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ABSTRACT

In this article, we present for the first time a research analysis for the size-dependent effects
on thermal buckling and post-buckling behaviors of functionally graded material micro-plates
with porosities (imperfect FGM) using isogeometric analysis. A seventh-order shear deformation
plate theory associated with the modified couple stress theory (MCST) is particularly imposed to
capture the size-dependent phenomenon within imperfect FGM micro-plates. The material
properties of imperfect FGM micro-plates with three different distributions of porosities
including even, uneven and logarithmic-uneven varying across the plate thickness are derived
from the modified rule-of-mixture assumption. The nonlinear governing equation for size-
dependent imperfect FGM micro-plate under uniform, linear and nonlinear temperature rise is
derived using the Von-Karmén assumption and Hamilton’s principle. Through numerical
example, the effect of temperature rise, boundary conditions, power index, porosity volume
fraction, porosity distribution pattern and material length scale parameter on thermal buckling

and post-buckling behaviors of FGP micro-plates are investigated.

Keywords: Porosity; size-dependent; Functionally graded material micro-plates, Thermal

buckling; Thermal post-buckling; modified couple stress theory; Imperfect.
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1. Introduction

The earliest functionally graded materials (FGMs) were first developed by a group of
Japanese researchers in the mid-1980s, which are composite materials with microscopically
inhomogeneous property [1]. FGMs are formed by continuously varying the volume fraction of
ceramic and metal through the thickness direction. The advantages of these materials are low
thermal conductivity, less sensitive to crack and delamination, and ductility. The FGMSs are now
widely applied in a variety of engineering applications including automobile, nuclear energy,
aerospace, electronics, biomaterials, solar energy and commodities [2-6]. During fabrication
process of FGM, the porosities and micro-voids can take places inside the material as a result of

technical problems [7, 8].

The existence of porosities may decrease the material strength and may greatly affect the
mechanical properties of structures. This means that understanding the influence of the porosity
on FGM structures is of great importance in design and manufacturing. Accordingly, linear and
nonlinear analysis for imperfect FGM plate and beam with porosity have been attractive to
researchers. Wattanasakulpong and Ungbhakorn [9] considered linear and nonlinear free
vibration of FGM beams having porosities. They proposed the modified rule-of-mixture to
approximate the material properties of FGM beam with porosity phases. Wattanasakulpong and
Chaikittiratana [10] also employed the Chebyshev collocation method to investigate the porosity
effect on natural frequencies of imperfect FGM Timoshenko beam with even and uneven
porosity distribution through the thickness direction. Chen et al. [11] carried out the static
bending and buckling analysis of porous FGM beam under different boundary conditions, where
the porosity distribution is assumed to be graded through thickness’s direction. Ebrahimi and Zia
[12] employed Galerkin’s method and multiple scale method to study nonlinear vibration
behavior of FG beam made of porous material. Atmane et al. [13] also derived a closed form
solutions for free vibration, static bending and buckling of FGM beam with porosities resting on
elastic foundations. Akbas [14] presented a finite element solution for nonlinear static analysis of
porous FG beam under temperature rising, which is derived from heat transfer equation. By
using hyperbolic shear deformation and Navier technique, a closed form solutions for vibration
of FGM plate having porosities was also obtained by Mouaici et al. [15]. Barati and Zenkour

[16] presented an analytical solution for free vibration of a porous FG piezoelectric plate in



thermal environment with different boundary conditions, in which the material properties of two
pattern of porous distribution are assumed according to the modified power law model. Recently,
Barati et al. [17] also developed an analytical solution based on refined four variables plate
theory for free vibration analysis of FG piezoelectric plate with porosities. Shahsavari et al. [18]
proposed a quasi-3D hyperbolic plate theory for free vibration analysis of FG plates on elastic
foundation with even, uneven and logarithmic porosity distribution. Karami et al. [19] studied
the wave propagation problem of porous FG nanoplate with in-plane magnetic field resting on
Winkler Pasternak foundation. More recently, Pham et al. [20] derived a closed form expression
for buckling and post buckling of simply supported porous FG plates on an elastic foundation.
Nguyen et al. [21] developed a polygonal finite element method for geometrical nonlinear
analysis of porous FG plates. A 3-D exact solution was obtained by Zhao et al. [22] for vibration

analysis of porous FG rectangular plates with three different types of porosity distributions.

In recent years, a number of size-dependent elasticity models based on non-classical
continuum theories have been developed [23-29] for capturing the small scale phenomena for
linear and nonlinear analysis of micro-/nano-structures. For the sake of simplicity of size effect
exploration, the modified couple stress (MCST) was first introduced by Yang et al. [26] based on
the classical couple stress theory that proposed by Mindlin [24], Toupin [27] and Koiter [28]. In
this theory, the number of material length scale parameter is reduced to one instead of two. Due
to this advantage, many researchers have focused on studying the size-dependent effects on static
and dynamic behaviors of micro beams and plates based on the MCST [30-35]. More recently,
the MSCT has been applied to explore FGM microstructures with porosities. Shafiei et al. [36]
developed a size- dependent nonlinear Euler-Bernoulli microbeam that accounted for nonlinear
vibration behavior of imperfect FG microbeam made of porous material. Shafiei and Kazemi
[37] investigated the effect of porosities, small scale effect, nonlinear, FG index, etc., on
nonlinear buckling behavior of micro-/nano-beam using porous material under clamped
boundary conditions. Based on Mindlin plate theory and MSCT, Simsek and Aydin [38] studied
static bending and forced vibration of porous FG micro-plate under moving load. Moreover, the
MSCT also was employed for free vibration analysis of magneto elastic porous FG circular
nanoplate by Hosseini et al. [39]. In this study, they employed the first order shear theory to
predict the natural frequencies of the circular nanoplate using the differential quadrature method.
According to the aforementioned literatures, it can be seen that few size-dependent numerical
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model for FG micro-plate including porosities have been developed. Additionally, the
isogeometric analysis (IGA) [40] has proved its ability in combining with non-classical
continuum theories through a number of proposed size-dependent IGA finite element models
[41-43].

To the best knowledge of the authors, there is no study on thermal buckling and post-
buckling behaviors of FG micro-plate with porosities on the basis of modified couple stress
theory and IGA available in the literature. In this article, a nonlinear size-dependent numerical
solution for FG micro-plate with porosities is first established to fill this gap. Based on the
proposed seventh-order shear deformation plate theory and the nonlinear von-Karman strain, the
governing equations are derived using Hamilton’s principle. The MCST is employed to study the
size-dependent behaviors of FG micro-plate. Moreover, the effects of porosities on thermal
buckling and post-buckling responses are investigated for even, uneven and logarithmic-uneven
distribution of porosities through the thickness’s direction, where the material properties are
calculated using the modified rule of mixture assumption. Also, the effects of material length
scale parameter, porosities volume fraction, type of temperature rise, boundary conditions, FG
index and length to thickness ratio on thermal buckling and post-buckling behaviors of FG

micro-plate with porosities are investigated in details.

2. Basis formulations

2.1. Material properties
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Fig. 1. Porosity models of porous micro-plate

As shown in Fig. (1), the perfect and imperfect FG rectangular micro-plate with length L,
width W and height h are considered. The plate is assumed to be made of fully ceramic (c) on the
top surface and fully metal on the bottom surface. This study investigates three porosities models
that are Imperfect-1, -11 and -1ll. The porosity in Imperfect-l model 'varies even across the
thickness direction, whereas Imperfect-Il denotes uneven and  Imperfect-1ll1 represents
logarithmic uneven distribution of porosity. The effective material properties of FG micro-plate
are defined based on the modified rule of mixture [9, 10]. Hence, the effective Young’s modulus
E(z), Poisson’s ratio v(z) and thermal expansion «(z) coefficient for Imperfect-1, -1l and -I11 can

be written in following form:

E(z):(EC—Em)(%+%jn +E, —%(EC +E,)
Imperfect-1: <v(z) =(v, —vm)(%+%jn +v, —g(vC +Vy) (1)
a(z)=(a, —am)(%Jr%jn +a, —g(ozC +a,)

E(z)=(E, - Em)(%+%jn {E, —%[1—%](& +E,)

2

a(z)=(e, —am)[%+%j” +a, _g[l—¥j(ac +ay,)

Imperfect-1I: <v(z) = (v, —vm)(%+%jn +v, _é(l_%J(VC +Vy) (2)




E(z)=(E, - EQG%)H +E, - |og(1+§)(1—¥](a +E,)
Imperfect-11l: < v(z) =(v, —vm)(%+%jn +v, - Iog(l+§j[1—%j(vc +Vy) (3)

h
a(z)=(a, —am)(%Jr%]n +a, — Iog(lJrgj( —%J(ao +a,)

In which, n is the gradient index or power law index that define the variation of material

properties though the z-direction. & is porosity volume fraction (porosity parameter). It is noting

that setting & = 0 for FG micro-plate without porosities (Perfect FGM).

Fig. 2 illustrates the variation of Young’s modulus across the thickness of AL/AL,03; FG

micro-plate having a porosity volume fraction &£=0.2. It can be seen that n is power law index

that is taken such as 0 < n < oo. The micro-plate becomes the pure ceramic plate as n = 0 or the
pure metal plate as n = oo, respectively. Also, Fig. 3 plots Young’s modulus of perfect and
imperfect AL/AL,O3 FG micro-plate for power index n = 1 and n = 5. With the existence of
porosities, the Young’s modulus magnitude of Imperfect types decreases and becomes lower
than that of Perfect FGM, in which the lowest magnitude is obtained in Imperfect-1. However,
Young’s modulus magnitude of Imperfect-11 and -I11 are nearly equal each other and coincide
with that of Perfect FGM at the bottom and top surfaces. As it can be seen, Young’s modulus of
Imperfect-11 is slightly lower than that of Imperfect-11l. Especially, in the middle surface,

Young’s modulus magnitude of Imperfect-1 and -1 are exactly equal.
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Fig. 2. The effective Young’s modulus of AL/AL,O; FGM micro-plate with porosity
parameter £=0.2: (a) Imperfect-1, (b) Imperfect-Il and (c) Imperfect-111
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Fig. 3. Comparison of Young’s modulus across the thickness of Perfect and Imperfect
AL/AL,O3; FGM micro-plate with £=0.2: Power index n = 1 (left) and n = 5 (right).

2.2. A size-dependent model for FGM micro-plate having porosities.

The displacement field of an arbitrary point U= {u,v, W}T in plate domain V = Qx [—gg]

can be defined using the generalized shear deformation plate theory as [44-46]:

00X, Y,2) = Uy (x, y)—z%+ £(2)5.(x.)

v(x,y,z)=u0(x,y)—zw+f(z)ﬂy(x,y) :(‘—Zhszsgj @
W(X, Y, 2) = Wo (X, y)

Where £, and B, denote the rotations of a point of mid-plane around the y-axis and x-axis of

cross-sections in x-z and y-z planes, respectively. A seventh-order function f (z) = z - 2%/h? - 2°/h*

+ (42")/(7h% is chosen as the distributed function, and its first derivative is f'(z) =1 - (3z°)/h’ -



(52%)/h* + (42°)/h°. 1t is clearly that the values of function f'(z) are zero at z==+h/2, therefore

the transverse shear stresses automatically vanish on the top and bottom surfaces of plate.

According to the modified couple stress theory developed by Yang et al. [26], the virtual

strain energy of Perfect and Imperfect FGM micro-plate is written as:

3U = (0,85, +mdx,)dV (5)

In which the right hand side of Eq. (5) contains two terms that defined the classical theory (first

term) and the modified couple stress theory (second term). The notationse; , ¢

i My, z,; are the

components of the symmetric stress tensor , Green strain tensor, couple stress moment tensor and

the symmetric curvature tensor, respectively, which are defined as:

RNGIVE
gij ZE %4__]4_%% (6)
2( OX;  OX% 0% OX;

_1(2q, 6,

Zij_Z(@Xj+5XiJ (7
1

0, =§curl(ui) (8)
g =Ciuéu ©)
m; =2G(°y, (10)

where C;, ,G and C(are elasticity constants, the shear module, the material length scale

parameter, repectively. u. and 6@ are the components of displacement and rotations,

respectively.

By substituting Eq. (4) into Eq. (6), the nonlinear Von-Karman strain-displacement relations

are obtained as:

:
€= {gx €, yxy} =g, +zK, + f(2)x,

: 1)
Y={re ) =12,

where



L NL
g =8 +& =1 Vo, +E W,
Ug.y + Vo 2W, , Wy
(12)
WO,xx ﬁx,x
T

I(1 == WO,yy 5 K2 = ﬂy,y 5 8s z{ﬂx ﬁy}

2W ﬂx,y +ﬂy,x

0,xy

It is noted that &) is the nonlinear components of in-plane, which can be rewritten as follows:

W, Wo.y
0,y 0,x

. W, O W
sg‘L:EAge= 0w, { O'X} (13)
W

According to Eq. (4) and Eqg. (8), we obtain the components of rotation vector as:

0 _1[@_@}1(2%, f(2)p,)

“2ley az) 2
1(ou ow) 1 ,
g, :E(E—&jzz(—z%x +1(2),) (14)
1fov ou) 1
01 :E(&_E}ZE((V&X _uo,y)+ f (Z)(ﬂy,x _ﬂx,y))
Then, substituting Eq. (14) into Eqg. (7), we can obtain the following components of curvature
vector:
T 14
C={n o o n) =u+ ()N 5
T n
C={n ) =+t @)+ ()
where
2Wy 28,
b l 2WO,xy b _1 2ﬂx,y
o 2 (Wo,yy _WO,XX) X 41 Bu=byy 16
0 2(8,.-B.,) (9

xs_l VO,xx_UO,xy _Xs_l ﬂy,xx_ﬂx,xy . xs_l{_ﬂy}
CA Ve —Uoy | A BB ] T 4B,

It is noted that the subscripts ‘X’ )y’ represent the derivative of arbitrary function following x

and y directions, respectively.



According to Eq. (9), the constitutive equations for the relationship between the stresses and
strains of FG micro-plate with porosities are given by:

cz{ax o, z'xy}T:C(s—ath)

(17)
T ={sz Tyz }T =G’Y
Where the material matrices C and G are defined as:
1 v(z)
1—V(Z) 1—v(z)
1
co E(z) | v(z) 1 ol - E(z2) 0 18)
1+V(Z) 1—1/(2) l—v(Z) 2(1+v(z)) 0 1
0 0 1
and the thermal strain is expressed as:
e"=a(z)4T(z)[1 17 0] (19)

where AT (z)=T(z)-T, is the temperature-rise, T(z) and

initial temperature, respectively.

T, are the current temperature and

The in-plane forces, moments, higher order forces and shear forces are expressed as

i h/2 1
Mj ¢ = _[ 012 Zij =Xy
P. -h/2 .I:(Z)

Ul

(20)

h/2

Q.= j r, T'(2)dz o:=xy

-h/2

By replacing Eq. (20) into Eq. (17), the stress resultant can be expressed in matrix form as
follows:

N* A BY E' 0 |[s N,
MY T S U= M. | .

g=, 1 |B DU F 0l Mal_ps_s 21)
pu EY F* H' 0 ||k, |P

| [0 o o D*fle,] [0

—
=

in which
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(A*,B*,D"E*,F",H")= T (Lz,2%, f(2),2f (2), £*(2))Cdlz

-h/2

h/2 (22)
D" = [ [f'(z)] Gz
—h/2
and thermal stress resultant are defined as:
e %(2)
[Ny My, Po}= [ Cla(2){l z f(2)}ATdz (23)
-h/2
0

It is assumed that the temperature varies only through the plate’s thickness direction, and the
temperature field is unchanged in the bottom and top surfaces of the plate. In this paper, three

case temperature rise are imposed:

- When the temperature is uniformly distributed through the plate’s thickness, the
temperature change will be a constant and take the form AT =T —T,, where T, is the
initial reference temperature and T is the current temperature. Using this into Eq. (23), the
critical temperature difference is given as:

NT h/2 ( )
AT, =— with X =| — 24z (24)
X -h/21— V( )

- In case of linear temperature rise, the temperature distribution through the plate’s

thickness is given by:

T (z) =T +TrAT,, (25)
From Eq.(23) and Eq. (25), the critical temperature difference can be derived by:
NI - X (T, -T, E(z
AT, =— g nT) with Y _Jm ﬁ(£+ljdz (26)
Y 2 1-y(z) (h 2

- For the nonlinear temperature rise, a nonlinear function depend on the thickness of FGM

plate can be taken as follows [47, 48]:

s} rllkl
T(z)=T, +rAT, (Z anJ (27)

= i +

where r:(ﬁ+%], AT, =T.-T., Kk :kmk_kC, k.and k., are the thermal conductivity of

cm C m? mc
ceramic and metal, respectively.
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From Eq. (27) and Eq. (25), the critical temperature difference in nonlinear temperature field

is given by:

_NCTr—Z(Tm—Ti) (2 ) i ”'k'/
AT = > with Z j ( |on| j (28)

“ 21—y ( ni+1

Furthermore, from Eq. (10) and Eq. (15), the couple stress moment resultant can be calculated

in the following form:

N“| [ac B 0 0 o0]%
M B E° 0 O O [|X
m={Q°!=| 0 0 Xx° Y T [y '=Dg (29)
R° 0 0 Y Z° V°ly
T 0 0 T V& W[y

where
2G2 0 0 0
hiz 0 2G* -0 0
A B ES)= [ (1L [f T
( ) I( @[ (Z)]) 0 0. 2G/2 0 ’

—-h/2

0 0 0 2G/°

h/2 2G/? 0 (0
(X°,Y,Z°,T°, Ve, W ):hjlz(l t[E@] '@ t@ @[ @] ){ Zsz}dZ
o £
MG ()

By inserting Eq. (21) and (29) into Eq. (5), the virtual strain energy of plate is now rewritten
as follows:
3U = | (658 +mdg)dQ (31)

By using the principle of virtual displacement, the discrete Garlekin’s weak form for post-
buckling problem of FGM micro-plate in thermal environment can be established such as:

AT A A ATA A A A AT
[ 387D,2dQ + | 33D RdQ —[ VISWNGVWdQ = [(6,) &dQ (32)
Q

th th

In which V =[6/ox 8/6’y]T is the transpose of gradient operator, and N :{th Nﬁ:l is the in-

Xy y
plane thermal load that is calculated according to Eq. (23).
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3. NURBS-based formulation of functionally graded micro-plate with porosities

In this section, discrete equations for the present problem are derived using IGA. The

appropriation of the displacement fields in terms of NURBS can be expressed as [43, 49, 50]:

U N, 0 0 0 0]7fu,
| 10 N 0 0 0f|v|

u'=sw,e=>10 0 N 0 0 [<w, =>Nd (33)
Bl "o 0o o N, O0[B]| T
B, 0 0 0 0 N||B

Whered, ={uo, Vo Wo By B, }T and N, are the vector of degree of freedom associated with
the control point | and the shape function, respectively.
Substituting Eqg. (33) into Eq. (12), the strain components can be rewritten in matrix form as:
. mxn L 1 NL (34)
g¢=) | B +=B" d,
= 2
And the variation of the strain components is calculate as:
mxn

58= (B +B)" )od, (35)

i=1

.
(Bf )T } is the linear infinitesimal strain, i.e.

N, 0.000 0 N, 00 000N, O
B'={ 0O Ny, 00 O;B'=—{0 0 N, 0 O[;B?=[0 00 0 N
N, N, 000 00 2N, 00 000 N, N, (36)
¢[00 0N O
10 0 0 0 N,
and B," is the nonlinear strain matrix that is a function of displacement:
A 0 0 N, OO
B\ (d)=|" 7 |B® with B? = " (37)
)|y Jewan e 0 0 0

13



Similarly, by substituting Eq. (33) into Eq. (16) the couple stress curvature components are
rewritten in matrix form as:

L oy . b\T £ b\T / s\T T T T (38)
%= Bid, where Bi =| (x) (x3) (x3) (%) (x3)
i=1
In which
_O 0 2NI,><y O 0 0 0 O O _2N|,X
B)I(b]-:l 0 0 —2N|,xy O O;bez_l 0 0 O 2Nl,y 0
2(0 0 (N,,,-N,,,) 00 40 0 0 N, -N,,
0 0 0 —2N,, 2N
:0 0 0 O 0 Ly I,x (39)
Bxso_l _NI,Xy Nl,xx 00 0 BXSl—lO 00 _Nl,xy Nl,xx
' 4-N,,, N, 00 0] ' 74/0 0 0 =N, N,
Bxszzl_o 00 0 -N,
' 4000 N 0

Substituting Eqg. (34), (35) and Eq. (38) into Eq. (32) and eliminating the virtual displacement
vector od, the matrix form of the global equilibrium equations for size-dependent thermal
buckling of FGM micro-plate having porosities can be established in the following matrix form:

(KL+KNL_KO)d:Fth (40)
where K, =K} +K] and Kj_ . are the linear and nonlinear global stiffness matrix,
respectively. K, is the initial stress stiffness matrix derived from the initial in-plane thermal
load, while F,, is the thermal load vector. These matrices can be defined in a clear form as:

K, =[ (B") B,B'd2+[ (B*) D.B/dO

K :%IQ(BL)T b,8"do+[ (B™) lﬁuBLdQ+%jQ(BNL)T D,B"d0 (41)

R, = [(BY) 6,00
Q
4. Nonlinear solution procedure.

4.1 Nonlinear bending problem

In this section, the nonlinear equilibrium Eq. (37) is solved by using the Newton-Raphson
technique. At a specific load level m™, the residual force (imbalance force) R(d') at i" iteration
is computed as follows:

14



R(d')=(K +K (d')-K,)-Fp (42)

Throughout iteration, the residual force tend to zero. When the residual force is still large
enough, the displacement at (i+1)" iteration, is then calculated as:

di+1 _ di +Adi+1 (43)

The increment displacement Ad™* is computed using following equation:

Ad™ =-R(d") /K (d,) (44)
In which the tangent stiffness matrix K, ati" iteration is defined as
L OR(d!
i % 45
KT(d): 8((1i ):KNL+Kg (4)

Where the stiffness matrix K, contains the variables d. given by:

Ky =[ (B-+B™) D,(B"+B" )+ (B*) DB (46)
And K, is the geometric stiffness matrix that can be obtained from in-plane forces in Eq. (23) as
follows:
N, N
K, =] (BQ)T{ : XV}(Bg)dQ (47)
. NXV Ny

The iteration is repeated .until obtaining the convergence condition of displacement as
follows:
‘di+1_diH

o]

4.2 Nonlinear eigenvalue problem

<0.01 (48)

In.case of pure ceramic or metallic micro-plate under uniform temperature rise, the thermal
bending-moments My, in Eq. (25) are neglected, and only membrane forces are generated.
Similary, when the plate is supported with full clamped edges, the bending moments can be
neutralized by support reacting moments, and the plate remains flat in pre-buckling state [51-54].

Hence, the bifurcation-type buckling is exhibited for FGM micro-plate.

Firstly, the lowest eigenvalue (load factor 2 ) and corresponding eigenvector can be achieved

by solving the linear eigenvalue equation as follow:
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(K, —1K,)d=0 (49)
By multiplying the load factor A with the initial load, the critical buckling temperature is
obtained. Then, the critical temperature difference AT, is calculated by using Eq. (24), (26)
and Eq. (28) depending on different temperature rise. After linear buckling, the plate endures a

large deformation, so that the load factor A must be traced by nonlinear equilibrium equation:

(K +Ky —AK;)d=0 (50)
Next, the eigenvector is scaled up, holding the maximum displacement as 0.1h for each
displacement incremental step, the new nonlinear stiffness matrix K, is updated. In this step,
the new load factor and eigenvector are obtained by solving Eq. (50). This procedure is repeated
until the load factor error between two succeeding iterations is smaller than the desired error
tolerance (tol=0.01). In the same way, the corresponding load factor (eigenvalues) and

eigenvector can be found by increasing the maximum displacement as 0.2h, 0.3h , etc. and the

thermal post-buckling equilibrium path may be achieved.

5. Numerical results and discussions

One of the main objectives of this section is to show the effect of the small scale and the
existence of porosity on the nonlinear behaviors of FGM micro-plate under uniform, linear and
nonlinear temperature distribution through the plate’s thickness. The top and bottom surfaces are
made of pure ceramic and pure metal, respectively. In particular, Young’s modulus, Poisson’s
ratio, thermal expansion coefficient and thermal conductivity of AL/AL,O; micro-plate are
assumed to be temperature-independent and taken as E; = 380 GPa, v, = 0.3, a¢ = 7.4x10° 1/K,
ke = 10.4 W/m K for alumina, and Eq, = 70 GPa, vy = 0.3, am = 23%x10° 1/K, ky = 204 W/m K

for aluminum. In addition, the three boundary conditions used in this study are:

= Simply support with movable edge (SSSS1):

Vo =W, =B, =0 at left and right edges
U, =W, =B, =0 at lower and upper edges

- Simply support with immovable edge (SSSS2):
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Uy =Vo
Uo

- Clamped support (CCCC):

Vo

Wo

w, =B, =0 at left and right edges

£, =0 at lower and upper edges

v=u=w=0 atall edges

5.1. Bending analysis

To show the accuracy of the developed approach, we study the small scale effect on the
nonlinear bending of perfect FGM square micro-plate under uniform distributed load, which is
incrementally applied after 20 steps to reach to g, = 5.4x10° N/m? Where the material properties
of the top and bottom surfaces, respectively, are E; = 14.4 GPa, E, = 1.44 GPa and the Poisson’s

ratio of both materials are assumed to be equal asw = w, = 0.38. The obtained dimensionless
central deflection W=w/h versus load parameter q:qu“/(Ebh“) for SSSS1 and CCCC

boundary conditions are compared with those given by finite element model based on a general
third-order shear deformation theory (GTPT) [55]. Fig. 4 shows a good agreement of presented
results in comparison with those from GTPT for power index n = 0.5, 1 and 5. From Fig. 5, it can

be seen that the load-nonlinear deflection curves of homogeneous micro-plate (n = 0) with ¢/h=

0, 0.5 and 1 agree with those of reference solution.

_ —Present, n=5
- o5 Lresentn=s = - - Present, n=1
== - - Present, n=1 = . T
B ----Present, n=0.5 B Present, n=0.5
2 -- £ 17 -
g Y - ; 2 e 4
e T £ et
Z1s- e : £ e
% - % "l . ‘*.""* -----
g 1r £ 05) P
= = = - -
g ® GTPT, n:5 £ " o ® GTPT, n=5
o5 = GTPT, n=1 o g = GTPT, n=1
* GTPT, n=0.5 rrol * GTPT, n=0.5
O L L 1 L 0 1 1 L
0 100 200 300 400 500 600 0 100 200 300 400 500

Load parameter

Load parameter

600

Fig. 4. Comparison of load-nonlinear deflection curves of FGM square micro-plate with
¢/h =0 for various power index n under: SSSS1 (left) and CCCC (right).
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Fig. 5. Small scale effect on load-nonlinear deflection curves of homogeneous square micro-
plate under: SSSS1 (left) and CCCC (right).

Next, the nonlinear bending responses of movable, immovable AL/AL,0O; imperfect micro-
plate under linear and nonlinear temperature distribution are investigated. It can be noted that the
thermal force vector on the right hand side of nonlinear Eg. (40) exists due to the effect of
thermal bending moments develop together with membrane forces during temperature rise.
Hence, the Newton-Raphson technique described in section 4.1 is adopted to get the
temperature-displacement curves. For comparison purpose, Fig. 6 plots the load-deflection
curves for simply supported plate with immovable edges under nonlinear temperature rise with
power index n = 0.5, 1 and 10. Clearly, there is good agreement between the present result and
the solution of Loc et al. [48], and the deflection occurs immediately when thermal load is
applied. In case of n = 2 and length to thickness ratio L/h = 100, Fig. 7-9 reveal the effects of
porosity on the load-deflection curves of FGM micro-plate for Imperfect-I, -1l and -Ill by

considering different porous volume fraction £ =0.1,0.2,0.3. These figures indicate that increase
of temperature variation. AT leads to higher dimensionless central deflectionw=w/h. It is also
found that the linear temperature rise produces more transverse deflection in plate compared to
those of nonlinear temperature rise. Moreover, for imperfect model as the porosity parameter &£

rises, the displacement decreases at the same temperature level. In Fig. 10, for comparison
purpose, the temperature-displacement nonlinear curves of SSSS2 AL/AL,O5 square plate are
illustrated for &=0.1,0.3 under nonlinear temperature rise. It is interesting that the deflections
of imperfect model are lower than those of perfect model, the results of Imperfect-I are lower
than those of Imperfect-I1, -111 and the deviation amplify as the porosity parameter increase from

£=0.1 to &£=0.3. However, the temperature-displacement curves of Imperfect-l1l are

approximately equal to those of Imperfect-111. Consequently, the porosity effect on nonlinear
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behavior based on temperature change of FGM micro-plate in Imperfect-l model is more

significant than in the Imperfect-11 and -111 models.

100 . | ‘ —f

n=0.5 n=1 n=10 2,
801 Present o . . o
Locetal. [48] — -- - o

60

AT

40 1

20

0O 02 04 06 08 1 12

w/h
Fig. 6. Temperature-displacement of SSSS2 square (Al/Al,Osz) plate under nonlinear
temperature rise through thickness (L/h=100)
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Fig. 7. Temperature-displacement curves of SSSS2 Imperfect-1 FGM (Al/Al,O3) square plate
under linear (left) and nonlinear (right) temperature rise (L/h =100, n=2)
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Fig. 8. Temperature-displacement curves of SSSS2 Imperfect-1l FGM (Al/Al,O3) square
plate under linear (left) and nonlinear (right) temperature rise (L/h =100, n=2)
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Fig. 9. Temperature-displacement curves of SSSS2 Imperfect-l1ll FGM (Al/Al,O;) square
plate under linear (left) and nonlinear (right) temperature rise (L/h = 100, n=2)
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Fig. 10. Temperature-displacement curves of SSSS2 Perfect and Imperfect FGP (Al/Al,O3)
square plate under nonlinear temperature rise through thickness (L/h = 100, n=2) with £=0.1

(left) and & =0.3(right).

Subsequently, in-the following example nonlinear the temperature-displacement curves of
Imperfect-1, -1l model are associated with the change of material length scale ratio ¢/h as
observed from Fig. 11. In this article, the material parameter is assumed to equal to ¢(=17.6 um,
obtained from-experiment work done by Lam et al. [56]. According to this figure, an increase in
length scale ratio leads to a decrease in central deflection at a same temperature level and an
increase in temperature variation at a same deflection level. Fig. 12 shows the effect of material
power law index n on nonlinear bending behaviors of Imperfect-11 FGM micro-plate predicted
by conventional theory (¢/h=0)and MCST (¢/h=1). One can see that the plate with n = 10 has

the higher deflection than the others. This is explained by the reduction of Young’s modulus that

results from higher metal inclusion in the imperfect FGM micro-plate.
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Fig. 13 shows the nonlinear responses of imperfect AL/AL,O3 square micro-plate subjected
to immovable simply supported boundary conditions under linear and nonlinear temperature rise.
One can see that the MCST produces smaller deflection more than conventional theory owing to
stiffer stiffness of micro-plate for non-zeros material length scale ratio. Furthermore, there is

noteworthy differences between linear and nonlinear type. As show(¢/h=05) in Fig..14, the

plate bends towards the ceramic side due to the effect of thermal bending moment. It is clear

that the deflections predicted by MCST (¢/h=0.5) are smaller than those predicted by classical

model (¢/h=0).

100

100

80 -
80

60 -

AT

: - 0 0.5 1 1.5
0 05 1 15 w/h

w/h

Fig. 11. Temperature-displacement curves of SSSS2 Imperfect-1 (left) and Imperfect-11 (right)
FGP (Al/Al,O,) square plate-under linear temperature rise through thickness (L/h = 100, n=2,
temperature independent material property) with &=0.1for different material length scale

ratio //h .
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Fig. 12. Temperature-displacement curves of SSSS2 Imperfect-Il FGM (Al/Al,O3) square

micro-plate under linear temperature rise (L/h = 100, & =0.2) for length scale ratio //h=0
(left) and ¢/h =1(right).
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Fig. 14. Comparison of deflection of SSSS1 Perfect FGM (left) and Imperfect-1 (right) FGP
(Al/AIO3) square micro-plate- under linear temperature rise (£=0.2, n=2, L/h=100) at

AT =50°C.

5.2. Buckling analysis

perfect FGM plate (§=0). It is noted that the linear eigenvalue Eq. (49) is adopted in this

section. Table 1 compares the critical buckling temperature of AL/AL,O3; square plate under
uniform temperature rise for simply supported plates that are movable at all edges. The presented

results agree well with those of semi-analytical method obtained by Matsunaga [57], analytical

third order shear deformation reported by Loc et al. [59]. To further verify the accuracy of the
present method, the critical buckling temperatures of clamped AL/AL,Os circular plate for L/h =
100 are given in Table 2. Through compare with the solution of Matsunaga [57], Javaheri [58]

and Loc et al. [60] for linear and nonlinear temperature type, it is found that the presented

We now analyze the accuracy of the present model through some buckling examples for

solution proposed by Javaheri and Eslami [58] and isogeometric finite element method based on

numerical method can accurately predict the linear thermal buckling problem of FGM plate.
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Next, a detailed study of the effect of porosity on the thermal buckling of AL/AL,O3 square
micro-plate is carried out in Table 3. This table indicates that the increase of porosity parameter
& leads to higher critical buckling temperature. This phenomenon is due to the reduction of the
thermal expansion coefficient in Eq. (1-3) that leads to decrease the in-plane thermal load in Eqg.
(23) before the plate is buckled by temperature rise. It is also observed that Imperfect-1l-and -1
models predict lower value compared to Imperfect-1 model for material power index n = 0.5 and
1. Accordingly, the pattern of porosity distribution and the magnitude of porosity parameter &
influences the buckling behavior of imperfect FGM micro-plate and the imperfect model produce
higher critical buckling temperature than perfect model. Also, this inference is consistent with
the findings of Barati and Zenkour [17].

The variation of material power index n leads to change in material properties that affect the
change of buckling behavior of plate. Fig. 15 shows the effect of parameter n on buckling
temperature of Imperfect-1 and -11 AL/AL,O3 square micro-plate under uniform temperature rise

for various material length scale ratios, ¢/h. According to this figure, for all values of ¢/h, the

buckling temperature decreases rapidly when the value n rises from 0 to 3, but this trend tends to
be steady as the power index n is higher than 3. In other words, pure ceramic produces the
highest thermal buckling, but the lowest result is got from pure metal. Besides, the buckling

temperature increases as ¢/h=0and the obtained result for ¢/h=0.5 is higher than the other
values of ¢/h. Moreover, for further investigation of the effect of length scale ratio ¢/h on the
thermal buckling of micro-plate, Fig. 16 shows the comparison of Imperfect-1 and -1l with ¢/h
vary from 0 to 1. lt'is noted that ¢/h = 0 denotes the classical theory. Similar to above-mentioned
statement, as ¢/h increases, the buckling temperature increases due to the intensification of the
strength of micro-plate that come from size-dependent effect. As the ratio ¢/h<0.2, the

difference between classical and MCST model is not remarkable, however the size-dependent

effect on thermal buckling is more considerable as the ratio ¢/h>0.2. Fig. 16 also reveals that

the deviations of results obtained from Imperfect-1 and -11 model enlarge as porosity volume

fraction & and ratio ¢/hincrease.
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Table 1. Critical buckling temperature of FGM square plate under uniform temperature rise.

L/h Power index n  Present HSDT [57] CPT[58] TSDT [58] TSDT [59]
10 0 1618.782 1599.294 1709.911 1617.484 1618.99
0.5 923.2382 914.1891 - - 923.3422
1 758.4367 749.26 794.377 757.891 758.5504
5 679.7767 669.402 726.517 678.926 679.4828
10 692.9872 683.211 746.927 692.519 692.8362
100 0 17.0896 17.087 17.099 17.088 17.1152
0.5 9.6835 9.7068 - - 9.6995
1 7.9401 9.939 7.943 7.939 7.9538
5 7.2608 7.259 7.265 7.26 7.2697
10 7.4635 7.462 7.469 7.462 7.4719
Table 2. Critical buckling temperature of FGM square plate under temperature rise.
Power indexn  Temp. rise Present TSDT [69] FSDT [61] FSDT [62] CPT [62]
0 Uniform 12.7299 12.7247 12.7130 12.7120 12.7160
Nonlinear 25.4598 25.4494 25.4260 25.9240 25.4330
0.5 Uniform 7.2132 7.2017 7.2030 7.2020 7.2040
Nonlinear 19.0263 19.0193 18.9960 18.9960 19.0020
1 Uniform 5.9146 5.9128 5.9070 5.9060 5.9070
Nonlinear 15.3975 15.3929 15.3770 15.3730 15.3780

Table 3. Comparison of critical buckling temperature of SSSS1 Imperfect FGM square micro-plate
(L/h=100) under uniform temperature rise.

L/h 5 n Imperfect-I Imperfect-11 Imperfect-111

0.1 0.5 11.292 10.719 10.693
1 8.912 8.701 8.682

0 0.2 0.5 13.474 11.894 11.778
1 10.062 9.545 9.462

0.3 0.5 16.624 13.230 12.942

1 11.388 10.476 10.278

01 0.5 13.556 12.747 12.716

1 10.853 10.450 10.426

0.2 0.2 0.5 16.354 14.146 14.008

1 12.501 11.474 11.373

0.3 0.5 20.439 15.733 15.392

1 14.577 12.605 12.364

0.4 0.1 0.5 20.348 18.831 18.783
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1 16.677 15.695 15.659

0.2 0.5 24.995 20.902 20.697
' 1 19.818 17.260 17.106
03 0.5 31.885 23.244 22.741
' 1 24.145 18.990 18.622
0.1 0.5 25.442 23.393 23.334
' 1 21.044 19.628 19.583
05 0.2 0.5 31.475 25.969 25.714
1 25.305 21.600 21.406
0.3 0.5 40.468 28.876 28.252
' 1 31.321 23.778 23.315
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Fig. 15. Effect of power index n and length scale ratio ¢/h on critical buckling temperature of
Imperfect-1 (left) and Imperfect-11. (right) FGM (Al/Al,O3) square micro-plate (L/h=100,
& =0.2) under uniform temperature rise.

200 1 T T T 250
£ 01 03 £ 01 03 R
Imperfect-l -p- - » 200 - Imperfect-l ~p~ o= R
150 Imperfect-Il - -o- ’/' Imperfect-Il -p- -0 /‘.
s
o 4 150 - * LB
e 7 P
Peaee s 100 T
50 e T
— Perfect FGM —Perfect FGM
0 ' : 0
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
¢/h [
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5.3. Post-buckling analysis

In the following part, by eliminating the effect of thermal bending moment in Eg. (23), the
post-buckling path is traced through solving nonlinear eigenvalue equation Eq. (50). Thereafter,
the obtained results for all calculation parameters are presented. To verify the thermal post-
buckling behavior of FGM micro-plate having porosity, the thermal post-buckling path of
isotropic clamped skew plate subjected uniform temperature distribution is considered with the
following material properties: E = 1 GPa, v = 0.3, a = 10°/°C, and the buckling temperature is
normalized as T =T,Eal®/(z*D), where D =Eh*/12(1-v?) is the flexural rigidity. Fig. 17
indicates that the present curve is slightly higher than that of Loc et al. [48] and is in excellent
agreement with the curve of Prabhu and Durvasula [63]. It can be seen that the seventh-order

shear deformation plate theory produced more accurate result than that of Loc et al. [48] in

comparison with the exact solution (Perturbation method) of Prabhu and Durvasula [63].
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Fig. 17. Thermal post-buckling path of isotropic clamped skew plate (L/h=100, angle

skew o = 45°)

Next, Fig. 18-21 illustrate the influence of material length scale ratio, radius to thickness and
porosity parameter on thermal post-buckling response of perfect and imperfect FGM clamped
circular micro-plate. Fig. 18 shows the variation of the thermal post-buckling paths of plate for
the length scale ratio ¢/h=0, 0.2, 0.4 and 0.5. It can be seen from the figure that the thermal

resistance of FGM micro-plate for perfect and imperfect cases increase as ¢/h increases, which

is due to the influence of size-dependent effect (¢/h=0) on the plate’s stiffness based on

MCST. The thermal post-buckling curves show the different between classical model (¢/h=0)
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and MCST, wherein the variation is remarkable for ¢/h=0.5. Fig. 18 also reveals that, after
bifurcation point, the maximum out-of-plane displacement increases with the increase in the
critical temperature. Subsequently, there is a sudden drop in the buckling path (or thermal
resistance), which follows the secondary post-buckling path. This behavior corresponds to the
change of post-buckling mode shape as presented by Singha et al. [64] and Prakash et al. [53].
Furthermore, the transitional points from the primary instability to secondary instability are
shifted to the right with increase in the value of ratio ¢/has illustrated in Fig. 18. In Fig. 19, one
can see that the mode shape is symmetric with respect to middle line of plate in the primary post-
buckling state, whereas the mode shape become unsymmetrical in the secondary post-buckling
state. The displacement contour and the maximum displacement shift from center towards the

edge of circular plate.

Fig. 20 shows the effect of the ratio R/h on thermal post-buckling path of imperfect FGM
micro-plate for classical model (¢/h=0) and MCST.model (¢/h=0.5). It is clearly that
decrease the value of radius to thickness ratio R/h enlarges the thermal resistance of imperfect
plate. Another observation from Fig. 20 is that the size-dependent effect (¢/h=0.5)leads to an

increase in post-buckling critical temperature.

The variation of the thermal buckling path for various values of porosity parameter & also is
depicted in Fig. 21. According to this figure, it can be concluded that the imperfect FGM micro-
plate has higher critical buckling and post-buckling temperature than the perfect FGM micro-
plate, which was concluded in Ref. [16, 65]. Furthermore, the thermal resistance increases with

the rising value of porosity parameter.
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Fig. 18. Effect of length scale ratio ¢//h on thermal post-buckling paths of Perfect FGM and

Imperfect FGP (Al/Al,O3) clamped circular micro-plate (L/h = 100, n ='1,£=0.2) under
uniform temperature rise through thickness.

14

40
35+ ]
7 z 30
S - D
20
0 05 1 15 2

6 0:5 1 1.5 2
w/h w/h

Fig. 19. Buckling mode shapes of Imperfect-11 FGP (Al/Al,O3) clamped circular micro-plate

(L/h=100, n=1, &£=0.2) for length scale ratio ¢/h=0(left) and ¢/h=0.5(right) under

uniform temperature rise through thickness.
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Fig. 20. Effect of radius to thickness R/h on thermal post-buckling behavior of Imperfect-II|

FGP (Al/Al,O3) clamped circular micro-plate (n = 1, £=0.2) for length scale ratio //h=0
(left) and ¢/h =0.5(right) under uniform temperature rise through thickness.

28



90 ' ' 80

80 —P:rfe[t]:llFGM 70 ¢ — Perfect FGM
— £ =0. —£=01
70 — £=02 e
— £=03 80f e _gé
= 60 ' 5 —
3 <]
50
50
40 -
40 °
‘ . 30 ' :
30 5 p 0 ] > -2 -1 0 1 2
w/h w/h

Fig. 21. Thermal post-buckling behavior of Imperfect-1 (left) and Imperfect-ll (right) FGP
(Al/Al,05) clamped circular micro-plate (L/h = 50, n = 1,//h=0.2) for different porous

parameter ¢ under uniform temperature rise through thickness.
6. Conclusion

In this paper, we have analyzed the nonlinear bending, buckling, and post-buckling behaviors
of porous FGM micro-plates subjected to thermal load using IGA associated with MCST. The
material properties of FGM micro-plate with even, uneven and logarithmic-uneven distribution
of porosities through the thickness’s direction are derived from the modified rule of mixture
assumption. A proposed seventh-order shear deformation plate theory and von-Karman
assumption are utilized to establish the nonlinear governing equations that are solved by using
Newton-Raphson iteration technique to acquire the nonlinear behavior of micro-plates. Also, the
effect of length scale ratio, material power index, porosity distribution type, porosity parameter,
temperature rise, radius to thickness and boundary conditions are discussed. Through the detailed

parametric analysis, some remarkable observation are drawn as follows:

e The thermal nonlinear bending response of FGM micro-plate is caused by the existence
of thermal bending moment and the extension-bending. The existence of porosity would
decrease the displacement of micro-plate plate at a same temperature level, and the effect
of uniform porosity model (Imperfect-1) is more remarkable than uniform (Imperfect-I1)
and logarithmic-uneven model (Imperfect-111). Furthermore, the size-dependent effect

(¢/h=0) leads to a decrease in deflection at a same temperature level and an increase in

temperature variation AT at a same deflection level.
e The porosity model (¢ # 0) gives higher critical buckling and post-buckling temperature
compared with perfect FGM micro-plate (¢ = 0). Also, uniform porosity model

procedure more thermal resistance than even and logarithmic-uneven model.
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The critical buckling and post-buckling thermal resistance increase with the rising value
of porosity parameter &. Besides, it is found that Imperfect-11 model has higher critical
buckling and post-buckling temperature than Imperfect-111 model.

The critical buckling and post-buckling temperature predicted by modified couple stress
theory are higher than those derived from classical model are. The increase in-material
length scale ratio ¢/h leads to increase the buckling as well as post-buckling thermal
resistance.

The radius-to-thickness ratio R/h greatly affects the mechanical response, as the thermal
resistance of imperfect plates gets larger with decreasing R/h ratio.
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