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Underdetermined reverberant acoustic source separation
using weighted full-rank nonnegative tensor models

Ahmed Al Tmeme, W. L. Woo,a) S. S. Dlay, and Bin Gao
School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne,
Tyne and Wear NE1 7RU, England, United Kingdom

(Received 11 February 2015; revised 15 June 2015; accepted 16 June 2015; published online 2
December 2015)

In this paper, a fusion ofK models of full-rank weighted nonnegative tensor factor two-
dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have
been mixed in an underdetermined reverberant environment. The model is adapted in an unsuper-
vised manner under the hybrid framework of the generalized expectation maximization and multi-
plicative update algorithms. The derivation of the algorithm and the development of proposed
full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity param-
eters derived from Gibbs distribution into theK-wNTF2D model. This optimizes each sub-model
in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in
the spectrogram. In addition, an initialization method is proposed to initialize the parameters in
the K-wNTF2D. Experimental results on the underdetermined reverberant mixing environment
have shown that the proposed algorithm is effective at separating the mixture with an average
signal-to-distortion ratio of 3 dB.VC 2015 Acoustical Society of America.
[http://dx.doi.org/10.1121/1.4923156]

[MRB] Pages: 3411–3426

I. INTRODUCTION

Blind source separation (BSS) is a technique for estimat-
ing the sources from their mixtures without any information
about the sources or the mixtures.1–10 Until now BSS remains
an open problem as it does not have the same ability of
humans to listen and distinguish between different sources.
BSS is generally an ill-posed problem, and therefore a certain
set of assumptions are needed to solve it. These assumptions
include prior information about the mixture and the problem
dimensionality. A great deal of research assumed a linear11–17

or nonlinear mixture,18 instantaneous19,20 or convolu-
tive11,12,14–17 mixing process, and the sources are less (under-
determined),11–17,21 equal (determined,22 or greater
(overdetermined)21,23 than the number of microphones.

Another common assumption in the BSS is the narrow-
band approximation, and to understand it, we need to know
how the observed multichannel signalxðtÞcan be expressed
in short time Fourier transform (STFT).The mixturexðtÞcan
be expressed in time domain as

xiðtÞ ¼
XJ

j¼1

ci;jðtÞ þ biðtÞ; i ¼ 1; 2; …I; (1)

where xiðtÞ 2R ; t ¼ 1; …; T is the receiving signal from
the ith microphone,ci;jðtÞ 2R is the spatial image of the
source signalj and channeli, J is the number of sources, and
biðtÞ 2R is some additive noise. The spatial image of the
sourceci;jðtÞcan be expressed as

ci;jðtÞ ¼
XL� 1

s¼0

ai;jðsÞsjðt � sÞ; (2)

where ai;jðtÞ 2R is the �nite-impulse response of some
(causal) �lter, L is the channel length, andsjðtÞ 2R is the
original source signal. TableI shows the notations used
throughout the paper.

By substituting Eq.(2) into Eq. (1) and assuming that
the mixing channel is time-invariant then, the STFT of Eq.
(1) becomes

xi;f ;n ¼
XJ

j¼1

ai;j;f sj;f :n þ bi;f ; (3a)

or in vector form,

xf ;n ¼
XJ

j¼1

aj;f sj;f ;n þ bf ;n; (3b)

where xf ;n ¼ ½x1;f ;n … xI;f ;n �H, aj;f ¼ ½a1;j;f … aI;j;f �H, and
xi;f ;n, ai;j;f , sj;f ;n, bi;f ;n are the complex-valued STFT ofxiðtÞ;
ai;jðtÞ; sjðtÞ; andbiðtÞ, respectively. The termf ¼1; 2; …; F is
the frequency bin index, andn¼1; 2; …; N is the time frame
index. Thus the convolutive mixture in Eq.(2) is approximated
by the narrowband approximation to an instantaneous mixture,
where it is assumed thatL is shorter than the STFT window
size.24 According to this assumption the covariance matrix of
ci;j;f ;n (the complex-valued STFT ofci;jðtÞ) de�ned asRðcÞ

j;f ;n
¼E½cj;f ;ncH

j;f ;n� can be expressed as

RðcÞ
j;f ;n ¼ RðaÞ

j;f vj;f ;n (4a)a)Electronic mail: lok.woo@newcastle.ac.uk
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or its scalar form as

RðcÞ
i j;f ;n ¼ RðaÞ

i j;f vj;f ;n; (4b)

wherei is the index that represents the column vectorization
of a I � I matrix, i.e., i ¼ fð1; 1Þ; ð2; 1Þ; …; ðI; 1Þ; ð1; 2Þ;
ð2; 2Þ; …; ðI; IÞg 2R I2

, RðcÞ
j;fn 2 C I� I is the covariance ma-

trix of the jth source image,RðaÞ
j;f is the time-invariant spatial

covariance matrix of thejth source, andvj;f ;n 2 R þ is the
source variance. Therefore in the case of high reverberant
environment whereL is greater than the STFT window size,
this assumption will not work. To resolve this issue, Duong
et al.16 propose a full-rank spatial covariance matrix (which
models the spatial position of the sources as well as their spa-
tial spread) in place of the conventional rank-1 matrix formed
from RðaÞ

j;f ¼ aj;f aH
j;f . They show that their results are better

than the rank-1 method. Arberetet al.25 take advantages of the
full-rank spatial covariance matrix to model the mixing pro-
cess and use the nonnegative matrix factorization (NMF) to
model the source variance. They showed that their results are
better than Dounget al. under the oracle initialization where
bothvj;f ;n andRðaÞ

j;f are initialized from the original sources.
However, for a more realistic case, it is not always possible

to adapt the oracle initialization approach. In addition, the NMF
is practically too simplistic and does not ef�ciently model more
complex sources such as polyphonic music. Therefore a more
powerful source variance representation should be used instead
of the NMF (based on Arberetet al.25). One possible representa-
tion is the nonnegative matrix factorization two-dimension
deconvolution (NMF2D),26 which has a set of convolutive pa-
rameters (s and / ) that are convolved in both time and fre-
quency directions by a time-pitch weighted matrix. Nonetheless,
the NMF2D too is practically limited as it suffers from the
frequency-invariance problembecause it has only a single fre-
quency basis (single component). The NMF2D is more suitable
for music instruments than thespeech, which is more complex
and changes rapidly its frequency and pitch with time. To over-
come this limitation, we use a set ofK number of frequency ba-
sis to model thejth source variance, which results in

vj;f ;n ¼
XK

k¼1

Xsmax

s¼0

X/ max

/ ¼0

ws;j
f � / ;kh

/ ;j
k;n� s; (5)

where K is the number of components or frequency basis
assigned to thejth source. The termssmax and / max are the

maximum number of the convolutive parameterss and /
respectively.ws;j

f ;k represents thekth spectral basis of thejth

source, andh/ ;j
k;n represents thekth temporal code for each

spectral basis element of thejth source, forf ¼ 1; …; F;
n ¼ 1; …; N; andj ¼ 1; …; J. With Eq. (5), the covariance
matrix in Eq.(4) can now be expressed as

RðcÞ
j;f ;n ¼

XK

k¼1

Xsmax

s¼0

X/ max

/ ¼0

RðaÞ
j;f ws;j

f � / ;kh
/ ;j
k;n� s (6a)

and its scalar form as

RðcÞ
ij ;f ;n ¼

XK

k¼1

Xsmax

s¼0

X/ max

/ ¼0

RðaÞ
ij ;f w

s;j
f � / ;kh

/ ;j
k;n� s: (6b)

The full-rank “mixture covariance matrix” ofxf ;n in Eq. (3b)
is de�ned as RðxÞ

f ;n ¼ E½xf ;nxH
f ;n� ¼

P J
j¼1 RðcÞ

j;f ;n þ RðbÞ
f . Using

Eq. (6a), RðxÞ
f ;n can be expressed as

RðxÞ
f ;n ¼

XK

k¼1

XJ

j¼1

Xsmax

s¼0

X/ max

/ ¼0

RðaÞ
j;f ws;j

f � / ;kh
/ ;j
k;n� s þ RðbÞ

f ; (7a)

where RðaÞ
j;f is previously de�ned andRðbÞ

f is the time invari-
ant noise covariance matrix. Its scalar form can be expressed
as

RðxÞ
i;f ;n ¼

XK

k¼1

XJ

j¼1

Xsmax

s¼0

X/ max

/ ¼0

RðaÞ
i;j;f w

s;j
f � / ;kh

/ ;j
k;n� sþ RðbÞ

i;f : (7b)

In Eq. (7b), RðxÞ
i;f ;n is a three-dimensional tensorI2 � F � N,

RðaÞ
i;j;f is a I2 � J � F tensor,ws;j

f � / ;k is a F � smax � K � J

tensor,h/ ;j
k;n� s is aJ � K � / max � N tensor, andRðbÞ

i;f has the

same dimension asRðxÞ
i;f ;n. Of special note is that Eq.(7b)

represents a non-negative tensor factorization of the mix-
ture covariance matrix (arranged as a three-dimensional
tensor) into a product of spatial covariance matrix
(arranged as a three-dimensional tensor), spectral basis and
temporal codes (the latter two estimate the source image
variances). Because Eq.(7b) is a combination of K
models of weighted NTF2D, we shall term it as the
“K-wNTF2D”.27

TABLE I. Adopted symbols.

vj;f ;n 2 R þ Variance of thejth source

RðxÞ
f ;n 2 C I� I Mixture covariance matrix

RðxÞ
i;f ;n 2 C I2

Scalar element of the mixture covariance matrix

RðbÞ
f 2 C I� I Time invariant noise covariance matrix

RðbÞ
i;f 2 C I2

Scalar element of the time invariant noise covariance matrix

RðcÞ
j;fn 2 C I� I Covariance matrix of thejth source image

RðcÞ
j;f ;n 2 C I2

Vectorized covariance matrix of thejth source image

RðcÞ
i j;f ;n 2 C Scalar element of the covariance matrix of thejth source image andith channel

RðaÞ
j;f 2 C I� I Time-invariant spatial covariance matrix of thejth source

RðaÞ
j;f 2 C I2

Vectorized time-invariant spatial covariance matrix of thejth source

RðaÞ
i j;f 2 C Scalar time-invariant spatial covariance matrix of thejth source andith channel
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The full-rank K-wNTF2D will be optimized using the
generalized expectation-maximization and multiplicative
update (GEM-MU) algorithm, which provides a probabilis-
tic platform for joint estimation of the sources and the pa-
rameters as well as preserving the non-negativity constraints
of the model. In addition, the GEM-MU algorithm acceler-
ates the convergence speed of the parameters update.
Concurrently, we allow variable sparsity to be encoded into
theK-wNTF2D instead of using some heuristics approaches
to �x them to a constant value. These variable sparsity will
be developed based on the Gibbs distribution framework
and optimized under the Itakura–Saito divergence. This will
be contrasted with the uniform sparsity, which assigns a
�xed sparsity over all the elements ofH ¼ f h/ ;j

k;ng. Because
the acoustic sources such as speech changes dynamically
over time, uniform sparsity will lead to either over-
sparseness (resulting in too many elements ofH set to zero),
or under-sparseness (a lot of ineffective elements inH). The
proposed variable sparsity relieves this problem by optimiz-
ing the sparsity for each individual elements ofH through
learning from the data.

The Itakura–Saito (IS) divergence will be considered
in this paper due to its scale invariant property.28 Compared
with the least square (LS) distance and Kullback–Leibler
(KL) divergence cost functions, IS divergence deals with
both low and high energy components with equal emphasis.
Because both speech and music signals have large magni-
tude dynamic ranges, IS divergence provides a faithful
measure between the observed data and the output gener-
ated from the adaptedK-wNTF2D model. We also consider
initialization strategy for the NMF family.29,30 Because
poor initialization can lead to converge to unwanted local
maximum, a novel initialization method will be developed
to initialize theK-wNTF2D. In addition, the full-rank spa-
tial covariance matrix will be initialized using the hierarch-
ical clustering method.

The novelty of this paper can be summarized as follows:
First, we develop a model-based full-rank spatial covariance
matrix of the mixture signal in the STFT domain using the
K-wNTF2D. Second, the sparsity of theK-wNTF2D is
derived from the Gibbs distribution and optimized under the
IS divergence. Third, the parameters of theK-wNTF2D are
adapted using the GEM-MU algorithm for faster conver-
gence and ensuring the non-negativity of the parameters is
preserved. Fourth, an initialization method is proposed for
K-wNTF2D. The method uses the singular value decomposi-
tion (SVD) as the core process which is then iteratively
extended to each layer of the NTF2D model. Finally, to the
best of our knowledge, the most research on NMF2D has so
far been limited to instantaneous mixture.31–35 The present
work is the �rst to propose and investigate theK-wNTF2D
for convolutive mixture separation. For ease of understand-
ing, a high-level presentation of the proposed algorithm is
shown in Fig.1.

This paper is organized as follows: Sec.II is dedicated
for the sources model. The derivation of variable sparsity
and the adaptation of GEM-MU algorithm to work with the
full-rank K-wNTF2D will be presented in Sec.III .
Experimental results on the SiSEC’13 real datasets and

comparison with a recent method will be shown in Sec.IV.
Finally, Sec.V draws the conclusions.

II. SOURCE MODEL

The spatial image of the sources can be modeled as real-
ization of zero-mean proper complex distribution

cj;f ;n � N cð0; RðcÞ
j;f ;nÞ; (8)

and its probability density function (pdf) can be expressed as

N c 0; R cð Þ
j;f ;n

� �
¢

1

det pR cð Þ
j;f ;n

� � e
� tr cH

j;f ;nR cð Þ� 1

j;f ;n cj;f ;n

� �

: (9)

By substituting Eq.(6a)into Eq.(8), we have

cj;f ;n � N c 0; RðaÞ
j;f

XK

k¼1

Xsmax

s¼0

X/ max

/ ¼0

ws;j
f � / ;kh

/ ;j
k;n� s

0

@

1

A

0

@

1

A :

(10)

The noisebf ;n in Eq. (3) is assumed to be time invariant, sta-
tionary and spatially uncorrelated, i.e.,

bf ;n � N cð0; RðbÞ
f Þ; (11)

and its pdf can be expressed as

N c 0; R bð Þ
f

� �
¢

1

det pR bð Þ
f

� � e
� tr bH

f ;nR bð Þ� 1

f bf ;n

� �

: (12)

III. PROPOSED ESTIMATION ALGORITHM

The mixing parameters, and noise covariance will be esti-
mated using the GEM algorithm, andW ¼ f ws;j

f ;kg and H ¼
f h/ ;j

k;ng will be estimated in the M step using the MU algo-
rithm. The model parameters areH ¼ f W; H; RðaÞ; RðbÞ; Kg.
To facilitate the estimation, the following posterior probabil-
ity is formed:

FIG. 1. High level presentation of the proposed algorithm.
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P C; W; HjX; R að Þ; R bð Þ; K
� �

¼
P XjC; R bð Þ

� �
P CjR að Þ; W; H

� �
P W; HjKð Þ

P XjC; R að Þ; R bð Þ
� � ; (13)

and their log-posterior is

logPðC; W; HjX; RðaÞ; RðbÞ; K Þ

¼ logPðXjC; RðbÞÞ þ logPðCjRðaÞ; W; HÞ

þ logPðW; HjKÞ þ const:; (14)

whereK ¼ f k/ ;j
k;ng is a tensor that contains the sparsity terms.

The log- posterior will be computed by the GEM-MU based
full-rank variable sparsityK-wNTF2D in the following
sections.

A. E step: Conditional expectations of natural
statistics

Maximizing the log-likelihood in Eq.(14) is equivalent
to minimizing

logPðXjC; RðbÞÞ ¼ � trðxH
f ;nRðxÞ� 1

f ;n xf ;nÞ

� logðdetðpRðxÞ
f ;nÞÞ; (15)

where

RðxÞ
f ;n ¼

XJ

j¼1

RðcÞ
j;f ;n þ RðbÞ

f ¼
XJ

j¼1

RðaÞ
j;f vj;f ;n þ RðbÞ

f : (16)

The conditional expectation of the natural statisticsR̂
ðcÞ
j;f ;n;

R̂
ðbÞ
f ; R̂

ðcÞ
j;f ;n; R̂

ðbÞ
f ; ĉj;f ;n, andb̂f ;n are shown in the following:

R̂
ðcÞ
j;f ;n ¼ ĉj;f ;nĉH

j;f ;n þ R̂
ðcÞ
j;f ;n ; (17)

R̂
ðcÞ
j;f ;n ¼ ðI � RðcÞ

j;f ;nRðxÞ� 1

f ;n ÞRðcÞ
j;f ;n ; (18)

ĉj;f ;n ¼ RðcÞ
j;f ;nRðxÞ� 1

f ;n xf ;n; (19)

R̂
ðbÞ
f ¼ b̂f ;nb̂

H
f ;n þ R̂

ðbÞ
f ; (20)

R̂
ðbÞ
f ¼ ðI � RðbÞ

f RðxÞ� 1

f ;n ÞRðbÞ
f ; (21)

b̂f ;n ¼ RðbÞ
f RðxÞ� 1

f ;n xf ;n: (22)

Appendix A is dedicated for the detailed derivation of Eqs.
(17) to (22).

B. M step: Update of parameters

For clari�cation and simpli�cation, R̂
ðcÞ
j;f ;n and RðaÞ

j;f will
be vectorized toI2 � 1 vectors as follows:

R̂
ðcÞ
j;f ;n ¼ ½̂R

ðcÞ
1;1;j;f ;n R̂

ðcÞ
2;1;j;f ;n � � � R̂

ðcÞ
I;1;j;f ;n R̂

ðcÞ
1;2;j;f ;n � � � R̂

ðcÞ
I;I;j;f ;n

�T;

RðaÞ
j;f ¼ ½RðaÞ

1;1;j;f ;n RðaÞ
2;1;j;f ;n � � � RðaÞ

I;1;j;f ;n RðaÞ
1;2;j;f ;n � � � RðaÞ

I;I;j;f ;n �T:

Therefore Eq.(6a)can be rewritten as follows:

RðcÞ
j;f ;n ¼

XK

k¼1

Xsmax

s¼0

X/ max

/ ¼0

RðaÞ
j;f ws;j

f � / ;kh
/ ;j
k;n� s: (23)

The second term in the right hand side of Eq.(14)can be expressed with IS divergence as

logPðCjRðaÞ; W; HÞ ¼DIS

X

j;f ;n

R̂
ðcÞ
j;f ;n

�
�
�
�

X

j;k;f ;n

RðaÞ
j;f

X

s

X

/

ws;j
f � / ;kh

/ ;j
k;n� s

 !0

@

1

A : (24)

The third term in the right hand side of Eq.(14) is the prior information onW andH. An improper prior is assumed forW and
factor-wise normalized to unit length, i.e.,pðWÞ ¼

Q
jdðkWjk2 � 1ÞwhereWj ¼ f ws;j

f ;kg is the spectral basis that belongs to
thejth source. Each element ofH has independent decay parameterk/ ;j

k;n with exponential distribution,

� logpðW; HjKÞ ¼ � log
Y

j

dðkWjk2 � 1Þ
� �

� log
Y

j;k

pðHj
kjK

j
kÞ

� �

¼ � log
Y

j

dðkWjk2 � 1Þ
� �

� log
Y

j

Y

k

Y

n

Y

/

k/ ;j
k;n expð� k/ ;j

k;nh/ ;j
k;nÞ

� �

¼ �
X

j

logdðkWjk2 � 1Þ þ
X

j

X

k

X

n

X

/

ðk/ ;j
k;nh/ ;j

k;n � logk/ ;j
k;nÞ: (25)
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The �rst term on the right hand side of Eq.(25) can be satis-
�ed by explicitly normalizing each spectral dictionary to

unity, i.e.,ws;j
f ;k ¼ ws;j

f ;k=
																									P

f ;s;kðw
s;j
f ;kÞ

2
q

. Thus only the second

term remains, i.e., � logpðW; HjKÞ ¼
P

j

P
k

P
n

P
/

ðk/ ;j
k;nh/ ;j

k;n � logk/ ;j
k;nÞ. Adding this to the IS divergence derived

in Eq. (24), we obtain

logPðCjRðaÞ; W; HÞ þ logPðW; HjKÞ

¼
X

j;k;f ;n

ðR̂
ðcÞH

j;f ;nRðaÞ� 1

j;f v� 1
j;f ;n � logðR̂

cð ÞH

j;f ;nRðaÞ� 1

j;f v� 1
j;f ;nÞ � 1Þ

þ
X

j;k;n;/

k/ ;j
k;nh/ ;j

k;n �
X

j;k;n;/

logk/ ;j
k;n: (26)

Thus the derivatives of Eq.(26) with respect toRðaÞ
j;f , ws;j

f ;k,
andh/ ;j

k;n can be given as follows:

@

@R að Þ
j0;f 0

logP C; W; HjX; R að Þ; R bð Þ; K
� �

¼
X

n

R̂
cð ÞH

j0;f 0;nR að Þ� 2

j0;f 0 v� 1
j0;f 0;n þ R að Þ� 1

j0;f 0 : (27)

Similarly,

@

@ws0;j0
f 0;k0

logP C; W; HjX; R að Þ; R bð Þ; K
� �

¼ �
X

/ ;n

R̂
cð ÞH

j0;f 0þ / ;nR að Þ� 1

j0;f 0þ / v� 2
j0;f 0þ / ;n h/ ;j0

k0;n� s0

þ
X

/ ;n

v� 1
j0;f 0þ / ;n h/ ;j0

k0;n� s0 : (28)

Likewise,

@

@h/ 0;j0
k0;n0

logP C; W; HjX; R að Þ; R bð Þ; K
� �

¼ �
X

f ;s

R̂
cð ÞH

j0;f ;n0þ sR
að Þ� 1

j0;f v� 2
j0;f ;n0þ sw

s;j0

f � / 0;k0

þ
X

f ;s

v� 1
j0;f ;n0þ sw

s;j0

f � / 0;k0 þ k/ 0;j0

k0;n0: (29)

For each of individual component, standard gradient descent
method is applied with

R að Þ
j0;f 0  R að Þ

j0;f 0 � gR að Þ

@logP C; W; HjX; R að Þ; R bð Þ; K
� �

@R að Þ
j0;f 0

;

(30)

ws0;j0

f 0;k0  ws0;j0

f 0;k0 � gw

@logP C; W; HjX; R að Þ; R bð Þ; K
� �

@ws0;j0
f 0;k0

;

(31)

h/ 0;j0

k0;n0  h/ 0;j0

k0;n0 � gh

@logP C; W; HjX; R að Þ; R bð Þ; K
� �

@h/ 0;j0
k0;n0

;

(32)

wheregRðaÞ; gw, andgh are the positive learning rate, which
can be set as

gR að Þ ¼
R að Þ

j0;f 0

R að Þ� 1

j0;f 0

; gw ¼
ws0;j0

f 0;k0
X

/ ;n

v� 1
j0;f 0þ / ;nh/ ;j0

k0;n� s0

;

gh ¼
h/ 0;j0

k0;n0

X

f ;s

v� 1
j0;f ;n0þ sw

s;j0

f � / 0;k0 þ k/ 0;j0

k0;n0

: (33)

The MU rules forRðaÞ
j;f ; ws;j

f ;k, andh/ ;j
k;n, respectively, gives

R að Þ
j0;f 0 ¼

1
N

XN

n¼1

R̂ cð Þ
j0;f 0;n

vj0;f 0;n
; (34)

ws0;j0

f 0;k0 ¼ ws0;j0

f 0;k0

X

/ ;n

R̂
cð ÞH

j0;f 0þ / ;n R að Þ� 1

j0;f 0þ / v� 2
j0;f 0þ / ;nh/ ;j0

k0;n� s0

X

/ ;n

v� 1
j0;f 0þ / ;nh/ ;j0

k0;n� s0

0

B
B
B
@

1

C
C
C
A ;

(35)

h/ 0;j0

k0;n0 ¼ h/ 0;j0

k0;n0

X

f s

R̂
cð ÞH

j0;f 0n0þ sR
að Þ� 1

j0;f v� 2
j0;f ;n0þ sw

s;j0

f � / 0;k0

X

f s

v� 1
j0;f ;n0þ sw

s;j0

f � / 0;k0 þ k/ 0;j0

k0;n0

0

B
B
B
@

1

C
C
C
A : (36)

C. Estimation of variable sparsity using Gibbs
distribution

For the sparsity term, the update is obtained as follows:

k ¼ arg max
k

log PðC; W; HjX; RðaÞ; RðbÞ; KÞ

¼ arg max
k

logPðHjKÞ:
(37)

Solving@=@k logPðHjKÞ ¼0 will lead to

k/ ;j
k;n ¼

1

h/ ;j
k;n

or in matrix formK ¼ 1 � =Hð Þ; (38)

where “�=” represents element-wise division. However, asH
can be partitioned into distinct subsets of positive value and
zero value, it will yield divergent updates forh/ ;j

k;n ¼ 0.
Therefore a better approximation to account for variability
of H is required. To consider the variability ofH, we will
cast it in vector form and setsmax ¼ 0 as we are dealing with
original sparse matrixH. For any distributionQðhÞ (that
represents the lower bound to obtain the hidden variablek),
the log-likelihood function satis�es the following:
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logP hjkð Þ¼ log
ð

Q hð Þ
P hjkð Þ
Q hð Þ

dh; (39)

where h ¼ ½VecðH0ÞT VecðH1ÞT � � � VecðH/ maxÞT �T

and k ¼ ½Vecðk0ÞT Vecðk1ÞT � � � Vecðk/ maxÞT�T where
Vecð:Þmeans column vectorization, andh andk are vectors
with dimensionD � 1 whereD ¼ K � N � Umax. The ele-
ments ofh andk are denoted ashp andkp , respectively, for
p ¼ 1; 2; …:; D. By using Jensen’s inequality, Eq.(39)
becomes

logP hjkð Þ�
ð

Q hð Þlog
P hjkð Þ
Q hð Þ

 !

dh: (40)

By substituting Eq.(40) into Eq.(37),

k ¼ arg max
k

ð
QðhÞ ðlogkp � kphpÞdh: (41)

Equation(41) can be solved as follows:

@
ð

Q hð Þlogkp � kp hpð Þdh

@kp
¼ 0;

kp ¼
1ð

hpQ hð Þdh
¼

1
EQ hð ÞhP½ �

; (42)

whereEQðhÞ½hP� is the expectation ofhP under the distribu-
tion QðhÞ. Equation (42) cannot be solved analytically,
therefore we will approximateQðhÞ with respect to the
mode of distributionhp. As hp can be partitioned into distinct
subsets of positive valueðh

M
Þ 8m 2 M such thathm > 0, and

zero valueðhLÞ 8l 2 L such thathl ¼ 0, it follows thatQðhÞ
can be partitioned as

FðhÞ ¼DIS

 
X

j;f ;n

R̂
ðcÞ
j;f ;n

�
�
�
�
X

j;f

RðaÞ
j;f

 
X

p;k;/

wj
f � / ;khp

!!

þ
X

p

ðkphp � logkpÞ

¼
X

j;kf;n

ð̂R
ðcÞH

j;f ;nRðaÞ� 1

j;f v� 1
j;fn � logð̂R

ðcÞH

j;f ;nRðaÞ� 1

j;f v� 1
j;f ;nÞ � 1Þ þ

X

p

ðkphp � logkpÞ; (43)

and by using the reverse triangle inequality,36 we have

F hð Þ� DIS

X

j;f ;n

R̂
ðcÞ
j;f ;n

�
�
�
�
X

j;f

R að Þ
j;f

X

m;k;/

wj
f � / ;khm

 !0

@

1

A þ
X

m

kmhm � logkmð Þ

þ DIS

X

j;fn

R̂
ðcÞ
j;f ;n

�
�
�
�
X

j;f

RðaÞ
j;f

X

l;k;/

wj
f � / ;khl

 !0

@

1

A þ
X

l

ðklhl � logklÞ

FðhÞ � FðhLÞ þ FðhMÞ: (44)

The approximate distribution QðhÞwill assume the Gibbs dis-
tribution, i.e., QðhÞ ¼ ð1=ZhÞexp½�FðhÞ� where Zh

¼
Ð

exp½�FðhÞ�dh, therefore Eq.(44)will take the form of

Q hð Þ¼
1
Zh

exp � F hLð Þ� F hMð Þ½ �

¼
1
Zp

exp � F hLð Þ½ �
1

ZM
exp � F hMð Þ½ �

¼ QL hLð ÞQM hMð Þ; (45)

whereZp ¼
Ð

exp½�FðhLÞ�dhL and ZM ¼
Ð

exp½�FðhMÞ�dhM.
This leads toEQMðhMÞ½hP� ¼ hP [which is optimized in Eq.
(36)], andEQLðhLÞ½hP� ¼ ul whereul is the variational parame-
ter. Therefore Eq.(42) is given by

kp ¼

1
hp

8p 2 M such thathp > 0

1
up

8p 2 L such thathp ¼ 0;

8
>>><

>>>:

(46)

where

up  up

� bp þ

																											

b2
p þ 4

~H u
� �

p

up

s

2 ~H u
� �

p

; (47)

~H ¼diag
X

j;k;f ;n;/

ð� 2ðwj
f � / ;kÞ

2ð̂R
ðcÞH

j;f ;nRðaÞ� 1

j;f v� 3
j;f ;nÞ

 

þðwj
f � / ;kÞ

2v� 2
j;f ;nÞ

!

; (48)

and

bp ¼
X

j;k;f ;n;/

ðR̂
ðcÞH

j;f ;nRðaÞ� 1

j;f v� 2
j;f ;nwj

f � / ;k � v� 1
j;f ;nwj

f � / ;k � kpÞ:

(49)

The detailed derivation of the variational parameterup can
be found inAppendix B.
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D. Components reconstruction

The estimated STFT source spatial imageĉj;f ;n can be
reconstructed by using the multichannel Wiener �lter that
obtained by the minimum mean square error (MMSE) as in
Eq. (19)

ĉj;f ;n ¼
XK

k¼1

Xsmax

s¼0

X/ max

/ ¼0

RðaÞ
j;f ws;j

f � / ;kh
/ ;j
k;n� sR

ðxÞ� 1

f ;n xf ;n: (50)

The multichannel Wiener �lter takes all the source spatial
image components instead of the dominant one as in the bi-
nary masking. Due to the linearity of the STFT, the inverse-
STFT (with dual synthesis window37) can be used to transfer
the source spatial image to time domain.

E. New initialization strategy

The initialization is an essential part for the separation
because the NMF and its variants are very sensitive to the
initialization. A good survey about the initialization algo-
rithms can be found in Ref.38. In this paper, we propose a
new variant of SVD specially cater to initialize each
K-wNTF2D sub-model. We termed this as the SVD two-
dimensional deconvolution (SVD2D) described as follows:
First, decompose the mixtureX into P leading singular trip-
lets, X ¼

P P
k¼1 qkCk, where qk is the nonzero singular val-

ues ofX, Ck ¼ ukvT
k , andf uk; vkg

P
k¼1 are the corresponding

left and right singular vectors ofqk. Second, compute the
SVD of Cþ

k (after decomposingCk into positive and negative
componentsCk ¼ Cþ

k � C�
k ) to �nd the dominant singular

triplets. LetWi ¼ f ws¼i;j
f ;k g andHi ¼ f h/ ¼i;j

k;n g represent �xing
theith slice ofW andH, respectively, i.e., settings ¼ i in W
and/ ¼ i in Hi [see Eq.(7a)]. We initialize the �rst column
and row inW0 andH0 by using the dominant singular triplet
of X, and the rest by using the singular triplets ofCþ

k . After
initializing W0 andH0, we initialize the rest in similar way.

Starti ¼ 1, do the following:
Step 1: Computeyi

f ;n ¼
P

j;kw
i� 1;j
f � i;kh

i� 1;j
k;n� i :

Step 2: Apply SVD onYi to obtain
P P

k¼1 qi;kCi;k where
Ci;k ¼ ui;kvT

i;k.
Step 3: Apply SVD on Cþ

i;k to obtain
P Li;k

l¼1 qi;k;lCi;k;l

whereCi;k;l ¼ ui;k;lvT
i;k;l .

Step 4: Wi ¼ ½ui;1 ui;2;1 ui;3;1 � � � ui;p;1 � and
Hi ¼ ½vi;1 vi;2;1 vi;3;1 � � � vi;p;1 �T.
Step 5:i  i þ 1, repeat Steps 1–4.
Stop wheni ¼ maxðsmax � 1; / max � 1Þ:

To initialize the full-rank spatial covariance matrix, the
hierarchical clustering based on IS divergence is used: First of
all, the mixture is normalized�xf ;n  ð xf ;n=kxf ;nk2Þe� i argðx1;f ;nÞ

wherei ¼
							
� 1

p
, andk:k2 is norm� 2. The average distance

between clustersF1 and F2 is computed asdðF1; F2Þ
¼ 1=jF1jjF2j

P
�xf ;n2F1

P
�xf ;n2F2

DISð�xF1j�xF2Þ. The clusters are
linked by merging the smallest distance between the two clus-
ters, and the process is repeated until the number of clusters is
smaller than a speci�c threshold. Finally, the largestJ clusters
are selected to initialize the full-rank spatial covariance matrix

RðaÞ init
j;f ¼ 1=jFj j

P
�xf ;n2Fj

~xf ;n~xH
f ;n, where,~xf ;n ¼ xf ;ne� iargðx1;f ;nÞ,

andjFj j total number of samples in clusterFj.
Table II summarizes the main step of the proposed

K-wNTF2D algorithm.

IV. RESULTS AND DISCUSSIONS

A. Dataset

The following two datasets will be used in the experiments.

1. Dataset 1

This dataset is identical to the one used in the full-rank
NMF of Arberet et al. algorithm.25 This dataset consist of
four groups depending on the distance between their micro-
phones and the reverberation time (RT). These are the 5 cm
distance with 130 ms reverberation time group, 5 cm and
250 ms group, 1 m and 130 ms group, and 1 m 250 ms group.
Each group consists of ten stereo mixtures, and each mixture
has a length of 10 s, sampled at 16 kHz, and generated from
three convolutive sources.

2. Dataset 2

This is an under-determined speech and music mixtures
development dataset of SiSEC 2013 (Ref.39). This dataset
consist of two groups. The �rst group is the live recording
music group, which consists of dev1 and dev2 datasets,
where each dataset has the with drum (wdrum) group, which
consists of vocal and music instrument with drum, and the
without drum (nodrum) group, which consists of vocal and
music instruments without drum. The sources of this group
are mixed in stereo mixture that has 1 m or 5 cm space
between its microphones, and 250 ms reverberation time.
The second group of this dataset is a simulated recording
speech group, which consists of dev3 dataset; this dataset
contains four females (female4) and four males (males4) that
mixed in stereo mixture, with 5 or 50 cm distance between
its microphones, and has a reverberation time of 130 or
380 ms. dev3 has three channels (left, right, and mono), and
we reduce it to two channels (left and right). Additionally,
each mixture has duration of 10 s and sampled at 16 kHz.

B. Evaluation

The performance of the proposed algorithm will be
measured by using the signal-to-distortion ratio (SDR),
which measures an overall sound quality of the source sepa-
ration, where it combines the signal-to-interference ratio
(SIR), and the signal-to-artifact ratio (SAR), into one mea-
surement.MATLAB codes for this evaluation procedure can be
found in Refs.39 and40.

C. Effects of variable sparsity versus uniform sparsity

In this subsection, we will show the effects of the spar-
sity on the separation performance, by considering a �xed
uniform sparsity,k/ ;j

k;n ¼ k ¼ c, all over the elements ofH,
and the variable sparsityk/ ;j

k;n for each element ofH. The
�xed uniform sparsity is commonly used throughout the lit-
erature of matrix factorization. Each experiment will be run
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for different values of sparsity for the three sources that con-
volutively mixed in the stereo mixture that has 1 m space
between its microphones, 130 ms reverberation time, and
with 16 kHz sampling frequency. The following parameters

are set for the proposed algorithm:K ¼ 5, smax ¼ 10, and
/ max ¼ 1. To focus on the sparsity effects only, an oracle
initialization has been used.

Figure 2 shows the average SDR performance with
respects to different values of sparsity. It is clear from Fig.2
that the variable sparsity gives the highest SDR performance.
This is attributed to the fact that the proposed algorithm has
a speci�c sparsity value for each element ofH instead of
constant value for the entire elements ofH as in the case of
uniform sparsity. It is seen that for variable sparsity the aver-
age SDR is 4.5 dB higher than the best uniform sparsity (the
value of constantk that results in the highest SDR)k ¼ 10.
Additionally, as the sparsity value increases (leading to
over-sparseness) the SDR begins to decrease because many
elements inH become very small and tends to zero. This
resulted in switching off several parts of the spectrum in the
estimated sources, as shown in Fig.3. In particular, the �g-
ure shows the spectrogram of one of the estimated sources
for the case of variable sparsity, over-sparse, and the best
uniform sparsity. It is visually apparent from the �gure that
the over-sparse and the best uniform sparsity have not fully
recovered the original source. Many portions of the spectrum
have been removed from the estimated source. On the other
hand, the result from the variable sparsity has seen almost

TABLE II. Proposed algorithmK-wNTF2D.

1. Initialize W ¼ f ws;j
f ;kg andH ¼ f h/ ;j

k;ng with the proposed initialization
method,RðaÞ

j;f with the hierarchical clustering approach,RðbÞ
f with random

nonnegative diagonal matrix, andkp with a positive value.
2. E-step:

R̂
ðcÞ
j;f ;n ¼ ðI � RðcÞ

j;f ;nRðxÞ� 1

f ;n ÞRðcÞ
j;f ;n, R̂

ðcÞ
j;f ;n ¼ ĉj;f ;nĉH

j;f ;n þ R̂
ðcÞ
j;f ;n

R̂
ðbÞ
f ¼ b̂f ;nb̂

H
f ;n þ ðI � RðbÞ

f RðxÞ� 1

f ;n ÞRðbÞ
f

ĉj;f ;n ¼ RðcÞ
j;f ;nRðxÞ� 1

f ;n xf ;n, b̂f ;n ¼ RðbÞ
f RðxÞ� 1

f ;n xf ;n

RðxÞ
f ;n ¼

P J
j¼1 RðcÞ

j;f ;n þ RðbÞ
f , RðcÞ

j;f ;n ¼ vj;fnRðaÞ
j;f ,

vj;fn ¼
P

k

P
s

P
1 ðws;j

f � / ;k h/ ;j
k;n� s Þ

3. M-step:

RðaÞ
j0;f 0 ¼ 1

N

XN

n¼1

R̂ðcÞ
j0;f 0;n

vj0;f 0;n

ws0;j0

f 0;k0 ¼ ws0;j0

f 0;k0

P
/ ;n

R̂
ðcÞH

j0;f 0þ / ;nRðaÞ� 1

j0;f 0þ /
v� 2

j0;f 0þ / ;n
h/ ;j0

k0;n� s0P
/ ;n

v� 1
j0;f 0þ / ;n

h/ ;j0

k0;n� s0

 !

h/ 0;j0

k0;n0 ¼ h/ 0;j0

k0;n0

P
f s

R̂
ðcÞH

j0;f ;n0þ s RðaÞ� 1

j0;f
v� 2

j0;f ;n0þ s
ws;j0

f � / 0;k0P
f s

v� 1
j0;f ;n0þ s

ws;j0

f � / 0;k0þ k/ 0;j0

k0;n0

 !

kp ¼

1
hp

8p 2 M such thathp > 0

1
up

8p 2 L such thathp ¼ 0

8
>>><

>>>:

up  up
� bpþ

																
b2

pþ 4
~H uð Þp
up

q

2 ~H uð Þp

bp ¼
X

j;k;f ;n;/

ðR̂
ðcÞH

j;f ;n RðaÞ� 1

j;f v� 2
j;f ;nwj

f � / ;k � v� 1
j;f ;nwj

f � / ;k � kpÞ;

~H ¼ diag
� X

j;k;f ;n;/

ð� 2ðwj
f � / ;kÞ

2ðR̂
ðcÞH

j;f ;nRðaÞ� 1

j;f v� 3
j;f ;nÞ þ ðwj

f � / ;kÞ
2v� 2

j;f ;nÞ
�

4: Normalizews;j
f ;k ¼

ws;j
f ;k																					P

f ;k;s
ws;j

f ;k

� � 2
q

5. RepeatE-step, M-step, and the normalization until convergence is
achieved where rate of cost change is below a prescribed threshold,w.
6. Take inverse STFT with dual synthetic window to estimateci;jðtÞ.

FIG. 2. (Color online) Average SDR with respect to different sparsity
values.

FIG. 3. (Color online) The effects of sparsity on the estimated source.
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full recovery the original source as it has been optimally
tuned by the degree of sparseness over all the elements ofH.

D. Separation results

1. Results of dataset 1

First of all the STFT window length is set to 1024 with
50% overlaps, �ve components per source are set for the
full-rank NMF algorithm,25 one and �ve components per
source are set for the proposed full-rank variable sparsity
K-wNTF2D algorithm, different convolutive parameters are
set for the proposed algorithm as tabulated in TableIII , and
50 iterations is set for both algorithms. Finally, for matter of
comparison, we used the same initialization that used in
Arberetet al. algorithm, where, oracle initialization has been
used to initializevj;f ;n andRðaÞ

j;f .
To show the convergence of the proposed algorithm, the

average cost functions [Eq.(14)] of the ten mixtures with
different conditions (low and high reverberations time and
short and long distance between the microphones) are shown
in Fig. 4. It is noted that the speed of convergence (as meas-
ured by the gradient of the cost function) is fastest for the
short microphone distance with low reverberation. As the
microphone distance becomes larger and the level of rever-
beration increases, the speed tends to slow down.
Nonetheless, all cost functions have converged to the steady
state in less than 50 iterations. Furthermore, the SDRs of the
full-rank NMF and the proposed algorithm are tabulated in
Table IV. The table indicates that the proposed algorithm
has better performance than the full-rank NMF because it
has a more powerful representation (using theK-wNTF2D)
as well as the variable sparsity over all the elements ofH.

TABLE III. Convolutive parameters for mixtures 1 to 10.

Mixture smax / max

1 1 1
2 2 1
3 2 1
4 3 1
5 3 1
6 4 1
7 4 1
8 8 1
9 10 1
10 10 1

FIG. 4. (Color online) Average cost function for different conditions.

TABLE IV. Average SDRs of the 10 mixtures with different conditions for
the full-rank NMF and the proposed algorithm.

Reverberation time (ms)
130 250

Microphone distance (cm) 5 100 5 100

SDR of full-rank NMF
K ¼5 9.1 10.2 8.8 9.6
SDR of the proposed algorithm
K ¼1 6.6 7.8 6.5 7.3
SDR of the proposed algorithm
K ¼5 10.3 11.4 9.8 10.4

FIG. 5. Box plot of the proposed algorithm (1) and the full-rank NMF (2)
with different components and different conditions. (a) 5 cm, 130 ms. (b)
100 cm, 130 ms. (c) 5 cm, 250 ms. (d) 100 cm, 250 ms.
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We summarized the results for all the conditions as follows:
An achievement of 1.2 dB more for the low reverberation
group, and at least 1 dB more on average for the high rever-
berations group. This is complemented by Fig.5. It shows
that high SDR performance has been achieved for the
130 ms reverberation for both 100 and 5 cm microphone sep-
aration. This case corresponds to the low reverberation envi-
ronment. For the case of high reverberation, the proposed
algorithm performs better with shorter microphone distance.
As the distance between the microphones decreases, the

signal at each microphone becomes more correlated with
each other and therefore the channel covariance matrixRðaÞ

j;f
tends to have some speci�c structure and hence reinforces
the requirement of full-rank condition. On the other hand, as
the separation between the microphone increases, the signal
at each microphone becomes less correlated with each other.
The effect is that each channel behaves independently, and
the channel covariance matrixRðaÞ

j;f can be modelled by rank-1
structure. Thus as the separation between microphone

FIG. 6. (Color online) Comparison between the spectrogram of the full-rank
NMF, and the variable sparsity full-rankK-wNTF2D. (a) Spectrogram of
the original source. (b) Spectrogram of the estimated source by using the
full-rank NMF. (c) Spectrogram of the estimated source by using the vari-
able sparsity full-rankK-wNTF2D. (d) One component ofW, andH, with
their corresponding spectrogram for the full-rank NMF. (e) One component
of W, andH, with their corresponding spectrogram for the variable sparsity
full-rank K-wNTF2D.

FIG. 7. (Color online) Spectrogram of the original and estimated sources by
using the proposed full-rank K-wNTF2D algorithm and the full-rank NMF
algorithm.
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becomes progressively small, this induces a complex structure
to the channel covariance that will bene�t from the full-rank
estimation procedure in the proposed algorithm. This is a
clear indication that the proposed algorithm has outperformed
the NMF for both the low and high reverberation time. In
addition, to show the effects of the number of components on
the proposed algorithm in comparison with the full-rank NMF
the SDR of both algorithms forK ¼5, 10, 15, and 20 have
been also plotted in Fig.5. It shows the box plot for the ten
mixtures with their median, maximum, and minimum SDR
values for all the conditions. From the plot, it is clear that the
proposed algorithm results in higher performance than the
full-rank NMF for all the components under the different con-
ditions, as we modeled the proposed algorithm to address the
change in the time and frequency directions through the con-
volutive parameters (i.e.,s and/ ) of theK-wNTF2D.

The spectrogram of one of the original sources and its
estimate by using the full-rank NMF and the full-rank vari-
able sparsityK-wNTF2D are shown in Figs.6(a), 6(b), and
6(c), respectively. These �gures clearly show that the full-
rank variable sparsityK-wNTF2D has successfully detected
the pitch change of the source (as shown in the high fre-
quency of its spectrogram) due to its two-dimensional
deconvolution, while the full-rank NMF failed to detect
these changes. Furthermore, to show thatW and H of the
full-rank variable sparsityK-wNTF2D contain more infor-
mation than those of the NMF, we have plotted one compo-
nent of the W and H matrices and its corresponding
spectrogram for both the NMF and the full-rank variable
sparsity K-wNTF2D in Figs. 6(d) and 6(e), respectively.
This clearly indicates that bothW andH have modelled the
sources quite accurately. It is seen that W has successfully
modelled the frequencies of the source especially in the high
frequency region, andH has shown a correct distribution in
the time domain. On the separate hand,W and H of the
NMF contain very little or virtually null information for
these frequencies and their corresponding positions. Finally,

Fig. 7 shows another set of spectrograms that emphasize that
the proposed full-rank variable sparsityK-wNTF2D algo-
rithm has estimated the sources correctly in comparison with
the full-rank NMF. The proposed algorithm has correctly
detected the required number of frequency basis as well as
their pitch change because the model has multiple frequency
basis that convolve with the time–pitched weighted matrix
in both time and frequency directions. On the other hand, the
NMF fails to detect the required number of frequency basis
because it contains too many unwanted frequency basis. In
addition, it fails to detect the high frequency pitch change.

TABLE V. SDRs of Adilogluet al.and the proposed algorithm for dev. 1.

SiSEC 2013: Dev. 1 Ndrums Wdrums

Reverberation time (ms) 250 250

Microphone distance (cm) 5 100 5 100

Adiloglu et al.algorithm SDR s1 � 5.5 � 0.6 7.0 2.4
s2 � 1.2 � 0.0 � 0.1 3.0
s3 3.7 0.6 � 0.5 � 11.1

Avg � 2.2 0.0 2.1 � 1.9

GEM—MU based variable
sparsity NTF,smax ¼ 0, / max ¼ 0

K 3 20
SDR s1 0.5 2.1 5.7 6.7

s2 0.8 1.2 0.3 � 1.1
s3 0.8 2.6 � 0.8 0.1

Avg 0.7 2.0 1.7 1.9

Proposed algorithm,smax ¼ 13,
/ max ¼ 2

K 3 20
SDR s1 2.3 1.4 7.6 8.2

s2 0.9 2.6 0.9 0.5
s3 0.7 4.2 0.7 � 0.1

Avg 1.3 2.7 3.1 2.9

TABLE VI. SDRs of Adilogluet al.and the proposed algorithm for dev. 2.

SiSEC 2013: Dev. 2 Ndrums Wdrums

Reverberation time (ms) 250 250

Microphone distance (cm) 5 100 5 100

Adiloglu et al.algorithm SDR s1 1.8 4.7 3.7 4.8
s2 2.7 2.0 3.7 2.0
s3 � 11.7 � 3.9 3.7 2.7

Avg � 2.4 0.9 3.7 3.2

GEM—MU based variable
sparsity NTF

smax 0
/ max 0

K 3 3 7
SDR s1 9.6 6.7 1.0 1.9

s2 0.4 1.6 2.6 1.6
s3 � 2.0 0.0 1.4 3.1

Avg 2.7 2.8 2.7 2.2

Proposed algorithm smax 2 3
/ max 2 9

K 3 3 7
SDR s1 10.5 7.6 3.5 2.9

s2 1.4 2.3 4.2 2.2
s3 0.8 0.7 5.4 4.6

Avg 4.2 3.5 4.4 3.2

TABLE VII. SDRs of Adiloglu et al. and the proposed algorithm of dev. 3,
for 5 cm, 380 ms case and 50 cm, 380 ms case.

SiSEC 2013: Dev. 3 Male 4 Female 4

Reverberation time (ms) 380 380

Microphone distance (cm) 5 50 5 50

Adiloglu et al.algorithm SDR s1 0.4 � 1.7 0.2 � 0.2
s2 � 2.6 � 0.9 0.2 � 1.0
s3 � 2.1 0.8 � 3.1 � 2.4
s4 0.0 � 0.4 � 2.8 0.1

Avg � 1.1 � 0.6 � 1.4 � 0.9

GEM—MU based variable
sparsity NTF,smax ¼ 0,
/ max ¼ 0, K ¼ 10

SDR s1 0.7 0.2 0.3 0.3
s2 0.8 0.6 0.8 0.4
s3 0.2 1.1 � 0.9 0.2
s4 1.1 � 0.1 0.2 0.5

Avg 0.7 0.5 0.1 0.4

Proposed algorithm,smax ¼ 10,
/ max ¼ 20,K ¼ 10

SDR s1 1.3 0.6 1.9 0.8
s2 1.2 1.1 0.8 0.7
s3 1.3 1.8 1.3 0.1
s4 1.3 0.7 0.9 1.8

Avg 1.3 1.1 1.2 0.9
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2. Result of dataset 2

In this section, we compare our algorithm with Adiloglu
et al. algorithm from the SiSEC’13 evaluation campaign for
the tasks of under-determined speech and music mixtures;41

that used fully Bayesian source separation algorithm based
on variational inference method42 with the multi-level NMF
model43 as a source variance and the time difference of ar-
rival (TDOA) as an initialization method.44 In the proposed
algorithm, a different number of components and different
convolutive parameters are set for each dataset, as tabulated
in TablesV–VIII . The STFT window length is set to 2048

with 50% overlaps. The proposed initialization has been
blindly initialized vj;f ;n andRðaÞ

j;f , respectively.
The average cost functions are shown in Fig.8. The �g-

ure indicates that all the cost functions converged to a low
value within ten iterations, while the Adilogluet al. algo-
rithm required about 250 iterations. Furthermore, it can be
seen that the SDRs of the proposed algorithm for the music
group (TablesV and VI) on average is higher than the
Adiloglu et al. algorithm. For clarity of comparison, the
results are summarized as follows: An improvement of 3 dB
is achieved for the 5 cm distance and 250 ms reverberation
time datasets, and 2.6 dB for the 100 cm, 250 ms datasets.
For the speech group (TablesVII and VIII ) on average, an
improvement of 2.5 dB is achieved for the 5 cm, 380 ms
datasets, and 1.8 dB for the 50 cm, 380 ms datasets. Finally,
an improvement of 0.3 dB is achieved for the 5 cm, 130 ms
datasets, and approximately equal for the 50 cm, 130 ms
datasets. From the preceding text, it can be concluded that
the proposed algorithm outperforms the Adilogluet al. algo-
rithm, especially for the case of high reverberation time.
This is attributed to the proposed algorithm’s ability to
model the full-rank spatial covariance matrix (that modeled
the spatial position and spread of the sources) instead of
rank-1. Finally, Fig.9 shows the spectrogram of the esti-
mated sources. It has indicated that the proposed algorithm

TABLE VIII. SDRs of Adiloglu et al. and the proposed algorithm of dev. 3,
for 5 cm, 130 ms case and 50 cm, 130 ms case.

SiSEC 2013: Dev. 3 Male 4 Female 4

Reverberation time (ms) 130 130

Microphone distance (cm) 5 50 5 50

Adiloglu et al.algorithm SDR s1 � 2.6 � 2.1 � 0.0 � 1.2
s2 � 0.2 2.6 � 0.9 0.6
s3 1.5 0.8 0.4 1.4
s4 5.2 3.9 4.1 4.4

Avg 1.0 1.3 0.9 1.3

GEM–MU based Variable
Sparsity NTF,K ¼10

smax 0
/ max 0
SDR s1 0.5 � 0.5 � 0.3 � 2.8

s2 � 0.7 0.7 1.3 0.1
s3 0.6 0.4 0.3 1.4
s4 1.0 � 0.8 1.0 0.9

Avg 0.4 � 0.0 0.6 � 0.1

Proposed algorithm,K ¼10 smax 10
/ max 50 60
SDR s1 1.2 0.5 1.5 0.8

s2 1.1 2.6 1.6 0.9
s3 1.4 0.9 1.0 2.7
s4 1.2 1.2 1.1 0.8

Avg 1.2 1.3 1.2 1.3

FIG. 8. (Color online) Average cost function for different conditions.

FIG. 9. (Color online) Spectrogram of one of the mixtures and its original and estimated sources.
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has successfully estimated the sources to a high degree of ac-
curacy. In particular, it is evident that all the low and high
frequency components as well as the time-frequency patterns
have been preserved in the estimated sources.

V. CONCLUSIONS

In this paper, a novel method that combinesK models of
the weighted NTF2D with variable sparsity has been proposed
for multichannel acoustic source separation. The variable
sparse parameters are derived from the Gibbs distribution,
which has provided a tractable approach to adapt each sparse
parameter for every temporal code in the NTF2D. The GEM-
MU algorithm has been used as a platform to enable joint esti-
mation of the sources and parameters as well as preserving the
non-negativity constraints of the proposed model. The paper

also proposes a new approach to ef�ciently initialize the
NTF2D. It has been shown using the SiSEC dataset that the
proposed algorithm outperformed the full-rank NMF and NTF
algorithms and a recent algorithm based on variational infer-
ence multi-level NMF model with TDOA initialization.
Additionally, it is shown that the proposed algorithm maintains
its high level performance in high reverberation environment
as it considers the full-rank spatial covariance matrix instead
of rank 1. The proposed algorithm is fast and requires less than
ten iterations to converge to the steady state.
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APPENDIX A: DERIVATION OF THE CONDITIONAL EXPECTATION OF THE NATURAL STATISTICS

The posteriorPðcj;f ;njxf ;nÞcan be written as

P cj;f ;njxf ;n
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P xf ;n; cj;f ;nð Þ
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where
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RðxcÞ
j;f ;n ¼ E½xf ;ncH

j;f ;n� ¼ E½ðcj;f ;n þ bf ;nÞcH
j;f ;n�

¼ E½cj;f ;ncH
j;f ;n� þ E½bf ;ncH

j;f ;n� ¼ RðcÞ
j;f ;n; (A5)

whereE½bf ;ncH
j;f ;n� ¼ 0 as they are uncorrelated. Thus we have

Pðcj;f ;njxf ;nÞ ¼ ðpdetCj;f ;nÞ� 1 expððcj;f ;n � RðcÞ
j;f ;nRðxÞ� 1

f ;n xf ;nÞHC� 1
j;f ;nðcj;f ;n � RðcÞ

j;f ;nRðxÞ� 1

f ;n xf ;nÞÞ: (A6)

Comparing Eq.(A6) with Eq. (9), we obtain Eqs.(17)–(19). By following the same procedure for the noise, we obtain Eqs.
(20)–(22).

APPENDIX B: DERIVATIONS OF THE VARIATIONAL PARAMETER ul

The distributionQLðhLÞ in Eq. (45) will be approximated by considering the Taylor expansion about the updatedh�

[given by Eq.(36)}
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The variational approximation ofQLðhLÞwill be considered by the exponential distribution
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The parameterul is obtained by minimizing the Kullback–Leibler divergence betweenQL andQ̂L
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whereEQ̂LðhLÞ is the expectation under the posteriorQ̂LðhLÞ
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Let
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where ~H ¼ diagðHlÞ. By using the nonnegative quadratic
programming (NQP) (Ref.45),
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Taking the derivative of Gðu; ~uÞin Eq. (B11) with respect to
u and setting it to zero yields

~H ~u
� �

l

~ul
u2

l þ bH
Lul � 1 ¼ 0; (B12)

which is solved as in Eq.(47).
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