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A B S T R A C T  

 In this article,  we present for the first time a research analysis for the size-dependent effects 

on thermal buckling and post-buckling behaviors of functionally graded material micro-plates 

with porosities (imperfect FGM) using isogeometric analysis. A seventh-order shear deformation 

plate theory associated with the modified couple stress theory (MCST) is particularly imposed to 

capture the size-dependent phenomenon within imperfect FGM micro-plates. The material 

properties of imperfect FGM micro-plates with three different distributions of porosities 

including even, uneven and logarithmic-uneven varying across the plate thickness are derived 

from the modified rule-of-mixture assumption. The nonlinear governing equation for size-

dependent imperfect FGM micro-plate under uniform, linear and nonlinear temperature rise is 

derived using the Von-Kármán assumption and Hamilton’s principle. Through numerical 

example, the effect of temperature rise, boundary conditions, power index, porosity volume 

fraction, porosity distribution pattern and material length scale parameter on thermal buckling 

and post-buckling behaviors of FGP micro-plates are investigated.  

Keywords: Porosity; size-dependent; Functionally graded material micro-plates, Thermal 

buckling; Thermal post-buckling; modified couple stress theory; Imperfect.  
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1. Introduction 

 The earliest functionally graded materials (FGMs) were first developed by a group of 

Japanese researchers in the mid-1980s, which are composite materials with microscopically 

inhomogeneous property [1]. FGMs are formed by continuously varying the volume fraction of 

ceramic and metal through the thickness direction. The advantages of these materials are low 

thermal conductivity, less sensitive to crack and delamination, and ductility. The FGMs are now 

widely applied in a variety of engineering applications including automobile, nuclear energy, 

aerospace, electronics, biomaterials, solar energy and commodities [2-6]. During fabrication 

process of FGM, the porosities and micro-voids can take places inside the material as a result of 

technical problems [7, 8].  

 The existence of porosities may decrease the material strength and may greatly affect the 

mechanical properties of structures. This means that understanding the influence of the porosity 

on FGM structures is of great importance in design and manufacturing. Accordingly, linear and 

nonlinear analysis for imperfect FGM plate and beam with porosity have been attractive to 

researchers. Wattanasakulpong and Ungbhakorn [9] considered linear and nonlinear free 

vibration of FGM beams having porosities. They proposed the modified rule-of-mixture to 

approximate the material properties of FGM beam with porosity phases. Wattanasakulpong and 

Chaikittiratana [10] also employed the Chebyshev collocation method to investigate the porosity 

effect on natural frequencies of imperfect FGM Timoshenko beam with even and uneven 

porosity distribution through the thickness direction. Chen et al. [11] carried out the static 

bending and buckling analysis of porous FGM beam under different boundary conditions, where 

the porosity distribution is assumed to be graded through thickness’s direction. Ebrahimi and Zia 

[12] employed Galerkin’s method and multiple scale method to study nonlinear vibration 

behavior of FG beam made of porous material. Atmane et al. [13] also derived a closed form 

solutions for free vibration, static bending and buckling of FGM beam with porosities resting on 

elastic foundations. Akbaş [14] presented a finite element solution for nonlinear static analysis of 

porous FG beam under temperature rising, which is derived from heat transfer equation. By 

using hyperbolic shear deformation and Navier technique, a closed form solutions for vibration 

of FGM plate having porosities was also obtained by Mouaici et al. [15]. Barati and Zenkour 

[16] presented an analytical solution for free vibration of a porous FG piezoelectric plate in 



  

3 
 

thermal environment with different boundary conditions, in which the material properties of two 

pattern of porous distribution are assumed according to the modified power law model. Recently, 

Barati et al. [17] also developed an analytical solution based on refined four variables plate 

theory for free vibration analysis of FG piezoelectric plate with porosities. Shahsavari et al. [18] 

proposed a quasi-3D hyperbolic plate theory for free vibration analysis of FG plates on elastic 

foundation with even, uneven and logarithmic porosity distribution. Karami et al. [19] studied 

the wave propagation problem of porous FG nanoplate with in-plane magnetic field resting on 

Winkler Pasternak foundation. More recently, Pham et  al. [20] derived a closed form expression 

for buckling and post buckling of simply supported porous FG plates on an elastic foundation. 

Nguyen et al. [21] developed a polygonal finite element method for geometrical nonlinear 

analysis of porous FG plates. A 3-D exact solution was obtained by Zhao et al. [22] for vibration 

analysis of porous FG rectangular plates with three different types of porosity distributions.  

 In recent years, a number of size-dependent elasticity models based on non-classical 

continuum theories have been developed [23-29] for capturing the small scale phenomena for 

linear and nonlinear analysis of micro-/nano-structures. For the sake of simplicity of size effect 

exploration, the modified couple stress (MCST) was first introduced by Yang et al. [26] based on 

the classical couple stress theory that proposed by Mindlin [24], Toupin  [27] and Koiter [28].  In 

this theory, the number of material length scale parameter is reduced to one instead of two. Due 

to this advantage, many researchers have focused on studying the size-dependent effects on static 

and dynamic behaviors of micro beams and plates based on the MCST [30-35]. More recently, 

the MSCT has been applied to explore FGM microstructures with porosities. Shafiei et al. [36] 

developed a size- dependent nonlinear Euler-Bernoulli microbeam that accounted for nonlinear 

vibration behavior of imperfect FG microbeam made of porous material. Shafiei and Kazemi 

[37] investigated the effect of porosities, small scale effect, nonlinear, FG index, etc., on 

nonlinear buckling behavior of  micro-/nano-beam using porous material under clamped 

boundary conditions. Based on Mindlin plate theory and MSCT, Şimşek and Aydin [38] studied 

static bending and forced vibration of porous FG micro-plate under moving load. Moreover, the 

MSCT also was employed for free vibration analysis of magneto elastic porous FG circular 

nanoplate by Hosseini et al. [39]. In this study, they employed the first order shear theory to 

predict the natural frequencies of the circular nanoplate using the differential quadrature method. 

According to the aforementioned literatures, it can be seen that few size-dependent numerical 
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model for FG micro-plate including porosities have been developed. Additionally, the 

isogeometric analysis (IGA) [40] has proved its ability in combining with non-classical 

continuum theories through a number of proposed size-dependent IGA finite element models 

[41-43].  

 To the best knowledge of the authors, there is no study on thermal buckling and post-

buckling behaviors of FG micro-plate with porosities on the basis of modified couple stress 

theory and IGA available in the literature. In this article, a nonlinear size-dependent numerical 

solution for FG micro-plate with porosities is first established to fill this gap. Based on the 

proposed seventh-order shear deformation plate theory and the nonlinear von-Kármán strain, the 

governing equations are derived using Hamilton’s principle. The MCST is employed to study the 

size-dependent behaviors of FG micro-plate. Moreover, the effects of porosities on thermal 

buckling and post-buckling responses are investigated for even, uneven and logarithmic-uneven 

distribution of porosities through the thickness’s direction, where the material properties are 

calculated using the modified rule of mixture assumption. Also, the effects of material length 

scale parameter, porosities volume fraction, type of temperature rise, boundary conditions, FG 

index and length to thickness ratio on thermal buckling and post-buckling behaviors of FG 

micro-plate with porosities are investigated in details.  

2. Basis formulations 

2.1. Material properties 
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 Fig. 1. Porosity models of porous micro-plate  

 As shown in Fig. (1), the perfect and imperfect FG rectangular micro-plate with length L, 

width W and height h are considered. The plate is assumed to be made of fully ceramic (c) on the 

top surface and fully metal on the bottom surface. This study investigates three porosities models 

that are Imperfect-I, -II and -III. The porosity in Imperfect-I model varies even across the 

thickness direction, whereas Imperfect-II denotes uneven and Imperfect-III represents 

logarithmic uneven distribution of porosity. The effective material properties of FG micro-plate 

are defined based on the modified rule of mixture [9, 10]. Hence, the effective Young’s modulus 

E(z), Poisson’s ratio ( )z and thermal expansion ( )z coefficient for Imperfect-I, -II and -III can 

be written in following form:  
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In which, n is the gradient index or power law index that define the variation of material 

properties though the z-direction.   is porosity volume fraction (porosity parameter). It is noting 

that setting    for FG micro-plate without porosities (Perfect FGM).  

 Fig. 2 illustrates the variation of Young’s modulus across the thickness of AL/AL2O3 FG 

micro-plate having a porosity volume fraction 0.2 . It can be seen that n is power law index       

that is taken such as      . The micro-plate becomes the pure ceramic plate as n = 0 or the 

pure metal plate as    , respectively. Also, Fig. 3 plots Young’s modulus of perfect and 

imperfect AL/AL2O3 FG micro-plate for power index n = 1 and n = 5. With the existence of 

porosities, the Young’s modulus magnitude of Imperfect types decreases and becomes lower 

than that of Perfect FGM, in which the lowest magnitude is obtained in Imperfect-I. However, 

Young’s modulus magnitude of Imperfect-II and -III are nearly equal each other and coincide 

with that of Perfect FGM at the bottom and top surfaces. As it can be seen, Young’s modulus of 

Imperfect-II is slightly lower than that of Imperfect-III. Especially, in the middle surface, 

Young’s modulus magnitude of Imperfect-I and -II are exactly equal.   

 
  (a) 

 
   (b) 
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  (c) 

 Fig. 2. The effective Young’s modulus of AL/AL2O3 FGM micro-plate with porosity 
parameter 0.2 : (a) Imperfect-I, (b) Imperfect-II and (c) Imperfect-III 

 

   

  
 Fig. 3. Comparison of Young’s modulus across the thickness of Perfect and Imperfect 

AL/AL2O3 FGM micro-plate with 0.2 : Power index n = 1 (left) and n = 5 (right). 

 

2.2. A size-dependent model for FGM micro-plate having porosities.  

 The displacement field of an arbitrary point  
T
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can be defined using the generalized shear deformation plate theory as [44-46]:  
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Where x  and 
y  denote the rotations of a point of mid-plane around the y-axis and x-axis of 

cross-sections in x-z and y-z planes, respectively. A seventh-order function f (z) = z - z
3
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(5z
4
)/h

4
 + (4z

6
)/h

6
. It is clearly that the values of function  f z  are zero at 2z h  , therefore 

the transverse shear stresses automatically vanish on the top and bottom surfaces of plate. 

 According to the modified couple stress theory developed by Yang et al. [26], the virtual 

strain energy of Perfect and Imperfect FGM micro-plate is written as: 

(  + )d  ij ij ij ij
V

U m V        (5) 

In which the right hand side of Eq. (5) contains two terms that defined the classical theory (first 

term) and the modified couple stress theory (second term). The notations
ij , ij , ijm , ij are the 

components of the symmetric stress tensor , Green strain tensor, couple stress moment tensor and 

the symmetric curvature tensor, respectively, which are defined as: 
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where 
ijklC  ,G  and are elasticity constants, the shear module, the material length scale 

parameter, repectively. iu  and i are the components of displacement and  rotations, 

respectively. 

 By substituting Eq. (4) into Eq. (6), the nonlinear Von-Kármán strain-displacement relations 

are obtained as: 
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It is noted that 0

NL  is the nonlinear components of in-plane, which can be rewritten as follows: 
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 According to Eq. (4) and Eq. (8), we obtain the components of rotation vector as: 
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Then, substituting Eq. (14) into Eq. (7), we can obtain the following components of curvature 

vector: 
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It is noted that the subscripts ‘,x’  ‘,y’ represent the derivative of arbitrary function following x 

and y directions, respectively.   
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 According to Eq. (9), the constitutive equations for the relationship between the stresses and 

strains of FG micro-plate with porosities are given by: 
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Where the material matrices C and G are defined as: 

 

 

 

 

 

 

   

 

  

1
0

1 1

1 01
0 ;

0 11 1 1 2 1

1
0 0

2

z

z z

E z z E z

z z z z
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and the thermal strain is expressed as: 

    1 1 0th Tz T z ε  (19) 

where     iT z T z T    is the temperature rise,  T z  and iT  are the current temperature and 

initial temperature, respectively. 

 The in-plane forces, moments, higher order forces and shear forces are expressed as 
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 By replacing Eq. (20) into Eq. (17), the stress resultant can be expressed in matrix form as 

follows: 
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and thermal stress resultant are defined as: 
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 It is assumed that the temperature varies only through the plate’s thickness direction, and the 

temperature field is unchanged in the bottom and top surfaces of the plate. In this paper, three 

case temperature rise are imposed:  

- When the temperature is uniformly distributed through the plate’s thickness, the 

temperature change will be a constant and take the form iT T T   , where iT  is the 

initial reference temperature and T  is the current temperature. Using this into Eq. (23), the 

critical temperature difference is given as: 
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- In case of linear temperature rise, the temperature distribution through the plate’s 

thickness is given by: 

  m cmT z T r T    (25) 

 From Eq. (23) and Eq. (25), the critical temperature difference can be derived by: 
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- For the nonlinear temperature rise, a nonlinear function depend on the thickness of FGM 

plate can be taken as follows [47, 48]: 
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 , ck and mk  are the thermal conductivity of 

ceramic and metal, respectively.  



  

12 
 

 From Eq. (27) and Eq. (25), the critical temperature difference in nonlinear temperature field 

is given by: 
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 Furthermore, from Eq. (10) and Eq. (15), the couple stress moment resultant can be calculated 

in the following form: 
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 By inserting Eq. (21) and (29) into Eq. (5), the virtual strain energy of plate is now rewritten 

as follows: 

ˆ ˆˆ ˆ(  + )d  m χU


        (31) 

 By using the principle of virtual displacement, the discrete Garlekin’s weak form for post-

buckling problem of FGM micro-plate in thermal environment can be established such as: 
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3. NURBS-based formulation of functionally graded micro-plate with porosities 

 In this section, discrete equations for the present problem are derived using IGA. The 

appropriation of the displacement fields in terms of NURBS can be expressed as [43, 49, 50]:   
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Where  0 0 0d
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I I I I xI yIu v w   and N I are the vector of degree of freedom associated with 

the control point I  and the shape function, respectively. 

 Substituting Eq. (33) into Eq. (12), the strain components can be rewritten in matrix form as: 

1

1
ˆ

2
ε B B d

m n
L NL

I I I

i





 
  

 
  (34) 

And the variation of the strain components is calculate as: 
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1 2
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B B B

B

I x I xx I x

m b b

I I y I I yy I I y

I y I x I xy I y I x
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I

I

N N N

N N N

N N N N N

N

N

     
     

        
     
     

 
  
 

 (36) 

and B
NL

I  is the nonlinear strain matrix that is a function of displacement:  

  
,

,

0 0 0 0
with

0 0 0 0

A
B d B   B

0

I xNL g g

I I I

I y

N

N

   
    
   

 (37) 
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Similarly, by substituting Eq. (33) into Eq. (16) the couple stress curvature components are 

rewritten in matrix form as: 

         1 2 0 1 2

1

ˆ whereB d   B     
m n T

T T T T T
b b s s s

I I I

i


 



  
         (38) 

In which 
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I

I

N N

N
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(39) 

 Substituting Eq. (34), (35) and Eq. (38) into Eq. (32) and eliminating the virtual displacement 

vector d , the matrix form of the global equilibrium equations for size-dependent thermal 

buckling of FGM micro-plate having porosities can be established in the following matrix form: 

 0K K K d FL NL th    (40) 

where K = K K
u

L L L

  and K NL   are the linear and nonlinear global stiffness matrix, 

respectively. 0K  is the initial stress stiffness matrix derived from the initial in-plane thermal 

load, while Fth
is the thermal load vector. These matrices can be defined in a clear form as: 

   

     

  0

ˆ ˆd d

1 1ˆ ˆ ˆd d d
2 2

ˆ d    

T T
L L

L u c

T T T
L NL NL L NL NL

NL u u u

T
L

th

 

 

  



  

   

 

 

  



K B D B B D B

K B D B B D B B D B

F B 

 (41) 

4. Nonlinear solution procedure. 

4.1 Nonlinear bending problem 

 In this section, the nonlinear equilibrium Eq. (37) is solved by using the Newton-Raphson 

technique. At a specific load level m
th

, the residual force (imbalance force) R(d
i
) at  i

th
 iteration 

is computed as follows: 
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     0

i i m

L NL th   R d K K d K F  (42) 

 Throughout iteration, the residual force tend to zero. When the residual force is still large 

enough, the displacement at (i+1)
th

 iteration, is then calculated as: 

 
1 1i i i  d d d  (43) 

 The increment displacement 1id  is computed using following equation: 

   1i i

T i

  d R d K d  (44) 

In which the tangent stiffness matrix TK  at i
th

 iteration is defined as 

  
 i

i

T NL gi


  



R d
K d K K

d
 (45) 

Where the stiffness matrix NLK  contains the variables  id  given by: 

     ˆ ˆd d
T T

L NL L NL

NL u c

 

 
     K B B D B B B D B  (46) 

And gK  is the geometric stiffness matrix that can be obtained from in-plane forces in Eq. (23) as 

follows: 

   d
T x xyg g

g

xy y

N N

N N

 
  

  
K B B  (47) 

 The iteration is repeated until obtaining the convergence condition of displacement as 

follows: 

  

1

0.01

i i

i

 


d d

d
 (48) 

4.2 Nonlinear eigenvalue problem 

 In case of pure ceramic or metallic micro-plate under uniform temperature rise, the thermal 

bending moments Mth in Eq. (25) are neglected, and only membrane forces are generated. 

Similary, when the plate is supported with full clamped edges, the bending moments can be 

neutralized by support reacting moments, and the plate remains flat in pre-buckling state [51-54]. 

Hence, the bifurcation-type buckling is exhibited for FGM micro-plate.  

 Firstly, the lowest eigenvalue (load factor  ) and corresponding eigenvector can be achieved 

by solving the linear eigenvalue equation as follow: 
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         0 0L  K K d  (49) 

By multiplying the load factor   with the initial load, the critical buckling temperature is 

obtained.   Then, the critical temperature difference 
crT  is calculated by using Eq. (24), (26) 

and Eq. (28)   depending on different temperature rise. After linear buckling, the plate endures a 

large deformation, so that the load factor   must be traced by nonlinear equilibrium equation: 

             0 0L NL  K K K d  (50) 

Next, the eigenvector is scaled up, holding the maximum displacement as 0.1h for each 

displacement incremental step, the new nonlinear stiffness matrix NLK is updated. In this step, 

the new load factor and eigenvector are obtained by solving Eq. (50). This procedure is repeated 

until the load factor error between two succeeding iterations is smaller than the desired error 

tolerance  tol 0.01 . In the same way, the corresponding load factor (eigenvalues) and 

eigenvector can be found by increasing the maximum displacement as 0.2h, 0.3h , etc. and the 

thermal post-buckling equilibrium path may be achieved.   

5. Numerical results and discussions 

 One of the main objectives of this section is to show the effect of the small scale and the 

existence of porosity on the nonlinear behaviors of FGM micro-plate under uniform, linear and 

nonlinear temperature distribution through the plate’s thickness. The top and bottom surfaces are 

made of pure ceramic and pure metal, respectively. In particular, Young’s modulus, Poisson’s 

ratio, thermal expansion coefficient and thermal conductivity of AL/AL2O3 micro-plate are 

assumed to be temperature-independent and taken as Ec = 380 GPa, c = 0.3, c = 7.4×10
-6

 1/K, 

kc = 10.4 W/m K for alumina, and Em = 70 GPa, m = 0.3, m = 23×10
-6

 1/K, km = 204 W/m K 

for aluminum. In addition, the three boundary conditions used in this study are: 

   - Simply support with movable edge (SSSS1): 

  
0 0

0 0

0  at left and right edges

0  at lower and upper edges

y

x

v w

u w

   


   
 

 - Simply support with immovable edge (SSSS2): 
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0 0 0

0 0 0

0  at left and right edges

0  at lower and upper edges

y

x

u v w

u v w

   


   




 

 - Clamped support (CCCC): 

  0  at all edgesv u w    

5.1. Bending analysis 

 To show the accuracy of the developed approach, we study the small scale effect on the 

nonlinear bending of perfect FGM square micro-plate under uniform distributed load, which is 

incrementally applied after 20 steps to reach to qz = 5.4×10
6
 N/m

2
. Where the material properties 

of the top and bottom surfaces, respectively, are Et = 14.4 GPa, Eb = 1.44 GPa and the Poisson’s 

ratio of both materials are assumed to be equal ast = b = 0.38. The obtained dimensionless 

central deflection w w h  versus load parameter  4 4

z bq q L E h  for SSSS1 and CCCC 

boundary conditions are compared with those given by finite element model based on a general 

third-order shear deformation theory (GTPT) [55]. Fig. 4 shows a good agreement of presented 

results in comparison with those from GTPT for power index n = 0.5, 1 and 5. From Fig. 5, it can 

be seen that the load-nonlinear deflection curves of homogeneous micro-plate (n = 0) with h = 

0, 0.5 and 1 agree with those of reference solution.      

  
 Fig. 4. Comparison of load-nonlinear deflection curves of FGM square micro-plate with 

0h  for various power index n under: SSSS1 (left) and CCCC (right).    
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 Fig. 5. Small scale effect on load-nonlinear deflection curves of homogeneous square micro-

plate under: SSSS1 (left) and CCCC (right).    

 

 Next, the nonlinear bending responses of movable, immovable AL/AL2O3 imperfect micro-

plate under linear and nonlinear temperature distribution are investigated. It can be noted that the 

thermal force vector on the right hand side of nonlinear Eq. (40) exists due to the effect of 

thermal bending moments develop together with membrane forces during temperature rise. 

Hence, the Newton-Raphson technique described in section 4.1 is adopted to get the 

temperature-displacement curves. For comparison purpose, Fig. 6 plots the load-deflection 

curves for simply supported plate with immovable edges under nonlinear temperature rise with 

power index n = 0.5, 1 and 10. Clearly, there is good agreement between the present result and 

the solution of Loc et al. [48], and the deflection occurs immediately when thermal load is 

applied. In case of n = 2 and length to thickness ratio L/h = 100, Fig. 7-9 reveal the effects of 

porosity on the load-deflection curves of FGM micro-plate for Imperfect-I, -II and -III by 

considering different porous volume fraction   . These figures indicate that increase 

of temperature variation T leads to higher dimensionless central deflection w w h . It is also 

found that the linear temperature rise produces more transverse deflection in plate compared to 

those of nonlinear temperature rise. Moreover, for imperfect model as the porosity parameter   

rises, the displacement decreases at the  same temperature level. In Fig. 10, for comparison 

purpose, the temperature-displacement nonlinear curves of SSSS2 AL/AL2O3 square plate are 

illustrated for    under nonlinear temperature rise. It is interesting that the deflections 

of imperfect model are lower than those of perfect model, the results of Imperfect-I are lower 

than those of Imperfect-II, -III and the deviation amplify as the porosity parameter increase from 

   to   . However, the temperature-displacement curves of Imperfect-II are 

approximately equal to those of Imperfect-III. Consequently, the porosity effect on nonlinear 
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behavior based on temperature change of FGM micro-plate in Imperfect-I model is more 

significant than in the Imperfect-II and -III models.                        

 
 Fig. 6. Temperature-displacement of SSSS2 square (Al/Al2O3) plate under nonlinear 

temperature rise through thickness (L/h=100) 

 

    

  
 Fig. 7. Temperature-displacement curves of SSSS2 Imperfect-I FGM (Al/Al2O3)  square plate 

under linear (left) and nonlinear (right) temperature rise (L/h =100, n=2) 

 

  

  
 Fig. 8. Temperature-displacement curves of SSSS2 Imperfect-II FGM (Al/Al2O3)  square 

plate under linear (left) and nonlinear (right) temperature rise (L/h =100, n=2) 
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 Fig. 9. Temperature-displacement curves of SSSS2 Imperfect-III FGM (Al/Al2O3)  square 

plate under linear (left) and nonlinear (right) temperature rise (L/h = 100, n=2) 

 

 

  
 Fig. 10. Temperature-displacement curves of SSSS2 Perfect and Imperfect FGP (Al/Al2O3) 

square plate under nonlinear temperature rise through thickness (L/h = 100, n=2) with 0.1

(left) and 0.3 (right). 

 

 Subsequently, in the following example nonlinear the temperature-displacement curves of 

Imperfect-I, -II model are associated with the change of material length scale ratio h  as 

observed from Fig. 11. In this article, the material parameter is assumed to equal to 17.6 μm , 

obtained from experiment work done by Lam et al. [56]. According to this figure, an increase in 

length scale ratio leads to a decrease in central deflection at a same temperature level and an 

increase in temperature variation at a same deflection level.  Fig. 12 shows the effect of material 

power law index n on nonlinear bending behaviors of Imperfect-II FGM micro-plate predicted 

by conventional theory  0h  and MCST  1h  . One can see that the plate with n = 10 has 

the higher deflection than the others. This is explained by the reduction of Young’s modulus that 

results from higher metal inclusion in the imperfect FGM micro-plate.  
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 Fig. 13 shows the nonlinear responses of imperfect AL/AL2O3 square micro-plate subjected 

to immovable simply supported boundary conditions under linear and nonlinear temperature rise. 

One can see that the MCST produces smaller deflection more than conventional theory owing to 

stiffer stiffness of micro-plate for non-zeros material length scale ratio. Furthermore, there is 

noteworthy differences between linear and nonlinear type. As show  0.5h   in Fig. 14, the 

plate bends towards the ceramic side due to the effect of thermal bending moment.  It is clear 

that the deflections predicted by MCST  0.5h   are smaller than those predicted by classical 

model  0h  .  

 
 

 Fig. 11. Temperature-displacement curves of SSSS2 Imperfect-I (left) and Imperfect-II (right) 

FGP (Al/Al2O3) square plate under linear temperature rise through thickness (L/h = 100, n=2, 

temperature independent material property) with 0.1 for different material length scale 

ratio h . 

 

 

  
 Fig. 12. Temperature-displacement curves of SSSS2 Imperfect-II FGM (Al/Al2O3) square 

micro-plate under linear temperature rise (L/h = 100, 0.2 ) for length scale ratio 0h 

(left) and 1h  (right). 
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 Fig. 13. Temperature-displacement curves of SSSS1 Imperfect-II FGM (Al/Al2O3) square 

micro-plate 0.2,  2)n   for length to thickness 100L h  (left) and 20L h  (right). 

 

 

  
 Fig. 14. Comparison of deflection of SSSS1 Perfect FGM (left) and Imperfect-I (right) FGP 

(Al/Al2O3) square micro-plate under linear temperature rise 0.2,  2,  / 100)n L h     at 
050 CT  . 

 

5.2. Buckling analysis  

 We now analyze the accuracy of the present model through some buckling examples for 

perfect FGM plate  0 . It is noted that the linear eigenvalue Eq. (49) is adopted in this 

section. Table 1 compares the critical buckling temperature of AL/AL2O3 square plate under 

uniform temperature rise for simply supported plates that are movable at all edges. The presented 

results agree well with those of semi-analytical method obtained by Matsunaga [57],  analytical 

solution proposed by Javaheri and Eslami [58] and isogeometric finite element method based on 

third order shear deformation reported by Loc et al. [59]. To further verify the accuracy of the 

present method, the critical buckling temperatures of clamped AL/AL2O3 circular plate for L/h = 

100 are given in Table 2. Through compare with the solution of Matsunaga [57], Javaheri [58] 

and Loc et al. [60] for linear and nonlinear temperature type, it is found that the presented 

numerical method can accurately predict the linear thermal buckling problem of FGM plate.  
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 Next, a detailed study of the effect of porosity on the thermal buckling of AL/AL2O3 square 

micro-plate is carried out in Table 3. This table indicates that the increase of porosity parameter 

  leads to higher critical buckling temperature. This phenomenon is due to the reduction of the 

thermal expansion coefficient in Eq. (1-3) that leads to decrease the in-plane thermal load in Eq. 

(23) before the plate is buckled by temperature rise. It is also observed that Imperfect-II and -III 

models predict lower value compared to Imperfect-I model for material power index n = 0.5 and 

1. Accordingly, the pattern of porosity distribution and the magnitude of porosity parameter 

influences the buckling behavior of imperfect FGM micro-plate and the imperfect model produce 

higher critical buckling temperature than perfect model. Also, this inference is consistent with 

the findings of  Barati and Zenkour [17].     

 The variation of material power index n leads to change in material properties that affect the 

change of buckling behavior of plate. Fig. 15 shows the effect of parameter n on buckling 

temperature of Imperfect-I and -II AL/AL2O3 square micro-plate under uniform temperature rise 

for various material length scale ratios, h . According to this figure, for all values of h , the 

buckling temperature decreases rapidly when the value n rises from 0 to 3, but this trend tends to 

be steady as the power index n is higher than 3. In other words, pure ceramic produces the 

highest thermal buckling, but the lowest result is got from pure metal. Besides, the buckling 

temperature increases as 0h  and the obtained result for 0.5h   is higher than the other 

values of h . Moreover, for further investigation of the effect of length scale ratio h  on the 

thermal buckling of micro-plate, Fig. 16 shows the comparison of Imperfect-I and -II with h

vary from 0 to 1. It is noted that 0h  denotes the classical theory. Similar to above-mentioned 

statement, as h  increases, the buckling temperature increases due to the intensification of the 

strength of micro-plate that come from size-dependent effect. As the ratio 0.2h  , the 

difference between classical and MCST model is not remarkable, however the size-dependent 

effect on thermal buckling is more considerable as the ratio 0.2h  . Fig. 16 also reveals that 

the deviations of results obtained from Imperfect-I and -II model enlarge as porosity volume 

fraction   and ratio h increase.    
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Table 1. Critical buckling temperature of FGM square plate under uniform temperature rise. 

L/h Power index n Present HSDT [57] CPT [58] TSDT [58] TSDT [59] 

10 0 1618.782 1599.294 1709.911 1617.484 1618.99 

 

0.5 923.2382 914.1891 - - 923.3422 

 

1 758.4367 749.26 794.377 757.891 758.5504 

 

5 679.7767 669.402 726.517 678.926 679.4828 

 

10 692.9872 683.211 746.927 692.519 692.8362 

       100 0 17.0896 17.087 17.099 17.088 17.1152 

 

0.5 9.6835 9.7068 - - 9.6995 

 

1 7.9401 9.939 7.943 7.939 7.9538 

 

5 7.2608 7.259 7.265 7.26 7.2697 

  10 7.4635 7.462 7.469 7.462 7.4719 

 

Table 2. Critical buckling temperature of FGM square plate under temperature rise. 

Power index n Temp. rise Present TSDT [59] FSDT [61] FSDT [62] CPT [62] 

0 Uniform 12.7299 12.7247 12.7130 12.7120 12.7160 

 

Nonlinear 25.4598 25.4494 25.4260 25.9240 25.4330 

0.5 Uniform 7.2132 7.2017 7.2030 7.2020 7.2040 

 

Nonlinear 19.0263 19.0193 18.9960 18.9960 19.0020 

1 Uniform 5.9146 5.9128 5.9070 5.9060 5.9070 

  Nonlinear 15.3975 15.3929 15.3770 15.3730 15.3780 

 

Table 3. Comparison of critical buckling temperature of SSSS1 Imperfect FGM square micro-plate 

/ 100)L h   under uniform temperature rise. 

L/h   n Imperfect-I Imperfect-II Imperfect-III 

0 

0.1 
0.5 11.292 10.719 10.693 

1 8.912 8.701 8.682 

0.2 
0.5 13.474 11.894 11.778 

1 10.062 9.545 9.462 

0.3 
0.5 16.624 13.230 12.942 

1 11.388 10.476 10.278 

      

0.2 

0.1 
0.5 13.556 12.747 12.716 

1 10.853 10.450 10.426 

0.2 
0.5 16.354 14.146 14.008 

1 12.501 11.474 11.373 

0.3 
0.5 20.439 15.733 15.392 

1 14.577 12.605 12.364 

      0.4 0.1 0.5 20.348 18.831 18.783 
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1 16.677 15.695 15.659 

0.2 
0.5 24.995 20.902 20.697 

1 19.818 17.260 17.106 

0.3 
0.5 31.885 23.244 22.741 

1 24.145 18.990 18.622 

 
     

0.5 

0.1 
0.5 25.442 23.393 23.334 

1 21.044 19.628 19.583 

0.2 
0.5 31.475 25.969 25.714 

1 25.305 21.600 21.406 

0.3 
0.5 40.468 28.876 28.252 

1 31.321 23.778 23.315 

 

  
 Fig. 15. Effect of power index n and length scale ratio h on critical buckling temperature of 

Imperfect-I (left) and Imperfect-II (right) FGM (Al/Al2O3) square micro-plate ( 100L h  ,

0.2 ) under uniform temperature rise. 

 

 

  
 Fig. 16. Porosity volume fraction   and length scale ratio h on critical buckling temperature 

of Imperfect-II FGM (Al/Al2O3) square micro-plate ( 1,  100n L h  ) under linear (left) and 

nonlinear (right) temperature rise . 
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5.3. Post-buckling analysis 

 In the following part, by eliminating the effect of thermal bending moment in Eq. (23), the 

post-buckling path is traced through solving nonlinear eigenvalue equation Eq. (50). Thereafter, 

the obtained results for all calculation parameters are presented. To verify the thermal post-

buckling behavior of FGM micro-plate having porosity, the thermal post-buckling path of 

isotropic clamped skew plate subjected uniform temperature distribution is considered with the 

following material properties: E = 1 GPa,  = 0.3,  = 10
-6 

/
0
C, and the buckling temperature is 

normalized as  2 2

crT T E L D   , where  3 212 1D Eh   is the flexural rigidity. Fig. 17 

indicates that the present curve is slightly higher than that of Loc et al. [48] and is in excellent 

agreement with the curve of Prabhu and Durvasula [63]. It can be seen that the seventh-order 

shear deformation plate theory produced more accurate result than that of Loc et al. [48] in 

comparison with the exact solution (Perturbation method) of Prabhu and Durvasula [63].   

  
 Fig. 17. Thermal post-buckling path of isotropic clamped skew plate ( 100L h  , angle 

skew 045  )  

 

 Next, Fig. 18-21 illustrate the influence of material length scale ratio, radius to thickness and 

porosity parameter on thermal post-buckling response of perfect and imperfect FGM clamped 

circular micro-plate. Fig. 18 shows the variation of the thermal post-buckling paths of plate for 

the length scale ratio h = 0, 0.2, 0.4 and 0.5. It can be seen from the figure that the thermal 

resistance of FGM micro-plate for perfect and imperfect cases increase as h  increases, which 

is due to the influence of size-dependent effect  0h   on the plate’s stiffness based on 

MCST. The thermal post-buckling curves show the different between classical model  0h 
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and MCST, wherein the variation is remarkable for 0.5h  . Fig. 18 also reveals that, after 

bifurcation point, the maximum out-of-plane displacement increases with the increase in the 

critical temperature. Subsequently, there is a sudden drop in the buckling path (or thermal 

resistance), which follows the secondary post-buckling path. This behavior corresponds to the 

change of post-buckling mode shape as presented by Singha et al. [64] and Prakash et al. [53]. 

Furthermore, the transitional points from the primary instability to secondary instability are 

shifted to the right with increase in the value of ratio h as illustrated in Fig. 18. In Fig. 19, one 

can see that the mode shape is symmetric with respect to middle line of plate in the primary post-

buckling state, whereas the mode shape become unsymmetrical in the secondary post-buckling 

state. The displacement contour and the maximum displacement shift from center towards the 

edge of circular plate.  

 Fig. 20 shows the effect of the ratio R h  on thermal post-buckling path of imperfect FGM 

micro-plate for classical model  0h   and MCST model  0.5h  . It is clearly that 

decrease the value of radius to thickness ratio R h  enlarges the thermal resistance of imperfect 

plate. Another observation from Fig. 20 is that the size-dependent effect  0.5h  leads to an 

increase in post-buckling critical temperature.  

 The variation of the thermal buckling path for various values of porosity parameter   also is 

depicted in Fig. 21. According to this figure, it can be concluded that the imperfect FGM micro-

plate has higher critical buckling and post-buckling temperature than the perfect FGM micro-

plate, which was concluded in Ref. [16, 65]. Furthermore, the thermal resistance increases with 

the rising value of porosity parameter.          
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 Fig. 18. Effect of length scale ratio h  on thermal post-buckling paths of Perfect FGM and 

Imperfect FGP (Al/Al2O3) clamped circular micro-plate (L/h = 100, n = 1, 0.2 ) under 

uniform temperature rise through thickness. 

 

 

  
 Fig. 19. Buckling mode shapes of Imperfect-II FGP (Al/Al2O3) clamped circular micro-plate 

(L/h=100, n=1, 0.2 ) for length scale ratio 0h  (left) and 0.5h  (right) under 

uniform temperature rise through thickness. 

 

 

  
 Fig. 20. Effect of radius to thickness R h  on thermal post-buckling behavior of Imperfect-II 

FGP (Al/Al2O3) clamped circular micro-plate (n = 1, 0.2 ) for length scale ratio 0h 

(left) and 0.5h  (right) under uniform temperature rise through thickness. 
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 Fig. 21. Thermal post-buckling behavior of Imperfect-I (left) and Imperfect-II (right) FGP 

(Al/Al2O3) clamped circular micro-plate (L/h = 50, n = 1, 0.2h  ) for different porous 

parameter ξ  under uniform temperature rise through thickness. 

 

6. Conclusion 

 In this paper, we have analyzed the nonlinear bending, buckling, and post-buckling behaviors 

of porous FGM micro-plates subjected to thermal load using IGA associated with MCST. The 

material properties of FGM micro-plate with even, uneven and logarithmic-uneven distribution 

of porosities through the thickness’s direction are derived from the modified rule of mixture 

assumption. A proposed seventh-order shear deformation plate theory and von-Kármán 

assumption are utilized to establish the nonlinear governing equations that are solved by using 

Newton-Raphson iteration technique to acquire the nonlinear behavior of micro-plates. Also, the 

effect of length scale ratio, material power index, porosity distribution type, porosity parameter, 

temperature rise, radius to thickness and boundary conditions are discussed. Through the detailed 

parametric analysis, some remarkable observation are drawn as follows:  

 The thermal nonlinear bending response of FGM micro-plate is caused by the existence 

of   thermal bending moment and the extension-bending. The existence of porosity would 

decrease the displacement of micro-plate plate at a same temperature level, and the effect 

of uniform porosity model (Imperfect-I) is more remarkable than uniform (Imperfect-II) 

and logarithmic-uneven model (Imperfect-III). Furthermore, the size-dependent effect 

 0h   leads to a decrease in deflection at a same temperature level and an increase in 

temperature variation T  at a same deflection level. 

 The porosity model       gives higher critical buckling and post-buckling temperature 

compared with perfect FGM micro-plate      . Also, uniform porosity model 

procedure more thermal resistance than even and logarithmic-uneven model.  
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 The critical buckling and post-buckling thermal resistance increase with the rising value 

of porosity parameter  . Besides, it is found that Imperfect-II model has higher critical 

buckling and post-buckling temperature than Imperfect-III model. 

 The critical buckling and post-buckling temperature predicted by modified couple stress 

theory are higher than those derived from classical model are. The increase in material 

length scale ratio h  leads to increase the buckling as well as post-buckling thermal 

resistance.   

 The radius-to-thickness ratio R/h greatly affects the mechanical response, as the thermal 

resistance of imperfect plates gets larger with decreasing R/h ratio. 
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