
Northumbria Research Link

Citation:  Gallidabino,  Matteo,  Irlam,  Rachel  C.,  Salt,  Michael  C.,  O’Donnell,  Michael,
Beardah,  Matthew S.  and  Barron,  Leon  P.  (2019)  Targeted  and  non-targeted forensic
profiling  of  black  powder  substitutes  and  gunshot  residue  using  gradient  ion
chromatography – high resolution mass spectrometry (IC-HRMS). Analytica Chimica Acta,
1072. pp. 1-14. ISSN 0003-2670 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.aca.2019.04.048
<https://doi.org/10.1016/j.aca.2019.04.048>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/39091/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Accepted Manuscript

Targeted and non-targeted forensic profiling of black powder substitutes and gunshot
residue using gradient ion chromatography – high resolution mass spectrometry (IC-
HRMS)

Matteo D. Gallidabino, Rachel C. Irlam, Michael C. Salt, Michael O’Donnell, Matthew
S. Beardah, Leon P. Barron

PII: S0003-2670(19)30494-5

DOI: https://doi.org/10.1016/j.aca.2019.04.048

Reference: ACA 236737

To appear in: Analytica Chimica Acta

Received Date: 27 February 2019

Revised Date: 18 April 2019

Accepted Date: 19 April 2019

Please cite this article as: M.D. Gallidabino, R.C. Irlam, M.C. Salt, M. O’Donnell, M.S. Beardah, L.P.
Barron, Targeted and non-targeted forensic profiling of black powder substitutes and gunshot residue
using gradient ion chromatography – high resolution mass spectrometry (IC-HRMS), Analytica Chimica
Acta, https://doi.org/10.1016/j.aca.2019.04.048.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.aca.2019.04.048
https://doi.org/10.1016/j.aca.2019.04.048


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Targeted and non-targeted forensic profiling of bla ck powder substi-

tutes and gunshot residue using gradient ion chroma tography – high 

resolution mass spectrometry (IC-HRMS) 

 

 

 

Matteo D. Gallidabino1,2,*, Rachel C. Irlam1, Michael C. Salt3, Michael O’Donnell3, Matthew 

S. Beardah3, Leon P. Barron1,* 

 

1 King’s Forensics, Department of Analytical, Environmental & Forensic Sciences, Faculty of Life 

Sciences & Medicine, King’s College London, 150 Stamford Street, SE1 9NH London, United 

Kingdom 

2 Centre for Forensic Science, Department of Applied Sciences, Faculty of Health and Life Scienc-

es, Northumbria University Newcastle, Ellison Building, NE1 8ST Newcastle Upon Tyne, United 

Kingdom  

3 Forensic Explosives Laboratory, Defence Science and Technology Laboratory, Fort Halstead, 

TN14 7BP, United Kingdom 

 

 

* Corresponding authors  

E-mails: matteo.gallidabino@northumbria.ac.uk (Tel.: +44 191 227 4859) or leon.barron@kcl.ac.uk 

(Tel.: +44 20 7848 3842) 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Abstract 

A novel and simplified gradient IC-HRMS approach is presented in this work for fo-

rensic profiling of ionic energetic material residues, including low-order explosives and 

gunshot residue (GSR). This new method incorporated ethanolic eluents to facilitate direct 

coupling of IC and HRMS without auxiliary post-column infusion pumps that are traditional-

ly used to assist with gas phase transfer. Ethanolic eluents also enabled better integration 

with an in-service protocol for direct analysis of high-order organic explosives by IC-

HRMS, without requiring solvent exchange before injection. Excellent method performance 

was achieved, enabling both full scan qualitative and quantitative analysis, as required. In 

particular, linearity for 19 targeted compounds yielded R2 > 0.99 across several orders of 

magnitude, with trace analysis possible at the low-mid pg level. Reproducibility and mass 

accuracies were also excellent, with peak area %RSDs < 10 %, tR %RSDs < 0.4% and 

δm/z < 3 ppm. The method was applied to targeted analysis of latent fingermarks and 

swabbed hand sweat samples to determine contact with a black-powder substitute con-

taining nitrate, benzoate and perchlorate. When combined with principal component analy-

sis (PCA), the effect of time since handling on recorded signals could be interpreted further 

in order to support forensic investigations. In a second, non-targeted application, PCA us-

ing full scan IC-HRMS data enabled classification of GSR from three different types of 

ammunition. An additional 20 markers of GSR were tentatively identified in silico, in addi-

tion to the 15 anions detected during targeted analysis. This new approach therefore 

streamlines and adds consistency and flexibility to forensic analysis of ionic energetic ma-

terial. Furthermore, it also has implications for targeted, non-targeted and suspect screen-

ing applications in other fields by expanding the separation space to low molecular weight 

inorganic and organic anions. 
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1. Introduction 

Recent high-profile terrorism-related incidents have highlighted the frequency of 

homemade or improvised explosive devices (IEDs) in planned attacks. For the sake of il-

lustration, the bombing events in Madrid (2004), London (2005), Bali (2002 and 2005), Os-

lo (2011), Boston (2013), Paris (2015), Brussels (2016) and Manchester (2017) alone 

claimed the lives of 745 people and injured more than 4,700. Consequently, the rapid and 

reliable identification of ingredients used in IEDs, as well as the potential to trace them 

back to specific terrorist cells/people, are currently topics of considerable interest in both 

forensic and security-based investigations [1, 2].  

With the high accessibility of ingredients on the legal market and the ease of syn-

thesis, IEDs often contain energetic mixtures of different inorganic salts and/or organic 

compounds [1]. Typical examples are ANFO (ammonium nitrate and fuel oil), black pow-

ders (nitrate salts, sulfur, charcoal), chlorate/- or perchlorate/sugar devices, as well as 

smokeless powders [3, 4]. These particular explosives usually leave a characteristic trace 

after manipulation or detonation and are composed of organic and inorganic ions, amongst 

other compounds [5]. A particular post-blast tracer of energetic materials is gunshot resi-

due (GSR), which may also contain similar substances and has a particular composition 

that can be characteristic of the manufacturer [6]. Many analytical approaches are used for 

detection of these ions, at both bulk and trace levels [7, 8]. These often involve orthogonal 

analysis with capillary electrophoresis (CE) or ion chromatography (IC), the latter of which 

has become popular for routine application due to its enhanced robustness [9]. Coupling 

with suppressed conductivity detection (SCD) [3, 10-15] or direct/indirect UV photometric 

detection (UVD) [16, 17] has become common, but these detectors offer low selectivity in 

forensic applications, especially in terms of structural information. Furthermore, both selec-

tivity and quantification is more challenging in complex environmental or biological matri-
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ces, reducing the usefulness of the data generated for the investigation of time intervals or 

the comprehensive profiling of traces.  

Recently, mass spectrometry (MS) has attracted interest as a more useful detection 

method for ionic energetic material residues, even if its adoption has generally been slow 

in forensic science in comparison to other fields [18-20]. In particular, high resolution mass 

spectrometry (HRMS) is promising for coupling to IC, as it enables fast measurements of 

wide m/z ranges with very high resolving powers (up to 140,000 FWHM for Orbitrap-based 

analysers) and mass accuracy (< 5 ppm). These features allow full scan data acquisition 

with minimised interference from isobaric ions [21, 22], which are particularly common at 

the low m/z ranges often observed in low-order explosives analysis. Other benefits include 

improvements in method selectivity, quantification capabilities in complex matrices and in-

creased flexibility with data analysis, by allowing retrospective, non-targeted analysis or 

suspect screening to aid the in silico identification of new species [23, 24].  

One of the main challenges of coupling IC and MS for the analysis of ionic explosive 

residues, however, lies in the use of high proportions of water in eluents that can lead to 

two specific issues pertinent to forensic analysis. Firstly, they do not enable efficient gas-

phase transfer during electrospray ionisation (ESI) [25]. Secondly, their compatibility with 

traditional organic solvents used for sample extraction is limited, since most sampling pro-

tocols involve the use of organic solvents to ensure recovery of both the inorganic and or-

ganic compounds. Usually, these two problems are addressed by infusing organic solvents 

in the eluate using an auxiliary pump prior to ESI and solvent exchange with water before 

injection [26, 27]. The full procedure is nonetheless lengthy and complicated, and often re-

sults in sub-optimal sensitivity. With the increased solvent compatibility of modern IC res-

ins, the direct use of organic-solvent containing eluents (i.e., acetonitrile or methanol) has 

been suggested as a solution to these problems; an approach that has been referred to as 

“solvent-enhanced IC” [18, 28]. No published method, however, has specifically been de-
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signed to fit with solvents actually used in forensic extraction/sampling strategies for ener-

getic materials, which are usually based on ethanol, isopropanol or their 50:50 mixtures 

with water [29-31]. As a consequence, published IC-HRMS (and generally IC-MS) meth-

ods in this field are still very limited. New developments are necessary in order to progress 

the science and align better with reversed-phase liquid chromatography-based analysis 

workflows that also frequently use HRMS detection [32]. 

Thus, the aim of this work was to develop and validate a new gradient IC-HRMS 

method that was fully compatible with current extraction/sampling methodologies, and also 

simultaneously added simplicity and knowledge to current approaches to ionic energetic 

materials residue analysis. A ratio of 50:50 ethanol:water was specifically evaluated for 

implementation as an IC eluent because of its extensive use as an extraction/sampling 

solvent for explosives-related material in the UK [31]. Firstly, gradient conditions were op-

timised and assessed for 19 anions of interest, which has not been demonstrated using 

such an IC-HRMS arrangement before. Optimal IC-HRMS (Orbitrap) coupling was then 

performed via a design-of-experiments (DOE) approach and the analytical performance 

assessed. Finally, the method was tested for energetic materials analysis in two example 

applications: (a) pre-blast residues of a black-powder substitute (Pyrodex) in palm sweat 

and fingermarks; and (b) GSR (i.e., post-discharge residues of smokeless powders). Both 

targeted and non-targeted data analyses were performed to highlight the potential added 

value of the application of full scan IC-HRMS to profiling. This is the first time that retro-

spective analysis of IC-HRMS data has been applied to detect new chemical components 

that may be useful for energetic material classification purposes. 

 

2. Experimental 

2.1. Chemicals and materials 
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Water was of Milli-Q grade with a specific resistance of 18.2 MΩ cm-1 and obtained 

from a Synergy UV ultra-purification system (Millipore Corp., Bedford, USA). Methanol 

(MeOH), ethanol (EtOH), and isopropanol (iPrOH) were obtained from Fisher Scientific 

(Loughborough, UK). Acetonitrile (MeCN) was obtained from Sigma-Aldrich (Gillingham, 

UK). All the solvents were of HPLC grade. 

A total of 25 anions commonly encountered in the analysis of ionic explosive resi-

dues were selected. All were used for the optimisation of the chromatographic step, but 

only 19 were included in the final IC-HRMS method as the remaining six ions fell below the 

lower m/z threshold of the HRMS instrument. In addition, stable isotope-labelled nitrate 

(15NO3
-) was used as an internal standard (IS) during method validation and application, 

mainly to take into account small IC retention time shifts. The list of all target anions is giv-

en in Table 1. Standard reference materials were obtained from different manufacturers, 

as reported in Table S1 in the electronic supplementary material (ESM). Specifically, chlo-

ride, chlorite, chlorate, perchlorate, cyanate, nitrite, nitrate, azide, thiocyanate, sulfate, thi-

osulfate, phosphate, oxalate, threonate, phthalate and benzoate were selected because of 

their previous association with explosive compounds or related degradation products and, 

thus, forensic relevance [5]. Fluoride, acetate, bromide, bromate, chromate, formate, tar-

trate, lactate and citrate were added because they commonly occur in environmental sam-

ples or sweat and could thus be used for interference control and qualitative purposes, as 

well as to improve classification in profiling applications. Carbonate was excluded because 

it was used as eluting ion species. 

Individual stock solutions were prepared at 1000 mg L-1 in Milli-Q water and stored 

in the dark at 4 °C in a refrigerator. Stocks were re-prepared monthly. Working solutions 

were freshly prepared daily by further dilution of stock solutions, using an appropriate sol-

vent that matched the composition of the eluent (unless otherwise specified). 
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Analytical grade (98 %) sulfuric acid served as IC suppressor regenerant and was 

obtained from VWR Chemicals (Lutterworth, UK). Carbonate (CO3
2-) and bicarbonate 

(HCO3
-) were used as eluting ion species and were obtained from sodium carbonate and 

sodium bicarbonate. Sodium carbonate was purchased from Sigma-Aldrich and sodium 

bicarbonate from BDH Chemicals Ltd. (Poole, UK). Both were of analytical grade (≥ 99.5 

%). Filters used for particle removal from sample extracts were syringe-driven PES mem-

brane 0.22 µm filters from Jet Biofil (Madrid, Spain). 

 

2.2. IC instrumentation and conditions 

All separations were performed on a gradient 850 Professional IC equipped with an 

858 Professional Sample Processor (Metrohm AG, Herisau, Switzerland). This instrument 

was fitted with an SCD detector Metrohm IC Professional Detector, an ion trap Metrohm 

Metrosep A Trap 1 (100 x 4 mm, 5.0 µm particle size) providing eluent purification before 

the injection valve, and a 3-step cartridge suppressor (Metrohm MSM Rotor A). The latter 

was chemically regenerated on-line, using 100 mM H2SO4, by a peristaltic pump at 0.8 mL 

min-1. Separations were performed on a Metrohm Metrosep A Supp 5 column (250 x 2 

mm, 5.0 µm particle size).  

Eluent conditions were optimised by injection of mixed solutions of target anions at 

10 mg L-1. The optimised IC gradient used two eluent reservoirs composed of CO3
2-/HCO3

- 

in 50:50 EtOH:H2O at concentrations of 1/0.3 mM (eluent A) and 15/4.5 mM (eluent B), 

programmed according to the following profile: 0 % B at 0 min, hold at 0 % B for 4.5 min, 

linear ramp to 100 % B for 30 min, hold at 100 % B for 3.5 min, return to 0 % B using a 

step gradient. Re-equilibration time was 23 min. Column temperature was kept at 50 °C 

throughout.  

For comparison, the developed IC-HRMS method was compared to a more tradi-

tional aqueous-based IC-HRMS method that was optimised using the same target anions. 
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This involved the use of two eluent reservoirs composed of CO3

2-/HCO3
- in pure water at 

concentrations of 2/0.6 mM (eluent A) and 15/4.5 mM (eluent B), programmed as follows: 

0 % B at 0 min, hold at 0 % B for 6.5 min, linear ramp to 100 % B for 20 min, hold at 100 % 

B for 24.5 min, return to 0 % B using a step gradient. Finally, re-equilibration at initial con-

ditions was allowed for 19 min before the next run. Column temperature was kept at 40 °C 

throughout. 

The injection loop in all cases was 20 µL and the eluent flow rate was 0.18 mL min-1 

for both methods. Solvents used for preparation of mixed standard solutions and suppres-

sor regenerant matched the eluent (i.e., EtOH:H2O or pure water). Instrument control and 

data processing were performed on MagIC Net software version 3.1 from Metrohm. 

 

2.3. HRMS instrumentation and conditions 

The IC instrument was coupled directly to an Exactive Orbitrap (Thermo Fisher Sci-

entific, Sunnyvale, USA) without any additional post-suppressor solvent infusion following 

the SCD, thus providing dual detection in a single run. The HRMS was equipped with a 

heated ESI source (Thermo HESI-II) operated in negative ionisation mode. Full scan mode 

was used to acquire data over a 50 – 500 m/z range. Instrument resolution was set to the 

maximum value of 140,000 FWHM (at m/z 200).  

HRMS conditions were optimised using a design-of-experiments (DOE) approach. 

Optimisation was split into two independent steps (see details in ESM). Firstly, the capil-

lary, tube lens and skimmer voltages were optimised by direct infusion of a mixed solution 

of seven selected probes (i.e., nitrate, perchlorate, benzoate, threonate, sulfate, oxalate 

and citrate) at a concentration of 10 mg L-1. Following this, the IC was directly coupled to 

HRMS and capillary temperature, HESI-II heater temperature, sheath gas flow and spray 

voltage were further optimised by injection of a mixed 1 mg L-1 standard of the same seven 

probes. 
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The final optimised conditions were as follows: capillary voltage: –40 V; tube lens 

voltage: –60 V; skimmer voltage: –20 V; capillary temperature: 300 °C; HESI-II heater 

temperature: 350 °C; sheath gas flow: 25 arbitrary flow units; auxiliary gas flow: 10 arbi-

trary flow units; spray voltage: –4 kV. All data acquisition was performed using XCalibur 

software version 2.2 (Thermo). 

 

2.4. Performance evaluation 

Selectivity, precision, linear range, limits of detection (LODs) and limits of quantifica-

tion (LOQs) were assessed for the fully optimised method through injection of mixed solu-

tions of the 25 target anions. As little/no detector noise existed using HRMS in many cas-

es, ICH guidelines were followed [33]. Repeatability was measured as the relative stand-

ard deviation (%RSD) of chromatographic retention times and peak areas, determined by 

the successive analysis of replicate samples (n = 6) spiked at two concentrations of 100 

µg L-1 and 1000 µg L-1. Determination ranges were studied on solutions spiked at 9 differ-

ent concentrations between 1 and 5000 µg L-1 and were analysed in duplicate. Both linear 

and quadratic calibration models were applied to data points and lines of best fit giving co-

efficients of determination (R2) ≥ 0.99 over the largest range were accepted. Finally, LODs 

and LOQs were estimated from linear calibration curves of the different anions and were 

respectively defined as 3 and 10 times the estimated standard deviations of peak areas di-

vided by the slope. 

 

2.5. IC-HRMS analysis of Pyrodex residues in sweat samples 

Palm sweat and fingermarks were obtained by asking a volunteer to handle 2 g of a 

Pyrodex powder for about 2 minutes. Pyrodex P powder (FFFg equivalent) was purchased 

from Hodgdon (Vista Drive, Kansas, USA). In particular, the volunteer was asked to rigor-

ously wash their hands twice before powder handling (firstly with soap and normal tap wa-
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ter, then just with tap water to remove soap residues), as well as to clap their hands multi-

ple times after handling to dislodge any loose particles. The powder itself was initially ana-

lysed by extracting 500 mg in 20 mL of 50:50 EtOH:H2O for 24 h under ambient conditions 

with agitation. The extract was passed through a 0.22 µm filter to remove suspended parti-

cles, diluted 100-fold and analysed with IC-HRMS.  

Palm sweat samples were collected from the volunteer’s right hand by swabbing 

with cotton balls using a protocol analogous to the standard operating procedures em-

ployed at the Forensic Explosives Laboratory (Dstl, UK) and similar to that of Song-Im et 

al. [34, 35]. Swabs were prepared by soaking in 5 mL of 50:50 EtOH:H2O contained in 27 

mL glass bottles. Immediately before sampling, swabs were removed from their bottle, ex-

cess solvent squeezed out with cleaned plastic forceps and then used to swab the palm. 

Swabs were then transferred to empty 20 mL plastic syringe barrels and back-extracted 

using again 50:50 EtOH:H2O (Terumo, Bagshot, UK). The plungers were used to firmly 

squeeze out the extracts into different glass tubes. After this, the plungers were removed 

and a further 5 mL of 50:50 EtOH:H2O were allowed to gravimetrically pass through the 

compressed swabs for about 10 min. These were finally compressed with the plungers 

again to expel any remaining extract. Mixtures of EtOH:H2O have been extensively used 

within medical and anti-bacterial wipes, showing their safe use on surfaces and human 

skin [36]. 50:50 EtOH:H2O was thus considered lowly hazardous for this application. 

Experiments were repeated at incremental times since initial handling of Pyrodex, 

i.e. t = 0, 1 and 3 h. During this time, the volunteer was asked to continue with their normal 

daily activities without washing their hands. A second series of experiments was per-

formed after asking the volunteer to wash their hands with normal tap water immediately 

after Pyrodex handling. For this series of experiments, swab sampling was performed only 

twice since handling, i.e. t = 0 and 1 h. All extracts were passed through 0.22 µm filters, 

spiked at 1 ppm with the IS and injected onto the IC system in triplicate. Extracts obtained 
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without washing hands after handling Pyrodex were additionally diluted 10-fold before 

spiking. Negative control samples were obtained by sampling volunteer’s hands before Py-

rodex handling.  

Fingermarks were made by depositing the thumb, index and middle fingers of the 

volunteer’s left hand on separate circular 15 mm glass microscope coverslips (Thermo 

Fisher Scientific, Braunschweig, Germany). These were collected at t = 0 and 1 h after Py-

rodex handling. Microscope slides were then placed in individual and sealable 10 mL glass 

bottles for subsequent extraction using 1 mL of 50:50 EtOH:H2O for 24 h (ambient condi-

tions, with agitation). All extracts were passed through 0.22 µm filters, spiked at 1 ppm with 

the IS and injected directly onto the IC-HRMS system in triplicate. Negative control finger-

marks were obtained before Pyrodex handling. Written informed consent was obtained 

from the volunteer and this research was conducted with King’s BDM Research Ethics 

Subcommittee approval (Refs: HR-15/16-1962 for fingermarks and HR-17/18-4078 for 

hand swabs). 

 

2.6. IC-HRMS analysis of gunshot residue (GSR) 

GSR was collected directly from spent casings from three different manufacturers of 

9 mm Parabellum ammunition: Remington (Madison, North Carolina, USA), Federal 

(Anoka, Minnesota, USA) and Geco (Thun, Switzerland). Spent cases were donated by 

the Metropolitan Police Service (UK) after having been fired with the same 9 mm pistol. 

These were placed into individual sealable plastic bags and kept in the dark at 4 °C until 

extraction. Extraction of GSRs was carried out in line with a previously developed method 

[37]. Briefly, each spent casing was placed into a 10 mL glass bottle, filled with 900 µL of 

50:50 EtOH:H2O and ultrasonicated for 30 min. The extract solutions were then filtered us-

ing 0.22 µm filters, spiked at 1 ppm with the IS and injected onto IC-HRMS in triplicate. 

Negative control samples were obtained by analysis of the pure solvent. 
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2.7. Data analysis 

Acquired data was initially screened for the 19 targeted anions. The most intense 

ion for each of them was selected and its isotope pattern recorded. Preliminary identifica-

tions were accepted if the retention time deviation was < 5 % of error compared to refer-

ence standards and if accurate m/z was < 5 ppm [38]. Relative isotopic abundances (RI-

As) were then measured for all the detectable isotopes (or at least one) and compared to 

theoretical values. Following the suggestions of Knolhoff et al. [39], identities were thus 

accepted if absolute RIA deviations were: < 5 % if the intensity of the monoisotopic peak 

was > 107 counts, < 10 % if the monoisotopic peak was between 106 and 107 counts, or < 

15 % if the monoisotopic peak was < 106 counts. 

Non-targeted analysis was performed on GSR samples in order to detect new 

chemical components that may aid classification. Peak picking was done through MZmine 

2 software. All signals of > 105 counts were shortlisted to generate a list of accurate m/z 

values. This list was used to build a set of extracted ion chromatograms (EICs), which 

were deconvoluted using a local minimum search feature. Chromatographic peaks were 

then detected and aligned between the different data files. This procedure produced a final 

list of potentially useful m/z signals. Those corresponding to the 19 targeted compounds 

were removed at first to avoid duplication. The list was then manually inspected for incon-

sistencies between retention times across the different samples and signals presenting 

highly variable retention times (%RSD > 5 %) were discarded. Following this, the most 

useful m/z signals were selected through backward selection via recursive feature elimina-

tion, using a random forest model as base learner. R statistical computing software and 

the caret package were used to carry out the latter operation, as described by Kuhn and 

Johnson [40].  
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Finally, identities of the compounds associated with the selected m/z signals were 

investigated. For this purpose, a list of possible elemental compositions was first generat-

ed for each using the heuristic filtering approach suggested by Kind & Fiehn [41], Seven 

Golden Rules, and the related homonymous freeware. Accurate neutral masses were in-

serted in the software based on the assumption that all the observed m/z signals corre-

sponded to [M - H]− adducts (other potential adducts were not taken into consideration in 

this work). All the elements suggested by the software were allowed (i.e., C, H, N, O, P, S, 

F, Cl, Br and Si), mass accuracy was set to 5 ppm and isotopic abundance error to 15 %. 

The empirical formulae generated by this filtering step were then manually entered into the 

ChemSpider database for structural elucidation. The most probable identities for each m/z 

signal were finally suggested, based on their likelihood to form [M - H]− adducts in nega-

tive-mode ESI and previous knowledge of GSR composition [42-44]. 

Principal component analysis (PCA) was applied to the different datasets in order to 

investigate latent patterns within the data. Peak areas were used as input variables. These 

were initially normalised within-sample by total sum normalisation, in order to correct size 

effects. Variables with near-zero variance were then removed and those remaining were 

centred before PCA was performed. For GSR samples, variables were additionally scaled. 

Data pre-treatment and PCA were carried out using R statistical computing software and 

available packages. 

 

3. Results and discussion 

3.1. Compatibility of EtOH with IC-HRMS  

The influence on HRMS signals of eluents based on ethanol (EtOH) was first inves-

tigated and compared to other organic modifiers, including acetonitrile (MeCN), methanol 

(MeOH) and isopropanol (iPrOH). As expected, an EtOH modification enhanced HRMS 
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signals of all the tested probes in comparison to those observed in a fully aqueous eluent 

(Fig. 1). This was especially true for signals of the two monovalent anions (i.e., nitrate and 

perchlorate). Indeed, their intensities were increased by approximately 4 - 5 fold, while in-

tensities of the other anionic probes (which included four deprotonated organic acids and 

one divalent inorganic anion) were enhanced 2 - 3 fold.  

Overall, consistent enhancement effects were observed across the different organic 

modifiers. It is nonetheless interesting to note that MeCN-based eluents offered the best 

signals for sulfate and citrate, while iPrOH-based eluents resulted in the best intensities for 

nitrate and perchlorate. MeOH-based eluents, in particular, yielded the poorest intensities 

for the latter two ions, with statistically significant differences in comparison to those based 

on iPrOH. This indicated a more efficient volatilisation of these analytes as a function of 

the alcohol chain length and alkylation. In addition, the differences in performance be-

tween aprotic and protic solvents is likely explained by their influence on hydrogen bond-

ing, especially for compounds such as perchlorate. MeCN, indeed, is likely to disrupt hy-

dration of perchlorate more than protic solvents. Likewise, the opposite was true for sul-

fate, which is generally less hydrated and thus more affected by MeCN than by protic sol-

vents. In any case, an EtOH-based eluent generally gave intermediary signal enhance-

ments across all tested probes and offered a good compromise. 

The anion-exchange column selected here was packed with 5.0 µm particles of a 

quaternary ammonium-functionalised polyvinyl alcohol polymer and was fully solvent-

compatible. Preliminary attempts at using a 50:50 EtOH:H2O eluent at standard laboratory 

conditions (20 °C), however, generated backpressure s above the upper recommended 

pressure threshold (i.e., 200 bar) even at slow flow rates (0.10 – 0.14 mL min-1). This was 

not surprising given the viscosity of the mixture (η = 2.4 mPa s-1), which was considerably 

higher than those of 50:50 MeCN:H2O, 50:50 MeOH:H2O and pure water (η = 0.8, 1.5 and 

0.9 mPa s-1, respectively). Changes in the backpressure were thus investigated as a func-
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tion of the oven temperature (30 - 50 °C) and flow rate (0.05 - 0.20 mL min-1). An accepta-

ble pressure of ~ 180 bar was observed at 0.18 mL min-1 (corresponding to a linear veloci-

ty of 0.96 mm s-1) and 50 °C (Fig. S1 in ESM), which were thus selec ted as optimal.  

 

3.2. Optimisation of the IC-HRMS method 

The effect of an EtOH-based eluent on the IC separation of the 25 analytes was in-

vestigated. Under isocratic conditions, EtOH modification decreased IC retention times 

compared to a fully aqueous eluent for most analytes at equivalent ionic strengths (Fig. 2). 

Citrate, perchlorate and thiocyanate were particularly affected and significant selectivity 

changes were also observed. In comparison to water, EtOH has a lower dieletric constant 

(ɛ = 80.1 versus 24.5, respectively). Thus, the general decrease in retention was also likely 

due to the decrease in eluent polarity and ion hydration radii, as found previously [18]. As 

expected, reduced SCD intensities for all analytes were also observed.  

The void time (t0) was seen to increase. This indicated shrinkage of the packed pol-

ymer bed by ~ 6 %. Despite this, peak symmetry, selectivity and efficiency for analytes 

with significant tailing in fully aqueous eluents (i.e., benzoate, thiosulfate, citrate and per-

chlorate) improved with EtOH modification. This was especially true for benzoate, for 

which the peak showed significant tailing over several minutes in water, but was well re-

solved and symmetrical in EtOH-based eluents (Fig. 3, peak 10). Benzoate was previously 

shown to be relevant to the analysis of low-order explosives [15, 37, 45] and this repre-

sented a desirable improvement for forensic applications.  

Retention was further studied as a function of the eluent ion concentration. Over the 

tested range, their relationship was linear, with slopes proportional to the charge on the 

anion (Fig. S2 in ESM). This showed that the retention mechanism was mainly based on 

anion-exchange, which is not always the case for other solvent systems and/or IC resins, 

and makes retention behaviour much more difficult to interpret [18].  Following several at-
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tempts under isocratic conditions, the best IC separation of all selected anions could only 

be achieved with gradient elution. Insertion of a linear gradient from 1/0.3 to 15/4.5 mM 

CO3
2−/HCO3

− after the elution of nitrate was sufficient to elute all 25 anions within 48 min 

(Fig. 3a). A larger final concentration of eluting ions was not found to further significantly 

decrease the total runtime. This was compared with a previous fully optimised gradient IC 

method using aqueous eluents. Despite the differences in IC selectivity, comparable over-

all runtimes were obtained (Fig. 3b). Rises in baseline conductivity across both gradients 

were also similar.  

Direct coupling of IC to HRMS was performed. HRMS conditions were optimised by 

a two-step DOE approach, which involved the evaluation of surface responses (detailed 

results are provided in ESM). After coupling, a mixed standard of the 25 target anions and 

the internal standard (IS) was injected and the respective HRMS spectra examined in or-

der to choose adequate quantifier ions and exact m/z values. Of the 25 analytes used for 

the optimisation of the separation step, the m/z values for six were beneath the lower 

threshold of the Orbitrap mass analyser (i.e., m/z 50) and did not form any measurable 

adducts. These were fluoride, chloride, cyanate, azide, formate and nitrite. The remaining 

19 anions, on the contrary, could all be detected as the singly deprotonated forms of their 

respective acids, i.e. [M - H]− (Fig. 4). As the previously six undetected anions may still be 

of interest in explosive analysis [5], the use of time-of-flight analysers (minimum m/z of 20) 

or ion association reagents through post-infusion [46, 47] may be considered in future 

works. 

At optimised conditions, natural isotopes for all the detectable anions were ob-

served thanks to the high resolution and mass accuracy allowed by the HRMS instrument, 

permitting confirmatory detection via relative isotopic abundances (RIAs) ([24]). This was 

especially true for chlorinated (i.e., chlorite, chlorate, perchlorate) and brominated (i.e., 

bromide, bromate) species. Figure 5 shows examples of the observed full scan HRMS iso-
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topic patterns for selected anions. The most abundant isotope for each target anion was 

selected as the quantifier (Table 1). Corresponding chromatographic peaks were charac-

terised using 70 – 90 HRMS data points at 100 mg L-1, approximately, demonstrating the 

possibility of obtaining highly reliable averaged mass spectra even at the lowest concen-

tration ranges.  

 

3.3. Analytical method performance 

From Figure 4, IC-HRMS selectivity for the 19 detectable analytes was excellent 

with a single chromatographic peak observed for each quantifier ion. Benzoate was the 

only exception, with the presence of a second peak at m/z = 121.0295 belonging to the [M 

- COOH]− ion of phthalate, whichwas, nevertheless, completely resolved. The elevated 

discrimination power of the method was particularly evident in the case of sulfate (m/z = 

96.9601) and phosphate (m/z = 96.9696), which partially co-eluted but were still perfectly 

separated. This would not be possible with low resolution mass analysers. Unlike previous 

work [18], no background signals were obtained from hydrolysis of the alkaline eluent (e.g. 

acetate from MeCN hydrolysis in hydroxide); HS18O3
-
 and H34SO3

- from the residual sup-

pressor regenerant were also completely resolved in HRMS from ClO4
-.  

A summary of other method performance characteristics is reported in Table 1. Re-

peatability of retention times was excellent, with observed %RSDs < 0.4 %. Repeatability 

of peak areas was satisfactory, with %RSDs generally < 10%. In this regard, %RSDs of 

chlorite were higher due to instability in solution and the poorest performance was ob-

served for benzoate at 1000 µg L-1. Overall, however, repeatability was better than previ-

ous work [18], perhaps due to an improved IC selectivity in gradient elution mode, thereby 

reducing analyte ion-ion interaction or adduct formation in the gas phase [24]. The same 

was true for m/z accuracies, as all were within the recognised threshold of 5 ppm.  
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Estimated LODs were excellent and appropriate for practical forensic application. 

Indeed, these ranged from 0.31 to 7.86 µg L-1 (i.e., 6.14 to 157.25 pg on column) for all but 

four ions. LODs for acetate, oxalate and phosphate were higher but still lay in the low-mid 

µg L-1 range. This was most likely due to a small background occurrence in solvents. The 

LOD for sulfate was estimated to be > 500 µg L-1, but it was expected since sulfuric acid 

was used as suppressor regenerant. This can be substituted, if required. Comparison of 

estimated LODs with a previous IC-HRMS method based on MeCN-based eluents re-

vealed largely comparable results [18], albeit separating almost double the number of tar-

geted ions here. One important consideration underpinning these performances was the 

configuration of an eluent ion trap between the eluent mixer and the injection valve. In-

deed, preliminary tests showed that this was necessary to reduce contamination from 

heavily retained multi-valent anions, which otherwise significantly compromised sensitivity 

(data not shown).  

Linearity was very good with R2 ≥ 0.99 observed for all anions except acetate and 

sulfate, for which the method was only considered semi-quantitative. Linearity was de-

scribed either by linear or quadratic least-squares regression equations. Overall, linear 

ranges were found to be large, with those of some analytes (i.e., tartrate, phthalate and 

chromate) extending over more than three orders of magnitude. Thiocyanate, bromate, 

bromide, chlorate and perchlorate seemed to especially benefit from the use of quadratic 

equations. This was, however, not surprising since curvature in Orbitrap calibrations has 

been shown to occur frequently in other applications [24, 48].  

Lastly, it is noteworthy that no accumulation of Na2CO3/NaHCO3 residues in the ESI 

source was observed during long sequences with the ethanol-enhanced method, contrary 

to those using aqueous eluents, and this is likely because of an “auto-cleansing” effect in 

organic solvent. This guaranteed comparable and stable signals over several days. Fur-

thermore, injection of 100 % aqueous extracts into the ethanol-enhanced IC system did 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
not affect peak shapes, in contrast to what is observed when solvent-containing extracts 

are injected into purely aqueous IC systems. This represents significant added flexibility for 

direct analysis of complex sample extracts with less potential for losses due to additional 

solvent exchange steps. 

 

3.4. Targeted qualitative analysis of Pyrodex residues in sweat 

In order to show its improved capability for ionic explosive residues, the method was 

applied to the detection of trace Pyrodex residues in different kinds of sweat samples. This 

was therefore an example application to demonstrate proof-of-concept in a pre-blast sce-

nario and potentially prove contact with the intact material. Sweat samples consisted of 

palm swabs and fingermarks deposited on glass that were collected from a volunteer at 

different times after handling 2 g of Pyrodex powder for about 2 min, followed by their ex-

traction and direct injection onto IC-HRMS in full scan mode, without the need for dilution 

or solvent exchange steps that are required under aqueous elution conditions. In line with 

previous works [15], extracts of the original Pyrodex powder revealed high levels of ben-

zoate, nitrate, chlorate and perchlorate (Table 2). These were likely due to the presence of 

sodium benzoate (burn rate modifier), potassium nitrate and potassium perchlorate (both 

oxidisers) in the formulation; presence of chlorate was explained through the degradation 

of perchlorate, which can occur with perchlorate-based black powder substitutes [19, 49].  

Amongst the 19 targeted anions, 13 were confirmed in all samples, including the 

four anions characteristic of Pyrodex. For the remaining six (i.e., acetate, chlorite, bromate, 

bromide, phosphate and tartrate), intermittent occurrence was observed, if any. For all the 

identified compounds, inaccuracies in m/z measurements were generally < 3 ppm for all 

monitored ions, even for those belonging to the least intense isotopes. RIAs met those ex-

pected in nature, with absolute deviations usually < 5 %, which was excellent and particu-

larly helpful to support forensic level identification. These chemical characteristics would 
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be impossible, or very difficult, to measure using a traditional IC-ECD or low resolution IC-

MS method. Thus, IC-HRMS offered enhanced identification power, which ultimately could 

negate further confirmation with additional techniques. The developed method, in particu-

lar, had excellent measurement performances over very large concentration ranges, in ad-

dition to a more convenient alignment with current sampling/extraction procedures.  

3.5. Extension to targeted quantitative analysis and profiling  

The concentration of anions as a function of time since handling in palm sweat 

samples was evaluated next (Table 2). Benzoate, nitrate and perchlorate lay between high 

µg and mg levels immediately after powder manipulation and showed a clear decrease as 

a function of time, which was roughly one order of magnitude after 3 h. All amounts re-

duced to low µg levels after hand washing. The extent of depletion, however, varied be-

tween analytes. Benzoate was slightly more affected than nitrate and perchlorate, with 

both time since handling and hand washing. Amounts of chlorate, as expected, were sig-

nificantly lower than the others immediately after handling (i.e., µg levels), but they slightly 

increased after 1 h after handling, which may indicate biodegradation of perchlorate to 

trace chlorate on hands [19, 49]. After hand washing, concentration of chlorate lay below 

its LOQ.  

Perhaps owing to the improved sensitivity of the method, residual anionic content in 

samples (included those related to Pyrodex) was also identified in negative controls at very 

low concentrations. Statistical comparison showed that anions determined in 

sweat/fingermark samples were significantly higher than this residual level (p < 0.05 for all 

the cases except nitrate and perchlorate in fingermarks, for which p < 0.1 applied), thus 

supporting the reliability of the approach to establish contact with Pyrodex.  

The quantity of each ion determined obviously depended on the quantity recovered, 

which is often highly variable [50]. Therefore, evaluation using single ions was considered 

a poor approach to infer Pyrodex handling. Using a multi-variate approach, principal com-
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ponent analysis (PCA) was applied here as an alternative. Score plots obtained after PCA 

performed on the four Pyrodex-related analytes showed excellent discrimination between 

positive and negative samples (Fig. 6a-b). Moreover, low concentrations of eight other ions 

were detectable in samples, which likely related to the sweat and/or external contamina-

tion on the hands or the surface. PCA applied to the full set of ions (Fig. 6c-d) revealed a 

separation between positive and negative samples, but, most importantly, now positive 

samples could be additionally discriminated by their time since handling in PC1. Loadings 

showed that samples taken immediately after Pyrodex handling were characterised by par-

ticularly high proportions of perchlorate and nitrate. Negative sweat and fingermark sam-

ples, on the contrary, were characterised by high proportions of lactate and sulfate, where 

lactate was likely to arise endogenously. This supplementary information is potentially very 

useful in forensic cases and moves beyond the scope of traditional targeted explosives de-

tection approaches. Here, the advantage of a more comprehensive, full scan IC-HRMS 

profiling approach was therefore clear in comparison to most traditional IC or IC-MS based 

methods, which are not usually applied to complex matrices in a quantitative manner.  

 

3.6. Targeted and non-targeted discrimination of GSRs from different sources 

Pyrodex is arguably a rather simple mixture. So, the above approach was extended 

to classification of different ammunition types based on their GSRs, which have previously 

been shown to display much more complex anionic profiles [15, 37]. This also represented 

a post-discharge scenario, where the ingredients of the ammunition are unlikely to match 

the associated GSR in terms of relative abundance. Targeted analysis identified 15 anions 

across the different ammunition types. Phosphate and tartrate were never detected. The 

same was true for chlorite and chlorate, even though perchlorate was detected in the 

GSRs of two ammunition types. Figure 7a-b shows the score plots after PCA for extracted 

peak areas of the 15 compounds only. GSR samples from Geco formed a cluster that was 
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significantly removed from the those formed by the other two ammunition types. Examina-

tion of loadings showed that these were characterised by particularly high proportions of 

threonate, benzoate, bromide, nitrate, oxalate and thiocyanate. A good separation was al-

so observed for negative controls, which, on the contrary, were characterised by high pro-

portions of acetate, sulfate, phthalate and citrate. GSR samples from Federal and Reming-

ton, however, formed clusters in close proximity, which suggested similar compositions for 

these 15 targeted anions. Discrimination between them was thus more challenging based 

on targeted analysis alone. 

In order to utilise the power of IC-HRMS more comprehensively, full scan data were 

further examined using a non-targeted approach. Investigation of m/z ion maps highlighted 

the presence of a number of additional peaks not corresponding to the original targeted 

anions (data not shown). Some had relatively high m/z values, above that of citrate. In or-

der to use this additional chemical information for GSR classification, automated peak 

picking was performed. The procedure shortlisted 79 new m/z signals that were common 

amongst different ammunition types. These were further filtered through backward selec-

tion via recursive feature elimination in order to retain a set of 20 potentially characteristic 

analytes, with m/z values ranging from 69.0207 to 421.2270. A total of 14 corresponded to 

ions with m/z > 100. This highlights a potential further advantage of using ethanolic elu-

ents, as the resultant disruption of non-polar interactions with the IC resin affects elution of 

more, potentially discriminating anions, which may not elute at all under aqueous condi-

tions. Formal identification of these analytes was beyond the scope of this work, but a list 

of preliminary candidates can be found in Table 3. Most of them were in agreement with 

compounds previously identified in GSR using other analytical techniques [42-44], but 

some were newly reported, as for example methylbenzoate and phenylpropanoate. 

Application of PCA (Fig. 7c-d) to the peak areas revealed that, contrary to the previ-

ous situation, GSR samples from the three different ammunition types and negative con-
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trols now formed completely separated clusters in score plots. In particular, the slight over-

lap between Federal and Remington observed with targeted-analysis PCA was now totally 

resolved using the 20 new characteristic signals. Examination of loadings showed that 

GSR samples from Federal ammunition were characterised by particularly high signals at 

m/z 101.9608, 115.9765, 135.0453, 143.0609, 149.0609, 152.9864, 152.9977, 199.1704, 

227.2019, 421.2270, Remington by high signals at m/z 84.0204, 69.0207, 112.0266, and 

Geco by high signals at m/z 221.0821. PCA was also attempted on a merged dataset of 

35 targeted and remaining non-targeted m/z signals (Fig. 7e-f). An improved discrimination 

between all the groups was again observed. Consequently, the new selected m/z signals, 

which were retrospectively obtained thanks to the full scan HRMS data, actually provided 

additional useful information for separation of GSR samples according to their sources. 

The developed IC-HRMS method could thus potentially be very helpful also in GSR profil-

ing, for example by integration in recently suggested in silico profiling approaches [51].  

 

4. Conclusion 

The successful development, validation and application of a gradient ethanol-

enhanced IC-HRMS method for targeted and non-targeted analysis of ionic energetic ma-

terial residues in complex samples were presented here for the first time. In particular, this 

method offered both excellent qualitative and quantitative capabilities across several or-

ders of magnitude and demonstrated excellent potential for retrospective use and identifi-

cation of additional ions via full scan HRMS data capture. The incorporation of an ethanolic 

eluent in IC-HRMS offered five distinct major advantages over traditional aqueous-based 

IC-MS eluents:  
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a) it enabled direct integration with extraction procedures currently in use for routine 

organic energetic materials analysis without requiring solvent exchange or further 

sample preparation for compatibility with IC;  

b) it resulted in excellent reproducibility, likely arising from an inherent ‘self-cleaning’ 

effect of both the IC and ESI sources, thereby minimising matrix and/or eluent resi-

due contamination;  

c) it altered non-polar/polar and ionic interactions within the ion exchanger and its pol-

ymer backbone, as well as in the eluent itself and conferred altered selectivity, facili-

tated faster elution and permitted detection of several new characteristic, higher 

molecular weight and forensically useful ions;  

d) it simplified traditional IC-MS configurations by rendering additional pumps for post-

suppressor solvent infusion unnecessary; and  

e) it resulted in more efficient ESI and, as a result, a several fold improvement in de-

tector sensitivity to inorganic and organic anions at the low-mid pg level.  

Suitability of the method for forensic applications was successfully tested on fingermarks 

and hand sweat samples from a volunteer who previously handled a black-powder substi-

tute, as well as gunshot residues from different ammunition types. Detection of all the ani-

ons targeted by the method was easily accomplished using selected analyte ion signals. 

Furthermore, significant discriminatory power was possible between positive and negative 

samples, as well as the different ammunitions, through both targeted and non-targeted 

analysis based on the wider use of full scan IC-HRMS data combined with PCA. The suc-

cess of this IC-HRMS approach therefore places it beyond current IC and IC-MS capability 

in forensic science and has significant potential in wider applications requiring determina-

tion of similar ionic species (e.g., metabolomics and environmental analysis). 
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Table 1 – Figures of merit for the developed ethanol-enhanced IC-HRMS method. Determination ranges were inspected using linear and quadratic models, and 
are reported as the intervals of concentrations that allow for R2 > 0.99. Inaccuracy of m/z value (δm/z), repeatability of retention time (tR) and repeatability of peak 
area (PA) were measured on 6 replicates at two different concentrations: 100 and 1000 µg L-1. Six compounds could not be detected with the HRMS instrument 
used and only their IC-SCD retention times and exact m/z values are reported. 

Anion t R
a Exact m/z b 

δm/z (ppm) Repeatibility t R (%RSD) Repeatibility PA (%RSD) LOD Ref. LOD c LOQ Upper determination limit  
(µg L -1) 

@ 100 µg 
L-1 

@ 1000 µg 
L-1 

@ 100 µg 
L-1 

@ 1000 µg 
L-1 

@ 100 µg 
L-1 

@ 1000 µg 
L-1 µg L -1 pg µg L -1 pg µg L -1 pg Linear Quadratic 

Threonate 12.67 135.0299 0.49 ± 0.38 0.49 ± 0.38 0.21 0.15 2.78 6.01 0.79 15.77 N/A N/A 2.63 52.55 1,000 5,000 

Lactate 12.70 89.0244 0.37 ± 0.58 0.00 ± 0.00 0.24 0.27 13.80 7.69 2.06 41.18 6.00 120.00 6.86 137.25 1,000 5,000 

Acetate 12.85 59.0139 1.13 ± 0.88 1.69 ± 0.00 0.33 0.39 8.05 7.69 38.12 762.49 N/A N/A 127.08 2,541.62 N/A N/A 

Chlorite 14.08 66.9592 0.25 ± 0.61 0.00 ± 0.00 0.22 0.20 14.49 10.33 1.76 35.14 N/A N/A 5.86 117.14 1,000 5,000 

Bromate 16.23 126.9036 0.53 ± 0.41 0.00 ± 0.00 0.19 0.23 3.32 5.11 1.00 19.98 2.85 57.00 3.33 66.60 500 5,000 

Benzoate 16.68 121.0295 0.28 ± 0.43 0.69 ± 0.34 0.31 0.30 9.81 18.83 1.82 36.37 3.75 75.00 6.06 121.22 1,000 5,000 

Chlorate 19.46 82.9541 0.40 ± 0.62 0.00 ± 0.00 0.13 0.19 3.67 1.98 0.85 17.06 0.53 10.50 2.84 56.86 500 5,000 

Bromide 19.69 78.9189 0.42 ± 0.65 1.27 ± 0.00 0.11 0.28 1.46 5.44 1.09 21.81 0.78 15.57 3.63 72.70 500 5,000 

Nitrate 19.72 61.9884 0.54 ± 0.83 1.34 ± 0.66 0.14 0.17 4.08 6.51 7.86 157.25 6.00 120.00 26.21 524.16 1,000 5,000 

Thiocyanate 26.92 57.9757 0.29 ± 0.70 0.29 ± 0.70 0.14 0.14 4.19 1.74 0.31 6.14 0.61 12.15 1.02 20.48 500 5,000 

Perchlorate 31.31 98.9491 0.67 ± 0.52 1.01 ± 0.00 0.19 0.09 4.04 2.80 0.57 11.50 0.12 2.46 1.92 38.32 500 5,000 

Phosphate 35.42 96.9696 < LOD 2.06 ± 0.00 < LOD 0.07 < LOD 4.53 127.07 2,541.48 N/A N/A 423.58 8,471.60 5,000 5,000 

Tartrate 36.55 149.0092 0.56 ± 0.51 0.67 ± 0.00 0.13 0.08 4.24 2.80 1.32 26.37 N/A N/A 4.40 87.91 5,000 5,000 

Sulfate 37.77 96.9601 < LOD 0.86 ± 0.42 < LOD 0.11 < LOD 13.21 > 500 > 10,000 N/A N/A > 500 > 10,000 N/A N/A 

Oxalate 38.25 88.9880 0.75 ± 0.58 0.00 ± 0.00 0.15 0.06 7.81 4.03 73.07 1,461.35 73.50 1470.00 243.56 4,871.16 5,000 5,000 

Phthalate 39.03 165.0193 0.40 ± 0.31 0.40 ± 0.31 0.12 0.09 6.23 2.57 5.85 117.02 4.35 87.00 19.50 390.08 5,000 5,000 

Thiosulfate 42.79 112.9373 0.15 ± 0.36 0.74 ± 0.36 0.11 0.06 4.59 4.73 1.79 35.88 N/A N/A 5.98 119.60 1,000 5,000 

Chromate 44.53 116.9285 0.14 ± 0.35 0.14 ± 0.35 0.08 0.05 8.17 5.07 3.74 74.71 N/A N/A 12.45 249.04 5,000 5,000 

Citrate 46.63 191.0197 0.17 ± 0.27 0.17 ± 0.27 0.10 0.07 7.76 8.14 2.57 51.39 N/A N/A 8.57 171.32 1,000 5,000 

Nitrate 15N (IS) 19.72 62.9854 0.53 ± 0.82 1.32 ± 0.65 0.09 0.10 2.72 6.56 N/A N/A N/A N/A N/A N/A N/A N/A 

Fluoride 12.90 18.9990 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Formate 13.46 44.9982 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Cyanate 16.53 41.9985 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Chloride 16.56 34.9694 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Nitrite 16.96 45.9935 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Azide 18.46 42.0098 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

n.d.: not detected in the final IC-HRMS method (m/z < 50) but in IC-SCD. 

a values determined on the samples spiked at 100 µg L-1 (n = 6). 

b most abundant isotope. 
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c reported by Gilchrist et al. [15]. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 2 – Results from targeted analysis of perchlorate, benzoate, nitrate and chlorate in Pyrodex-contaminated palm sweat samples and fingermarks (n = 3). 
The column “Target ion” reports the data concerning the most abundant isotopes of the respective analyte target ion. Data includes inaccuracy in measured m/z 
(δm/z) and absolute deviation of relative isotope abundance (DRIA), which were interpreted with respect to the intensity of the monoisotopic peak (IA). Observed re-
tention times (tR) and estimated amounts are also reported.   

Anion (isotopes) / sample t R  (min) I A (counts) 

Target ion 

Amount ( µg)a Most abundant isotope 2 nd isotope 3rd isotope 

δm/z (ppm) D RIA (%) δm/z (ppm) D RIA (%) δm/z (ppm) D RIA (%) 

Benzoate (A, A+1, A+2)  

Palm, t = 0 h, no washing 16.97 ± 0.06 7E+7 ± 3E+6 0.00 ± 0.00 0.00 ± 0.00 0. 82 ± 0.00 0.25 ± 0.02 0.00 ± 0.00 0.12 ± 0.00 887.9  ± 44.1 (**) 

Palm, t = 1 h, no washing 17.08 ± 0.01 3E+7 ± 7E+5 0.00 ± 0.00 0.00 ± 0.00 0. 27 ± 0.47 0.66 ± 0.48 0.27 ± 0.47 0.14 ± 0.01 441.2  ± 12.1 (**) 

Palm, t = 3 h, no washing 17.17 ± 0.06 8E+6 ± 9E+5 1.38 ± 0.48 0.00 ± 0.00 0. 82 ± 0.00 1.02 ± 0.44 1.63 ± 0.00 0.23 ± 0.01 90.08  ± 13.14 (**) 

Palm, t = 0 h, washing 17.64 ± 0.03 7E+6 ± 4E+6 0.28 ± 0.48 0.00 ± 0.00 0. 27 ± 0.47 2.98 ± 1.91 1.08 ± 0.47 0.33 ± 0.05 2.06 ± 0.06 (**) 

Palm, t = 1 h, washing 17.72 ± 0.04 6E+6 ± 2E+5 0.55 ± 0.48 0.00 ± 0.00 0. 55 ± 0.47 1.00 ± 0.27 1.08 ± 0.47 0.27 ± 0.02 2.73 ± 0.10 (**) 

Fingermarks, t = 0 h 16.77 ± 0.07 5E+6 ± 2E+6 0.28 ± 0.48 0.00 ± 0.00 0. 00 ± 0.00 1.74 ± 0.61 1.08 ± 0.47 0.25 ± 0.03 N/A ( **) 

Fingermarks, t = 1 h 16.78 ± 0.07 1E+6 ± 4E+5 1.10 ± 0.48 0.00 ± 0.00 0. 82 ± 0.00 3.07 ± 0.11 2.44 ± 0.81 0.36 ± 0.04 N/A ( **) 

Chlorate (A, A+2, A+4)  

Palm, t = 0 h, no washing 19.22 ± 0.05 2E+6 ± 1E+5 0.00 ± 0.00 0.00 ± 0.00 1. 18 ± 0.00 4.82 ± 0.44 n.d. 0.20 ± 0.00 1.82 ± 0.05 (**) 

Palm, t = 1 h, no washing 19.34 ± 0.02 3E+6 ± 2E+5 0.40 ± 0.70 0.00 ± 0.00 0. 78 ± 0.68 4.44 ± 0.39 n.d. 0.20 ± 0.00 2.79 ± 0.15 (**) 

Palm, t = 3 h, no washing 19.39 ± 0.03 6E+5 ± 5E+4 2.41 ± 0.00 0.00 ± 0.00 0. 78 ± 0.68 4.51 ± 2.39 n.d. 0.20 ± 0.00 0.38 ± 0.03 (**) 

Palm, t = 0 h, washing 19.49 ± 0.03 3E+5 ± 4E+4 1.21 ± 0.00 0.00 ± 0.00 0. 00 ± 0.00 4.04 ± 0.57 n.d. 0.20 ± 0.00 <LOQ (**) 

Palm, t = 1 h, washing 19.51 ± 0.03 3E+5 ± 4E+4 1.21 ± 0.00 0.00 ± 0.00 0. 39 ± 0.68 4.31 ± 2.27 n.d. 0.20 ± 0.00 <LOQ (**) 

Fingermarks, t = 0 h 19.42 ± 0.03 2E+5 ± 1E+5 0.80 ± 0.70 0.00 ± 0.00 0. 39 ± 0.68 9.21 ± 3.65 n.d. 0.20 ± 0.00 N/A (**) 

Fingermarks, t = 1 h 19.41 ± 0.03 1E+5 ± 8E+4 1.81 ± 0.85 0.00 ± 0.00 0. 59 ± 0.83 7.65 ± 2.17 n.d. 0.20 ± 0.00 N/A (**) 

Nitrate (A, A+2)  

Palm, t = 0 h, no washing 19.69 ± 0.06 5E+8 ± 2E+7 1.61 ± 0.00 0.00 ± 0.00 1. 56 ± 0.00 0.01 ± 0.00 N/A N/A 2212 ± 70 (**) 

Palm, t = 1 h, no washing 19.72 ± 0.00 4E+8 ± 9E+6 1.61 ± 0.00 0.00 ± 0.00 1. 56 ± 0.00 0.00 ± 0.00 N/A N/A 1559 ± 54 (**) 

Palm, t = 3 h, no washing 19.72 ± 0.00 2E+8 ± 2E+7 0.00 ± 0.00 0.00 ± 0.00 0. 00 ± 0.00 0.04 ± 0.00 N/A N/A 890.4 ± 85.0 (**) 

Palm, t = 0 h, washing 19.72 ± 0.01 1E+8 ± 1E+7 0.00 ± 0.00 0.00 ± 0.00 0. 52 ± 0.90 0.09 ± 0.01 N/A N/A 26.82 ± 5.09 (**) 

Palm, t = 1 h, washing 19.74 ± 0.02 2E+8 ± 1E+7 0.00 ± 0.00 0.00 ± 0.00 0. 00 ± 0.00 0.05 ± 0.01 N/A N/A 56.07 ± 4.72 (**) 

Fingermarks, t = 0 h 19.75 ± 0.06 2E+8 ± 2E+8 1.08 ± 0.93 0.00 ± 0.00 1. 56 ± 0.00 0.14 ± 0.20 N/A N/A N/A (*) 

Fingermarks, t = 1 h 19.73 ± 0.06 7E+7 ± 3E+7 0.00 ± 0.00 0.00 ± 0.00 0. 00 ± 0.00 0.05 ± 0.03 N/A N/A N/A (*) 

Perchlorate (A, A+2, A+4)  

Palm, t = 0 h, no washing 31.24 ± 0.06 5E+8 ± 2E+7 1.01 ± 0.00 0.00 ± 0.00 1. 98 ± 0.00 1.54 ± 0.06 n.d. 0.26 ± 0.00 1099 ± 38 (* *) 

Palm, t = 1 h, no washing 31.33 ± 0.01 4E+8 ± 1E+7 0.67 ± 0.58 0.00 ± 0.00 0. 99 ± 0.00 1.48 ± 0.09 n.d. 0.26 ± 0.00 839.8 ± 25.2  (**) 

Palm, t = 3 h, no washing 31.34 ± 0.02 2E+8 ± 2E+7 0.34 ± 0.58 0.00 ± 0.00 0. 00 ± 0.00 1.55 ± 0.04 n.d. 0.26 ± 0.00 413.2 ± 52.5  (**) 

Palm, t = 0 h, washing 31.32 ± 0.02 1E+8 ± 2E+7 0.00 ± 0.00 0.00 ± 0.00 0. 33 ± 0.57 1.21 ± 0.11 n.d. 0.26 ± 0.00 20.13 ± 3.82  (**) 
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Palm, t = 1 h, washing 31.31 ± 0.02 2E+8 ± 2E+7 0.34 ± 0.58 0.00 ± 0.00 0. 33 ± 0.57 1.45 ± 0.15 n.d. 0.26 ± 0.00 33.11 ± 3.66  (**) 

Fingermarks, t = 0 h 30.23 ± 0.02 9E+7 ± 4E+7 0.34 ± 0.58 0.00 ± 0.00 0. 00 ± 0.00 1.12 ± 0.08 n.d. 0.26 ± 0.00 N/A (*) 

Fingermarks, t = 1 h 30.21 ± 0.02 5E+7 ± 3E+7 0.67 ± 0.58 0.00 ± 0.00 0. 99 ± 0.00 1.06 ± 0.25 n.d. 0.26 ± 0.00 N/A (*) 

“n.d.”: not detected; “< LOQ”: analyte detected but concentration below its lower limit of quantitation. 

a (**) and (*) means that observed PA signals were statistically different from those observed in blanks, at 0.05 and 0.1 significance levels, respectively. 
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Table 3 – List of new m/z signals detected in GSR samples after non-targeted analysis, with related retention times (tR) and most probable identities suggested 
after preliminary structural elucidation. “Potential formulae” refers to the number of possible elemental compositions obtained after heuristic filtering using Seven 
Golden Rules, whilst inaccuracy of m/z values (δm/z) is calculated as the difference between the measured m/z and that of the most probable compound identified 
for that signal. 

# Measured m/z t R (min) 
Isotopic pattern (%) a Potential for-

mulae 

Suggested identity 

A+1 A+2 A+3 Formula Name δm/z (ppm) 

1 69.0207 16.11 ± 0.14 0.77 0.00 0.00 0 N/A N/A N/A 

2 80.9651 14.12 ± 0.18 0.10 0.00 0.00 0 N/A N/A N/A 

3 84.0204 16.28 ± 0.16 1.11 0.05 0.00 1 C2H2N3O
- N’-Cyanocarbamimidate -1.19 

4 87.0452 12.76 ± 0.18 1.81 0.00 0.00 1 C4H7O2
- Butyrate -1.15 

5 96.9585 44.39 ± 0.86 0.00 0.00 0.00 0 N/A N/A N/A 

6 96.9761 12.63 ± 0.15 2.83 0.00 0.00 0 N/A N/A N/A 

7 101.0608 12.89 ± 0.22 2.84 0.02 0.00 1 C5H9O2
- Valerate 0.00 

8 112.0266 17.14 ± 0.17 0.92 0.00 0.00 0 N/A N/A N/A 

9 115.0765 37.02 ± 0.55 4.34 0.00 0.00 1 C6H11O2
- Capronate -0.87 

10 135.0453 16.73 ± 0.24 7.33 0.00 0.00 2 C8H7O2
- 3-Methylbenzoate -1.48 

11 143.1078 17.04 ± 0.14 6.34 0.00 0.00 1 C8H15O2
- Caprylate 0.00 

12 149.0609 16.81 ± 0.21 6.58 0.00 0.00 2 C9H9O2
- 3-Phenylpropanoate -0.67 

13 152.9864 37.89 ± 0.11 1.52 0.00 0.00 2 N/A N/A N/A 

14 152.9977 14.69 ± 0.22 1.03 0.00 0.00 5 N/A N/A N/A 

15 199.1704 13.58 ± 0.15 9.16 0.00 0.00 1 C12H23O2
- 3-Hydroxy-dodecan-1-one -0.50 

16 221.0821 14.56 ± 0.21 9.4 0.39 0.00 10 C12H13O4
- 4-Pentanoyloxybenzoate -0.90 

17 227.2019 13.68 ± 0.22 10.44 0.00 0.00 1 C14H27O2
- Myristate -0.88 

18 281.2486 14.03 ± 0.21 14.36 0.49 0.00 1 C18H33O2
- Petroselinate 0.00 

19 293.1760 12.68 ± 0.27 12.29 0.00 0.00 15 C17H25O4- 3,4-Dipentoxybenzoate -0.68 

20 421.2270 14.55 ± 0.15 17.65 1.24 0.04 179 C21H30FN4O4
- 2-[1-(2-Fluoro-4-methoxybenzyl)-3-oxo-2-piperazinyl]-N-[3-(4-morpholinyl)propyl]acetamide -3.09 

a percentage of the intensity compared to that of the respective monoisotopic peak (A). 
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 1 
Figure 1  – Comparison of the enhancement effects on the HRMS signals of 7 anionic probes, seen as a re-2 
sult of the modification of a fully aqueous eluent with 50% of four different organic solvents. Tests were per-3 
formed by direct infusion. 4 
  5 
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 6 

Figure 2  – Radar plot showing the differences between the retention factors (∆k) of the 25 target anions ob-7 
served in a 50:50 EtOH:H2O and a fully aqueous eluent at a strength of 5/1.5 mM CO3

2−/HCO3
− (isocratic 8 

conditions). ∆k were calculated by kEtOH - kH2O. Negative values indicate a decrease of k (and retention time) 9 
in 50:50 EtOH:H2O compare to full water. 10 
  11 
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 12 
Figure 3  – Comparison of IC-SCD chromatograms between (a) the ethanol-enhanced method optimised in 13 
this work and (b) a previous fully aqueous method optimised using the same instrument and column. 14 
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 15 
Figure 4  – Extracted ion chromatograms (EICs) of a mixed solution of the 19 target anions plus the internal 16 
standard (IS) at 1 mg L-1 in 50:50 EtOH:H2O, after analysis by the developed IC-HRMS method 17 
  18 
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 19 
Figure 5  – Isotope patterns for six targeted anions observed after analysis with the developed IC-HRMS 20 
method. A perfect resolution of m/z signals belonging to some minor isotopes in the presence of other iso-21 
baric compounds due to unidentified contaminations can be noticed (insets). “A” refers to the monoisotopic 22 
peaks.  23 
  24 
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 25 

 26 
Figure 6  – Score and loading plots after principal component analysis (PCA) of the data acquired from the 27 
IC-HRMS analysis of hand-swab extracts that were collected from a volunteer after Pyrodex handling. PCA 28 
has been carried out on the extracted peak areas of (a-b) the only four Pyrodex-related anions and (c-d) all 29 
the anions targeted with the developed method. “W” and “nW”, respectively, indicate if hands were washed 30 
or not with tap water immediately after Pyrodex handling; times indicate the periods of time elapsed between 31 
handling and swab sampling. 32 
  33 
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 34 
Figure 7  – Score and loading plots after principal component analysis (PCA) of the data acquired from the 35 
IC-HRMS analysis of GSRs extracted from the spent cases of different ammunition types. PCA has been 36 
carried out on (a-b) all the signals initially targeted by the developed method, (c-d) a series of signals select-37 
ed after non-targeted analysis of IC-HRMS chromatograms and (e-f) the two merged datasets. 38 
 39 
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Highlights 

• A novel gradient IC-HRMS approach developed and validated for explosive analysis. 

• An ethanolic eluent allowed direct analysis of extracts in organic solvent. 

• Both quantitative targeted and non-targeted analysis demonstrated. 

• Retrospective HRMS data mining approach applied for advanced forensic applications. 
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