ‘‘1’’ in output (images from Movie S1).

The second population is grown on a simulated surface containing

both inputs (A and B, Figure 3A) (images from Movie S2). In the

latter simulation, we clearly see the effects that the initial flash

(explained in Figure 2) has on the output of the circuit. While the

plasmids pmdi are transformed in the donors at an early stage of

the process, those that were initially copied into the receivers are

constantly being replicated (until they reach their respective copy

number) in the population. This competition between pmd

acquisition and pmdi replication (in receivers) results in fluorescent

cells after 24 h. However, this fluorescence eventually decays

(plasmids pmdi are eventually lost), and we clearly observe the

output ‘‘0’’. Figure 3B shows the process of losing plasmid pmdi

(due to the proliferation of cells without any copy of pmdi). At time

930 min, a fluorescent cell has only one copy of pmdi, due to the

lack of further replication of the existing plasmids in the cell (the

rest of the copies are pmd). After division (at 950 min) the pmdi

plasmid will go to one of the daughters (all the plasmids are shared

randomly). This cell cannot maintain the level of fluorescence after

a few min (GFP decay; 990 min). Almost identical behaviour to

that seen in input case 1-1 is observed in cases 0-1 and 1-0 (data

not shown), as Cre is also expressed in sender cells.

By varying the conjugation frequency we observe changes in the

quantitative information of the system, while qualitative behav-

iours are still the same. Increasing this frequency (Figure S3) causes

cells to be overloaded by plasmids (above their copy number), and

the replication of plasmids becomes less frequent. For details about

cell features, including conjugation frequencies, please see the

Methods section.

Extending the approach: 3-strain XOR population
We now show how collections of NOR gates may be connected

together in order to compute the exclusive OR (XOR) function, as

in [13]. Figure 4 shows the design of a three-strain distributed

XOR population, as a proof of principle of the extensibility of the

initial approach. The XOR (exclusive OR) function outputs ‘‘1’’

when the inputs are different and ‘‘0’’ when the inputs are the

same. Importantly, the inputs are found as clear digital values,

which are either abundant (‘‘1’’) or non-existent (‘‘0’’). This avoids

potential problems with half-values [33]. This logic function may

be simulated by connecting three NOR gates, as shown in

Figure 4A, which is the configuration of our engineered three-

strain population. Exactly the same scheme was used in [13], only

with QS molecules connecting the gates. The cells named NOR_1

are the ‘‘donors’’ of the community, and their inputs correspond to

the inputs of the whole XOR function (molecules A and B). Their

output, F1 (Figure 4A) encodes the information that travels

through the ‘‘wire’’ towards the next logic gates NOR_2 and

NOR_3. These latter gates take F1 as one of their inputs, and

either A or B (respectively) as the other. The output of NOR_2

and NOR_3 cells, which we call F2 (the same signal), is the final

output of the XOR function. In Figure 4B we show the truth

tables of individual strains as well as the emergent XOR logic.

The configuration of NOR_1 cells is depicted in Figure 4C. If

no inputs are present, gene G3 - controlled by a repressible

promoter - produces FimB. This causes random inversions of the

promoter in the plasmids (Figure 4E). As a result, about half of the

plasmids will have the promoter pointing towards the gene named

GF1, while the rest will have the promoter pointing towards gene

GF2. Thus, there will be a positive amount of molecule F1 in the

environment. This output is taken as a logical ‘‘1’’. Otherwise,

inducible promoters pA and/or pB switch on genes G1 and G1�,
which produce FimE and repressor X respectively. Repressor X

inhibits the expression of G3. Thus, FimB will disappear from the

sender cells, and the presence of FimE causes directional inversion

in the promoter, which will then point towards gene GF2. There

will thus be a lack of expression products F1 in the environment,

which represents a logical ‘‘0’’. Importantly for our design, as

noted in [24], the FimE protein causes directional inversions with

nearly 100% fidelity, while FimB causes inversions on both

directions equally well [34,35].

Figure 4D shows the inside program of NOR_2 cells. Important-

ly, this configuration is identical to the combination of the senders

and receivers of Figure 1B. If no inputs are present, which means

that input molecule A is not in the environment and molecule F1
is not being produced by the plasmid (all promoters are pointing at

gene GF2), the protein Cre is not expressed. Thus, the segment

surrounded by lox sites in the plasmid is not deleted. Molecules F2
are then effectively expressed and, in turn, induce the production

of GFP. If either one or both inputs are present (because A is

present and/or F1 is being expressed by one of the plasmids),

protein Cre is expressed. This causes a modification in the

plasmid, which loses the GF2 gene region by deletion. No inducers

of GFP are present and the fluorescence is switched off.

Simple behaviour. A simplified simulation (not considering

spatial factors or physical dynamics) of the donor (NOR_1) cells,

according to a specific input profile over time, is shown in Figure 5.

Input case 1-1 (both inputs present) is induced at 0 min by

Figure 3. Spatial behaviour of the NOR ‘‘wire’’ over 24 h. A.
Truth table of the NOR ‘‘wire’’ represented in Figure 1B where inputs A
and B can be ‘‘0’’ (0 molecules) or ‘‘1’’ (1000 molecules). Two simulated
cell populations are monitored at 2, 12 and 24 h, where the intensity of
green colour is directly proportional to the concentration level of GFP
(green fluorescent protein). The first one (upper row) corresponds to
the logic case 0-0, resulting in an output ‘‘1’’ (lights on). The second one
(lower row) corresponds to the logic case 1-1 (similar functioning for 0-1
and 1-0 cases) resulting in lights off. B. Detail of the 1-1 case simulation
where the plasmid with inducer (pmdi) is being replaced by the
modified version due to inflow (conjugation) and replication after
division. Numbers in cells represent the amount of pmdi plasmids. After
division of a cell with only 1 pmdi , one of the daughter cells will have no
copies of this set. Thus, GFP will decay.
doi:10.1371/journal.pone.0065986.g003
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introducing the inputs to the population and maintaining their

concentration. At time 200 min we stop introducing inputs, and

their concentration is only controlled by degradation rates until

case 0-0 is reached. From time 400 min to 500 min we repeat the

process. According to that input profile, we observe deterministic

oscillation of FimE/FimB (top graph), as well as oscillation

between the two possible plasmids in NOR_1 (middle graph)

(pmdF2, plasmid where the promoter points towards GF2 and

pmdF1, plasmid where the promoter points towards GF1). The

latter relation is shown stochastically (bottom graph), with a copy

number of 5 plasmids, in order to show realistic transitions within

discrete numbers. In all graphs we clearly observe the delay

produced between the time we stop introducing inputs and the

time they effectively disappear from the system. It is important to

note that the initial distribution of plasmids (t = 0) is no longer

repeated in the simulations. That pristine condition is only valid at

the very beginning, and is not representative of the working

system. From this simulation we can clearly see how the logic is

fully reversible, requiring only changes to inputs, with no

modification to the cells. This feature is possible precisely because

of the reversible nature of the fimE/B system (i.e., it does not

delete the segment).

Spatial simulation. A full spatial simulation of the XOR

population is shown in Figure 6. The three different strains are

grown over a surface that contains the corresponding combination

of inputs (the four logic cases shown). The visual output is

represented by the intensity of green colour (high = ‘‘1’’; low = ‘‘0’’)

proportional to the concentration of GFP in each cell. All

snapshots are taken after 32 h cultivation (cells have a doubling time

of approximately 100 min). As expected, cases 0-1 and 1-0 are the

ones that display a positive output following the XOR function.

Below each snapshot, we show a graph that pictures the number of

plasmids of each four possibilities (pmdF2, promoter pointing

towards GF2; pmd , promoter pointing towards GF2 after its

Figure 4. Multicellular design of a distributed XOR circuit. A. Schema of the three-strain population and its connections. Cell NOR_1 (donor)
takes its inputs from the concentration of molecules A and B (inputs of the whole circuit) and its output is named ‘‘F1’’ (which is a specific plasmid
configuration). The inputs for cell NOR_2 (recipient) are molecule A and F1. Similarly, the inputs for cell NOR_3 (recipient) are B and F1. The output for
the XOR function, ‘‘F2’’ is the combination of outputs from NORs 2 and 3 (green fluorescent protein, GFP, in this example). B. Truth tables for each
single gate and for the full XOR circuit. C. Inside logic of NOR_1. In the case 0-0 (no inputs present), gene G3 expresses FimB which, in turns, alters
the plasmid present in that strain by inverting the promoter in random direction. In any other case, gene G1 expresses FimE which inverts the
promoter region of the plasmid pointing towards gene ‘‘F2’’; While gene G1� expresses repressor X which stops the production of FimB. D. Inside
logic of cell NOR_2. Once the plasmid is in the cell (wire connected), if no inputs present, GFP is expressed. Otherwise, Cre is produced (inducers A
bound to inducible promoter pA and/or inducer F1 bound to pF1) which deletes gene F2 from the plasmid. (Cell NOR_3 has the same circuitry but it
is sensitive to input B instead of A). E. Wiring plasmid. Due to Fim inversion, the promoter can point towards GF1 or GF2 . Due to Cre deletion, gene
GF2 can be removed.
doi:10.1371/journal.pone.0065986.g004
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deletion; pmdF1F 2, promoter pointing towards GF1; pmdF1,

promoter pointing towards GF1 after gene GF2 deletion). The

number of plasmids is averaged per cell within the receiver

population (cells NOR_2 and NOR_3) at the same time as the

snapshot is taken (32 h).

The phenomenon of unwanted light flashes still occurs at this

point in NOR_2 and NOR_3. As described previously, the

presence of this phenomenon does not affect the overall

functioning of the circuit. Also, conjugation frequency plays an

important role in the quantitative behaviour. However, qualitative

functioning is still that of an XOR function (Figure S4).

Discussion

It seems increasingly clear that a significant amount of future

research in the field of synthetic biology will be concerned with the

construction of engineered microbial consortia [10,11,14]. The

growing complexity of proposed applications (e.g., in energy,

biomedical engineering, or environmental monitoring and bio-

remediation [36]) will require approaches that allow a task to be

broken down into separate sub-tasks, each of which may be

addressed by a separately-optimised population of cells. From an

historical perspective, this is entirely consistent with the develop-

ment of computer software, which has moved from a monolithic

model (in which an application is self-contained and isolated from

other programs) to an object-oriented, distributed model, in which a

system is viewed as a collection of interacting entities [37]. Apart from

the benefits accrued from a division of labour, mixed populations

are also robust to environmental perturbations, which will be

particularly significant in ‘‘real world’’ applications [11]. In order

to achieve this distributed, engineered cellular computation, we

require a reliable communication protocol that will allow cells and

populations to exchange information, exert control and influence

the overall system behaviour. As has already been demonstrated,

several such protocols are possible, based on (for example) quorum

sensing (QS) [13,14] or phage infection [16]. In this paper, we

propose a third alternative communication scheme, based on

bacterial conjugation.

A clear advantage of the proposed system is the amount of

information that may be communicated. Quorum-sensing systems

are based on the exchange of small signalling molecules, which are

ideal for global synchronization of a system, where the controlling

signal may be relatively simple. However, such systems lack the

richness and complexity of cell-cell DNA-based methods (such as

conjugation or phage), using which we may exchange relatively

large ‘‘packets’’ of genetic material [16]. An added advantage of

using conjugation as a wiring system is the requirement for physical

contact between donor and recipient cells. Thus, if cells are

constrained in their movement (e.g., because they are growing on

a solid surface), conjugation allows fine-grained spatial resolution of

computational processes (as opposed to the global ‘‘broadcast’’

model of QS). This will allow, for example, the precise targeting of

the location of a specific input signal within a monolayer of

communicating cells.

Another important benefit of engineered microbial consortia is

modularity and reusability of components [10]. The ability to

combine basic components together in order to build larger

structures is a fundamental engineering principle, and facilitating

the reuse of cellular systems is of paramount importance to

practitioners in synthetic biology. We illustrate this with reference

to our proposed XOR circuit. Our initial two-strain population

implementing the NOR function is effectively non-reusable, as it

cannot be ‘‘reset’’. This problem is solved in the XOR population,

where the system may compute indefinitely due to the reversible

nature of the fimE/B system.

Computational simulations allow us to ‘‘test’’ proposed cellular

systems in many different scenarios. In this paper, we provide not

only deterministic/stochastic single-cell simulations (which provide

us with an idealised perspective of the system, impossible to

achieve in vivo), but also multicellular spatial simulations, which

allow us to better understand the population-level dynamics of the

system. Taken together, these computational studies offer a

valuable insight into the proposed system, in order to prepare

future wet-lab implementations of our design. Such a framework

will allow for relatively easy investigation of implementation-

specific issues, which may be expensive or time-consuming to test

in the laboratory. For example, in future, we may use our in silico

approach to explore a wider combination of site-specific recom-

bination tools (only two were combined in this work), and how we

may harness their different functionalities (such as insertions,

cointegrations, deletions and inversions). Implementation of

conjugation-based wiring requires the consideration of various

practical issues. Most importantly, there are two types of

conjugation channels; those that work with bacteria moving freely

in a liquid medium (liquid maters, e.g., plasmids F and R64), and

those that only work on the surface of a solid medium (surface

maters, e.g., plasmids RP4, R388 and R46) [38]. The latter allow

better control of the experiments, since conjugation only starts

when the bacterial population is spread on a solid surface (e.g., an

agar plate), and conjugation stops when the cells are taken out of

the surface [39]. As a result, the experimenter could divide the

computing process in steps, if required. Further control over the

Figure 5. Time evolution of NOR_1 according to a specific input
profile. Logic case 1-1 is induced during the intervals [0…200] min and
[400…500] min (A and B = 500 molecules -constant entry- during the
interval). The case 0-0 domains during the rest of the 600 min.
According to that profile we observe the deterministic oscillation of
FimE/FimB (top graph) as well as the oscillation between the two
possible plasmids in NOR_1 (pmdF2 and pmdF1). The latter relation is
shown deterministically (middle graph) and stochastically (bottom
graph) (copy number = 5). Delays in response are due to input
degradation times.
doi:10.1371/journal.pone.0065986.g005
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experimental course may be achieved by selection for any of the

computing strains, for instance by applying antibiotic selection.

Periodic selection might be necessary since the various strains used

in the computation might have different growth rates, particularly

if they are loaded with plasmids (cells containing plasmids typically

grow more slowly than plasmid-free ones). Therefore, even if the

initial concentrations are 50% donors D and 50% recipients R,

this ratio can shift rapidly. Growth rates can be adjusted by

applying sub-inhibitory concentrations of antibiotics, and the

effects of such changes may be checked using our simulations. As

stated in the Methods Section, a conjugation experiment can be

prolonged by mixing the cells of a mating and plating out again on

fresh plates. Additional donors (or recipients) may be added at this

stage to equilibrate the D/R ratio.

Another advantage of our system, which provides an obvious

line of enquiry for future work, is the potential scalability of the

system. There are many plasmid conjugation systems that work in

an essentially orthogonal manner (meaning each plasmid uses its

own DNA transport system, and the different systems do not

interfere, even if acting on the same cell). This is easily understood,

since each conjugative system promotes only the transfer of the

plasmid it recognizes as its own [20]. In the E. coli bacterium there

are at least 12 different conjugative systems, coded by compatible

plasmids, that can act together in the same cell [40]. Many strains of

E. coli isolated from clinical settings carry three or more plasmids,

and these assemblies are stable and evolutionarilyy successful [41].

Moreover, a given conjugative plasmid can bring about the

mobilization of several independent mobilizable plasmids [42].

Thus, the numbers of potential orthogonal systems quickly

escalate.

We fully expect future work in synthetic biology to adhere

closely to this model, in which computational simulations and

laboratory investigations are inextricably linked in a tight cycle of

feedback. Our proposed system offers one possible addition to the

ever-growing ‘‘toolbox’’ available to biological engineers, and we

hope that experimental validation of its basic principles will be

quickly forthcoming.

Methods

Modelling genetic logic
The model used for all simulations is supplied in this Section.

We make the assumption that modelling the translation processes

and the slow transcriptions (basal rates) make no qualitative

difference. Thus, we adopt the following two simplifications in our

system: 1) transcription and translation are joined into one single

process called ‘‘transcription’’, and 2) basal transcription rates are

considered to be null in the system.

Ordinary differential equations (ODEs) from 1 to 13 explain the

deterministic dynamics of the first approach (2-strain NOR

population) using an idealized two-cell environment where physical

contact is constant:

dG1=dt~{k1AG1zK{1Ga
1{k2BG1zk{2Gb

1 ð1Þ

dGa
1=dt~k1AG1{k{1Ga

1{k3BGa
1zk{3Gab

1 ð2Þ

dGb
1=dt~k2BG1{k{2Gb

1{k4AGb
1zk{4Gab

1 ð3Þ

dGab
1 =dt~k3BGa

1{k{3Gab
1 zk4AGb

1{k{4Gab
1 ð4Þ

dCre=dt~k5Ga
1zk6Gb

1zk7Gab
1 {k13Cre pmdi{k8Cre ð5Þ

Figure 6. Spatial simulation of the XOR population using the four logic cases. For each input case (0-0, 0-1, 1-0 and 1-1) a snapshot of the
population after 32 hours is shown along a profile (bar chart) of the average number of plasmids of each kind (the four possibilities) in recipients
(NOR_2 and NOR_3) (copy number = 10). The output, visually identified as green colour cells (from green fluorescent protein, GFP) corresponds to the
XOR function. The average number of plasmids pmdF2 in a population is directly proportional to the fluorescence of it. The ‘‘y’’ axis in the bar graph is
displayed in logarithmic scale. Short bright green lines in spatial figures of the population represent a conjugation process currently happening
(those ‘‘springs’’ link donor and recipient).
doi:10.1371/journal.pone.0065986.g006
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dA=dt~k11{k1AG1{k4AGb
1{k9A ð6Þ

dB=dt~k12{k2BG1{k3BGa
1{k10B ð7Þ

dpmdi=dt~{k13Cre pmdi ð8Þ

dpmd=dt~k13Cre pmdi ð9Þ

dG2=dt~{k15G2F2zk{15GF2
2 ð10Þ

dGF2
2 ~k15G2F2{k{15GF2

2 ð11Þ

dF2=dt~k14pmdi{k15G2F2zk{15GF2
2 {k17F2 ð12Þ

dGFP=dt~k16GF2
2 {k19GFP ð13Þ

where G1 denotes the gene of the sender cell without inputs

bound; Ga
1 , Gb

1 and Gab
1 denotes the same gene with inputs A, B

and both bound (respectively) to its promoters; Cre is the Cre

protein; A and B are the inputs; pmdi and pmd the plasmid with

the segment that contains the gene in charge of expressing

inducers or without it (respectively); G2 denotes the gene in the

receiver cell without inducer bound; GF2
2 is the same gene with

inducers bound to its promoter; F2 are the inducers expressed by

the wiring plasmid; and GFP are the green fluorescent proteins.

Biochemical reactions and kinetic rate values (ki) are detailed in

Text S1. All rates are specified within standard ranges found in the

literature [43–48]. Kinetic rate k13 has been fixed according to the

experimental results of [23]. Importantly, similar parameters have

the similar values, following the objective of defining as general a

system as possible (free from parameter constraints that could

compromise future validation). A perturbation analysis is per-

formed (Figure S5) by adding Gaussian noise to every rate (being

the mean the original value and the standard deviation 20% of the

mean) and running the simulations several times. This analysis

reinforces our conclusion about the qualitative robustness of our

model. The quantitative behaviour may change without altering

the overall goal of the computational process.

Stochastic simulations, that take into account the randomness of

the chemical reactions, used the Gillespie algorithm [49] (using

reactions described in Text S1). In this approach, time is discrete

and the rates (ki) indicate the propensity of each reaction to

happen.

The deterministic behaviour of cells NOR_1 (component of the

3-strain XOR population) are described by equations 14–20:

dfimE=dt~k5Ga
1zk6Gb

1zk7Gab
1 {k8fimE{k25fimE

pmdF1{k26fimE pmdF2

ð14Þ

dX=dt~k5Ga
1zk6Gb

1zk7Gab
1 {k22XG3zk{22GX

3 {k20X ð15Þ

dG3=dt~{k22XG3zk{22GX
3 ð16Þ

dGX
3 =dt~k22XG3{k{22GX

3 ð17Þ

dfimB=dt~k21G3{k8fimB{k23fimB

pmdF1{k24fimB pmdF2

ð18Þ

dpmdF1=dt~{k23fimB pmdF1zk24fimB

pmdF2{k25fimE pmdF1

ð19Þ

dpmdF2=dt~k23fimB pmdF1{k24fimB

pmdF2zk25fimE pmdF1

ð20Þ

where fimE and fimB denote the inversion proteins; X represents

the repressor; G3 is the gene that expresses fimB; GX
3 denotes the

same gene when the repressor X is bound to its promoter; and

pmdF1 and pmdF2 are the possible plasmid configurations inside

NOR_1 cells. Equations 1, 2, 3, 4, 6 and 7 are also used in this

example as they define dynamics for existing components in

NOR_1 cells. Reactions and rates are, as before, detailed in Text

S1. Importantly, k{22 is a low value in order to simulate a strong

repression done by X .

Separately, NOR_2 cells are simulated by ODEs 21 to 24. As

stated in Section Results, the inside program of these cells are similar

to the combination of both senders and receivers of the 2-strain

NOR design (Figure S6 shows the transition to logic case 1-0

inside a NOR_2 cell). The only difference relies on the four

plasmid configurations (instead of two) that can be present in the

cell. Thus, their equations are the same as in the NOR example

but with some modifications:

dCre=dt~k5Ga
1zk6Gb

1zk7Gab
1 {k13Cre

pmdF2{k27pmdF1
F2{k8Cre

ð21Þ

dF1=dt~k28pmdF1zk29pmdF1
F2{k2F1G1{k3F1Ga

1{k10F1ð22Þ

dpmdF1
F2=dt~{k27Cre pmdF1

F2 ð23Þ

dpmdF1=dt~k27Cre pmdF1
F2 ð24Þ

where F1 is the expression product that induces the production of

Cre; pmdF1
F2 and pmdF1 are the plasmid with or without

(respectively) gene F2 when the promoter is pointing towards

gene F1. The plasmids pmdi and pmd (equations 8 and 9 also used

in cells NOR_2) make reference to plasmids pmdF2 and pmd . The

gene G1 inside the NOR_1 cell is not the same than the gene G1

inside the NOR_2 cell, altough they share the label. Stochastic

simulations are done (via Gillespie algorithm) by using the

biochemical reactions with the kinetic rates shown in Text S1.
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The code of the previous model is included in Code S1 (all code

in Python). This code is enough to reproduce Figures 2, 5, S1, S2

and S6. The spatial figures (Figures 3, 6, S3 and S4) make use of

the package DiSCUS as explained in the following section.

Population dynamics
A simulation tool for population dynamics is needed in order to

get realistic spatial results (Figures 3, 6, S3 and S4) for the whole

system behaviour. We present a simulation framework for

bacterial growth, movement and horizontal gene transfer called

DiSCUS (DIscrete Simulation of Conjugation Using Springs -

http://code.google.com/p/discus/). Using an agent-based model

(AbM) approach, our software combines the management of

intercellular interactions with the simulation of intracellular

genetic networks. AbMs are widely used to study microbial

growth and biofilm formation [50–53] and conjugation has also

been included in several simulations [31,54,55], but these

(unrealistically) consider cells as abstract circular objects. Having

rod-shaped cells (as in [56–59]) is essential to obtain accurate

conjugation dynamics. Thus, DiSCUS is the first platform, to our

knowledge, to offer the possibility of simulating conjugation

dynamics in rod-shape bacteria.

ODEs are introduced inside every cell independently, so each

bacterium runs its own copy of the circuit according to its design.

While the circuit is simulated deterministically, the plasmid

number is always discretized using several build-in functions.

The discrete number corresponding to the plasmid concentration

is used when: a) the cell divides, when a random selection of the

plasmids will be part of each daughter (without losing plasmids); b)

the plasmids have lower copy number than the limit, in which case

they increase their copies; and c) the cell transfers (through

conjugation) a small number of plasmids (1–3) to the recipient.

The discretized values are always used to update deterministic

concentrations. This process is essential to assure the numbers are

kept consistent and realistic.

Conjugation events take place while the cells carry out their

normal growing activity. DiSCUS handles conjugation processes

through a probability distribution that can be easily tuned to

correspond to the behaviour of different cell types. The low and

high conjugation frequencies used in this paper are obtained via

visual validation against real data taken from a recent study [60]

(Figure S7A–C) where a difference is established between original

donors (low conjugation frequency) and new donors or transconju-

gants (high conjugation probability). Biomechanical validation of

DiSCUS (Figure S7D–I) against real data [59] has also been

performed. In our design there is only one conjugation frequency,

as transconjugant cells are unable to conjugate between them or

back to donors (due to the fact that they do not carry a complete

genetic transfer system). However, we run duplicate simulations

considering both alternative frequencies (low: Figures 3 and S4;

high: Figures 6 and S3) in order to explore the range of correct

functioning of the system. We observe quantitative changes, but

not significant alterations in the qualitative logic behaviour of the

circuits. In order to allow conjugation to achieve complete

infection of the recipient population during the experiment, the

cells were mixed (shuffled) every 400 min so that new pairs donor-

receiver can arise in the population (this phenomenon has been

tested and validated experimentally in [39]; we provide simulated

proof in Figure S8).

Supporting Information

Code S1 Python code for the intra-cell circuits. Equations

1 to 13, that explain the deterministic behaviour of the first 2-

strain NOR population are coded in the file NORdet.py while the

rates are simulated stochastically (Gillespie) in the file NOTsto.py.

Regarding the XOR example, the NOR_1 strain is simulated

deterministically in XOR(NOR1)det.py (ODEs 14–20) and stochas-

tically in XOR(NOR1)sto.py; The ODEs for the NOR_2 strain are

coded in XOR(NOR2)det.py.

(ZIP)

Figure S1 Molecular deterministic relations in the
simulation of Figure 1B. Using the same simulation of

Figure 2 (case 1-1), these graphs show the behavioural changes

in the relation between different molecules when the rate k13 (Cre

deletion rate) is changed. All graphs show information at

time = 200 min. A. Cre proteins and altered plasmids pmd (copy

number = 1). B. Cre proteins and GFP molecules. C. F2 inducers

and GFP molecules.

(EPS)

Figure S2 Comparison of stochastic and deterministic
behaviour in plasmid concentration. Twelve different

simulations of Figure 1B (case 1-1) over 150 min. Only pmdi

and pmd are monitored. Copy number equals 1 (six graphs on the

left) and 20 (six graphs on the right). Rate k13 equals 2E-5 (top

row), 2E-6 (middle row) and 2E-3 (bottom row). The unrealistic

transitions of deterministic simulations (there is no such a thing as

‘‘0.243’’ plasmids in a cell) match better the stochastic transitions

with bigger copy number. Also, big values of k13 will give better

deterministic approximations (due to small delay in conversion).

(EPS)

Figure S3 Alternative spatial simulations to Figure 3
with greater conjugation frequency. Red outline cells:

donors (senders). Blue outline cells: recipients (receivers). Green

colour intensity proportional to GFP concentration level (output).

A. Logic 0-0 case. B. Logic 1-1 case. Bars in bar graphs

proportional to plasmid numbers in the whole population

(excluding sender cells).

(EPS)

Figure S4 Alternative spatial simulation for case 0-0 in
Figure 6 with lower conjugation frequency. Snapshot of an

XOR population after 32 h when no inputs are present (right) and

bar graph showing the average number of plasmids (per

configuration) in receivers (left) at the same instant (y axis in

logarithmic scale). By setting up the conjugation frequency to a

low value, the number of plasmids pmdF2 (which control the

output) increases. As a result, some cells display a positive output

(GFP) when they should not according to the XOR function.

However, this positive output is residual.

(EPS)

Figure S5 Perturbation analysis of model reaction
rates. In each graph (A–D), the results of 50 simulations are

shown, 45 of which use a perturbed set of reaction rates, and 5 of

which use the original rates (control set, above dashed horizontal

lines in graphs). In each experiment, we perturb every rate by

adding Gaussian noise to the original value (stardard deviation is

20%). A,B: Perturbation analysis of the model (Figure 2) for the 2-

strain NOR population (23 rates), where the graphs show the

effect of the output (GFP) when the inputs are 0-0 and 1-1

respectively. C,D: perturbation analysis for the XOR model

(Figure 5), NOR_1-strain (22 rates; inputs considered constrant in

the profile), where the graphs measure the level of the fimE protein

and the pmdF1 plasmids, respectively.

(EPS)
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Figure S6 Simulation results of NOR_2 during its logic
1-0 case. This case means that molecules A are present (logic

‘‘1’’ = 1000 molecules at the start; k11 = 500 molecules min21) and

the plasmids coming from donors (NOR_1) are all in configuration

pmdF2. In this scenario, we would expect a logic ‘‘0’’ in the output

(no GFP). However, we can observe an initial GFP expression

(bottom graph) which corresponds to the time delay needed to

change the configuration of the plasmid from pmdF2 to pmd (top

graph). After GFP is no longer expressed, its degradation controls

the concentration. Copy number = 5.

(EPS)

Figure S7 Validation of DiSCUS. Left (figures A–C):

validation of conjugation dynamics using real data. A. Figure

extracted from [60] where a colony of Pseudomonas putida is divided

into dark red donor cells (DsRed), yellow recipient cells (YFP) and

transconjugants, expressing both yellow and green light (YFP and

GFP). The upper row shows the transconjugant signal, and the

bottom row shows the whole community. B and C. Simulation

results. Two simulations of similar colonies are recorded over

exactly the same time intervals (min). The colours of the cells

match the colours observed in A. Right (graphs D–I): validation of

cell movement using real data. Graphs D, F and H are extracted

from [59], and show experimental results of Escherichia coli growth

regarding density, velocity gradient and ordering (respectively).

Graphs E, G and I correspond to simulations in similar conditions

to [59], for the same parameters (density, velocity gradient and

ordering respectively). Test 1, 2 and 3 in graphs correspond to

different spatial distribution of cels inside the microfluidic chanel.

(EPS)

Figure S8 Effects of manual mixing on conjugation
frequency. A. Recipient-trapping behaviour ofa population

wth donors (red), transconjugants (green) and recipients (yellow).

Two snapshots depict clearly-observed clusters. B. Population

arfter random mixing, where the clusters are automatically

dissolved. C. Graph showing conjugation frequencies (Y = T/

(R+T)) of 560-minute experiments (ratio D/R = 50%). Blue bars

represent Y on an untouched population, while red bars represent

Y wen the population is mixed at 420 min. The two sets of bars

corespond to experiments with different cell dimensions (163 -left-

and 162 -right-). Error bars show variation across 15 experiments

of each class.

(EPS)

Movie S1 The 2-strain NOR population (0-0). Spatial

simulation of the 0-0 logic case from where images in Figure 3 are

taken. 24-hour video where the community is shuffled randomly

every 400 min as stated in the text.

(MOV)

Movie S2 The 2-strain NOR population (1-1). Spatial

simulation of the 1-1 logic case from where images in Figure 3 are

taken. 24-hour video where the community is shuffled randomly

every 400 min as stated in the text.

(MOV)

Text S1 Reactions and rates used in the simulations.
This text contains the chemical reactions and the rate values used

in all simulations of the paper.

(PDF)
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