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ABSTRACT

In this article, we present for the first time a research analysishtsize dependent effest
on thermal buckling angostbuckling behavios of functionally graded materiahicro-plates
with porosities iimperfect FGM usingisogeometri@nalysis A seventhordershear deformation
plate theory associated withe modified couple stress theory (MBCT) is particularlyimposed to
capture the sizdependent phenomenon withimperfect FGM micro-plates. The maerial
properties ofimperfect FGM micro-plates with three different distributios of porosities
including even, uneven and logarithmineven varing across the plate thicknesse derived
from the modifiedrule-of-mixture assumption The nonlinear governing equatidor size
dependentmperfect FGMmicro-plate under uniform, linear and nonlinear temperature rise is
derived using the VorKarman assumpb RQ D QG sDpAncPlev Rdugh numerica
example, the effect of temperature rise, boundamyditions, power index, porosity volume
fraction, porosity distribution patterand material length scale parametertibarmal buckling

andpostbucklingbehaviors of FGnicro-plates areinvestigated

Keywords: Porosity; &e-dependent;Functionally graded materiaimicro-plates, Thermal

buckling; Thermalpostbuckling modified couple stress thegiynperfect
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1. Introduction

The earliestfunctionally graded material(FGMs) were first developedby a group of
Japanese researchers in the -a880s which are composite materialsvith microscopically
inhomogeneous properft]. FGMs areformed bycontinuouslyvarying the volume fraction of
ceramic and metahrough the thickness directioithe advantagesf these materials ardew
thermal conductivityless sensitive tarack and delaminatiomnd dutlity. The FGMs are now
widely applied in a variety of engineering applications includiagtomobile, nuclear energy,
aerospace, electronics, biatarials solar energy and commoditig®-6]. During fabrication
procesof FGM, the porosites and micrevoids can take placesside the material as a result of

technicalproblemd7, 8].

The existence of porositieray decreas¢éhe material strengtAnd maygreatly affectthe
mechanical properties of structures. This meansuhdérstanding thanfluence of the porosy
on FGM structureds of great importanca design andnanufacturingAccordingly, linearand
nonlinear analysigor imperfect FGM plate and beam with porosity have been atteato
researchersWattanasakulpong and Ungbhakof8] considered linear and nonlinear free
vibration of FGM beams having porositieBhey proposedhe modified rule-of-mixture to
approximate the material properties of FGM beam with porosity pha&gsanasakulpong and
Chaikittiratang 10] alsoemployed theéChebyshe\collocation method tavestigate thgorosity
effect on natural frequencie®f imperfect FGM Timoshenko beam with even and uneven
porosity distributionthrough the thicknes direction Chen et al.[11] carried out the static
bending and buckling analysis pbrous FGM beam under different boundary condgiovhere
the porosity distribution is assumed to be graded throtgk L F N Q H V V Eial@nhi drdl ZM/ L R Q
[12] employed Galerkiff Vnethod and multiple scale method $tudy nonlinear vibration
behavior of FG beam made of porous mateAdainane et al[13] alsoderived a closed form
solutions forfree vibration, static bending and buckling of FGM beam with porosities resting on
elastic foundations$ N E 4] presented a finite element solution for nonlinear static analysis of
porous FG beam undéemperature rising, which iderived from heat transfer equatidBy
using hyperbolic shear deformation and Navier technique, a closed form solutions for vibration
of FGM plate having porositiewas also obtained bylouaici et al.[15]. Barati and Zenkour

[16] presented an analytical solution fivee vibration of a porous FG piezoelectric plate



thermal environmenwith different boundary conditions, in which the matkeproperties of two
pattern ofporous distribution are assumed according to the modified power law nittintly,
Barati et al.[17] also developed a analytical solution based omfined four variables plate
theoryfor free vibration analysis of F@iezoelectric plate with porosities. Shahsavari eflal]
proposeda quasi3D hyperbolicplate theory for free vibratioanalysis of FGplateson. elastic
foundationwith even, uneven and logarithmic porosity distributigiarami et al.[19] studied
the wave propagation problem of porous FG nanoplate withaime magnetidield resting on
Winkler Pasternakdundation More recentlyPhamet al.[20] derived a closed form expression
for buckling and post buckling of simply supporteorous FG plates on an elastic foundation.
Nguyen et al.[21] developed a polygonal finite element methimd geometrical nonlinear
analysis of porous FG plates.3-D exact solution was obtained Bfao et al[22] for vibration
analysis of porous FG rectangular platgth three different types of porosity distributions.

In recent years,a number of sizedependent elasticity models based won-classical
continuum theoriehiave been developd@3-29] for capturingthe small sale phenomena for
linear and nonlinear analysis of miefmanastructuresFor thesake of simplicityof size effect
exploration themodified couple stregMCST)was first introduced by Yang et §26] based on
the classical couple stress thethrgtproposed by Mindlif24], Toupin [27] and Koiter[28]. In
this theorythe number of material length scale parameteedsicel to one instead of twdDue
to this advantage, mamgsearcherbavefocused orstudying the sizelependengffects on static
and dynamic behaviors of micro beams and platsed orthe MCST[30-35]. More recently,
the MSCT has been applied to expldt&M microstructures with porositieShafiei et al[36]
developed a sizedependent nonlinedulerBernoulli micrdbeam that accounted foonlinear
vibration behavior oimperfectFG microbeam made of porous materi&hafiei and Kazemi
[37] investigated the effect of porosities, small scale effect, nonlinearjnB& etc, on
nonlinear bucklingbehavior of micro-/nanecbeam using porous material under clamped
boundaryconditiors. Based on Mindlin plate theory and MSCili,L P taddNAydin[38] studied
static bending and forced vibration of porous i&ro-plateunder moving loadMoreover the
MSCT also was employed fdree vibration analysis of magneto elastic porous FG circular
nanoplate byHosseini et al[39]. In this study, they employedthe first order shear theory to
predict the natural frequencies of the circular nanopisiteg the differential quadrature method.
According tothe aforementioned literatures, it can $eenthat few sizedependent numerical
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model for FG micro-plate including porosities have been developed. Additionatlye
isogeometric analysis (IGAJ40] has provedits ability in combining with norclassical
continuum theories througa number ofproposed sizelependent IGA finite elememhodels
[41-43].

To the best knowledgef dhe authorsthere is no study on thermal buckling apdst
buckling behaviors ofFG micro-plate with porosities on the basis of modified couple stress
theory and IGAavailable in the literaturdn this article,a nonlinearsizedependent numerical
solution for FG micro-plate with porosities is first established to fill this gap. Based on the
proposedseventhorder shear deformation plate thearyd the nonlinearan-Karman strain, the
governing equations are derived using®iHa O W R Q 1 VTI®=WMCSQFik 8napldyetb study the
sizedependentbehavios of FG micro-plate Moreover, the effects of porosities dmermal
buckling andpostbuckling responsesreinvestigated foeven, uneven and logarithmimeven
GLVWULEXWLRQ RI SRURVLWLHV WKUR Xh#terial KidpaniesLafFeN Q HV V T
calculated usinghe modified rule of mixtureassumption Also, the effect of material length
scale parameter, porosities vala fraction, type of temperaturese, boundary conditian FG
index and length to thickness ratio on thermal buckling poskbuckling behaviors of FG

micro-platewith porosities are investigated in desail

2. Basis formulations

2.1.Material properties
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Fig. 1. Porosity models of porousicro-plate

As shown in Fig. (1)the perfect and imperfedeG rectangulamicro-plate with length L,
width Wand height are consideredrhe plate is assuméd bemade offully ceramic €) onthe
top surface and fully metal on the bottom surfddes study investigasgthree porositiesnodels
that arelmperfectl, -1l and -lll. The porosity in Imperfeet model varieseven aaoss the
thickness direction, whereas Imperféict denots uneven andImperfectlll represents
logarithmic uneven digtution of porosity The effective material properties of F@icro-plate
are defined based on the modified rule of mix{@el0]. Hence the effective<RXQJTV PRGXO X\
E(z 3 RLVVR @4 ¥nditBrwdldxpansion [§z) coefficientfor Imperfectl, -Il and -1l can

bewritten infollowing form:

B0 B E @ 455
Imperfect-l:;:)@az) Q mQ% —ﬁg n € ., @ (1)
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mperfec grgﬂz) Q0 mQ; Hyom dbg 02 Hhg Q (3)
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In which, n is the gradient index or power law index thafime the variation of material

properties though thedirection /[ is porosity volume fractiofporosity parameter)t is noting

that setting /  for FG micro-platewithout porosities (Perfect FGM).

Fig. 2 illustratesthe variation of <R X QJYV PRGXOXV DFURVV M0:;KB WKLFNC
micro-platehavinga porosity volumdraction / 0.2. It can beseenthatn is power law index

that is takersuchas r Q J Q ». Themicro-platebecomeghe pure ceramiplate asn = 0 orthe

pure metalplate asJ L », respectively.Also, Fig. 3 plos <RXQJTV PR peKdéatXavid R |
imperfect AL/AL,O; FG micro-plate for power indexn = 1 andn = 5. With the existence of
porosities, the<RX QJ TV PrRagnkudeoclV Imperfect typesdecreasesnd becomedower

thanthat of Perfect FGM in which the lowest magnitudes obtained inimperfectl. However
<RXQJTV PRGXO XVimpéfécdLand<IB ldre nearly equal each other armncide

with that of Perfect FGM at the bottom and top suriades it can be see <R XQJTV PRGXOXV
Imperfectll is slightly lower thanthat of Imperfectlll. Especially, in the middle surface,
<RXQJTV PRGXOXV PDJQany-X&dexadtly eqghal U I HFW
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Fig. 2. The HITHFWLYH <RXQJTV PRGGH Micraplatebwith /porosity
parameter/ 0.2: (a) Imperfectl, (b) Imperfectll and(c) Imperfectlll
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Fig. 3. &RPSDULVRQ RI <RXQJTV PRGXOXV DFURVV W
AL/AL ,0; FGM micro-platewith / 0.2: Power indexn = 1 (left) andn =5 (right).

2.2.A sizedependenmodel forFGM micro-plate having porosities.

The displacement field of an arbitrary point ‘v, W' in plate domainv  : x gg?@
can bedefinedusingthe generalized shear deformation plate theof}446]:
uxyd uwxy 2D o g xy
ooy Oy 2850 ag(xy o Jla o (4

wixy, 2 w(xy
Where £ and £ denote the rotations of a point of rptane around thg-axis andx-axis of

crosssectiors inx-z andy-z planes, respectivelyA seventhorderfunctionf (2) = z- Z/h? - Z2/h*

+ (42')/(7h°) is chosen as the distributéghction and its first derivative isf ¢z = 1- (32)/h?-



(52/h* + (42°)IK°. It is clearly that the values of functioh Cz are zero az Y2, therefore

the transverse shear stresse®maticallyvanishonthe top and bottom surfacetplate.

According to the modified couple stress theory develdpedang et al[26], the virtual

strainenergy of Perfect and Imperfect FGMcro-plate is written as
@ 3y @grm GV (5)
In which the right hand side of E¢p) contairs two terms thatlefined the classical theory (first

F are the

>

term) and the modified couple stress theory (second term)ndtagionsl/, A, m

components of the symmetric stress tengareenstrain tensqgrcouple stresenomenttensor and

the symmetric curvature tensoespectivelywhich are defined as:

H % % W _“W_L&‘ﬁ (6)
i W XWX
1w WS
a 2 X Wxé (7)
T %curl u (8)
i ijl|/kl 9)
m 2G*F (10

where C,, ,G and are elasticity constants, the shear modtie material length scale
parameter repectively. u and Tare the components of displacement andotations

respectively

By substituting Eq. (4) into Eq. (6), the nonlinear M&&rmén straindispla@ment relations

are obtained as

HMQ " H IN(D]

. (11
sz yz p )]-l s

where
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It is noted that®" is thenonlinear components in-plang, which can be rewritteasfollows:

w,, 0%
L1 ' « Wo,°
'ﬁ' EAT 0 Wo,y« W @ (13)
« Y
WO,y WO,x—| °

According to Eq. (4) and Eq. (8), we obtain tlenponents of rotation vector:as

Ll wws Lo e,
2y wzg 2 w *1
1 u wwg 1 V\é .
= 208 =Y, fer 14
Y2 7z wxe 2 w ¥ €Ty (14
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Then, substituting Eqg. (14) into Eg. (7), we can obtain the followomgponentof curvature

vector.
B F O PFE E foz ¥
. (15
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According to Eqg. (9), the constitutive equasdar the relationship between the stresses and

strainsof FG micro-platewith porositiesaregiven by

1Ny W& 0nc
. (17)
2 N oow * Yy

Xz yz

Wherethe material matrice€ and G are defined as:

1 Qz a

O((
1 z 10Q z « Q
E z z 1 « E z 1 @
< 0; 6 2 % (19
1 0z1 @ 1 @ « 21 Qz 0 1,
1((
0 0 —«
24
and thethermal strain is expressed as
d zDT z2'1l 0O (19)

where T z T z Tisthe temperaturéise, T z and T are the current temperature and

initial temperature, respectively.

The inplane forcestnoments, higher order forces and shear foatesexpressed as

Nij; Yo 1 - 1,

hi2 o o o
My 3% 3V ze dzyg=xy
p- " & f(2 i (20

h/2

Q, 3Wf¢adz :=xy

h/2

By replacing Eq. (20) into Eq. (),7the stress resultant can égpressed in matrix form as

follows:
Nu; Al ZI.O/ZBU EUY 0 a |(_)|_ N]f(?' 1
MY e BY DY FU 0« N o M o L L
3 « 3 th 6) O‘ 21
SRE)U 0/4 Eu Fu Hu O « ‘N®° @h ®° u % 0 ( )
o o & ci'l_ o Oo __ o
in which
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h/2
A"BYDUE'F'H" 31z,2,f(2),zf(2, f(3Cd

h/2

hi2 (22
D* 3% cz_%Gdz 4,

h/2

and thermal stress resultant are defined as

e P27 7
N, M, P,~  3C Dz z { ¥ 2 (23)
b2 o o
0 - .
<

It is assumed thahe WHPSHUDWXUH YDULHVY RQO\ WKURXJ#eWKH SO
temperature field is unchanged in the bottom and top ssréddbe plate. In this paper, three

case temerature rise are imposed
- When the temperature is unifoyndistribued WKURXJK WKH SODWHIV W]
temperature change will be a constant and take the fofm T T, whereT, is the

initial reference temperature afdis thecurrent temperaturélsingthis into Eq. (23), the

critical temperature difference is given as

N, . e E Z
T, = withX 3 ———dz (24)
X h2] Qz

- ,Q FDVH RI OLQHDU WHPSHUDWXUH ULVH WKH WHPSHL
thickness is giveby:

Tz T, ", (25
From Eg. (23) and Eq. (25), the critical temperature differeanebe derived by
N X T T EzDz
o Ne S Loy £ 22272 18, 26)
Y 2 1 Qz h 20

- For the nonlinear temperature rise, a nonlifaaction depend on the thickness of FGM

plate can be taken as folley7, 48}

nip, i f i
Tz g vy, Clel K @)
ioni 1A oni g
where r E %?@ ‘T, T. T, K. % k.and k, are the thermal conductivity of

ceramic and metal, respectively.
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From Eq. (27) and Eq. (25), the critical temperature difference in nonlinear temperature field

is givenby:
N ZT T E zDz it ‘
|-|-cr cr m i W|th Z §/2 S — r .kmc/ l.<mc §dz (28)
Z 2 1 Qz o Nt 1A oni g

Furthemore,from Eq. (10) and Eq. (15)he couple stress moment resultant canabeutated
in the following form
N A”Bc 0 o o2 K %
Me BeeEr 0 0 o0 B e
m ® %0 0 X Y T« Fp 0 (29
R 0 0 Y Z° V% E
Te—=° 0 (_’ 0O T V° W% °|:;_

where

(30

By inserting Eq. (2) and (®) into Eq. (5), the virtual strain energy plate is now rewritten

asfollows:
(31

By using the principle of virtual displacemetite discrete Garlekifi Weak form forpost
bucklingproblem ofFGM micro-platein thermal environment can be established such as:

(32

In which is the transpose of gradiesperatoy and is the in

plane thermal load th# calculated according to Eq.3R

12



3. NURBS-based formulation offunctionally graded micro-plate with porosities

In this section, discrete equations for the present problendenmeed using IGA. The

appropriation of the displacement fields in terms of NURBS can be expreqd4&d 43, 50]

(33

Where and arethe vector of degree of freedom associated with

the control point and the shape functiprespectively

Substituting Eq. (3) into Eq. (12)the strain components can f@gvritten in matrix form as

(34)
And the variation othe strain componentis calculate as

(39
Where is the linear infinitesimal strain,e.

(36)
and is the nonlinear straimatrix that is adnction of displacement

(37)

13



Similarly, by substituting Eq. @ into Eq. (L6) the cauple stress curvature comporeare
rewritten in matrix form as

(39)

In which

(39

Substituting Eg. (8), (35) and Eqg. (8) into Eq (32) and eliminating the virtual displacement
vector , the matrix form of the global equilibrium equations firedependent thermal
buckling of FGM micreplate having porosities can be established in the following matrix form

(40)
where and are the linear and nonlinearglobal stiffness matrix
respectively. is the initial stress stiffness matrix derived from the initiatptane thermal

load, while is thethermal load vectoiThese maices can be defined in a clear foasn

(41)

4. Nonlinear solution procedure
4.1 Nonlinear bending problem

In this sectionthe nonlinearequilibrium Eq. (37) is solved by using tiNewtonRaphson
technique At a specific load levein™, the residual force (imbalance fordejd') at i" iteration
is computed as follosv

14



(42)

Throughout iteratin, the residual force tend era Whenthe residual force is still large
enough, the displacement(at 1)" iteration is then calculated as

(43)
The increment displacement  is computedisingfollowing equation

(44
In which the tangent stiffness matrix ati" iteration is defined as

(49
Wherethe stiffnessmatrix contains the variables given by

(46)
And is the geometric stiffness mattixat can be obtained from-plane forces ifeq. (23) as
follows:

(47)

The iteration is repeated untilobtaining the convergence condition of displacement as
follows:

(48)

4.2 Nonlinear eigenvalue problem

In.case of pure ceramic or metallincro-plate under uniform temperature rise, ttieermal
bending momentdy, in Eg. (25) are neglected and only membraneforces aregenerated.
Similary, when the plate issupported withfull clamped edgesthe bending moments can be
neutralized bysupport reacting moments, atie plate remains flat in prbuckling statg51-54].
Hence the bifurcationtype buckling is exhibited for FGIvhicro-plate

Firstly, thelowest eigenvalue (load factor) and correspondingigenvectocan be achiewe

by solving thdineareigenvalue equation as follow

15



(49
By multiplying the load factor with the initial load, thecritical buckling temperatures
obtained. Then the critical temperature difference s calculated by using Eq24), (26)
and Eq. (28) depenthg on different temperature risAfter linear bucklingthe plate endures a

large deformation, sthatthe load factor must be traced by nonlinear equilibrium equation
(50)
Next, the eigenvectors scaledup, holding the maximum displacemeas 0.h for each

displacement incremental step, the neownlinear stiffness matrix is updatedlin this step,
the new load factoand eigenvector ambtainedby solving Eq. (50). This procedure is repeated
until the load factor error between two succeeding iteratisnsmaller thanthe desired error
tolerance . In the same way, the corresponding load fadigenvalues)and

eigenvector can be found by increasing the maximum displacem@rta®.3h , etc. andhe

thermalpostbucklingequilibrium path may be achieved.

5. Numerical results and discussios

One of the mairobjectives of this section i® showthe effect ofthe small scale anthe
existence of porosity on the nonlinear behaviors of FGM nptaite under uniform, linear and
QRQOLQHDU WHPSHUDWXUH GLVWU Iexnan®ipttovsudareos hkle WKH S
made ofpure cerami@and pXUH PHWDO UHVSHFWLYHO\ ,Q3RLVWREX®QDL
ratio, thermal expansion coefficient and thermal conductivityAbfAL ;O3 micro-plate are
assumed to be temperatinglependent anthkenask; = 380 GPa, @= 0.3, = 7.4x10° 1/K,
ke = 10.4 W/m K for alumina, anl,, = 70 GPa, @=0.3, & = 23x10° 1/K, ky, = 204 W/m K

for aluminum. In additionthethreeboundary conditiosnused in this study are

= Simply supportvith movable edge (SSSS1):

- Simply supportwith immovable edge (SSSS2):.

16



- Clamped support (CCQC

5.1.Bending analysis

To show the accuracy of the developed approachstwey thesmall scale effect on the
nonlinear bending operfectFGM squaremicro-plate under uniform distributeldad which is
incrementally appliea@fter 20 steps to reach gp= 5.4x16 N/m?. Where thematerial properties
of the top and bottom surfaces, respectivelyFare 14.4 GPaE, =1.44 GPaDQG WKH 3RLVVR(

ratio of both materials are assumed to be equapas@= 0.38. The obtaineddimensionless
central deflection versus load parameter for SSSS1 and CCCC

boundary conditions areonpared withthose given byinite element model based organeral
third-order shear deformation theo{@TPT) [55]. Fig. 4 shows a goodagreemenbf presented
results in comparison witthose from GTPT fopower ind& n = 0.5, 1land5. FromFig. 5, it can

be seenthattheload-nonlinear deflection curvesf homogeneous micsplate (n = 0) with =

0, 0.5and1 agreewith those of reference solution

Fig. 4. Comparison of loaghonlinear deflection curves of FGM square miptate with
for variouspower indexn under:SSSS1 (left) and CCCC (right).

17



Fig. 5. Small scale effect on loaabnlinear deflection curves of homogeneous square m
plate underSSSS1 (left) and CCCC (right).

Next, the nonlinear bending responsesnalvable, immovabléL/AL ;03 imperfectmicro-
plateunder linear and nonlinear temperature distributieniavestigatedit can be noted thdhe
thermal force vector on the right handies of nonlinear Eq. (40gxists due to the effect of
thermal bending moments develop together with membrane foloésg temperature rise.
Hence, the NewtoRaphson techniquelescribedin section 4.1is adopted to get the
temperaturalisplacementcurves For comparison purposekig. 6 plots the loaddeflection
curves for simply supporteglate with immovable edgeunder nonlinear temperature rigéth
power indexn = 0.5, 1and 10. Clearly, there is good agreemdrdtween the present result and
the solution of Loc et al[48], andthe deflectionoccurs immediately whethermal loadis

applied In case ofnh = 2 and length to thickness ratigh = 100, Fig. 7-9 reveal the effects of

porosity on theload-deflection curves of FGM miceplate for Imperfectl, -Il and -lll by
considering different porous volunfraction . These figures indicatiat increase
of temperaturevariation ~ leads to highedimensionlessentraldeflection It is also

found that the linear temperature rise produces more transverse deflectlate tompared to
those ofnonlinear temperature rise. Moreovir, imperfect model as thgorosity parameter/
rises the displacement decreasestla same temperature levdh Fig. 1Q for comparison
purpose, theemperaturalisplacement nonlinear curves SSSS2AL/AL ,03 square plateare
illustrated for under nonlinear temperature rigeis interesting that the deflections
of imperfect modehre lower than those of perfect mod#éhe resuls of Imperfectl arelower
thanthoseof Imperfectll, -Ill and thedeviation amplify as the porosity parametesrease from

to . However, the temperaturalisplacement curves otmperfectll are

approximatelyequal tothose oflmperfectlll. Consequentlythe porosity effect on nonlinear
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behavior based on temperature change FGM microplate in Imperfectl model is more

significant than in the Imperfe¢t and-I1l models.

Fig. 6. Temperaturalisplacement of SSSS2 square (A}dd) plate undernonlinear
temperature rise through thicknekéhE100)

Fig. 7. Temperaturalisplacement curves of SSSS2 ImpeHeeGM (Al/Al ,O3) square plate
under linear (left) and nonlinear (right) temperature figlk £100,n=2)

Fig. 8. Temperaturalisplacement curves of SSSS2 ImpeHeédEGM (Al/Al ,0;) square
plate under linear (left) and nonlinear (right) temperature ki$e<100, n=2)
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Fig. 9. Temperaturalisplacement curves of SSSS2 ImpeHdcEGM (Al/Al ,O3) square
plate under linear (left) and nonlinear (right) temperature ki$e= 100,n=2)

Fig. 10. Temperaturalisplacement curves of SSSS2 Perfect and Imperfect FGP {BA
square plate under nonlinear temperature rise through thickiass 100,n=2) with

(left) and (right).

Subsequentlyin_the following examplenonlinearthe temperaturdisplacement curvesf
Imperfectl, -Il modelare associated with the change of material length scale ratioas
observed from Fig. 11n this article the material parameter is assunmedqual to :
obtained from experiment work done by Lam ef{%®]. According to this figurean ncrease in
length scale ratio leado a decrease ircentral deflectiorat a same temperature leaid an
increase in temperature variatiaha same deflection level. Fig. 12 shows the effect of material
power law indexn on nonlinear bending behavioo$ Imperfectll FGM micro-plate predicted

by conventional theory and MCST . One can sethatthe plate witm = 10 has
the higherdeflectionthan the others.His isexplained byWKH UHGXFWLRQ RthaaRXQJTV

results fromhighermetal inclusion in the imperfect FGM miepdate.
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Fig. 13 showsthe nonlinear responses iafiperfectAL/AL ,O3; squaremicro-plate subjected
to immovablesimply supported boundary conditeander linear and nonlinear temperature.rise
One can sethat the MCST produces smaller deflection more than conventional theory owing to
stiffer stiffness of micreplate for nonzeros material length scale ratiburthermorethere is

noteworthydifferences beteen linear and nonlinear typAs show in Fig.-14,the

plate bend towardsthe ceramic side due to the effect of thermal bending momlens clear

thatthe deflectios predicted by MCST are smaller than those predicteddbgssical

model

Fig. 11. Temperaturalisplacement curves of SSSS2 ImpeHeeft) and Imperfectl (right)
FGP (Al/ALLO3) square plate under linesmperature rise through thickne&sh(= 100,n=2,
temperature independent material property) with  for different material length scal

ratio

Fig. 12. Temperaturaisplacement curves of SSSS2 ImpedédEGM (Al/Al ,0Oz) square
micro-plate under linear temperature rise/tf = 100,/ 0.2) for length scale ratio

(left) and (right).
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Fig. 13. Temperaturaisplacement curves of SSSS1 ImpeHedEGM (Al/Al503) square
micro-plate for length to thickness (left) and (right).

Fig. 14. Comparison of deflection of SSSS1 Perfect FGM (left) and Imperfeht) FGP
(Al/AI ;03) squaremicro-plate under linear temperature rise at

5.2. Buckling analysis

We now analyzeéhe accuracy of the present model throsgire buckling examples for
perfect FGMplate . It is noted that the linear eigenvalue Eq. (49) ismddin this

section Table 1 compares the critical buckling temperatofeAL/AL ,O3; square plateinder
uniform temperature ris®r simply supporteglates that are movable at all edgBse presented
results agree well with those of seamalytical methoabtained by Matsunad&7], analytical
solution proposed by Javaheri and Esl@Bi] and isogeometric finite element method based on
third order shear deformation reported by Loc e{%8]. To further verify the accuracy of the
present methodhe critical buckling temperatws®f clamped AL/ALO; circular platefor L/h =

100 are given imable 2.Through compare with the solution Bfatsunagd57], Javaheri58]

and Loc et al[60] for linear and nonlineatemperature typeit is found thatthe presented

numerical method can accurately predict the linear thermal buckling prolblEGM plate.
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Next, a detailed study of the effect of porosity on the thermal buckling of AlQAkquare
micro-plateis carriedout in Table 3. Tis table indicatethatthe increase of porosity parameter
[ leads to highercritical buckling temperaturdhis phenomenon is due to the reduction of the
thermal expansion coefficienmt Eq. (33) that lead to decrease the 4plane thermal load.in Eq.
(23) before the platés buckled by temperature rideis alsoobservedhatImperfectil-and -l
modek predict lowervalue compared to Imperfettnodelfor material power index = 0.5and
1. Accordingly, the pattern of porosity distributicend the magnitude of porosiparameter/
influences the buckling behaviof imperfectFGM microplateand the imperfect model produce
higher critical buckling temperature than perfect moéégo, this inference igonsistent with
the findings of Barati and Zenkoufl7].

Thevariationof material power index leads to change in material properties tla#fect the
change ofbuckling behavior of plate. Fig. 15 shavthe effect of parametem on buckling
temperaturef Imperfectl and-Il AL/AL ,O3 square micreplate under uniform temperaturise

for various material length scale rajo . According to this figurefor all values of , the

buckling temperature decreasapidly whenthe valuen risesfrom 0 to 3 but this trend tersko
be steady as the power indaxs higher than 3In other words, pure ceramic produces the
highestthermal buckling but the lowest resulis got from pure metalBesides,the buckling

temperaturancreass as and the obtained result for is higher than the other
values of . Moreover for furtherinvestigaion of the effect of length scale ratio on the
thermal buckling of micrgplate,Fig. 16 showsthe comparison of Imperfettand -1l with

vary fromO to 1. It is-noted that denote the classical theory. Similar to abereentioned
statementas increass, the buckling temperature increasdue to the intensification of the
strength of micreplate that come from sizdependent effectAs the ratio , the

difference between classical and MCST modelnist remarkable, however the sidependent

effect on thermal buckling is more considerable as the ratio . Fig. 16 also reveals that

the deviations of results obtained from Imperieend -1l model enlarge as porosity volume

fraction [ and ratio increase.
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Table 1. Critical buckling temperature of FGM square plate under uniform temperature rise.

L/h Power indexh  Present HSDT[57] CPT[58] TSDT[58] TSDT[59]
10 0 1618.782 1599.294 1709.911 1617.484 1618.99
0.5 923.2382 914.1891 - - 923.3422
1 758.4367  749.26 794.377  757.891 758.5504
5 679.7767  669.402 726.517  678.926 679.4828
10 692.9872 683.211 746.927  692.519 692.8362
100 0 17.0896 17.087 17.099 17.088 17.1152
0.5 9.6835 9.7068 - - 9.6995
1 7.9401 9.939 7.943 7.939 7.9538
5 7.2608 7.259 7.265 7.26 7.2697
10 7.4635 7.462 7.469 7.462 7.4719

Table 2. Critical buckling temperature ¢fGM square plate undegmperature rise.

Power index n Temp rise Present TSDT[59] FSDT[61] FSDT[62] CPT[62]

0 Uniform 12.7299 12.7247 12.7130 12.7120 12.7160
Nonlinear 25.4598 25.4494 25.4260 25.9240 25.4330

0.5 Uniform 7.2132 7.2017 7.2030 7.2020 7.2040
Nonlinear 19.0263 19.0193 18.9960 18.9960 19.0020

1 Uniform 5.9146 5.9128 5.9070 5.9060 5.9070
Nonlinear 15.3975 15.3929 15.3770 15.3730 15.3780

Table 3. Compari®n of critical bucking temperature of SSSS1 Imperfect FGijuaremicro-plate
under uniform.temperature rise

L/h n Imperfectl Imperfectl| Imperfectlll
01 0.5 11.292 10.719 10.693
1 8.912 8.701 8.682
0 0.2 0.5 13.474 11.894 11.778
1 10.062 9.545 9.462
03 0.5 16.624 13.230 12.942
1 11.388 10.476 10.278
01 0.5 13.556 12.747 12.716
1 10.853 10.450 10.426
0.2 0.2 0.5 16.354 14.146 14.008
1 12.501 11.474 11.373
03 0.5 20.439 15.733 15.392
1 14.577 12.605 12.364
0.4 0.1 0.5 20.348 18.831 18.783
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Fig. 15. Effect of power indexn andlength scale ratio on critical buckling temperature ¢
Imperfectl (left) and Imperfecll. (right) FGM (Al/Al,Os) squaremicro-plate ( ,
/ 0.2) under uniform temperature rise.

Fig. 16. Porosity volume fraction andlength scale ratio on critical buckling temperatur

of Imperfectll FGM (Al/Al ;O3) squaremicro-plate (
nonlinear (right) temperature rise .
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5.3. Postbucklinganalysis

In the following partby eliminating the effect of thermal bending moment in Eq. (&%),
postbuckling path istraced through solving nonlinear eigenvalue equation Eq. Th@reafter
the obtained results for all calculation parameters are presérdgederify the thermalpost
buckling behavior of FGM micreplate having porosity, the thmal pog-buckling path of
isotropic clamped skew platubjected uniform temperature distributienconsidered with the

following material propertiesE = 1 GPa, & 0.3, D= 10°/°C, and the buckling temperature is

normalized as , Where is the flexuralrigidity. Fig. 17

indicates that the present curvesigyhtly higher than that of Loc et 48] and isin excellent
agreement with the curve of Prabhu and Durvafigd It can be seen thdhe seventforder
shear deformation plate theory produced more accurate thanltthat of Loc et al[48] in

comparison withtheexact solution (Perturbation method) of Prabhu and Durv§ga]a

Fig. 17. Thermal posbuckling path of isotropic clamped skew plate ( , angle
skew )

Next, Fig. 1821 illustratethe influence omateriallength scale ratiaadius to thickness and
porosity parameter on thermpbstbuckling response of perfect and imperfect FGMmped
circular microplate.Fig. 18 show the variation ofthe thermalpostbuckling paths ofplate for
the length scale ratio =0, 0.2, 0.4and0.5. It can be seen from the figure ththe thermal

resistance of FGM micrplate for perfect and imperfect cases incremse increass, which

is due to the influence of sizdependent effect RQ WKH SODWas§dvonvWLIIQH

MCST. The themal postbuckling curves show the different between classical model
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and MCST,whereinthe variation is remarkable for . Fig. 18also reved that, after
bifurcation point the maximum oubf-plane displacement increaseith the increase in the
critical temperatureSubsequently, there is a sudden drop in libekling path(or thermal
resistance)which follows the secondarypostbuckling path. This behaviocorresponds to the
change ofpostbuckling mode shapas presented by Singha et [@4] and Prakash et d53].
Furthermore, the transitional panfrom the primaryinstability to secondary.instability are
shifted to the rightvith increase irthevalue of ratio  as illustrated in Fig. 18n Fig. 19,0ne
can see thahe mode shape is symmetric with respect to middle line of ipléke primary post
buckling statewhereaghe mode shape become unsymmetricaghe secondarpostbuckling
state.The displacement contour and the maximum displacement shift from ¢tewtnds the

edge of circular plate.

Fig. 20showsthe effect ofthe ratio on thermal posbuckling path of imperfect FGM
micro-plate for classical model and MCST. model . It is clearly that
decrease the value of radius to thickness ratio enlarge the thermal restance of imperfect
plate. Another observation from Fig. 20 is that the-gigpendent effect leads to an

increase in podbuckling critical temperature.

The variation of the thermal buckling path for various values of porosity paranietiso is
depicted in Fig. 21. According to this figure, it can be concluded that the impe@&tinficro-
plate has higher critical buckling and pasickling temperature than thenfect FGM micre
plate, which wagoncluded in Ref[16, 65] Furthermorethe thermal resistance increaséth

the rising value of porosity parameter.
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Fig. 18. Effect of length scale ratio  on thermalpostbuckling pathsof Perfect FGM anc
Imperfect FGP (AI/AJO;) clamped circular micrplate (/h = 100,n =1, / 0.2) under
uniform temperature rise through thickness

Fig. 19. Buckling mode shapes of Imperfdet-GP (Al/Al,Os) clamped circulamicro-plate
(L/h=100, n=1, / 0.2) for length scale ratio (left) and (right) under

uniform temperature rise through thickness

Fig. 20. Effect of radius to thickness  on thermalpostbuckling behavior oflmperfectll
FGP (Al/Al ;05) clamped circulamicro-plate(n = 1, / 0.2) for lengthscaleratio
(left) and (right) under uniform temperature rise through thickness
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Fig. 21. Thermal postbuckling behavior oflImperfectl (left) and Imperfecll (right) FGP
(Al/Al ,03) clamped circulamicro-plate (L/h = 50, n = 1, ) for different porous

parameter under uniformtemperature rise through thickness
6. Conclusion

In this paper, we have analyzed the nonlinear bending, buckling, andyméding behaviors
of porous FGM micreplates subjected to thermal load using IGA associated with MTBE .
material properties of FGM miciplate witheven,; uneven and logarithmimevendistribution
RI SRURVLWLHY WKURXJK WKH WKLFN @ddified] vle®L dikilkdV LR Q D!
assumption. A proposedeventhorder shear deformation platheory and on-Karmén
assumptiorare utilized to establish the nonlinear governing equsatioat are solved by using
Newton-Raphson iteration technique to acquire the nonlinear behaviorcod-plates. Also, the
effect of length scale ratio, material ppwindex,porosity distribution type, porosity parameter,
temperature rise, radius to thickness and boundary corglitrediscussedThrough the detailed

parametric analysisome remarkablebservation are drawn as follew

x The thermal nonlinear bending response of FGM mpdateis caused by the existence
of thermal bending moment and the extenddending. Thexistence of porosity would
decrease thdisplacement oficro-plateplateat a same temperature level, anddffect
of uniform porositymodel (Imperfectl) is more remarkable thamiform (Imperfectll)
and logarithmicunevenmodel (Imperfectlll). Furthermore,the sizedependent effect

leacs to a decrease in deflection at a same temperature level and an increase in

temperature variation at a same deflection level.
X The porositymodel :g&eMr ; giveshigher critical buckling and po$iuckling temperature
compared with perfect FGM micreplate :eselL r; Also, uniform porosity model

procedure more thermal resistance than evernagadithmicunevermodel.
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X The critical buckling and podtuckling thermal resistance increase with the rising value
of porosity parameter/. Besides, it is found that Imperfedtmodel has higher critical
buckling and posbuckling temperature than Imperfdttmodel.

X Thecritical buckling and pogbuckling temperature predicted by modified couple stress
theory arehigher than those derived from classiocabddel are The increase in material

length scale ratio  leads to increase the buckling as well as pbstkling thermal

resistance.
X The radiugto-thickness ratid¥’h greatly affects the mechanica@sponseas the thermal

resistance of imperfect plates gets larger with decre&imgatio.
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