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Abstract — This paper proposes an unsupervised method for 

diagnosing and monitoring defects in inductive thermography 

imaging system. The proposed method is fully automated and does 

not require manual selection from the user of the specific thermal 

frame images for defect diagnosis. The core of the method is a 

hybrid of physics-based inductive thermal mechanism with signal 

processing-based pattern extraction algorithm using sparse greedy 

based Principal Component Analysis (SGPCA). An internal 

functionality is built into the proposed algorithm to control the 

sparsity of SGPCA. and to render better accuracy in sizing the 

defects. The proposed method is demonstrated on automatically 

diagnosing the defects on metals and the accuracy of sizing the 

defects. Experimental tests and comparisons with other methods 

have been conducted to verify the efficacy of the proposed method. 

Very promising results have been obtained where the performance 

of the proposed method is very near to human perception. 

Index Terms — Data analytics for diagnosis and monitoring, 

instrumentation, inductive thermal imaging, machine intelligence, 

non-destructive testing and evaluation. 

I. INTRODUCTION 

maging diagnostic system for defect detection is highly 

demanded in industry [1, 2]. This has been applied on 

inspection of electronic chips or dies in semiconductor 

production lines [3]. Acciani et al. extracted the features of the 

regions of interest in test images and then built multilayer neural 

networks for defect detection [4] on solder joints in surface 

mount technology of industry. Tsai et al. proposed defect 

inspection system of solar modules in electroluminescence (EL) 

images [5]. A. Picon et al. proposed fuzzy spectral and spatial 

feature integration method for classification of nonferrous 

materials in hyperspectral data [6]. All these methods recognize 

that image based defect diagnostic system is a wide group of 

analysis technique used in science and industry to evaluate the 

properties of material, component or system without causing 

damage [7-9]. Infrared thermography systems have reached a 

prominent status as a nondestructive testing and evaluation 
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(NDT&E) image diagnostic method [10-12] with the 

advantages of being fast, and providing non-contact, 

non-interaction, real-time measurements over a large detection 

area with a long range, security of personnel, and relatively easy 

interpretation of results. Infrared thermography can be used to 

assess and predict the structure or behavior beneath the surface 

by measuring the distribution of infrared radiation and 

converting the measurements into a temperature scale.  

Inductive thermography (IT) system which combines two 

techniques: Eddy Current (EC) and thermography [13] has the 

potential with an increasing span of applications [14]. 

Comparing with other thermography NDT&E systems, the heat 

of IT is not limited to the sample surface, rather it can reach a 

certain depth, which governed by the skin depth of eddy current. 

Furthermore, IT focuses the heat on the defect due to friction or 

eddy current distortion, which increases the temperature 

contrast between the defective region and defect-free areas. 

Eddy current pulsed thermography (ECPT) is a kind of IT 

methods which is the most widely used such as penetration 

depths measurement in metallic materials [15], small defects 

detection for compressor blades [16], probability of detection 

(POD) estimation [17] of fatigue cracks, impact evaluation in 

carbon fibre reinforced plastic (CFRP) [18], corrosion and 

blister detection under coating [19] and multiple cracks 

detection [20]. All these works require signal processing tools 

to do defects analysis. In ECPT, several thermal transient 

response features have been used as an indicator of defect 

status, which is critical for acceptance/rejection decisions for 

maintenance and lifetime prediction [21]. Most methods are 

limited on manually selecting the proper contrast components. 

To enhance the flaw contrast and improve noise rejection 

qualities, pattern based image enhancement has been conducted 

by introducing the raw data upon a set of orthogonal basis 

functions. Fourier transform was applied to pulsed 

thermography, and enhanced the flaw-contrast significantly 

using phase map [22]. Influence of non-uniform heating and 

surface emissivity variation was removed by using a Fourier 

transformation based image reconstruction algorithm [23]. 

Instead of a prescribed set of basis functions, empirical 

orthogonal functions were also employed to maximize the 

anomalous patterns of transient response. The efficiency of 

Principal Component Analysis (PCA) was compared on 

thermography features extraction by considering the initial 

sequence as either a set of images or a set of temporal profiles 

[24]. In addition, the Independent Component Analysis (ICA) 

[25, 26] and Non-negative Matrix Factorization (NMF) [27, 28] 

are proposed for defect characterization in IT system. However, 
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most pattern extraction based methods are only employed as a 

signal processing tool. The physics mechanism is not fully 

linked to provide the benefits on defect detection and while the 

results are acceptable, they are not completely accurate. This 

ambiguous case prevents the use of IT system in automated 

environments.  

The sparse modeling of signals [29-36] which has proven to 

be effective in signal processing, denoising, deconvolution, 

compressive sensing reconstruction, inpainting, data mining, 

multimedia, nonnegative matrix factorization and etc. Most 

natural signals exhibit such sparsity property in adequately 

chosen signal representations. These include the wavelets [37], 

the curvelets [38] or even adaptively learned signal 

representations [39]. Greedy algorithms [40] have been widely 

used to find approximate solutions quickly to combinatorial 

optimization problems [41]. In a few cases, optimal solutions 

are guaranteed. Greedy algorithms for sparse approximation 

have inspired less adaptive methods. Matching pursuit (MP) can 

be converted to a low complexity adaptive form, as done in [42], 

and been extended to orthogonal MP (OMP) [43] as well as 

stage-wise OMP [44]; Compared with convex relaxation 

algorithms, greedy pursuits need more measurements, but they 

tend to be more computationally efficient. Sparsity has been 

exploited in recent unsupervised pattern recognition methods 

[45-48]. The group of research interest focuses on the low-rank 

and sparse components via convex optimization have also been 

attractive, the robust PCA, is [49] proposed iterative 

thresholding methods with low complexity, but with low speed 

of convergence. Lin et al. [50] proposed accelerated proximal 

gradient (APG) methods which are faster and more accurate 

than robust PCA. The latest approach such as variational 

Bayesian and Markov chain Monte Carlo (MCMC) based 

sparse PCA with specific prior where the model parameters and 

hyperparameters are adapted by using the [51, 52]. In all cases, 

a fully Bayesian treatment is applied to inference. While these 

approaches increase the accuracy of specific application and 

works efficient when suitable prior is selected. Moreover, it 

consumes significantly high computational complexity at each 

iteration to adapt the parameters and its hyperparameters. 

The contributions of the current work lie in the development 

of the physics mechanism that underlies the IT system and a 

derivation of a mathematical model that bridges the gap 

between the physics mechanism and signal processing analysis. 

The aim is to develop a data-analytics algorithm to extract 

anomalous patterns in the IT system. A physics-based signal 

processing approach combining sparse greedy Principal 

Component Analysis (SGPCA) is developed to identify and 

search the defect region in the sample. The model represents a 

low-rank variable as a sparse bilateral factorization with 

greedy-based optimization to reduce the computational 

complexity during the sparse pattern extraction stage. The 

physics mechanism as to why sparse information benefits the IT 

heating phase will also be discussed in details. The comparison 

in terms of the probability of detection and computational 

complexity has been undertaken for different sparse pattern 

extraction algorithms through the real experiments. 

Experimental tests on man-made metal defects and natural 

defects with complex geometry have been conducted to show 

the validity of the proposed algorithm. 

The paper is organized as follows: Section II discusses the 

physics model of IT mechanism and the linkage as well as 

development of sparse pattern extraction algorithm. Section III 

describes the proposed sparse thermal pattern extraction 

method. Sections IV and V introduce the experimental setup 

and present the experiment results. Finally, Section VI 

concludes the work.  

II. PROPOSED METHODOLOGY 

 

 Physics Mechanism of Inductive Thermography System  

1) Inductive Thermal Conduction  

The infrared camera records both the spatial and the transient 

response of temperature variation on the specimen. This can be 

represented as a spatial-transient tensor Y  which has 

dimension  
Transient

Spatial

x yN N N  . The governing equation describing 

the EM field in the ECPT system can be deduced from 

Maxwell's equations. When an EM field is applied to a 

conductive material, the temperature increases owing to 

resistive heating from the induced electric current which is 

known as Joule heating. The sum of the generated resistive heat 

Q is proportional to the square of the magnitude of the electric 

current density. Current density, in turn, is proportional to the 

electric field intensity vector E . The following equation 

expresses this relationship: 

 

2 2
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0
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σ is dependent on temperature, and 
0  is the conductivity at the 

reference temperature 
0T  and  is the temperature coefficient 

of resistivity, which describes how resistivity varies with 

temperature. In general, by taking account of heat diffusion and 

Joule heating [24], the heat conduction equation of a specimen 

can be expressed as: 
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where  , , ,T T x y z t  is the temperature distribution, k is the 

thermal conductivity of the material (W/m K), which is 

dependent on temperature.  is the density (kg/m3), 
pC  is 

specific heat (J/kg K).  , , ,q x y z t  is the internal heat 

generation function per unit volume, which is the result of the 

eddy current excitation. The variation of temporal temperature 

depends on the spatial temperature variation for heat 

conduction. According to Eqn. (2), heat conduction is 

influenced by  , , ,T x y z t ,  ,  ,  ,  , and l. Here   

denotes the sensor geometry factor;   denotes the parameters 

of the excitation (frequency, amplitude, etc.) and l denotes the 



lift-off (distance between the sensor and sample). From the 

above analysis, it becomes clear that the variation of 

temperature spatially and its transient response recorded from 

the IR camera directly reveals the intrinsic properties variation 

of the conductive material.  

2) Inductive Thermography Defect Detection 

Fig. 1 shows the diagram of inductive thermography defect 

detection system. The excitation signal generated by the 

excitation module is a small period of high frequency current. 

The current in the coil will induce the eddy currents and 

generate the resistive heat in the conductive material. The heat 

will diffuse in time until the heat reaches equilibrium in the 

material. If a defect (e.g. crack, fatigue region) is present in the 

conductive material, eddy current distribution as well as heat 

diffusion process will vary. Consequently, the spatial 

distribution of temperature on the surface of material and the 

temperature transient response will show the variation, which is 

captured by an infrared camera. It can be divided into two 

phases: heating phase and cooling phase. As an example, we 

take a finite length sample with small penetrated slot as a defect 

testing sample. The resultant heating frame from IT (0.1s) is 

presented in Fig. 1 right bottom panel. In the heating phase, 

different heat generation rates enlarge the temperature spatial 

variation. Hot spots are observed around the slot tips and the 

cool areas locate at both sides of the slot. In the cooling phase, 

heat diffuses from high temperature area to low temperature 

area, and reduces the contrast. In addition, the area where locate 

far away from excitation coil will continually rising temperature 

because of heat diffusion. These different areas can be 

considered as the pattern regions which share the similar 

transient responses in the sample. The infrared camera 

functioned as a temperature spatial image signal recorder along 

with time flowing. In addition, the camera actually records the 

mixed image signal corresponding to the signal image from the 

thermal pattern regions at each time point. These regions are 

termed as thermal patterns in inductive thermography. 

 

 
Fig. 1: ECPT system. 

 

The hot spots are used specially for defect location and sizing. 

Fig. 1 shows the example of temperature distribution at the 

sample surface as the lift-off distance is set d = 4mm. When the 

inductor is close to the tip of the defect (d = 4 mm), it is seen that 

significant eddy current flows around the tip of the defect and 

the defect behaves predominantly as a slot. 

3) Relationship between excitation system, heating phase and 

cooling phase with respect to material variation 

IT uses inductive heater as the excitation system. Hence, it is 

specific for conductive materials or multi-layer system with 

conductive layer. The inductive heat depends on the parameters 

of material and excitation signal. 1)  To optimize the 

signal-to-noise ratio (SNR), the heat power should be 

maximized. Normally, the high current amplitude (hundreds of 

ampere) and great frequency (>100 kHz) are used. 2) The 

longer heating time results in the accumulation of large amount 

of heat Q. For detecting surface defects, the long heating time is 

useful for good SNR and contrast [18]. At the same time, the 

longer heating time is useful for detecting the deep defects due 

to heat conduction from surface to deep defects [51]. 3) The 

long cooling time is useful for heat conduction to detect deep 

defects. The thermal penetration depth for a pulsed excitation is 

determined by the thermal diffusivity α of the material and by 

the observation time t (cooling time) after pulse heating. 4) The 

small electrical conductivity can lead to a high heat power and 

great eddy current penetration depth. The thermal diffusivity 

depends on thermal conductivity, mass density and specific heat. 

If the thermal diffusivity is large, the temperature changes 

quickly. Hence the sampling frequency of the camera must be 

high enough to capture the changes of temperature.  

 

4) Detectability 

 

In general, the ECPT is valid for both deep and shallow 

defects, which is based on the physics principles of inductive 

heating, heat conduction, and infrared radiation. According to 

skin effect in inductive heating, the eddy current has a 

penetration depth  , which is expressed by equation 

1

f



  where f is the frequency of the pulsed excitation. If 

the shallow defects are in this skin area, they will disturb the 

eddy current distribution and then temperature distribution. 

Theoretically, the lower excitation frequency has deeper 

detection depth. In practice, in order to improve the heating 

efficient with inductive thermography, the frequency is about 

100 kHz and the skin depth is relative small. For example, 

ferromagnetic metals have a much smaller skin depth (about 

0.04mm at 100 kHz). Therefore, shallow/surface defects can be 

detected. 2) The heat will conduct to the interior and lateral area 

of the material. If the deep defects disturb the heat conduction 

process, the surface temperature distribution will be different 

from the surrounding area. The heat conduction is used to detect 

the deep defects [51]. 3) The temperature will be captured by IR 

camera. If the surface defects show a different emissivity value, 

the temperature will be different from the surrounding area. 
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Fig. 2: (a) Thermal image at 0.1s after heating, (b) transient temperature response at impact point plotted against time, (c) 1st 

derivatives of temperature response 

 

5) Inductive thermography multi-phase analysis 

According to (2), the 1st order derivative of the temperature 

response of transient response, as shown in Fig. 2(b), is 

composed of heat diffusion and Joule heating [52]. In Fig. 2(c), 

we can infer from the thermal video that the heat conduction 

procedure can be divided into six phases: 

   Phase 1: A resultant singular electric current field is 

generated, and the eddy current quickly rises from zero to 

maximum, and then converges to a steady state. This phase 

is very short (approximately 5ms) and the heat diffusion 

does not play an obvious role which can be considered zero 

or a constant small value. In Eqn. (2), we only take into 

account the Joule heating during this phase. 

   Phase 2: Electric current field maintains a stable state. The 

sum of the generated resistive heat Q is constant. However, 

heat diffusion velocity gradually increases and following a 

different temperature increase according to Fourier’s law of 

heat conduction. Simultaneously, heat diffusion is getting 

more obvious due to the significant heating propagation time. 

Heat diffusion plays a main role in the thermal video during 

this phase. 

   Phase 3: Heat conduction also reaches the equilibrium state. 

The sum of the generated resistive heat Q and heat diffusion 

are at equilibrium in this phase. 

   Phase 4: Eddy current quickly decreases from maximum to 

zero when exciting signal is stopped. Similar to the first 

phase, the procedure is very short, which lasts about 5ms. 

Change of heat diffusion is not abrupt in such a short time. 

Joule heating plays a main role in the thermal video during 

this phase. 

   Phase 5: There is no eddy current in this phase, so 

 , , ,q x y z t  can be omitted in Eqn. (2). The change of the 1st 

order derivative is resulted from the velocity variation of 

heat diffusion. 

   Phase 6: Heat diffusion is at a stable state. 

 

As mentioned in the Introduction, IT focuses the heat on the 

defect due to friction and eddy current distortion, which 

increases the temperature contrast. Thus, for surface defects, the 

selection of phase one and four are directly attributed to Joule 

heating due to the eddy current distortion. More description and 

comparison of phase selection will be detailed in Section V. 

Moreover, the IR camera used as a temperature measurement 

sensor has an important role in inductive thermography. 

Inductive thermograph is a relative measurement technique, the 

temperature contrast between defect and surrounding area is 

important. Therefore, the sensitivity of camera has an influence 

on defect detect sensitivity. In the proposed method, the high 

end thermal camera is used, the SC7500 is a Stirling cooled 

camera with a 320 256  array of 1.5-5um InSb detectors. This 

camera has a sensitivity of ＜ 20 mK and a maximum full frame 

rate of 383 Hz such that the interface of the camera sensitivity 

can be reduced to minima. The distance has an influence on the 

heating efficiency. A small distance is desirable, but with an 

overly too small distance, the distribution of the eddy current is 

forced into a small area, which reduces the detectable area. To 

avoid this effect, transmission mode where IR camera and 

heater are located on the opposite side of objects is investigated 

if the object is thin. The increase of distance may decrease the 

SNR and defect detectability. In the proposed method, the 1 mm 

distance lift-off between the coil and sample is verified to 

balance good SNR and proper excitation heating. 

 

III. PHYSICS-BASED DATA ANALYTICS 

 

Thermography Sparse Pattern Extraction  

 

1) Observation Model 

As shown in Fig. 1, hot spots are observed around the slot tips 

and the cool areas locate at both sides of the slot. In the cooling 

phase, heat diffuses from high temperature area to low 

temperature area, and reduces the contrast. In addition, the area 

where locate far away from excitation coil will continually 

rising temperature because of heat diffusion. These different 

areas can be considered as the thermal pattern regions. 

Specifically, it can be seen in Fig. 1, position 1 represents an hot 

spots region 1( )tX  with high rising and high falling rate of 

temperature; position 2 represents an cool areas 2( )tX  with 

moderate rising and falling rate; position 3 represents an 

non-defect region 3( )tX  with high rising rate followed by a 

continually low speed rising and then drop down; and position 4 



represents an non-excitation region 4( )tX  with continually 

temperature increasing. Mathematically, the thermography 

image captured by the infrared camera is considered as a mixing 

observation signal image ( )tY . The term im  is the mixing 

parameter which describes the contribution of the thi  position to 

the induced recorded thermography image in Fig. 1. Thus, the 

mathematical model [25] can be described as: 

1

( ) ( )
sN

i i

i

t m t


Y X         (3) 

where sN  denotes the number of independent signal image 

areas. The visual representation of Eqn. (3)  is shown in Fig. 3.  
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Fig. 3: Mathematical representation of mixing process of ECPT 

 

Our previous study [25] has developed single channel blind 

source separation algorithm for pattern separation of inductive 

thermography. However, the method requires statistical 

independence on the waveform within the duration of signal 

capture and further process of pattern identification is also 

demanded which is often violated in practice. Instead, we use a 

fixed-length segment drawn from transient response [53, 54], 

such that continuous transient slices of length N  can be 

chopped out of a set of image sequences from t  to 1t N  , 

and the subsequent segment is denoted as 

 vec( ( )),vec( ( 1)), ,vec( ( 1))t t t N    
T

Y Y Y Y  where ‘ T ’ 

denotes the transpose operator and ‘ vec ’ denotes the vectorize 

operator. The constructed image sequences is then expressed as 

a linear combination of the signals generated by the different 

pattern regions such that 

 Y MX           (4) 

where N LR Y , x yL N N  . 1, , s

s

N N

N R    M m m  is the 

mixing matrix, im  is the ith mixing vector 

and 1 2vec( ( )),vec( ( )), ,vec( ( )) s

s

N L

Nt t t R
   

T

X X X X . Assuming 

that sN N  and M  has full rank.  

2) General Principle of Pattern Extraction 

Our previous study already used general PCA to separate the 

observed variables. To solve Eqn. (4), one possible way is to use 

the singular value decomposition (SVD) which is a form of 

factorization  

 Y UΣV           (5) 

where U  and V  are the orthogonal matrices and Σ  consist of 

the singular values. The columns of U  represent the PCA basis 

vectors. With possible dimension reduction, e.g. choosing 

sN N , there exits sN  number of basis vectors maximally 

informative subspace of input data, thus the basis vectors are 

selected and determined by the information contained in the 

nonzero singular values. 

3) Sparse Pattern Extraction 

However, previous study does not involve or leverage on the 

phases of heat conduction and sparse factors. Sparseness refers 

to a representational scheme where only a few units (out of a 

large population) are effectively used to represent typical data 

vectors [55]. In effect, this implies most units taking values 

close to zero while only few take significantly non-zero values. 

The sparse factors enforce the solution to consider only the 

significant region where the defect may lie within the 

surrounding background. This is shown in Fig. 2(a). For data 

with sparse outliers or partially contaminated by noise of 

overwhelming magnitude, sheer low-rank assumption cannot 

fully capture its complex structure. Therefore, (4) can be 

considered as combination of sparse pattern (e.g. hot spots) and 

non-sparse patterns  

 

  1,..., ,si N i j j j 
    

SL

Y MX M X G      (6) 

 

In reality, they play an important role in enhancing the defect 

detectability of IT system. A general assumption of Eqn. (6) can 

be denoted as    Y L S G , i.e., the pattern matrix Y  can be 

decomposed as the sum of a low-rank matrix L (e.g. for 

position 2, 3 and 4 reflected patterns in Fig. 1), a sparse pattern 

S  (e.g. hot spots) which contains the spiky anomalies that are 

rarely shared by different instances, and G which is the noise 

term. When the algorithm optimizes the sparse S, it is actually 

trying to find the joint sparse estimation of jM  and j
X  (not 

just j
X ). The sparse estimation of j

X  is required to obtain the 

correct shape of the pattern while the sparse estimation of jM  is 

to enable the user to determine the exact time when the target 

pattern takes place. By replacing L  with its bilateral 

factorization L UV  where U and V are rank-1 matrices of 

Eqn. (6) (The low-rank matrix variable in solving other thermal 

patterns is modeled in a bilateral factorization form UV for the 

purpose of developing SVD-free algorithms. ) and regularizing 

the L1- norm of S  entries, the cost function can be expressed as: 

 
2

1
min vec

F
  

U,V,S
Y UV S S      (7) 

where  vec   denotes the vectorize operation, 
F

 denotes the 

Frobenius norm and 
1

 denotes L1-norm. In this paper, we 

explore the greedy pursuit model [56] for optimizing the 

parameters in Eqn. (7). The advantage of this method is that it 

can significantly balance both complexity and accuracy. By 

optimizing , ,U V S , we take the gradient of the cost function 

with respect to these parameters and set it to 0. Starting with U, 

we have 
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Note subscript in k denotes the variable in the kth iterate. Next, 

we consider V:  
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Finally, we consider S:  
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(10) 

 

where in (10), S is an element-wise soft thresholding operator 

with   threshold such that     sgn max ,0mn mn    S Y Y Y . 

In this work,   is selected by exploring the heuristic approach 

to get the optimal threshold. We will treat this in two cases. For 

the case where S is positive, the differentiation of abs(S) results 

in unity. This allows   to be incorporated into the solution to 

render extraction of sparse pattern. For the special case of S is 

zero, even though this point is non-differentiable, it is does not 

prevent the development of the proposed algorithm. The reason 

is because at this point (S = 0), the image is already sparse and 

there is no further need to impose lambda into the solution. 

For computation efficiency [57], we investigate the product 

of 
k kU V ,this leads to 

     
1

kk k k k k k P


    T T

U
U V U U U U Y S Y S . This implies 

that the product 
k kU V equals to the orthogonal projection of 

  Y S onto the column space of kU . According to (8), the 

column space of kU can be represented by arbitrary 

orthonormal basis for the columns of   1k
  T

Y S V , For 

example, we can compute it as Q  via fast QR  decomposition 

  1kQR 
  T

QR Y S V . In this case, the product 
k kU V  can 

be equivalently computed as 

   = =k k P   T

Q
U V Y S QQ Y S . Therefore, kU  and kV  in 

(8) can be replaced by Q  and   T
Q Y S , respectively. This 

gives a faster updating procedure. In addition, the proposed 

method invokes the updates in (8) with a greedy incremental 

rank r  for both U  and V . In particular, it starts from a 

0r N
V with a small integer 

0r , iterates (8) and (9) for K 

times, and then augment the rank of V to 
1 0= +r r r  by adding 

r  extra rows to V , where r  is the rank step size. In the 

proposed model, the r  rows are selected greedily as the top 

r  row basis on which the object decreases fastest. 

Accordingly, they maximizes the magnitude of the partial 

derivative of the object with respect to UV , which is basis on 

which the object decreases fastest. Namely, 
2

F
  

  


Y UV S
Y UV S

V
    (11) 

Hence the r rows are the top r  right singular vectors of the 

fat matrix    T
U Y UV S , which can be quickly obtained by 

a small SVD and The rank r stops augmenting when reaching 

certain error tolerance. In the proposed model, the top 
ir row 

basis are successfully obtained when optimizing V of +ir r  

rows. The essential task of the updates is to optimize the added 

r  rows, while the first 
ir  rows take part in the update merely 

for keep the incoherence between rows. Therefore, it converges 

faster than simultaneously optimizing the whole r rows. In 

addition, the newly added r  rows are initialized as the fastest 

decreasing directions. This repeatedly increases the rank until a 

sufficiently small decomposition error is achieved. The rank of 

the low-rank component is adaptively estimated and does not 

rely on initial estimation. The specific steps can be summarized 

in Table I. 

 

TABLE I: THERMAL SPARSE PATTERN EXTRACTION 

Input: matrix representation of first derivative of ECPT thermal  

video Y (Inductive phase one is selected) 

           rank step size r ; power K ;tolerance  ; sparse term   

Output: thermal low rank pattern UV  and sparse pattern S  

Procedure: 

    Initialize: 0r N
V and S  

while residual error <   

for k=1: K 
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1 1
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end 

        Calculate the top r right singular vectors υ  

        of 

2

F
  

  


Y UV S
Y UV S

V
 

Set  : ,V V υ  

    end 

 

IV. EXPERIMENT SETUP 

 

A. Inductive Thermography Experimental Platform  

The experimental setup is shown in Fig. 4(a). An Easyheat 

224 from Cheltenham Induction Heating is used for coil 



excitation. The Easyheat has a maximum excitation power of 

2.4 kW, a maximum current of 400 Arms and an excitation 

frequency range of 150-400 kHz (380 Arms, and power is about 

2.17 kW, and 256 kHz are used in this study). The system has a 

quoted rise time (from the start of the heating period to full 

power) of 5ms, which was verified experimentally. Water 

cooling of coil is implemented to counteract direct heating of 

the coil. The IR camera, SC7500 is a Stirling cooled camera 

with a 320 × 256 array of 1.5-5μm InSb detectors. This camera 

has a sensitivity of ＜ 20 mK and a maximum full frame rate of 

383 Hz, with the option to increase frame rate with windowing 

of the image. A rectangular coil is constructed to apply 

directional excitation. This coil is made of 6.35 mm high 

conductivity hollow copper tube. In the experiment, only one 

edge of the rectangular coil is used to stimulate eddy current to 

the underneath sample. In this study, the frame rate is 383 Hz, 

and 2 s videos are recorded in the experiments. 
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Fig. 4: (a) Inductive thermography system (b) Excitation coil (c) 

steel test sample 

 

A steel sample (0.24 mm × 45 mm × 100 mm) with a slot of 

10 mm length, 2 mm width is prepared (Fig. 4c). A 100 ms 

heating duration is selected for inspection, which is long enough 

to elicit an observable heat pattern. To simulate the lift-off 

variation in complex geometrical sample test, the steel sample is 

placed with a small angle against the coil (Fig. 4b).  

 

B. Probability of defect detection 

The probability of detection (POD) of defect is defined as:  

TP
POD

TP FN



         (12) 

where TP refers to true positive which represent the situation 

where the sample contains a defect and the method indicates a 

defect is present, and FN refers to false negative which 

represents the situation where the sample does not contain a 

defect and the method does not indicate a defect is present. 

To validate the comparison results, structural similarity 

(SSIM) index measurement system is employed to measure the 

POD. It is a new index of image similarity measure. The 

structural similarity theory presents that natural image signals 

are highly structured, the structure has a very strong correlation 

between pixels, and especially the spatial correlation of pixel is 

closest. The structural similarity theory contains important 

information of an object structure in a visual scene. Indeed, the 

three components are combined to yield an SSIM given by 

 

        , , , , , ,S x y f l x y c x y s x y     (13) 

 

where luminance comparison of two image  ,x y  is defined as  

  1

2 2
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2
,

x y
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l x y
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
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where u is mean intensity, 
1C is constant to avoid instability 

when 2 2

x yu u  is very close to zero. The contrast comparison is 

defined as  

  2

2 2

2

2
,

x y

x y

C
c x y

C

 

 




 
       (15) 

 

where   is standard deviation, and the structure comparison 

function is defined as  
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,
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        (16) 

 

where xy is correlation coefficient, 
2C and 

3C functions as 

same as 
1C , by combing all three factors, this gives the 

definition of SSIM [58], namely 
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V. RESULTS AND DISCUSSION 

 

A. Influence of Phase Selection of Inductive Thermography  
 

One example of raw inductive thermal image is shown in Fig. 

1. The first derivative of transient response according (2) is 

shown in Fig. 5. 

 



 
Fig. 5: First-order derivative of the transient response. 

 

As can be seen clearly, the phase one can be interpreted 

within the rectangular box. In order to emphasize the 

importance of analyzing the phase selection, the comparison of 

defect pattern extraction by selecting first derivative of whole 

and partially (phase one) thermal video using general principle 

component analysis (PCA) using Eqn. (5) by setting the number 

sN  of pattern basis to four. This selection is based on Monte 

Carlo approach where the process is repeated over 100 

realizations within the range between the one up to ten 

components and the selection of the four in order to obtain the 

optimal defect pattern extraction results.  

 

 
 

Fig. 6: (A) PCA of first derivative of whole thermal video; (B) 

PCA of first derivative of partially (phase one) thermal video. 

 

In Fig. 6, both extraction results highlight the singular pattern 

around the crack tips. However, the PCA of first-order 

derivative of the “phase one” of the thermal video has enabled a 

heightened state of emphasis with higher resolution in the zone 

around the tips of the hot spots. In addition, this brings the 

benefit of lesser computations since only few thermal images 

are used. From the physics viewpoint, during the heating phase 

for a finite uniform thickness plate, a heat generation rate Q  can 

be defined as the generated heat in unit time due to Joule 

heating, using the Cartesian coordinates ( , )x y in Eqn. (18): 

22

Q
x y

 

     

    
      

        (18) 

where   denotes the electric potential, and   electric 

conductivity. Since the two components of the electric current 

are expressed in terms of the derivatives of  , heat generation 

rate Q  theoretically goes to infinity at the crack tips. A resultant 

high temperature rising rate is generated in heating phase (i.e. 

crack tips) [25]. In the cooling phase, since there is no heating 

source, the variation of temperature empT  in a finite uniform 

thickness plate is described by Eqn. (19). 
2 2

2 2

emp emp emp

p

T T Tk

t C x y

   
      

       (19) 

where t ,  , pC  and k  denotes time, mass density, heat 

capacity, and thermal conductivity, respectively. It is clear that 

the temporal variation of temperature depends on the variation 

of spatial temperature. Fourier’s law of heat conduction states 

that the time rate of heat transfer through a material is 

proportional to the negative gradient in the temperature and to 

the cross section area of the material. For a uniform thickness 

plate used in this study, the cross section area is constant. Due to 

the singular areas around the slot tips, a high temperature 

gradient is generated while high eddy current density appears 

around the slot tips. During the shot time, the eddy current 

quickly rises from zero to maximum, retains at the steady state 

[25]. The heat diffusion does not play an obvious role as can be 

considered zero or a small value. This is the reason Fig. 6 

indicates that the separated defect pattern place more emphasis 

on the crack tips where the heat diffusion does not significantly 

affect the heat distribution. Once the whole thermal procedure is 

processed, both heat diffusion and Joule heating are fused 

together in heat conduction procedure and the separated pattern 

assembles less in the crack tips. 

 

 

 



 
 (a) 

 
(b) 
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Fig. 7: Sparse pattern extraction results (A) the proposed method, (B) variational Bayesian sparse PCA with Gaussian sparse prior and 

(C) Bayesian sparse PCA based on Monte Carlo Markov Chain with Bernoulli sparse prio

B. Impact of Sparse Pattern extraction 

 

The sparse pattern extraction takes important role in 

quantitatively analyzing the cracks. We have compared the 

proposed method with the relative recent approach on sparse 

pattern extraction. These are the variational Bayesian sparse 

PCA with Gaussian sparse prior [49] and the robust Bayesian 

PCA with Bernoulli sparse prior [50]. The comparison is 

validated in both accuracy and computation complexity. In our 

proposed method, the sparse greedy model is explored for 

sparse pattern extraction which by adjusting proper sparse 

parameters that even gives better results and behaves much 

faster update procedure. Fig. 7 shows the extraction results. 

In Fig. 7, by emphasizing the sparseness of solution, the edge 

of the hot spots on crack tips can be quantified and has 

benefitted the quantitative sizing of the defect. The proposed 

method has successfully accentuate the expected sparse 

locations which indicate the hot spots of the crack tips. The 

variational Bayesian sparse PCA has also outlined the defect 

edge, however, with reference to the physics mechanism, the 

edges along the hot spots have been incorrectly detected (which 

should not present., Finally, the full Bayesian sparse PCA 

presents an inferior result which has emphasized both hot and 

cool areas as well as being interfered by noise. The above results 

are also confirmed by POD results as shown in Table II. The 

POD study is the comparison results between the referenced 

annotation with the extraction by algorithms. Fig. 8 shows the 

annotation results where the crack edge region is marked as “1” 

and the rest denoted as “0”. 

 
Fig. 8: Annotation results of crack edge 

TABLE II 

SSIM RESULTS OF DIFFERENT METHODS 

 

Methods 
POD CPU time (s) 

PCA of the whole video 0.84 169.5 

PCA on phase one  0.91 15 

Proposed method 0.99 3.5 

VB Sparse PCA  0.87 7.64 

MCMC Sparse PCA 0.68 1029 

Table II shows the comparison of the proposed method based on 

phase one thermal sparse pattern extraction. With human 

annotation results, the POD for all different methods, while a 

higher performance is attained by the proposed method with an 

average accuracy of 99%. 

The Variational Bayesian Sparse PCA (VBSPCA) gives 87% 

while the worst result is obtained by MCMC Sparse PCA which 

gives 68%. In addition, according to the computation time, the 

proposed method gives extremely low cost while it only take 

0.07 seconds to achieve the extraction. This brings significantly 

benefits for industry online-detection. VBSPCA requires more 

time about 7.64 seconds and the MCMC Sparse PCA requires 

the most time about 1029 seconds. The reasons for these is 

attributed to both Variational Bayesian and fully MCMC Sparse 

PCA having to update the model parameters and 

hyperparameters in each iteration which cost extra computation 

complexity. Although the update parameters has advantages to 

bypass human intervention but it brings the drawbacks to the 

incorrect selection of prior distribution for the model 

parameters and/or convergence to local minima.  

In terms of parameters selection of the proposed method, the 

parameter K  and tolerance   does not highly affect the 

extraction results. In general, it suffices to set 1K   and 
310   and this has been validated using Monte-Carlo repeated 

experiment involving more than 100 independent trials. On the 

other hand, the sparse pattern extraction results is highly reliant 

on   and r . Firstly, for determining  , which is based on 

model order selection where experiment is repeated by 

progressively increasing   from 0.1 to 1 with step size is 

0.1 (the deviation of the performance of all three experiments is 

POD 0.015 ). Secondly, We have constructed another 

experiment by varying r . This parameter is a rank step size 

 



and should be integer. Our approach to determining r  is based 

on model order selection where experiment is repeated by 

progressively increasing r  from 1 to 5. For each experiment, 

we record the POD results and the overall obtained result is 

shown in Figure 9. It is clearly seen from the figure the best 

POD result is obtained when 2r  . The POD results decrease 

gradually with the setting of 2r  . 

 
Fig. 9: the impact of parameter setting on POD results 

 

C. Impact of detectability of contamination level of material 

 

The measurement set-up variation, relative humidity of the 

room, contamination level of material are valuable for the 

practical application of inductive thermography. Among the 

above three impact factors, the contamination level on the 

surface is the main factor to interface the results. In order to 

validate the proposed method in this situation, we have done the 

extra experiment. In the in-situ application, the materials under 

test (MUT) always have oil, coating, or an oxidation layer on 

the surface. This will change the thermal emissivity significantly. 

The variation can be used to detect the surface damage like rust 

or corrosion. However, the variation sometimes introduces 

illusory temperature inhomogeneity and results in false alarms. 

We paint the sample surface with black and shine strips which 

are equally spaced with 5mm width. The shinning strips are the 

polished area while the black strips are the area sprayed with 

black paint. Both illustrate different level of emissivity. The 

emissivity of the black region is 1, which is the same for a 

blackbody. On the other hand, the emissivity of the shinning 

stainless steel surface is about 0.16. In this situation, once the 

test sample with the mixture of areas with strong emissivity 

gradient over another (e.g. black stains on the surface) and 

defect (e.g. slot which consists of cool and hot spots areas), the 

task of separating different thermal patterns becomes a very 

difficult challenge. Generally, the temperature of hot spots is 

three times higher than the cool area. However, the temperature 

of a black strip region can be as high as ten times higher than at 

the cool area due to the high emissivity. In this case, the hot 

spots around the slot tip cannot be observed and this directly 

reduces the probability of detecting the defects. Fig. 1b shows 

the temperature distribution at the end of heating (0.1s) of 

testing sample in Fig. 10a. Due to the high emissivity of the 

black area, there is no obvious high temperature region around 

the slot tips. The high temperature can only be observed at the 

black area above the coil. In addition, Fig. 10c shows the 

temperature distribution at the cooling phase (1.6s). The high 

temperature still can only be observed at the black strip area 

because of both high emissivity and heat diffusion. The transient 

temperature behavior at different positions is shown in Fig. 11. 

Pos 1 is at the crack side with black strip (high emissivity), Pos 2 

is at the black strip where the area is far away from the excitation, 

Pos 3 is at the crack tip with the shinning strip, Pos 4 is at the 

crack side with shinning strip above the coil. 

As can be seen in Fig. 11, different position behaves with 

different temperature transient characteristics. However, Pos 1 

as well as other similar black strip area (above the coil) exhibits 

extreme high temperature transient in both heating and cooling 

phase in which other thermal patterns have been over-shadowed 

and therefore, they cannot be distinguished. This issue is 

difficult to tackle in defect detection using the ECPT method 

where the hot spot around defect tips cannot be taken as an 

indicator of defects especially for small cracks. 

Notwithstanding this, it will lead to error when both black stain 

and cracks are present on the surface of the test sample. 

Thus the proposed method as well as compared methods will 

face a very challenging task to separate the hot spots. The 

following are the extraction results obtained from the proposed 

method, Variational Bayesian sparse PCA, MCMC Sparse 

Bayesian Sparse PCA, and general PCA. 

TABLE III 

SSIM RESULTS OF DIFFERENT METHODS 

 

Methods 
POD CPU time (s) 

Proposed method 0.97 5.5 

VB Sparse PCA  0.91 8.34 

MCMC Sparse PCA 0.63 1043 

PCA on phase one  0.78 18 

 

 
 (a) 

 
(b)                                                           (c) 

Fig. 10: (a) Painted steel sample with slot, (b) Infrared image at 0.1s (the end of heating phase) and (c) infrared image at 1.6s (the 

cooling phase) 



Fig. 12 shows that by emphasizing the sparseness of solution, 

the edge of the hot spots on crack tips can be quantified at the 

situation even under the influence of various emissivity levels. 

The proposed method has successfully extracted the expected 

sparse locations that indicate the hot spots of the crack tips. The 

variational Bayesian sparse PCA has also accurately outlined 

the defect edge but it still mixes with the emissivity interface 

and misses the informative points of left edge. The full Bayesian 

sparse PCA performs less satisfactorily and still retains a 

mixture of a large part of ambiguity. Finally, the general PCA 

has enabled the extraction of the hot spots region but it has not 

fully reduced the emissivity interface. The above resultsare also 

supported by the POD results as shown in Table III. In terms of 

time consumption, the proposed method is very fast and takes 

only 0.11 second to render the extraction. The Variational 

Bayesian Sparse PCA also gives fast computation and takes 

about 8.34 second while the MCMC Sparse PCA as well as the 

general PCA take a relatively longer time and requires about 

1043 second and 18 second, respectively.  

 

 
Fig. 11: Transient response of different positions 

 

D. Industrial application: Micro-natural crack detection 

 

To verify the proposed system, thermal fatigue cracks (a 4.2 

mm length crack) in steel blade are used for testing. A steel 

blade sample provided by Alstom is also investigated in this 

study (Fig. 13 and Fig. 14). In the blade, flaws are produced 

in-situ with controlled thermal fatigue loading. The flaws grow 

with natural thermal fatigue damage mechanism. In this study, 

one natural crack: 167BBB1361 is detected. The crack location 

is marked with red circles in Fig. 13. Crack 167BBB1361 is 4.2 

mm length. A 200 ms heating duration is selected for inspection. 

 

Fig. 13: Steel blade with thermal fatigue natural crack 
 

 
Fig. 14: ECPT test platform 

 

Fig. 15 shows the general NDT method using Penetrant Test 

(PT) image provided by Alstom and ECPT image at 0.1 s. In the 

PT image, the area of cracks is marked with red circle. The hot 

spots of crack can be visually identified, while the image is 

blurred. This phenomenon indicates that there exist cracks in the 

sample. However, the cracks are difficult to be quantified. Fig. 

16 shows the proposed results.  

 

 

 

 

Fig. 12: Pattern extraction results (A) the proposed method, (B) variational Bayesian sparse PCA, (C) Bayesian sparse PCA based on 

Monte Carlo Markov Chain and (D) general PCA
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 (d) 



Submitted to IEEE Trans. Industrial Informatics 12 

 
(a) 

 
(b) 

Fig. 15: Thermal fatigue natural cracks detection: length: 4.2 

mm (a) PT image, (b) ECPT image at 0.1 s 

 

 
Fig. 16: (A) Thermal sparse pattern extraction results of natural 

crack. (B) Zoomed-in result (red circle) 

From Fig. 16, it is clearly shown that the proposed method 

has not only accurately located the hot spots (crack tips) but also 

precisely sized the cracks. By comparing with human detection, 

the proposed method is a fully automatic and unsupervised 

defect detection method. The human detection seriously suffers 

from the lack of subjective evaluation and requires the manual 

selection of informative data for the defect detection. In 

addition, current defect characterization method in IT imaging 

system requires highly trained personnel. Therefore, automated 

defect characterization method is very desirable in future 

Intelligent Manufacturing and Maintenance. Moreover, the time 

cost is high since it requires manual detection. The detection 

results may not be repeatable. Additionally, considering the 

accuracy, this can be divided into two parts for comparison: 

standard defect sample and natural defect. The human detection 

can render reasonably good accuracy in evaluating the defect 

based on regular sample. This is very sensible since the defect 

itself is introduced by human and we have the prior knowledge 

of the location and size of the defect. For natural cracks, it is 

extremely difficult for human detection because all the prior 

knowledge is unknown and the cracks are significantly small. 

This is shown in Figure 13 where the size of the crack is only 

1mm wide. This is a very difficult task for human to detect the 

natural crack.  

The method (ECPT) is specific for conductive materials from 

carbon fibre reinforced plastic composites to metals, and 

multi-layer components including conductive parts. Its 

limitation is that it is invalid for non-conductive materials. 

However, by means of changing the inductive heater to lamp 

heater, ultrasound heater or laser heater, the proposed data 

analytics method and its physics interpretation are still valid for 

almost all thermal-conductive material. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, inductive phase thermal sparse pattern 

extraction has been proposed for NDT&E. Both ECPT system 

and algorithm have been tested to validate the method. The 

physic interpretation of heat conduction phase of both Joule 

heating and heat diffusion has been conducted and the phase of 

Joule heating proved its efficiency for crack detection. The 

sparse pattern extraction method allows and emphasis sparse 

abnormal pattern such as hot spots around the crack tips to be 

extracted automatically for flaw contrast enhancement. The 

proposed method has been tested on both man-made and natural 

defects from industry. Future work will focus on samples with 

complex surface condition, e.g. roughness and emissivity 

variation. Complexity defects detection, e.g. subsurface defect 

in metallic material, impact damage and delamination in carbon 

fiber structures will also be investigated.  
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