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Abstract: Meeting electricity demand in remote communities and non-electrified regions in the poor developing world is a 
challenge. Power generation is in shortage compared to electricity demand. Electric utilities either would enforce grid’s 
zonal load curtailment or not electrify regions. Controlling electricity demand can play a vital role in enabling electricity 
access; however, weather uncertainty drives electricity demand variability. This paper provides an overview of current 
demand side management research, identify research gaps and propose a more promising approach to enable electricity 
access. Also, it proposes manipulating appliances models to fit their operation in applications where power supply shortage 
is an issue such. The proposed work considers the effect of the probabilistic nature of weather and meeting AC grid codes 
of operation.  
 

1. Introduction 

Power generation capacity in many developing 

countries cannot accommodate electricity consumption 

growth [1]. Electrifying many regions to accommodate them 

in the grid is a challenge for electric utilities. For instance, the 

demand is higher than the generation and the gap is estimated 

to be 7GW in Pakistan [2]. Electric utilities under such a 

condition would either prevent electrification [3] or would 

enforce a zonal feeder curtailment [4]. The latter would 

prevent electricity access for long hours of the day 

(12hours/day) [1, 5]. Some researchers suggested off grid 

electrification as an alternative option [6]; however, 

renewable energy technologies and projects [7, 8] necessitate 

the availability of capital fund [9] which is beyond consumers’ 

income [10].  

Residential appliances’ demand is a component of the 

total electricity demand. Therefore, demand side 

management (DSM) might enhance electricity access under 

power generation deficiency. This paper will provide an 

overview of DSM research and will focus on identifying 

research gaps. Then, it proposes an operational planning 

model for appliances’ control to facilitate electricity 

accessibility in developing countries. The proposed model 

accounts for modelling electricity status in appliance load 

models accounting for consumers’ comfort, preferences, 

working hours…etc. Also, the model is ensured not to 

interfere with AC electric grid codes of operation (voltage 

limits and power flow in feeders). 

2. An overview of DSM research  

DSM research topics were focused on peak load 

curtailment, peak to average ratio minimization, peak load 

reduction, and load shifting and shedding as various 

approaches to manage the demand [11]. This section will 

provide an overview of DSM research topics and its relation 

to appliances control, and will distinguish it from the 

proposed work by identifying research gaps. 

 

2.1. Load Curtailment 
Load curtailment research was visible in literature in 

various perspectives. The load curtailment for peak demand 

reduction was selected in [12] as an alternative solution to a 

power line curtailment during power generation shortage 

(PGS). On the other hand, scheduling houses’ total demand 

curtailment was achieved in [1] through a multi-stage 

optimization approach to address the PGS problem. Load 

curtailment through a fuzzy decision tree and that could be 

run online was proposed in [13] to enhance the security of the 

system. The same objective was targeted in [14], but the 

approach was to minimize the load curtailment through the 

utilization of compensators in the grid rather than enforcing 

it. The load curtailment minimization is also addressed in [15] 

through the utilization of power flow controllers. The bus 

load curtailment in [16] was demonstrated through a meta-

heuristic approach for balancing the DG power generation 

and electricity demand. On the other hand, the load 

curtailment problem was investigated in [17] for the purpose 

of scheduling transmission outages.  At the transmission level 

too, FACTS were proposed to be used to reduce the load 

curtailment [18].    

 

2.2. Peak Shaving and Load Shedding 
Peak shaving as a tool for DSM was applied in [19, 

20], while load shifting and shedding research was noticed in 

[21-23]. For example, both load shifting and shedding in a 

nonlinear programming problem were achieved in [21] 

toward maximizing consumers’ satisfaction in an incentive 

based demand response approach. Moreover, the incentive 

concept was shown in [22] as a part of the definition of 

demand flexibility where the problem was formulated as a 

linear problem with the objective to reduce the aggregator 
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cost for electricity demand bid in a wholesale market. Also, 

the feasibility of a direct residential appliance control shaving 

the demand through a duty cycle approach was shown in [23]. 

Peak shaving through the use of DSM and multi-agent system 

was presented in [20] indicating a demand reduction of 20%.  

The peak load shaving and cost minimization were the 

objectives of [24] where modelling habits through Markov 

chain and user location are considered. Load management in 

[25] was guaranteed through an optimal allocation of energy 

storage system.   

  Shaving the peak load and smoothing the load curve 

in a nonlinear programming optimization problem for a 

system incorporating renewable power generation were 

achieved in [26] by involving a battery energy storage system. 

When renewables join the power system, unbalance is created 

in the system [27]. Thus, battery energy storage system was 

involved in [28] to shave the peak in power system including 

wind and diesel power generation. Nevertheless, a hybrid 

energy system was used in [27] to achieve peak shaving rather 

than dealing with the peak demand shaving through demand 

response.  

 

2.3. Peak to Average Ratio Minimization 
    The topic of peak to average ratio reduction through 

appliance scheduling was investigated in literature through 

various approaches [29-32]. The topic was discussed in [29] 

through a human expert based methodology. In [30], a multi-

objective function of a mixed integer linear programming 

(MILP) problem was applied for peak load and electricity 

cost reductions in a goal programming approach. A similar 

appliance scheduling problem was presented in [31] where 

the minimized objective consisted of two parts: electricity 

cost and peak to average ratio. Also, the peak to average ratio 

and energy consumption minimizations were both achieved 

in [32] in an environment enabling pricing at the end of the 

day. The problem was subject to a predefined equipment 

rating, preferable time interval and operating period. In [33], 

a peak to average ratio minimization was achieved by demand 

side management and considering cloud computing. In [34], 

the cost of peak to average ratio was minimized considering 

energy scheduling through a game theory. 

 

2.4. Peak Load Reduction 
The peak load reduction topic was investigated in [35-

37]. In [35], a MILP problem accounting for hydrogen energy 

storage systems and the generated power from a local PV 

system was applied. Furthermore, the topic of peak load 

reduction for evening time was presented in [36]. In such a 

work, smart washing machines were scheduled in Dutch 

houses supported by energy management system and solar 

PV system based on a dynamic pricing system. Furthermore, 

the dynamic pricing system was used in [37] to schedule 

appliances in a Belgium pilot project. In [38], a model based 

on heat, ventilation and air conditioning energy consumption 

data history to reduce peak load and achieve energy savings 

of 6% was developed.   

 

2.5. Peak Load Shifting 
Shifting ON peak demand to OFF peak period under 

different energy pricing schemes in a net zero energy building 

was achieved in [39] for measuring savings in renewable 

energy credits. In [40], a Pareto algorithm was applied for a 

multi-objective appliance scheduling considering their safe 

operation. Electricity cost and appliance delays were among 

the topics discussed in [40]. Peak load shifting was achieved 

in [41] considering both time of use tariff and energy storage 

system to manage building energy demand.  In [42], buildings’ 

mechanical pre-cooling strategies to shift at least 50% of the 

cooling demand away from the peak load were presented. An 

optimization of energy cost through load shifting was met in 

[43] through power pinch analysis. Load shifting was 

achieved in [44] through game theory and prospectus theory.   

2.6. An Appliance Perspective of DSM 

Residential appliances contribute significantly to 

electricity demand. Scheduling such a demand is an aspect of 

DSM research. For example, the work in [45] considered 

consumers’ electricity bills to be minimized through a 

comprehensive appliance scheduling in a MILP problem. 

In [46], authors focused on quantifying consumer’s 

satisfaction to be maximized at a minimum cost subject to his 

budget through a genetic algorithm. Alternatively, reference 

[47] focused on quantifying the effect of energy consumption 

of circulating pumps on the power system. However, the 

study required energy consumption data for many meters for 

20 months and showed that the energy consumption of pumps 

based on aggregated measurements was preferable over the 

temperature based energy disaggregated approach.  

Appliance control through a smart TV or a web server 

was achieved by the Telecommunication Institute in Korea 

[48], while household energy patterns could be identified 

through the grid reader in [49].   

In [50], operating water pumps in a water-energy 

nexus to improve cost efficiency of a co-optimization model 

was presented.  The work was expanded in [51] to use the 

water network to provide demand response services to the 

electric network by transferring the mixed integer nonlinear 

programming problem into a mixed integer programming 

problem considering a convex hull relaxation. 

3. Appliance coordination for electricity access: 
gaps and prospects  

Planning electricity access from an appliance and a 

grid prospective might be a promising solution. The proposed 

work targets planning appliance electricity access 

considering weather uncertainty and subject to operational 

grid codes. The work can serve as an alternative option to 

enhance electricity access in developing countries and it is 

distinguished from previous literature as discussed next. 

3.1. Gaps to Overcome and Contribution  

Electric utilities’ practical approaches to deal with the 

problem of PGS [1, 3-5] were not very effective in meeting 

consumers’ needs.  Many consumers’ in developing countries 

are living without an access to elementary electricity needs. 

Also, many consumers are undergoing frequent power cuts 

restricting education and economic development.  

From the research perspective, the appliance 

scheduling problem targeted in [30] was not addressed from 

the grid operational side. Meeting grid codes and permissible 

operational voltage levels of the distribution network is 

necessary to avoid power system collapse. In comparison, the 

work in [30] fits more developed countries as the user’s 

preferences definition in scheduling a device embedded in a 

smart meter of a smart home controller was assumed. Such an 
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equipment is not a visible ownership option for low income 

communities [10]. 

By reviewing the work in [31], it was visible that it 

was limited to shiftable and non shiftable appliances where 

each appliance has a specific watt consumption rather than an 

operational load model (a function of electricity availability, 

temperature…etc) as will be presented in this paper. The 

scheduling problem in [31] was handled through heuristic 

techniques without incorporating AC power flow to verify the 

scheduled pattern as with the grid operational codes. The 

latter was also not accounted for in [33].  

Although the work in [16] considered the limit on load 

priority and its location when performing load shedding, it 

did not deal with the concept of appliance and factors 

demanding their electricity consumption patterns, while the 

application of load shedding in [17] took another perspective 

toward scheduling outages at the transmission side.  

References [14, 15] necessitated placing power system 

devices to minimize load curtailment. Such a consideration 

may add costs into the system and may not be favored as an 

alternative in a deficient grid. In [18], the curtailment 

reduction was addressed from a transmission level point of 

view besides using grid FACTS, while this paper is to look at 

the low voltage side consumer and to reduce the curtailment 

by an optimal planning of electricity access in comparison to 

utilities’ practical approaches [1, 3-5].  

The work in [19] fits an alternative environment where 

smoothing the load is an objective rather than enabling the 

electricity. The peak shaving problem through the multi-

agent system in [20] was limited to specific type of appliances 

In [20], neither a comprehensive analysis of other appliances,  

nor an optimization model was presented to assess how the 

operation would impact other devices at the end user scale or 

the operation at the grid level from the perspective of AC 

power flow. That negligence also applies for [34, 44].  The 

work in [24, 25] did not present appliance operational models; 

Aside from water pumps in [50, 51], no other appliances were 

modeled. The problem in [24] was subject to the utilization 

of energy storage system and reducing the cost by minimizing 

energy purchase from the grid. However, such a concept does 

not fit the work in this paper where power generation is in 

deficiency and consumers’ benefits from accessing electricity 

services are to be maximized regardless the cost.  

 In [26], the addressed peak shaving and load curve 

smoothing problem did not incorporate the appliance concept. 

Besides that, the problems in [26] included battery energy 

system which is a high cost element not favored if no 

renewable energy systems are involved or the capital cost is 

lacked. Even though energy storage systems were involved in 

[27, 28], the unbalance between power generation and 

demand created due to wind penetration is a reason for 

considering peak shaving in an alternative context.  

The peak demand shifting in [41] was subject to the 

time of use tariff and such a concept is not necessary applied 

in poor developing countries where electricity is priced based 

on the unit of energy according to [45]. Also, the application 

of the proposed work in [41] is not for an area with 24 hours 

of energy deficiency. Shifting cooling loads in [42] can be an 

option when dealing with peak loads; however, in some 

developing countries where power generation shortage is 

continuous over the day, such a concept may not be the best 

option.  Load shifting for electricity cost minimization was 

the objective in [43] rather than dealing with maximizing 

consumers’ access to electricity under deficient power 

generation status as the cost may not be the most critical point 

in that context. To meet the peak demand reduction in [38], 

energy consumption historical demand data and monitoring 

devices were needed which might not be still available when 

long term planning of electricity access for a region in the 

poor developing world is considered. 

For [36, 39], the conducted analysis in such work were 

limited rather than including a comprehensive number of 

appliances as done in this paper. In the proposed work, the 

type of appliances expected to be owned by consumers in a 

region was based on [45]. Also, the work in [21, 35, 46] 

treated the electric load as a fixed load while the only flexible 

load in [35] was the electric vehicle. On the other hand, the 

work in [32] did not show how demand uncertainty was 

linked to the probabilistic nature of weather as will be 

incorporated in the model of this paper. Incorporating such an 

uncertainty is essential in planning electricity access.  

In [22, 33, 37], the problem formulation did not 

incorporate the idea of enabling electricity access to non-

electrified regions. Also, the work in [22] would not fit a 

region with underfunded power generation capacity where 

consumers are not currently electricity enabled since it 

discussed the idea of DSM considering the concept of 

incentives. In comparison to this concept, consumers in 

regions with PGS do not receive monetary for demand 

reduction.  

In [40], manually operated appliances were not 

considered part of the energy management system and such a 

work did not reflect the electricity status and how the 

probabilistic nature of weather would affect enabling 

electricity access to non-electrified regions. Also, references 

[7, 11, 19] did not look at the case where electricity is in 

shortage and could not accommodate the demand. Even 

though the approach in [12] seems to be a future solution, the 

gap in it can be summarized as follows: First, the predefined 

load threshold was a consideration for appliance 

classification and might cause consumers with high demand 

and high energy consuming appliances to be out of supply all 

the time. Second, the queuing of the demand for an appliance 

at a next hour based on the current demand for it was not 

shown. Third, the obtained results were not verified at the grid 

level to avoid violation of the AC power flow and voltage 

constraints.  

The contribution in the proposed work can be 

highlighted as follows: This paper presents operational 

planning model for appliances’ control when planning 

electricity access to non-electrified regions in the developing 

countries and when power generation is in shortage. The 

planning problem is to meet AC grid’s operational codes 

under such power generation deficiency. The proposed work 

accounts for two atmospheric factors: climate and weather 

uncertainty where climate would be represented by an 

expected temperature value if long term planning is needed 

and that fits more the feasibility stage of an electrification 

project; while the weather uncertainty consideration can 

improve the accuracy of operational planning problem and 

serves as a good fit for various planning horizons (short or 

medium). Appliance load models presented in literature do 

not fit an environment where power generation shortage is an 

issue. Therefore, such models are not valid and cannot be 

utilized to plan electricity access under power generation 

shortage. In this paper, reformulated and linearized appliance 
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operational load models to account for new decision variables 

to indicate electricity status availability/ absence are to be 

presented. The reformulation measures the effect of such a 

condition on the linkage between consumers’ comfort and 

preferences from one hour to another, current decisions and 

anticipates future actions under the probabilistic nature of the 

weather condition and under the climate concept. Also, the 

reformulation accounts for the linkage between one device 

operations to another. In Part II of this work, a multi-stage 

optimization framework that first considers the models 

presented in this paper, second accounts for all possible 

scenarios of appliance scheduling as driven by weather 

uncertainty in the first stage of the framework, third validates 

the scheduling plan with respect to AC grid codes of 

operation in the second stage, and  fourth considers 

rescheduling when violations exists in the second stage such 

that the problem is tracked in the form of a cycle until both 

stages are satisfied will be presented in more details.  To 

elaborate more, the models presented in this paper are 

constraints of the multi-stage optimization framework of Part 

II and the optimization problem would be investigated under 

all possible scenarios of appliance ownership and preference 

of devices’ accessibility. A comprehensive analysis and 

comparisons are conducted in Part II to demonstrate the 

effectiveness of the proposed work in this paper with respect 

to the traditional work in literature from perspectives of 

improving electricity access, energy efficiency and 

computation time.   

3.2. Prospects  

Planning electricity access in developing countries to 

accommodate non-electrified off grid regions through 

appliance scheduling can be a promising solution. Such a 

planning problem would necessitate an understanding of four 

factors: 1) generation/demand status, 2) weather variability 

and attitudes governing demand patterns, 3) type of loads and 

their corresponding operational models, and 4) operational 

grid codes.  

The solution is promising because the proposed model 

focuses first on showing how such appliances could be 

scheduled by accounting for electricity availability/absence 

as binary decision variables within load operational models, 

and defining hourly electricity services to the new region of 

the grid under the probabilistic nature of weather temperature 

while satisfying the grid codes. 

Second, the consequent effect of such decision 

variables on appliance operation considers the continuous 

calculation of houses’ conditions such as the current room 

temperature and the future room temperature as governed by 

electricity availability/absence. 

Third, although electricity might or might not be 

available, the load operational models to be presented 

accounts for a range of comfort level such that it links 

consumers’ demand (subject to their comfort) with the status 

of electricity. If electricity is not available and consumers’ 

comfort cannot be met, the models predict their future 

demand to temperature dependent appliances by taking a 

continuous queue of previous, current and future probabilistic 

nature of room temperatures as well as consumers’ tendency 

toward their appliances at such time slots. It is important to 

emphasize that even though there can be a demand for a 

temperature dependent appliance at the instant of time when 

electricity is not available, this does not necessarily mean that 

consumers will demand such an appliance at the next instant 

of time when electricity is available. The room temperature 

could reach the comfort level due to an increase in the outdoor 

temperature affecting the indoor room temperature.  

To clarify the above concept, the following example is 

presented. If the demand for a space heater (SH) based on the 

comfort level exists at time t under weather scenario (SEC c) 

and if electricity is available in such a case, then it will be 

supplied. Then, the temperature inside the house at t+1 is 

dependent on the temperature at the time instant t under such 

a scenario. Hence, it is possible that the temperature at t+1 

will meet the comfort level as the SH was ON at the previous 

hour, and the outdoor temperature (affecting the indoor 

temperature through the house thermodynamic model) did 

not decrease enough to interfere with the customers’ comfort 

at time t+1. Thus, the SH will be OFF at t+1. In this case, the 

energy dedicated to warm the home at t+1 using the 

traditional approaches [1, 3, 4] can be dedicated toward an 

alternative device that the consumer would demand during 

that time, or to supply an alternative consumer who is in 

demand for this energy rather than overheating the home and 

resulting in customers’ discomfort. On the other hand, if there 

is a demand for the SH at time t under weather scenario            

(SECc) and the electricity is not available to meet it, then the 

device will not be supplied. This operation can be translated 

into one of two scenarios: 1) a degradation in the indoor 

temperature if the outdoor temperature has not risen enough 

to rise the home indoor temperature to be in the zone of 

residential comfort and therefore necessitating the operation 

of the SH at t+1, or 2) an increase in the indoor temperature 

at t+1 because the outdoor temperature has increased. In the 

latter case, there is no need for the SH to be ON at t+1. The 

effect of electricity absence or availability on the appliance 

operation is taken in a queue for next hours.  

For other home appliances which are not weather 

dependent, such a concept can still be applied as consumers’ 

demand for such appliances subjects to working hours, 

consumers’ hourly preferences, and bedtimes as detailed in 

Section 5.  

4. Generation-demand status 

For the first factor (generation/demand status), non-

electrified regions can be on grid regions without influencing 

electricity access of other grid zones by using the left-over 

supply (regardless the amount) that is not sufficient to enable 

electricity access to such a region for 24 hours. Such a 

deficient supply is to permit the off grid region to join the grid 

by scheduling appliances with respect to the four factors. 

 Consumers of the region to be electrified are expected 

to own the following appliances if electricity is enabled: 

space heater, water heater (WH), washing machine (WM), 

well pump (WP), and light bulbs. Such an ownership of 

devices is predicted by considering appliances owned by 

other consumers in similar regions that are electricity enabled 

as further discussed in [45]. Other devices, such as stove and 

fridge...etc. are not considered in the analysis as they may not 

be owned by many consumers. For instance, many consumers 

might be dependent on wood for cooking.   
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5. Weather variability and consumers’ attitudes 

Electricity demand of individual consumers is highly 

driven by weather temperature, sunrise and sunset hours, or 

working hours (agricultural activities). Moreover, consumers’  

tendencies toward utilizing their appliances are governed by 

the electricity availability and preferences. Since high power 

consumption appliances are driven by weather temperature 

and consumers’ comfort, the uncertainty/randomness nature 

in the weather temperature is a significant factor influencing 

the variability of electricity demand. Also, it can influence the 

electricity access of such consumers since the power 

generation capacity is deficient over the 24 hours of the day. 

Therefore, such a factor is essential in various planning stages 

of electrification. In more details, climate consideration is 

beneficial when electrification is considered on the long-term 

planning perspective and especially in the feasibility stage of 

an electrification project. In this case, a typical hourly 

temperature data can be a representative set of such 

temperature for any day. Thus, average values of hourly 

temperature data can be sufficient to model the climate under 

such a consideration. Nevertheless, weather uncertainty is 

preferable for a better prediction of demand variability and 

can be used at various stages of an operational planning 

problem (short or medium term planning). For this purpose, 

modeling hourly weather temperature data can be achieved 

through both probability paper plots (PPPs) and Monte-Carlo 

simulation (MCS) to enhance the accuracy of demand 

prediction under the uncertainty of weather. This is 

 

 

 

 

Fig. 1. Aggregated electricity demand of the houses in the new region under uncertainty of weather temperature 

represented by different weather cenarios(SEC c) with different probablities 
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recommended as the smart appliance control is not an option 

in the case of poor developing countries.   

PPP is an approach to derive the best probabilistic 

distribution function (pdf) that describes the outdoor ambient 

air temperature historical data and the corresponding 

parameters of the distribution. More description on how such 

an approach is applied to derive the pdf of the hourly outdoor 

temperature can be found in [45]. In this case, 24 pdfs are 

obtained as further described in [1, 45] based on historical 

weather data from an Indian city. The data is collected from 

[52].  The selected probabilistic distribution functions include 

normal, log-normal, Weibull and exponential pdfs.   

The inverse of the cumulative distribution function is 

then used in the MCS for data training and thus accounting 

for all possible scenarios of weather ambient air temperature 

for every hour of the day. Data validation in such a simulation 

was achieved by errors criteria. Since the parameters of the 

hourly probabilistic distributions of weather temperature 

obtained through PPP are what characterizes them, and 

typically the mean and standard deviation are functions of 

these parameters, errors in both the means and standard 

deviation between those of the distributions and the data 

generated from MCS are set as the criteria to stop MCS. The 

stopping criteria was based on 0.1% error tolerance in each 

criterion. More emphasis on equations utilized and criteria 

applied in such a simulation can be found in [1].  

Since the MCS generated data set can be huge, data 

clustering is essential to simplify the analysis and to have a 

smaller typical data sets representing the large sample size of 

temperature data for every hour of the day. Clustering can be 

applied to the generated data such that these data sharing 

common/relative attributes are set in a group. K-means 

clustering is a preferred approach for an analysis of a limited 

number of data rather than dealing with the entire population, 

and it is recognized for its simplicity and popularity [53] .The 

approach in [53] can be applied for the weather temperature 

states such that they are described by the intervals 

(boundaries) of the clusters. The centroid of the cluster is 

selected to represent the state, while the probability (prob) 

corresponding to the state is determined as per the following 

equation where s1 and s2 are the cluster bounds [1]: 

 

𝑝𝑟𝑜𝑏 𝑐(𝑇𝑜𝑢𝑡  𝑡) = ∫ 𝑝𝑑𝑓(𝑇𝑜𝑢𝑡 𝑡)
𝑠2

𝑠1
                       (1) 

 

Then, a data matrix of temperature sets is generated 

given that every row indicates a temperature state at an hour 

of the day and every column indicates a weather scenario 

(SECc ) resembling the variability in the weather nature. Each 

temperature state would be assigned a probability (prob c) as 

per the clustering algorithm such that the sum of probabilities 

of temperature states over the row in the data matrix is one.  

Fig. 1 shows electricity demand variation with various 

temperature scenarios obtained after applying PPP, MCS and 

data clustering. Although one of temperature scenarios (at 

time = 24) has a high value for a winter day (39oC), it is 

important to clarify that such a scenario has a very low 

probability of occurrence that is 1x10-4 (tail of the 

probabilistic distribution function). Also, it can be seen from 

Fig. 1 that the sum of probabilities for all the clusters of 

temperature represented by sub-blocks within the main block 

at an hour is one.  

A probabilistic scheduling of demand driven by the 

probabilistic nature of weather temperature can facilitate 

electricity access as would be demonstrated in in Part II of 

this work. Such a consideration can be used at any planning 

stage as it can provide better accuracy than the other of the 

climate representation. 

6. Load operational models 

This section introduces the proposed load operational 

model that incorporates the electricity status as decision 

variable and the adjustment needed to maintain the linearity 

of the problem. Marinating this can be useful when 

considering scheduling of devices to enable electricity access 

in a mixed integer linear programming optimization problem 

to guarantee fast computational time and global optimality. 

The reformulated SH, WP, WM, and WH models are 

presented in this section accounting for the probabilistic 

nature of hourly weather condition in various houses of the 

region to be electrified.  Some of the acronyms describing the 

load models are presented in Table 1. 

 

6.1. SH Model  
The operation of the SH is driven by two factors: 1) 

the consumer’s comfort level and 2) the availability of 

electricity supply at the time of demand as per the first factor. 

The energy consumed by SH (Zsh) is given by (2). Xsh is a 

binary variable with a value of one when SH is to be turned 

ON due to a consumer’s demand driven by his comfort level, 

and with a value of zero otherwise. Also,  sh is a binary 

variable that is one when the electricity is available to supply 

SH and is zero otherwise. 

ctnshctnshshctnsh XPHZ
,,,,,,

*** =
                (2) 

For restructuring the problem as a MILP, the term 

(Xsh
*

sh) is to be linearized.  Such a consideration will result 

in a reduction in the computation time and can prevent 

optimization solver failure. Also, it guarantees global 

optimality when considering optimal scheduling of devices as 

 

Table 1 Acronym used in load models 

Acronym Definition 

  

Psh Power consumed by SH (kW). 

H One hour 

Tin  Temperature in the house (oC) 

Tout  House outside temperature (oC) 

Cycles Number of cycles used by the WM 

Capacity Capacity of the WM 

efficiency Efficiency of the WM 

EF WH efficiency 

Therm WH thermostat set point (oF) 

Tw Temperature of water from a well (oC) 

Vl Volume of hot water consumption 

n House number 

c Weather scenario  

t time of the day 

Pratingwh WH power rating (kW) 

To A set seasonal temperature operating 

point (oC)   

light Light bulbs 

 

ReView by River Valley Technologies IET Generation, Transmission Distribution

2019/04/02 14:13:09 IET Review Copy Only 7

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



7 

 

to be shown in Part II of this work. The linearization can be 

carried out as per rules of [54]. Thus, Wnew (a free variable) is 

to replace the term (Xsh
* 

sh). So, constraints (2-6) are 

required to adjust for this replacement. In this case, Wnew is 

not to exceed an upper bound (one) on the Xsh and  sh. 

Therefore, (3) and (4) are used. For Wnew to be zero when Xsh 

or  sh is zero, (5) is used. Irrespective of Xsh and  sh values, 

the maximum value of Wnew is one as shown by (56). In case 

(Xsh =  sh), (7) is needed for a correct problem formulation. 

ctnshctnnew XW
,,,,


                                                (3) 

 

ctnshctnnewW
,,,,


                                                              (4) 

0
,,


ctnnewW
                                                            (5) 

1
,,


ctnnewW
          (6)                                                                                                         

1
,,,,,,
−+

ctnshctnshctnnew XW 
                          (7)    

The effect of SH on the indoor temperature is 

governed by (8) as per the SH model in [25] after modifying 

the model to incorporate: the electricity status as decision 

variables, a contribution, to reflect the availability of 

electricity for such an appliance, and the consumer’s demand 

for SH as per his comfort. The initial room temperature in (9) 

is set to (u) at 1am [45]. 

 
24056.05.056.0

,,,,,1,,,,,
−−=

+
tTTTWP

ctnoutctninctninctnnewctnsh

 (8)  

 
uT

ctnin =
= ,1,                                    (9) 

The comfort levels based on which SH is demanded 

are given by (10) and (11) according to the adequate warmth 

level as declared in [45].      

)1(2718
,,,1,

,, ctnsh
ctn

shctnin XXT −+
=

 (10) 

ctn
shctnshctnin XXT

,,,,,, 30)1(18 −−
          (11) 

 

6.2. WP and WM Models 
The WP and WM scheduling models will follow (2-7) 

with the following modifications in terms: 1) Zsh is replaced 

with Zwell in the case of WP and Zwashing in the case of WM, 2) 

Psh is replaced with Pwell in the case of WP and Pwashing in the 

case of WM, 3) Xsh is replaced with XPump in the case of WP 

and WS in the case of WM, 5)  sh is replaced with Ç in the 

case of WP and Éin the case of WM, and 5)  Wnew is replaced 

with Ŝ in the case of WP and 𝜑in the case of WM. Moreover, 

the following constraints will govern the demand for such 

devices as driven by consumer’s preferences and working 

hours.   

The WP is to operate for M̂ hours at any time that is 

after 6am and before 7pm as in (12) and (13).  


=

=
pm

amt
ctnPump MX

6

7
,,

ˆ

                                               (12)                                 

 
= =

=+
am

amt

am

pmt
ctnPumpctnPump XX

6

1

12

7
,,,,

0

                         (13) 

The energy consumed by WM is governed by (14) 

based on the model in [45]. Such an energy consumption is 

not to exceed the device power rating as in (15) [45]. The WM 

is to be used for L̂ hours/day as in (16) [45]. 

n

ctnctn

ctnctnwashing
efficiency

CapacityCycles
HZ

,,,,

,,,,

*
**=

            (14)

ctnwashingctnwashing PHZ ,,,,
*

                                                           (15)                  


=

=
24

1

,,
ˆ

t

ctn LWS

                                                               (16) 

Although well pumps and washing machines are 

independent on weather in their operation, the subscript c is 

shown in (12-16). The main reason is that under certain 

ownership scenarios (what devices owned by a consumer of 

house n) these appliances are not the first devices to enter the 

scheduling optimization problem. Thus, the scheduling of 

such appliances is dependent on the scheduling of earlier 

weather dependent appliances.  Therefore, such a subscript is 

needed in the definition of constraints. 

 

6.3. WH Model 
The electricity consumed by a WH can be 

decomposed into the electricity consumed due to hot water 

consumption (ZHW in kWh) as in (17) and the electricity 

consumed to substitute heat losses from the tank surfaces 

(ZLoss in kWh) due to weather effect and heat transfer to or 

from surroundings as in (18) [45].  

3413

8.2928*)32
5

9
()32

5

9
(*

1
,,,,,,

,,









+−+

=
ctnwctnctn

n
ctn

TThermVl

EF
ZHW

 (17)  

 









+−+= 32

5

9
()32

5

9
(

3413

1.3621875
,,,,,, ctninctnctn

TThermZLoss

(18) 

 

Although consumers are not yet supplied with 

electricity, hot water use patterns can be either measured or 

follow similar regions’ patterns as home appliances are 

expected to be owned when consumers are electricity enabled.  

In this work, (17) and (18) will be reformulated, to 

be suitable for a MILP scheduling problem to be shown in 

second part of this article. The reformulation will reflect 

consumers’ decisions to utilize such devices when a demand 

for hot water exists. It will also reflect actions taken by the 

electric utility to supply electricity to the device based on the 

electricity status. The reformulation is expressed by the 

following constraints (19)-(38): 

Zwh is the electricity consumed by the device per 

hour in (kW) as in (19). Since the consumer’s tendency to 

consume hot water governs the device operation, (20) is set 

where the binary variable ( ) will have a value of one when 

there is a demand to utilize the device.   

Accounting for energy losses from the device 

surfaces is essential to reflect the actual energy consumption. 

Therefore, (21) and (22) are considered such that the linearity 

of the model is maintained. In this case,  is another binary 

variable in the model. If the WH is to be in the OFF mode, 

then finding the energy consumed to substitute heat losses 

from surfaces of the WH is to be disregarded as the WH is 

OFF and no electricity is to be consumed in such a time. This 

consideration is important such that the model maintains the 

device’s OFF mode as reflected in (22), while (23) is added 

for a correct problem formulation. 
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When (19) was initially formulated, the variable 

(Dn,t,c) did not exist. Instead, the term (  n,t,c*  n,t,c) is 

utilized.  is a binary variable that is one if the electricity is 

available to supply the device and that is zero otherwise.  

Since this term is nonlinear, the positive variable (D) is 

considered as a replacement. D is not to exceed an upper limit 

on either   or  . Thus, (24) and (25) are considered.   

)
3413

8.2928*)32
5

9
()32

5

9
(*

*

1
(*

,,,,,,

,,,,









+−+

=
ctnwctnctn

n

ctnctn

TThermVl

HEF
DZwh

+









+−+ 32*

5

9
*()32*

5

9
*(

*3413

1.3621875
,,,,,,,,,, ctnctnctnctnctn DGDTherm

H


 
                                                                                          (19) 

ctnctnctn VlVl ,,,,,, * =
                                                 (20) 

ctnctnVl ,,,, *0001.0 
        (21) 

ctnctnctn VlVl ,,,,,, *
                                         (22) 

1,,,, =+ ctnctn                                                            (23) 

ctnctn
D ,,,,


                         (24) 

ctnctn
D ,,,,


                                                (25) 

For guaranteeing that D is zero when either  or 

has a zero value, (26) reflecting the non-negativity is to be 

incorporated. For ( n,t,c =  n,t,c = 1), (27) is added to the 

problem formulation to guarantee that the value of Dn,t,c is one.  

It is important to emphasize that the maximum value 

that the variable D can have is one irrespective of the values 

of   and  . For Dn,t,c  to be at least one when ( n,t,c*  n,t,c 

=1), (28) is used.                       

              
0

,,


ctn
D

                                             (26) 

             
1

,,


ctn
D

                                                (27)  

            
1,,,,,,

−+ ctnctnctn
D 

                    (28) 

When the device should be in the OFF mode, it is not to 

be electricity supplied to substitute energy losses from the 

device surfaces when a demand for hot water is not available. 

Therefore, (24-28) are followed similarly except that D is 

replaced with the positive variable  and  is replaced with .    

In the initial formulation of (19), the positive variable 

(Gn,t,c) was (  n,t,c * (1-  n,t,c )* Tin n,t,c). Since the term is 

nonlinear, it is replaced with Gn,t,c. Following the linearization 

procedure in [30], Gn,t,c should be less than Tin n,t,c or equal to  

it. Thus, constraint (29) is used.  Moreover, a variable denoted 

as  n,t,c is used to replace (1- n,t,c).     

              
ctninctn

TG ,,,,


                                        (29) 

For the problem formulation to be valid such that the 

correct operation of the device is ensured, (30) and (31) are 

used where  is a parameter with a large value.   

             
ctnctn

G ,,,,
* 

                                   (30) 

            
ctnctn

G ,,,,
*

                                   (31) 

If  n,t,c  or (1-  n,t,c) is zero, Gn,t,c is not to be negative 

as given by (32). On the other hand, when both are ones, the 

value of Gn,t,c is the value of Tin n,t,c.  The variable Gn,t,c is 

further constrained as in (33) regardless of the values of 

n,t,c  and (1-  n,t,c). 

                  
0

,,


ctn
G

                                          (32) 

ctninctnctnctn
TG ,,,,,,,,

)2(* +−+ 
         (33) 

Table 2 AC grid codes of operation: Acronyms’ descriptions  

Acronym Definition 

  

i and j buses of an electric feeder 

Pg  available real power supply for the region to be electrified in per unit 

Qg available reactive power supply for the region to be electrified in per unit 

Pd real electricity demand in per unit 

Qd reactive electricity demand in per unit 

PF tangent of the inverse of the cosine function of the power factor at which device m is operated as the 

case with WM and WP 

RTS hourly variation factor of non-residential loads as used in [1]  

N node at which the off grid region (residential houses region) is to join the grid 

Pm power consumed by a device m when scheduling SH and WP 

α a free variable defined as Wnew when scheduling SH, and well when scheduling WP for irrigation 

n  total number of houses in the region to be electricity enabled 

  bus voltage angle 

Y admittance magnitude 

  admittance angle 

R a factor for converting the power demand to the per unit system 
f̂  a binary variable with a value of one when a device (m) schedule of house n at time t under SEC c  

meets AC grid codes of operation and that is zero otherwise 

Plow the minimum limit on the available real power supply for the region to be electrified in per unit 

Pup the maximum limit on the available real power supply for the region to be electrified in per unit 

Qlow the minimum limit on the available reactive power supply for the region to be electrified in per unit 

Qup the maximum limit on the available reactive power supply for the region to be electrified in per unit 
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The temperature of the well’s water entering the tank 

is given by (34) [45]. dTLoss represents the well water 

temperature that is lost due to the effect of radiation among 

two bodies (water and air) as given by (35), and q  reflects 

the energy lost/gain as a result of radiation as in (36) [25]. 

The initial well’s water temperature is set at the first hour of 

the day as shown in (37) [45].  

   
ctnLossctnwctnw dTTT

,,,,,1,
+=

+
   

24tfor
             (34)            

ctnctnLoss qdT ,,,,
*009.0−=                                          (35) 















+−++

++−
=

4

,,,,

3

48-

,,
)273()273()273(*4

)273(*3(*10*6.913611

ctnoutctnwello

o

ctn
TTT

T
q

   

(36) 

AT ctnwell == ,1,         (37)   

The maximum energy consumed by the device is not 

to exceed the device power rating as given by (38). 

         
nwhctn PHZwh rating*,,        (38) 

When the WH is the first device prioritized to enter the 

scheduling optimization problem (part II of this article), the 

positive variable Wnew which is used in the SH model is 

assigned a zero value. Based on this assignment, the indoor 

temperature is calculated. Conversely, when the SH is to enter 

the optimization problem earlier than the WH, the hourly 

indoor temperature found from scheduling the SH is set as 

input to the WH model since the last model is dependent on 

them. Such a consideration will establish the link between 

temperature dependent appliances. 

   

6.4. Light Bulbs 
Light bulbs are identified as a minimum basic need. 

Therefore, they are provided the priority of supply over other 

appliances. They can be modeled as fixed load.  However, if 

electricity status cannot accommodate such a basic demand 

into the grid, then the light bulb model can follow the problem 

formulation of the WP or WM load models. 

7. AC grid codes of operation 

Appliance management under PGS can enable 

electricity access to non-electrified regions. However, the 

aggregated demand is to be confirmed with AC grid codes of 

operation to avoid any violations of voltage limits. For this 

purpose, a link is to be established between appliance 

operation and power system operation as will be further 

elaborated in Part II of this work.  

The power flow equations and grid codes are 

presented in (39-46). In more details, constraints (39) and (40) 

represent the active and reactive power flow equations 

considering the critical and essential load buses, respectively. 

Given a set of m devices and light bulbs, constraints (41) and 

(42) represent the active and reactive power flow respectively 

considering the normal bus if (m=s=1) where s is an 

indication of the device number in the m devices set owned 

by the consumer and in this case it is the first device to enter 

the optimization problem as will be further discussed in more 

details in Part II of this work. Constraints (43) and (44) 

represent the active and reactive power flow for the normal 

bus respectively if m>s. For clarification purposes, the whole 

term (Pm*αm) describes Zwh and Zwashing per hour when 

scheduling WH and WM, respectively. αm represents Wnew, Ŝ, 

 𝑎𝑛𝑑 𝜑  when scheduling device m (SH, and WP), 

respectively. Voltage limits constraints are presented in (45) 

and (46). A description of the acronyms is shown in Table 2 

and more elaboration on the problem formulation would be 

provided in Part II of this work. 

 

Ni

YRTSPdPg

ctjjicti

jictjcti

j

cticti

−−

=− 
=

)]cos(

***[*

,,,,,

,,,,,

4

1

,,,



                (39)   

Ni

YRTSQdQg

ctjjicti

jictjcti

j

cticti

−−

=− 
=

)]sin(

***[*

,,,,,

,,,,,

4

1

,,,



                  (40)   

)1,()]cos(***[

****ˆ

,,,,,,,,,,

4

1

1

,,

1

,,,,,,,,,,

===−−

=−−





=

==

smNiY

lightRPRfPg

ctjjictijictjcti

j

n

n

ctn

n

n

ctnmctnmctnmcti



  

                                                                                           (41) 

)1,()]sin(***[

****ˆ

,,,,,,,,,,

4

1

1

,,,,,,,,,,,

===−−=

−





=

=

smNiY

PFPRfQg

ctjjictijictjcti

j

n

n

ctnmnmctnmctnmcti



      

                                                                                            (42) 

 

),()]cos(***[

******ˆ

,,,,,,,,,,

4

1

1

,,

1

1 1

,,,,,

1

,,,,,,,,,,

smNiY

lightRPRPRfPg

ctjjictijictjcti

j

n

n

ctn

m

s

n

n

ctnsmctnsm

n

n

ctnmctnmctnmcti

=−−=

−−−





=

=

−

= =

−−

=



   

                                                                                            (43)                    

),()]sin(***[

*******ˆ

,,,,,,,,,,

4

1

1

1 1

,,,,,,

1

,,,,,,,,,,,

smNiY

PFPRPFPRfQg

ctjjictijictjcti

j

m

s

n

n

ctnsmnsmctnsm

n

n

ctnmnmctnmctnmcti

=−−=

−−





=

−

= =

−−−

=



     

                                                                                          (44)                        

 − cti ,,                                                           (45) 

pupu cti 05.195.0 ,, 
                                                  (46)   

Equations (47) and (48) indicate that no generation 

sources are installed at any node in the feeder connecting the 

region to be electrified to the traditional electric grid [1]. At 

bus i=1, the amount of power flowing to the region to be 

electrified is described by (49) and (50) [1].  

0,,1, = ctiPg
                                                                                      (47)           

0,,1, = ctiQg
      .                                                             (48)  

cticticti PupPgPlow ,,1,,1,,1 ===                                      (49) 

cticticti QupQgQlow ,,1,,1,,1 ===                     (50) 

8. Conclusion 

This paper presented a comprehensive overview of the 

current research in DSM and appliance scheduling. The paper 

propsed an alternative promissing approach that overlooks at 

appliance operational models and restructure them to make 

their operation fits well  for application in developing 

countries with PGS.  Models were structured as a component 

of the grid so that their operation when scheduling devices 

can meet operational grid codes as will be presented in Part II 

of this paper. 
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