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Abstract: We introduce a family of loop soup models on the hypercubic lattice. The
models involve links on the edges, and random pairings of the link endpoints on the sites.
We conjecture that loop correlations of distant points are given by Poisson–Dirichlet
correlations in dimensions three and higher. We prove that, in a specific random wire
model that is related to the classical XY spin system, the probability that distant sites
form an even partition is given by the Poisson–Dirichlet counterpart.
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1. Introduction

Loop soups are models in statistical mechanics that involve sets of one-dimensional
loops living in higher dimensional space. These models are representations of particle
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or spin systems of statistical physics. It was recently conjectured that in most cases, in
dimensions three and higher, these models have phases with long, macroscopic loops—
the lengths of these loops scale like the volume of the system—and the joint distribution
of macroscopic loops is always Poisson–Dirichlet [23].

This conjecture has been rigorously established in a model of spatial permutations
related to the quantum Bose gas [10,14,18]. This model has a peculiar structure that
makes it possible to integrate out the spatial variables and to use tools from asymptotic
analysis, so there were suspicions that this property was accidental. But the conjecture
has also been verified numerically in several othermodels, namely in lattice permutations
[25]; in loop O(N ) models [29]; and in the random interchange and a closely related
loop model [2]. These findings are alas not supported by rigorous results.

There exist limited results for some models with fundamental spatial structure. The
method of reflection positivity and infrared bounds [17,21] allows to prove the occur-
rence of macroscopic loops [36]. More precisely, it is shown that the expectation of
the length of a loop attached to a given site, when divided by the volume, is bounded
away from 0 uniformly in the size of the system. While encouraging, this result gives
no information regarding the possible presence of several macroscopic loops, let alone
their joint distribution.

The goal of this article is to propose a genuinely spatial loop model where much of
the conjecture can be rigorously established. We refer to it as the “random wire model”.
It is defined for arbitrary finite graphs; in the most relevant case, the set of vertices is a
large box in Z

d and the set of edges are the pairs of nearest-neighbours. On each edge
there is a random number of “links” satisfying the constraint that the number of links
touching a site is even. These links are paired at each site, resulting in closed trajectories
(an illustration can be found in Fig. 2). Our main result is a rigorous proof that even loop
correlations are given by Poisson–Dirichlet, at least when the parameters of the model
are chosen wisely.

There is a lot of background for this study. Our random wire model is an exten-
sion of the random current representation of the Ising model that was introduced by
Griffiths, Hurst, and Sherman [24], and popularised by Aizenman [1]. It is also related
to the Brydges-Fröhlich-Spencer representation of spin O(N ) models [15,19], and to
loop O(N ) models [9,30]. The Poisson–Dirichlet distribution of random partitions was
introduced by Kingman [27]; it is the invariant measure for the split-merge (coagulation-
fragmentation) process [7,16,35]. Its relevance formean-field loop soupmodelswas first
suggested by Aldous for the random interchange model on the complete graph, see [5];
Schramm succeeded in making this rigorous [34] (see also [6,11–13]). The relevance of
these ideas for systems with spatial structure was pointed out in [23].

The connections between the Poisson–Dirichlet distribution and symmetry breaking
was noticed and exploited in [29,36]. Ourmethod of proof combines these ideas and rests
on two major results about the classical XY model: The proof of Fröhlich, Simon, and
Spencer that a phase transition occurs in dimensions three and higher [21]; and Pfister’s
characterisation of all translation-invariant extremal infinite-volume Gibbs states [32].
We should point out that the precise relations between Poisson–Dirichlet and symmetry
breaking are far from elucidated. The heuristics of Sect. 4.2 show that the loops that
represent the classical XY model are characterised by the distribution PD(1), as are the
loops of the quantum XYmodel [36]. However, these heuristics also show that the loops
representing the classical Heisenberg model are characterised by PD(32 ) while the loops
of the quantum Heisenberg model are PD(2) [23,36]. Right now, this looks curious.
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It is perhaps worth emphasising that the Poisson–Dirichlet distribution is expected to
characterise loop soups only in dimensions three and higher. The behaviour in dimension
two is also interesting andpartially understood, see [4,8,18]. Theremaybe aBerezinskii–
Kosterlitz–Thouless phase where loop correlations have power-law decay instead of
exponential. A separate topic is the critical behaviour of two-dimensional loop soups,
that is characterised by conformal invariance and Schramm-Löwner evolution; there
have been many impressive results in recent years, but we do not discuss this here.

The article is organised as follows. The notation is summarised in Sect. 2 for the
comfort of the reader. The randomwiremodel is introduced inSect. 3 andbasic properties
are established. The Poisson–Dirichlet conjecture is explained in Sect. 4. Our main
results, Theorems 5.1 and 5.2, are stated in Sect. 5. The first claim deals with the density
of points in long loops, and the second claim is about even loop correlations being given
by Poisson–Dirichlet. Section 6 discusses classical spin systems and their relations to
the random wire model. We gather the necessary properties in Sect. 7 by summarising
and completing the results of [21,32], and we prove Theorems 5.1 and 5.2.

2. Notation

We list here the main notation used in this article; the precise definitions can be found
in subsequent sections.

• G = (V, E) the graph; V is the set of vertices and E is the set edges. Gb = (V ∪
V̄, E ∪ Ē) denotes the graph with a boundary; V̄ is the set of boundary sites and Ē are
edges between V and V̄ .

• GL = (�L , EL) with �L = {−L , . . . , L}d ⊂ Z
d and EL the set of nearest-

neighbours. Gb
L is the graph with boundary ∂�L , given by sites of Zd at distance

1 from �L .
• WG = {w = (m,π)} is the set of wire configurations on G, that consists of a link
configuration m ∈ MG ⊂ N

E
0 (with an even number of links touching each site) and

a pairing configuration π ∈ PG(m).
• nx (m) is the local occupancy (or “local time”); it is equal to the number of times
that loops pass by the site x ∈ V .

• λ(w) is the number of loops in the wire configuration w.
• α is the positive “loop parameter”.
• J = (Je)e∈E are “edge constants”, or “coupling parameters”.
• U : N0 → R is a potential function; U (nx ) gives the energy of the nx wires that
cross the site x ∈ V .

• P
α,J
G ,E

α,J
G denote the probability and expectation with respect to wire configura-

tions.
• ZG(α, J) is the partition function and pG(α, J) is the pressure.
• ñx is the number of pairs at the site x that belong to long or open loops.
• EX (x, q) is the set of configurations w where (xi , qi ) and (x j , q j ) belong to the
same loop iff i, j belong to the same partition element of X .

• X even
2k is the family of set partitions of {1, . . . , 2k} whose elements have even car-

dinality.
• Mθ (X) is the probability that k random points on [0, 1] and a random partition
chosen with Poisson–Dirichlet distribution PD(θ ), yield the set partition X .

• Meven
θ (2k) = ∑

X∈X even
2k

Mθ (X) is the probability that 2k random points on [0, 1],
and a random partition from PD(θ ), yield an even set partition.
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Fig. 1. A link configuration is represented by a labeledmultigraph.Here the graph is the square lattice {1, 2, 3}2
and edges are nearest-neighbours

3. Setting

3.1. Links, pairings, wires, and loops. We consider a generalisation of the model of
random currents of the Ising model. Let G = (V, E) a graph. Given a collection m =
(me)e∈E of nonnegative integers, we define the local occupancy (or local time) to be

nx (m) � 1
2

∑

e∈E,e�x
me. (3.1)

A link configuration is a collection m that satisfies the constraint that there is an even
number of links touching any site; in other words, the local occupancy nx (m) is integer
at every site x ∈ V .We letMG denote the set of link configurations. A link configuration
can be represented by a labeled multigraph with labeled edges, see Fig. 1.

For a given link configurationm, apairing configurationπ = (πx )x∈V is a collection
of pairings such that πx connects the links that touch the site x ∈ V . This is illustrated in
Fig. 2. We let PG(m) denote the set of pairing configurations that are compatible with
m; notice that the number of pairing configurations is equal to

|PG(m)| =
∏

x∈V

(
2nx (m) − 1

)!! (3.2)

(with the convention that (−1)!! = 1).Wecall the pairw = (m,π) awire configuration;
the set of wire configurations on the graph G is denoted WG .

We now define the loops of a wire configuration. This notion is intuitive and it is illus-
trated in Fig. 2b, even though the proper definition is a bit cumbersome. We consider the
set of finite sequences of labeled links

(
(e1, p1), . . . , (e�, p�)

)
where ei ∈ E and pi ∈

{1, . . . ,mei }, and such that ei ∩ ei+1 �= ∅, i = 1, . . . , �. We identify sequences that are
related by cyclicity and inversion; that is, we identify

(
(e2, p2), . . . , (e�, p�), (e1, p1)

)

and
(
(e�, p�), . . . , (e1, p1)

)
with

(
(e1, p1), . . . , (e�, p�)

)
. After identification, these

sequences form a loop of length �. In order to define the set of loops of a given wire
configuration w, we can start at any link (e1, p1); we choose an endpoint x and get
the next link as the one that is paired by the pairing πx ; we continue until we get back
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(a) (b)

Fig. 2. a A wire configuration consists of links and pairings. b It gives rise to a loop configuration, here with
three loops

to (e1, p1). For the next loop we choose a link that has not been selected yet, and we
proceed alike until all links have been exhausted.

The number of loops of a wire configuration w is denoted λ(w). We also define the
length of a loop as the number of links in the loop.

3.2. The model of random wires. We now introduce the probability distribution on wire
configurations. Let J = (Je)e∈E a collection of nonnegative parameters indexed by the
edges ofG. Let α > 0 another parameter.We consider an “interaction potential” function
U : N0 → R ∪ {+∞} and define the probability of the wire configuration w = (m,π)

to be

P
α,J
G (w) = 1

ZG(α, J)
αλ(w)

(∏

e∈E

Jme
e

me!
)

exp

{

−
∑

x∈V
U

(
nx (m)

)
}

. (3.3)

Here, the normalisation ZG(α, J) is the partition function defined by

ZG(α, J) =
∑

w∈WG

αλ(w)

(∏

e∈E

Jme
e

me!
)

exp

{

−
∑

x∈V
U

(
nx (m)

)
}

. (3.4)

Notice that the exponent of α is λ(w), which is the number of loops. For α �= 1,
loops affect the probability distribution.

The interaction potential typically becomes infinite as the local occupancy diverges.
It is natural to consider models where the partition function is finite for all choices of α

and J . The first claim of the next proposition gives a sufficient condition.

Proposition 3.1. Let ᾱ = max(
√

α, 1) and assume that the potential function satisfies

(2n − 1)!! e−U (n) ≤ Cn

for some positive constant C independent of n. Then
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(a) The partition function is bounded by

ZG(α, J) ≤ exp

{

ᾱC
∑

e∈E
Je

}

.

(b) Let �max
x0 (w) be the length of the longest loop that passes through the site x0. For

all n ∈ N and all η ≥ 0, we have

P
α,J
G (�max

x0 ≥ n) ≤ e−ηn
∑

k≥0

∑

x1,...,xk∈V{xi−1,xi }∈E for i=1,...,k−1

k∏

i=1

(
e e

η ᾱC J{xi−1,xi } − 1
)1/2

.

The upper bound in (b) involves a sum over walks of arbitrary lengths that start at
x0. In many situations, such as graphs with bounded degrees and Je bounded uniformly,
this sum is convergent when J is small. Then all loops passing by the site x0 are small,
that is, their lengths are finite uniformly in the size of the graph.

Proof. The number of loops is less than 1
2

∑
e me so that αλ(w) ≤ ᾱ

∑
me . The number

of pairing configurations is
∏

x (2nx − 1)!!. Neglecting the constraints on link numbers,
we get

ZG(α, J) ≤
∑

(me)e∈E
ᾱ

∑
e me

(∏

e∈E

Jme
e

me!
)

C
∑

x nx (m)

= eᾱC
∑

e Je .

(3.5)

We used
∑

x∈V nx (m) = ∑
e∈E me, which follows from Eq. (3.1). This proves (a).

For the claim (b), given a configuration m, we consider the graph with set of vertices
V and with set of edges {e ∈ E : me ≥ 1}. Further, let G′ = (V ′, E ′) ⊂ G be the
connected subgraph that contains the vertex x0. We have

P
α,J
G

(
�max(x0) ≥ n

) ≤ P
α,J
G

(∑

y∈E ′
ny ≥ n

)
≤ e−ηn

E
α,J
G

[
eη

∑
y∈E ′ ny

]
. (3.6)

The last bound follows from Markov’s inequality. We now condition on the graph G′ in
the equation below; the sum over (m,π) : G′ is a sum over link configurations on E ′ so
that the graphwith edges {e ∈ E ′ : me ≥ 1} is connected, and over pairing configurations
on V ′. Thanks to factorisation properties we have

E
α,J
G

[
eη

∑
y∈E ′ ny

]
= 1

ZG(α, J)

∑

G′
ZG\G′(α, J)

∑

(m,π) :G′
αλ(w)

( ∏

e∈E ′

Jme
e

me!
)
e− ∑

y∈V ′ (U (ny)−ηny) . (3.7)

Assuming that U is normalised so that U (0) = 0, which we can do without loss of
generality, we have that ZG\G′(α, J) ≤ ZG(α, J). Using similar estimates as in (a), we
get

E
α,J
G

[
eη

∑
y∈E ′ ny

]
≤

∑

G′

∑

m:G′

∏

e∈E ′

( eη ᾱC Je)me

me! . (3.8)
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For any connected graph, there exists a walk that uses each edge exactly twice. This is
easily seen by induction: knowing the walk for a given graph, and adding an edge, we
get a new walk by crossing the new edge twice. The sum over connected graphs G′ can
then be estimated by a sum over walks starting at the vertex x0. The sum over m can be
estimated by e e

η ᾱC Je − 1 at every edge, and we get the claim (b). ��
We now introduce a random wire model with “open” boundary conditions. The idea

is to allow open loops that end at the boundary (we refer to them as open loops, although
they are no real loops). The new graph is

Gb = (V ∪ V̄, E ∪ Ē)
. (3.9)

Here, V̄ is an extra set of vertices (the boundary), and Ē is a set of edges between V and
V̄ , i.e. Ē ⊂ V × V̄ .

The set of link configurations is MGb ⊂ N
E∪Ē
0 and it satisfies the constraints that

each site of V is touched by an even number of links; there are no constraints at the sites
of V̄ . The set of pairing configurations is PGb(m); pairings are defined at the sites of V
only, not at V̄ . Loops are defined as before, except for open loops that start and end at
the boundary—they involve exactly two edges touching the boundary (closed loops do
not pass by the boundary). Given a wire configuration w = (m,π) ∈ WGb , we let λ(w)

denote the number of all loops, counting closed and open loops. The probability of a
wire configuration with open boundary conditions is

P
α,J
Gb (w) = 1

ZGb(α, J)
αλ(w)

( ∏

e∈E∪Ē

Jme
e

me!
)

exp

{

−
∑

x∈V
U (nx (m))

}

. (3.10)

The partition function ZGb(α, J) is defined as expected, so that Pα,J
Gb is a probability

distribution.
The main advantage of open boundary conditions is to allow us to introduce the event

where a site belongs to long loops, namely that it is connected to the boundary. This is
discussed in Sect. 4.

4. Loop Correlations and Poisson–Dirichlet Distribution

We now fix the graph to be a large box inZd with edges given by nearest-neighbours.We
write �L = {−L , . . . , L}d for the set of vertices, EL for the set of nearest-neighbours,
andGL = (�L , EL) for this graph.We also assume that Je ≡ J is constant. In dimensions
d ≥ 3, and if J is large enough, we expect that macroscopic loops are present and that
they are described by a Poisson–Dirichlet distribution.

4.1. Joint distribution of the lengths of macroscopic loops. These properties can be
formulated in various ways. The most direct way is to look at the lengths of the
loops in a large box. Recall that the length of a loop is the number of its links. Let(
�1(w), �2(w), . . . , �k(w)

)
be the sequence of the lengths of the loops of w in decreas-

ing order, repeated with multiplicities; the number of loops is also random, k = k(w).
The “volume” occupied by the loops is defined as

V (w) =
k∑

j=1

� j (w) =
∑

x∈�L

nx (m). (4.1)
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Fig. 3. A typical partition given by loop lengths in dimensions three and higher. The elements in the interval
[0,m] are distributed according Poisson–Dirichlet. The elements in the interval [m, 1] are due to microscopic
loops and they have zero width

We consider the following sequence, which is a random partition of the interval [0, 1]:
(

�1(w)

V (w)
,
�2(w)

V (w)
, . . . ,

�k(w)

V (w)

)

. (4.2)

It is rather obvious that the number of microscopic loops (those whose lengths are
bounded uniformly in L) scales like the volume |�L | of the system. Consequently, the
tail of the random partition consists of tiny dust occupying a non-vanishing interval. On
the other hand, the lengths of the longer loops are expected to be of order of the volume
and to be described by a Poisson–Dirichlet distribution. The typical random partition is
illustrated in Fig. 3.

One can formulate the Poisson–Dirichlet conjecture as follows. There exists m ∈
[0, 1] (and m > 0 when d ≥ 3 and J large enough) such that

• For every ε > 0, we have

lim
n→∞ lim

L→∞P
α,J
GL

( n∑

j=1

� j (w)

V (w)
∈ [m − ε,m + ε]

)
= 1. (4.3)

• For every n ∈ N and as L → ∞, the distribution of the vector
(

�1(w)
mV (w)

, . . . ,
�n(w)
mV (w)

)

converges to the Poisson–Dirichlet distribution PD(α
2 ) restricted to the first n ele-

ments.

Let us recall that Poisson–Dirichlet is a one-parameter family of distributions on
partitions of [0, 1]. It is most easily defined using the random allocation (or “stick
breaking”) construction. Namely, let Y1,Y2, . . . be i.i.d. Beta(1, θ) random variables
(that is, their probability density function is equal to θ(1 − t)θ−1 for t ∈ [0, 1] and is
zero otherwise); we construct the sequence

(
Y1, (1 − Y1)Y2, (1 − Y1)(1 − Y2)Y3, . . . ). (4.4)

It is not hard to check that the sum of these numbers give 1 almost surely. Rearranging
the numbers in decreasing order, we get a random partition with Poisson–Dirichlet
distribution PD(θ ). See [27,33] for more information.

The heuristics for this conjecture is explained in the next subsection; it also contains
the calculation of the Poisson–Dirichlet parameter, θ = α

2 .
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(a) (b)

Fig. 4. Illustration for the Markov process: a two endpoints are selecting at random. b The new pairing at this
site, if the change is accepted

4.2. Heuristics and calculation of the Poisson–Dirichlet parameter. An important prop-
erty of Poisson–Dirichlet is to be the stationary distribution of split-merge processes
(also called coagulation-fragmentation) [7,16,35]. The following heuristic has already
been explained in [23,25,36] for other loop soups; notice that the article [25] contains
numerical verifications of some of the steps. It is worth sketching the heuristic in some
details since it allows to calculate—non rigorously, but exactly—the Poisson–Dirichlet
parameter. For a fixed link configuration m, we introduce a discrete-time Markov pro-
cess on pairing configurations, i.e. on PGL (m). Let Tm(π ,π ′) be the probability that, if
the system is at π at time t , it moves to π ′ at time t + 1. Assuming the process to be irre-
ducible (that is, there are possible trajectories reaching all configurations of P�L (m)), a
sufficient condition for a measure to be stationary is that it satisfies the detailed balance
condition

P
α,J
GL

(m,π)Tm(π ,π ′) = P
α,J
GL

(m,π ′)Tm(π ′,π). (4.5)

Weonly consider changes that involve rewiring twopairs at a single site. This is illustrated
in Fig. 4. The number of loops changes by at most one. We have

P
α,J
GL

(m,π ′)

P
α,J
GL

(m,π)
=

⎧
⎪⎨

⎪⎩

α if λ(m,π ′) = λ(m,π) + 1,
1 if λ(m,π ′) = λ(m,π),

α−1 if λ(m,π ′) = λ(m,π) − 1.
(4.6)

We need to choose the transition probabilities so that the ratio Tm(π ,π ′)
Tm(π ′,π)

is equal to the
above equation when π and π ′ differ by just one rewiring. There are many possibilities;
we can take

Tm(π ,π ′) = C

|�L |
2

( 2nx2 )
·

⎧
⎪⎨

⎪⎩

α1/2 if λ(m,π ′) = λ(m,π) + 1,
1 if λ(m,π ′) = λ(m,π),

α−1/2 if λ(m,π ′) = λ(m,π) − 1.
(4.7)

Here, C is a constant that is small enough so that
∑

π ′ �=π Tm(π ,π ′) ≤ 1 (it affects the

speed of the process but not its stationary distribution). Notice that ( 2nx2 ) is the number
of pairs of endpoints at x , and there are exactly two choices whose rewiring gives π ′.

In words, we choose a site uniformly at random, then pick two endpoints uniformly
at random, and accept the rewiring with probability Cα1/2,C,Cα−1/2 according to
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whether the number of loops increases by 1, stays constant, or decreases by 1. It is clear
that Tm satisfies the detailed balance condition, and also that the process is irreducible
on P�L (m) for a fixed m.

Next, we look at the resulting process on partitions.We get a split-merge process with
a priori complicated rates. But we can discard all rewirings that involve microscopic
loops, as they have negligible effect in the infinite-volume limit. Much more interesting
are changes that affect macroscopic loops. If we select endpoints belonging to different
loops, the rewiring always merges them. If we select endpoints belonging to the same
loop, the rewiring may split it, or just rearrange it (this is analogous to 0 ↔ 8). The
essence of the conjecture is that macroscopic loops merge well, and the number of pairs
of endpoints that allow two macroscopic loops γ, γ ′ to merge is approximately equal
to c�γ �γ ′ for a constant c that is independent of γ, γ ′. Further, the number of pairs of
endpoints that allow a macroscopic loop γ to split is approximately equal to 1

4c�
2
γ , with

the same constant c as before. The factor 1
4 = 1

2 · 1
2 is there because pairs within a loop

should be counted once, and only half the pairs cause a split and not a rearrangement.
The conclusion of this heuristic is that, as the volume becomes large, the effective

split-merge process on partitions behaves like the standard, mean-field process where

two partition elements η, η′ merge at rate 2c√
α
ηη′ and an element η splits at rate c

√
α

2 η2;
moreover, the element is split uniformly. It is known that the Poisson–Dirichlet distri-
bution with parameter θ = α

2 is the invariant measure for this process [7,35,37] (partial
results about uniqueness can be found in [16]).

This long heuristics was needed in order to identify the correct parameter. This
justifies the above conjecture.

4.3. Poisson–Dirichlet correlations. Aswe argue below in Sect. 4.4, the probability that
points belong to the same loop, knowing that they belong to long loops, is given by the
probability that random points in the interval [0, 1] belong to the same partition element
with Poisson–Dirichlet distribution. We collect now the relevant formulæ.

Let u1, . . . , uk ∈ [0, 1] and let (z1, z2, . . . ) be a partition of [0, 1]. We denote
Xu1,...,uk (z1, z2, . . . ) the set partition of {1, . . . , k} where i, j belong to the same subset
if and only if ui , u j belong to the same partition element. Further, if X is a set partition
of {1, . . . , k}, let

Mθ (X; u1, . . . , uk) = PPD(θ)

(
Xu1,...,uk = X

)
. (4.8)

Finally, let

Mθ (X) = EU1,...,Uk

[
Mθ (X;U1, . . . ,Uk)

]
, (4.9)

where the latter expectation is taken over k i.i.d. random variables U1, . . . ,Uk with
uniform distribution on [0, 1].

The number Mθ (X) depends only on the sizes of the partition elements of X . If
X = ∪�

i=1Xi with |Xi | = ni , then, with Zi denoting the i th element of a Poisson–
Dirichlet random partition, we have
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Mθ (X) =
∑

i1,...,i�≥1
distinct

∫ 1

0
du1 . . .

∫ 1

0
duk PPD(θ)

(
ui ∈ i j th element for all i ∈ X j

)

=
∑

i1,...,i�≥1
distinct

EPD(θ)

[
Zn1
i1

. . . Zn�

i�

]

= θ��(θ)�(n1) . . . �(n�)

�(θ + n1 + · · · + n�)
.

(4.10)

The latter formula seems well-known to experts but it does not appear often in the
literature. It is written in [29] where it is derived using “supersymmetry” calculations in
a loop O(N ) model. A calculation within Poisson–Dirichlet can be found in [37].

In the present article we need the probability that the random set partition is even,
that is, all its subsets have an even number of elements. Let X even

2k denote the set of even
partitions of {1, . . . , 2k}, and let

Meven
θ (2k) =

∑

X∈X even
2k

Mθ (X). (4.11)

Proposition 4.1. For all θ > 0 and all k ∈ N, we have

Meven
θ (2k) = �(2k + 1)�(k + θ

2 )

�(2k + θ)�(k + 1)�( θ
2 )

.

In the case θ = 1, the formula above reduces to

Meven
θ=1 (2k) = (2k − 1)!!

2kk! . (4.12)

Proof. We use the following trick:1 Consider random partitions of [0, 1] and a random
sequence of signs (ε1, ε2, . . . ) where εi are i.i.d. and take values ±1 with probability 1

2 .
Let


(h) = EPD(θ)

[∏

i≥1

cosh(hZi )

]

= EPD(θ)×(εi )

[
e

∑
i≥1 hεi Zi

]
. (4.13)

Here, Zi s are the elements of the random partition with PD(θ ) distribution and h ∈ R.

(h) is an even function and

d2k

dh2k

(h)

∣
∣
∣
h=0

=
∑

i1,...,i2k

EPD(θ)×(εi )

[
εi1 . . . εi2k Zi1 . . . Zi2k

]

=
∑

X∈X even
2k

Mθ (X).

(4.14)

The function 
(h) was calculated in [37, Eq. (4.18)]; it is equal to


(h) = 1

�(θ
2 )

∑

n≥0

�(n + θ
2 )

n! �(2n + θ)
h2n . (4.15)

Differentiating 2k times and looking at the coefficient of h0, we get the claim of the
proposition. ��

1 We are grateful to Peter Mörters for the suggestion.
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Fig. 5. Illustration for loop correlations between distant points. In this realisation the set partition is X ={{1, 2, 4}, {3}}

4.4. Loop correlations—Conjectures. We now formulate the Poisson–Dirichlet con-
jecture in terms of loop correlations. This is more natural in the context of statistical
mechanics, and this is the form that we can prove in a special case.

The idea behind loop connectivity is to consider k points and to look at how these
points are connected by the loops. A complication is that many loops may pass by a
given site, and also that the same loop may pass many times. We then introduce a label
on the pairings. Namely, we assign the labels 1, . . . , nx (m) to the pairs of the pairing πx .
Given distinct sites x = (x1, . . . , xk), pair labels q = (q1, . . . , qk), and a set partition
X = {X1, . . . , X�} of {1, . . . , k}, we introduce the event
EX (x, q) =

{
w ∈ WG : nxi ≥ qi for i = 1, . . . , k, and (xi , qi ), (x j , q j ) belong to

the same loop iff i, j belong to the same partition element of X
}
.

(4.16)

In other words, we look at the partition of the points (x j , q j )
k
j=1 given by the loops, and

EX (x, q) is the event where this partition is equal to X ; see Fig. 5. We also use the event
E∞(x, q), the set of wire configurations where all (xi , qi ) belong to long loops: With
�(x, q) denoting the length of the loop passing through the qth pair at the site x ∈ �L ,

E∞(x, q) = {
w ∈ WGL : �(xi , qi ) ≥ �̃L for i = 1, . . . , k

}
, (4.17)

where the cutoff �̃L is chosen so that limL→∞ �̃L = ∞ and limL→∞ �̃L/Ld = 0.
We consider a “splashing sequence” x(n) = (x (n)

1 , . . . , x (n)
k ), that is, a sequence of

sites in Zd that satisfies

lim
n→∞ min

1≤i, j≤k
‖x (n)

i − x (n)
j ‖ = ∞. (4.18)

The Poisson–Dirichlet conjecture can be formulated as follows: Let X be a set partition
without singletons; in the limits L → ∞ then n → ∞, the probability of EX (x(n), q)
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involves the probability P
α,J
Zd

(
E∞(x (n)

i , qi )) that the qi th pair at x (n)
i belongs to macro-

scopic loops, and the probability Mθ (X) that k random numbers placed in a random
partition, yields the set partition X . More precisely, we expect that for all set partitions
X without singletons, we have

lim
n→∞ lim

L→∞P
α,J
GL

(
EX (x(n), q)

) = lim
n→∞ lim

L→∞P
α,J
GL

(
EX (x(n), q) ∩ E∞(x(n), q)

)

= lim
n→∞ lim

L→∞P
α,J
GL

(
EX (x(n), q)

∣
∣E∞(x(n), q)

)
P

α,J
GL

(
E∞(x(n), q)

)

= M α
2
(X)

k∏

i=1

P
α,J
Zd

(
E∞(0, qi )

)
.

(4.19)

The first identity should not hold for X with singletons, since the probability that the
corresponding points belong to small loops is positive. Letting m(d, J ) = ∑

q≥1 P
α,J
Zd(

E∞(0, q)
)
, we can also formulate the conjecture as

lim
n→∞ lim

L→∞
∑

q∈Nk

P
α,J
GL

(
EX (x(n), q)

) = m(d, J )k M α
2
(X). (4.20)

M α
2
(X) can be found in Eq. (4.10).
We now formulate a revised conjecture; it is less appealing but it is closer to what is

proved in Theorem 5.2 below. For all splashing sequences x(n) = (x (n)
1 , . . . , x (n)

k ) and
all set partitions X of {1, . . . , k} (without singletons), we can repeat the steps of (4.19)
and we obtain

lim
n→∞ lim

L→∞E
α,J
GL

[

1EX (x(n),q)

k∏

j=1

1

n
x (n)
j

+ 1

]

=
( k∏

j=1

m̃q j (d, J )
)
M α

2
(X), (4.21)

with m̃q(d, J ) given by

m̃q(d, J ) = lim
L→∞EGb

L

[
1E∞(0,q)

1

n0 + 1

]
. (4.22)

Letting m̃(d, J ) = ∑
q≥1 m̃q(d, J ), the Poisson–Dirichlet conjecture states that for any

k and any set partition X of {1, . . . , k} without singletons, we have

lim
n→∞ lim

L→∞
∑

q∈Nk

E
α,J
GL

[

1EX (x(n),q)

k∏

j=1

1

n
x (n)
j

+ 1

]

= m̃(d, J )kM α
2
(X). (4.23)

As in the version (4.20) of the conjecture, m̃(d, J ) is related to the density of points in
long loops and is model-dependent; M α

2
(X) is the term that signals the presence of the

Poisson–Dirichlet distribution PD(α
2 ) for the lengths of the long loops.

Replacing k by 2k, summing over even set partitions, and using (4.11), we get

∑

X∈X even
2k

lim
n→∞ lim

L→∞
∑

q∈N2k

E
α,J
GL

[

1EX (x(n),q)

2k∏

j=1

1

n
x (n)
j

+ 1

]

= m̃(d, J )2kMeven
α
2

(2k).

(4.24)

This is a weaker conjecture than (4.23). We prove it in a specific random wire model,
see Theorem 5.2 in the next section.
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5. Main Results—Long Loops and Their Joint Distribution

We can now formulate the main result of this article, which strongly hints towards the
presence of the Poisson–Dirichlet distribution in a class of models of random wires. We
restrict to the random wire model with loop parameter α = 2 and potential function
defined by

e−U (n) = 1

n! . (5.1)

The graph is GL = (�L , EL) with �L = {−L , . . . , L}d and EL is the set of nearest-
neighbours. We choose Je = J for all e ∈ EL . We also consider the graph Gb

L with
boundary conditions; the set of vertices is �L with the external boundary

∂�L = {
y ∈ Z

d \ �L : ∃x ∈ �L such that ‖x − y‖ = 1
}
. (5.2)

Edges of Gb
L are the nearest-neighbours in �L , and the edges between �L and ∂�L .

On this graph some loops are open, with endpoints on ∂�L . Let ñx (w) be the random
variable for the number of times that open loops pass by the site x ∈ �L . In other words,
for w = (m,π), we let

ñx (w) = 1
2

∣
∣L̃(w) ∩ {e ∈ EL : e � x}∣∣, (5.3)

where L̃(w) is the set of links that are connected to the boundary. We then define

m̃(d, J ) = lim
L→∞E

2,J
Gb
L

[ ñ0
n0 + 1

]
. (5.4)

Ignoring the denominator in the expectation, m̃(d, J ) gives the average number of pairs
at the origin that belong to long loops. The reason why the denominator is present is
that m̃(d, J ) can be written in terms of spin correlations; this allows to establish the
following properties, our first main result.

Theorem 5.1. Let α = 2 and U defined in Eq. (5.1). Then the limit L → ∞ of m̃(d, J )

in Eq. (5.4) exists. Further,

(a) m̃(d, J ) is nondecreasing with respect to d and J .
(b) m̃(d, J ) = 0 when J < 2−3/2 log(1 + 1

(2d)2
), for arbitrary dimension d.

(c) m̃(d, J ) = 0 when d = 1, 2, for all J ≥ 0.
(d) For d ≥ 3, there exists Jc(d) < ∞ such that m̃(d, J ) > 0 if J > Jc(d) and

m̃(d, J ) = 0 if J < Jc(d).

The proof of this theorem can be found in Sect. 7.
Theorem 5.1 establishes that a positive fraction of sites are crossed by long loops

when d ≥ 3 and J is large enough. It is remarkable that m̃(d, J ) can be proved to
be monotone nondecreasing in d and in J . This property is expected to hold for fairly
general random wire models; but the present proof, relying as it does on the equivalent
XY spin model and its correlation inequalities, cannot be extended easily.

The claim (b) follows from Proposition 3.1 and it holds for more general α and U .
When α = 3, 4, 5, . . . , and U (n) is defined by Eq. (6.6) with N = α, the claim (c) also
holds (its proof uses the continuous symmetry of the corresponding spin system).
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Next we consider loop correlations between distant points. In order to formulate the
result, we need to introduce the pressure p(α, J ):

p(α, J ) = lim
L→∞

1

|�L | log ZGL (α, J ). (5.5)

The infinite-volume limit exists by a standard subadditive argument—ZGL is submulti-
plicative, and Proposition 3.1 (a) guarantees that the pressure is finite. It is easy to verify
that p(α, es ) is convex in s, as the second derivative gives the variance of

∑
e me and is

therefore positive. It follows that p(α, J ) is differentiable with respect to J at all points,
except possibly for a countable set.

Recall the notion of splashing sequences of sites in (4.18). Our second main result is
the weaker form of the Poisson–Dirichlet conjecture, see Eq. (4.24).

Theorem 5.2. Let α = 2, U defined in Eq. (5.1), and m̃(d, J ) defined in Eq. (5.4). We
assume that J is such that the pressure p(2, J ) is differentiable. Then for all k ∈ N and
all splashing sequences of 2k sites, we have

∑

X∈X even
2k

lim
n→∞ lim

L→∞
∑

q∈N2k

E
2,J
GL

[

1EX (x(n),q)

2k∏

j=1

1

n
x (n)
j

+ 1

]

= (
m̃(d, J )

)2k
Meven

1 (2k).

The proof of this theorem uses the connections to the classical XY model; it can be
found in Sect. 7.

Theorem 5.2 gives a lot of information on the structure of long loops: They are
present when m̃(d, J ) > 0; arbitrary sites have positive probability to belong to them;
multiple long loops occur with positive probability. An important aspect of Theorem
5.2 is that it holds for all k with the same constant m̃(d, J ). This is compatible with the
Poisson–Dirichlet distribution PD(θ ) with θ = 1; this is incompatible with PD(θ ) with
θ �= 1 and with most other distributions on partitions. Theorem 5.2 is then a good step
forward towards proving that the correlations due to long loops are given by PD(1).

6. Random Wire Representation of Classical O(N) Spin Systems

We show now that the random wire model can be derived as a representation of classical
O(N ) spin systems. In fact, the case N = 1 is close to the random current representation
of the Ising model [1,20,24]. The general case N ∈ N can be seen as a reformulation
of the Brydges–Fröhlich–Spencer loop model [15,19]; explicit relations between BFS
loops and wire configurations can be found in [3].

We consider an arbitrary finite graph G = (V, E). Let J = (Je)e∈E be fixed param-
eters. We denote ϕ ∈ (SN−1)V the spin configurations. The hamiltonian of the O(N )

spin system is defined as

H J
G (ϕ) = −

∑

e={x,y}∈E
2Je ϕx · ϕy, (6.1)

where ϕx ·ϕy denotes the usual inner product of two N -component vectors. The partition
function is

Z spin
G (J) =

(∏

x∈V

∫

SN−1
dϕx

)

e−H J
G (ϕ) . (6.2)



540 C. Benassi, D. Ueltschi

Here, dϕx denotes the uniform probability measure on SN−1, that is,
∫
SN−1 dϕx = 1. The

relevant Gibbs state can be defined as the linear functional 〈·〉JG on functions (SN−1)V →
R, that assigns the value

〈 f 〉JG = 1

Z spin
G (J)

(∏

x∈V

∫

SN−1
dϕx

)

f
(
(ϕx )x∈V

)
e−H J

G (ϕ) . (6.3)

We introduce a special class of spin correlation functions that have special relevance
to loop models. Let k ∈ N and x1, . . . , x2k ∈ V be distinct sites. We assume that N ≥ 2
and we write ϕ

(i)
x for the i th component of the vector ϕx ∈ R

N . The corresponding
correlation function is

〈ϕ(1)
x1 ϕ(2)

x1 . . . ϕ(1)
x2kϕ

(2)
x2k 〉JG = Z spin

G (J; x1, . . . , x2k)
Z spin
G (J)

(6.4)

with

Z spin
G (J; x1, . . . , x2k) =

(∏

x∈V

∫

SN−1
dϕx

)

ϕ(1)
x1 ϕ(2)

x1 . . . ϕ(1)
x2kϕ

(2)
x2k e

−H J
G (ϕ) . (6.5)

Let us define the potential function U of the random wire model by the equation

e−U (n) = �( N2 )

�(n + N
2 )

. (6.6)

We then have a relation between the O(N ) spin system and the random wire model with
α = N . Recall the event EX (x, q) defined in (4.16).

Proposition 6.1. Let U (n) defined by (6.6). Then

(a) If N ∈ N, we have

Z spin
G (J) = ZG(N , J).

(b) If N = 2, 3, 4, . . . , we have

〈ϕ(1)
x1 ϕ(2)

x1 . . . ϕ(1)
x2kϕ

(2)
x2k 〉JG =

∑

X∈X even
2k

( 2

N

)|X | 1

22k
∑

q∈N2k

E
N ,J
G

[

1EX (x,q)

2k∏

j=1

1

nx j +
N
2

]

.

Recall that X even
2k is the set of even set partitions of {1, . . . , 2k}. It is possible to

consider other correlation functions, for instance 〈ϕ(1)
x ϕ

(1)
y 〉JG . They can be written as

ratios of loop partition functions, with the numerator involving “open” configurations of
links where 2nx and 2ny are odd. See [1,20] for the Ising random currents and [15,28]
for the related loop model for O(N ) spin systems. But these correlations do not have a
direct probability meaning and we ignore them in this article.

In the case N = 1 we have e−U (n) = 2n/(2n − 1)!!; the denominator is equal to the
number of pairings of 2n elements.
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Proof. Let x = (x1, . . . , x2k). We get an expansion for Z spin
G (J; x) that also applies to

the case k = 0, i.e. x = ∅. LetMG(x) ⊂ N
E
0 be the set of link configurations with odd

numbers of links touching x1, . . . , x2k , and even numbers touching all other sites. We
write

exp

{ ∑

e={x,y}∈E
2Je ϕx · ϕy

}

=
∏

e={x,y}∈E

N∏

i=1

e2Je ϕ
(i)
x ϕ

(i)
y , (6.7)

and we expand the exponential in Taylor series. Recalling the definition (3.1), we find

Z spin
G (J; x) =

∑

m(1)∈MG(x)

∑

m(2)∈MG(x)

∑

m(3)∈MG

· · ·
∑

m(N )∈MG

(∏

e∈E

(2Je)me

m(1)
e ! . . .m(N )

e !

)

(∏

x∈V

∫

SN−1
dϕx

)( ∏

x∈V\x

(
ϕ(1)
x

)2n(1)
x . . .

(
ϕ(N )
x

)2n(N )
x

)

2k∏

j=1

(
ϕ(1)
x j

)2n(1)
x j +1

(
ϕ(2)
x j

)2n(2)
x j +1

(
ϕ(3)
x j

)2n(3)
x j . . .

(
ϕ(N )
x j

)2n(N )
x j . (6.8)

We set me = ∑N
i=1 m

(i)
e . We restricted the link configurations to the sets MG(x) or

MG since the angular integrals vanish otherwise by symmetry. Recall that dϕ denote
the normalised uniform measure on S

N−1; we now use that

∫

SN−1

(
ϕ(1))2n(1)

. . .
(
ϕ(N )

)2n(N )

dϕ = �( N2 )

2n�(n + N
2 )

N∏

i=1

(2n(i) − 1)!!, (6.9)

where n = n(1) + · · · + n(N ) and with the convention that (−1)!! = 1. We rewrite the
expansion by first summing over m ∈ MG . We then sum over (m(1)

e ), …, (m(N )
e ) such

that m(1)
e + · · · + m(N )

e = me for all e ∈ E . We get

Z spin
G (J; x) = 2−2k

∑

m∈MG

(∏

e∈E

Jme
e

me!
) ∑

m(1),m(2)∈MG(x)

m(3),...,m(N )∈MG
m(1)+···+m(N )=m

∏

e∈E

me!
m(1)

e ! . . .m(N )
e !

∏

x∈V\x

(
�( N2 )

�(nx + N
2 )

N∏

i=1

(2n(i)
x − 1)!!

)

2k∏

j=1

(
�( N2 )

�(nx j + 1 + N
2 )

(2n(1)
x j )!! (2n(2)

x j )!!
N∏

i=3

(2n(i)
x j − 1)!!

)

. (6.10)

We now replace the sums over (m(i)
e ) by a sum over N possible “colours” for each

link, subject to the constraint that each site is intersected by an even number of links of
each colour—except for the sites x1, . . . , x2k , which are intersected by an odd number
of 1-links and 2-links, and an even number of links of other colours. Further, we replace
(2n(i)

x −1)!! by a sum over pairings of the i-links that intersect the site x . As for the sites
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x1, . . . , x2k , we sum over pairings such that a 1-link is paired with a 2-link, and all other
pairs are between links of same colour. The number of choices for 1-links is 2n(1)

x j times

(2n(1)
x j − 2)!!, the number of pairings of the remaining 2n(1)

x j − 1 points. The number of
such pairings is then

(2n(1)
x j )!! (2n(2)

x j )!!
N∏

i=3

(2n(i)
x j − 1)!!. (6.11)

Let C(w, x) be the set of colour configurations that are compatible with the wire con-
figuration w = (m,π) and the sites x. We obtain

Z spin
G (J; x) =

∑

m∈MG

(∏

e∈E

Jme
e

me!
) ∑

π∈PG(m)

(∏

x∈V

�( N2 )

�(nx + N
2 )

)

( 2k∏

j=1

1

2nx j + N

)

|C(w, x)|. (6.12)

The number of colours for a given m,π , x can be expressed in terms of loops. If k = 0,
i.e. without the complications due to x, the constraint is that the links must have the
same colour if they belong to the same loop. Then |C(w,∅)| = Nλ(w) and the claim (a)
of the theorem is proved.

For k ≥ 1 the constraints from x are that there must be loops crossing these sites,
whose colours change from 1 to 2 (or 2 to 1). We first sum over the pairs q1, . . . , q2k
where the changes occur. Then the wire configuration w must belong to a set EX (x, q)

defined in (4.16) for some even partition X of {1, . . . , 2k}. In that case there are N
possible colours for ordinary loops, and 2 colours for loops with changes 1 ↔ 2. The
number of colourings is then Nλ(w)( 2

N )|X | with |X | the number of partition elements.
Thus

|C(w, x)| =
∑

q

∑

X∈X even
2k

Nλ(w)
( 2
N

)|X |1EX (x,q)(w). (6.13)

This gives the claim (b) of the theorem. ��
We now consider the graph Gb with boundary. The hamiltonian is

H J,1
Gb (ϕ) = −2J

∑

{x,y}∈E
ϕx · ϕy − √

2J
∑

{x,y}∈Ē
ϕx · 1 (6.14)

where 1 is the N -component vector (1, . . . , 1). The partition function is

Z spin,1
Gb (J ) =

(∏

x∈V

∫

SN−1
dϕx

)

e
−H J,1

Gb (ϕ)
. (6.15)

We write 〈·〉J,1Gb for the Gibbs state with boundary condition 1.
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Proposition 6.2. We have

(a) Z spin,1
Gb (J ) = ZGb(N , J ).

(b) If N ≥ 2, 〈ϕ(1)
x ϕ(2)

x 〉J,1Gb = 1
N E

N ,J
Gb

[
ñx

nx + N
2

]

.

Proof. The claim (a) can be proved as Proposition 6.1 (a). The relation between (me)

and (nx ) is
∑

x∈V
nx =

∑

e∈E
me + 1

2

∑

e∈Ē
me. (6.16)

Thus the factor 2− ∑
nx from (6.9) kills the factors 2 and

√
2 in front of the coupling

parameters. The number of colours for a wire configuration w ∈ WGb is equal to Nλ(w),
where λ(w) is the total number of closed and open loops.

The claim (b) is also similar to Proposition 6.1 (b). Let

Z spin,1
Gb (J ; x) =

(∏

y∈V

∫

SN−1
dϕy

)

ϕ(1)
x ϕ(2)

x e
−H J,1

Gb . (6.17)

Proceeding as before, we get the analogue of (6.12). With MGb(x) the set of link
configurations with an odd number of links touching x and an even number touching all
other sites of V , we have

Z spin,1
Gb (J ; x) =

∑

m∈MGb

( ∏

e∈E∪Ē

Jme

me!
) ∑

π∈PGb (m)

(∏

y∈V

�( N2 )

�(ny + N
2 )

)

1

2nx + N
|C(w, x)|. (6.18)

With ñx the number of pairs at x that belong to open loops, the number of colours is

|C(w, x)| = 2ñx N
λ(w)−1. (6.19)

We get Proposition 6.2 (b). ��

7. Correlations of O(2) Spin Systems

We now calculate the correlation function (6.4). The idea is to use Pfister’s theorem on
the characterisation of translation-invariant Gibbs states for the O(2) spin model [32].
In this section the graph is Gb

L , that is, a box in Zd with boundary conditions.
It is convenient to introduce the angles φ = (φx )x∈� ∈ [0, 2π)�L such that ϕx =

(cosφx , sin φx ). In these variables, the hamiltonians (6.1) and (6.14) are

H J
GL

(φ) = −2J
∑

{x,y}∈EL

cos(φx − φy),

H J,φ
Gb
L

(φ) = −2J
∑

{x,y}∈EL

cos(φx − φy) − 2J
∑

x∈�L ,y∈∂�L‖x−y‖=1

cos(φx − φy).
(7.1)
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The boundary condition 1 with variables {ϕx } corresponds to φ = (π
4 )x∈∂�L . The

corresponding Gibbs state for free boundary conditions is the linear functional that
assigns the value

〈 f 〉J�L
= 1

Z spin
GL

(J )

( ∏

x∈�L

1

2π

∫ 2π

0
dφx

)
f (φ) e

−H J
GL

(φ)
(7.2)

to a function f : [0, 2π)�L → R. For boundary conditions φ, the definition of 〈·〉J,φGb
L
is

the same but with hamiltonian H J,φ
Gb
L
.

We have ϕ
(1)
x ϕ

(2)
x = cosφx sin φx = 1

2 sin(2φx ). We rotate all spins by −π
4 so as to

get the more traditional φ ≡ 0 boundary conditions. Since sin(2(φx + π
4 )) = cos(2φx ),

we obtain

〈ϕ(1)
x ϕ(2)

x 〉J,1Gb
L

= 1
2 〈cos(2φx )〉J,φ≡0

Gb
L

. (7.3)

We are going to use a major result of Pfister about the set of extremal states of the
classical XY model [32]. In order to state this result, let 〈·〉J

Zd and 〈·〉J,0
Zd denote the

infinite-volume Gibbs states

〈·〉J
Zd = lim

L→∞〈·〉JGb
L
, 〈·〉J,0

Zd = lim
L→∞〈·〉J,φ≡0

Gb
L

. (7.4)

Existence of the limits L → ∞ follows from Ginibre’s inequalities [22] with standard
arguments, see e.g. [20]. As a matter of fact the infinite-volume limits can be taken along
any “van Hove sequence” of increasing domains, which implies in particular that the
limiting states are translation-invariant. Then Pfister’s theorem states that the limiting
symmetric Gibbs state 〈·〉J

Zd is equal to the following convex combination of extremal
states:

〈·〉J
Zd = 1

2π

∫ 2π

0
〈·〉J,φ≡ψ

Zd dψ. (7.5)

Notice that the state 〈·〉J,ψ
Zd is obtained from 〈·〉J,0

Zd by a global spin rotation of angle
−ψ ∈ [0, 2π). The above decomposition holds for all J such that the pressure p(2, J )

is differentiable.
We can now prove Theorems 5.1 and 5.2.

Proof of Theorem 5.1. From its definition (5.4), Proposition 6.2 (b), and Eq. (7.3), we
have that

m̃(d, J ) = 〈cos(2φ0)〉J,0
Zd . (7.6)

The monotonicity properties of Theorem 5.1 (a) follow from standard arguments
based on Ginibre’s inequalities, see [20].

For Theorem 5.1 (b), we use Proposition 3.1 (b)—more precisely, we use a straight-
forward extension to the case of open boundary conditions. We take ᾱ = √

2 andC = 2.
The number of random walks of length k and with fixed initial point is equal to (2d)k .
This immediately gives the result.

The absence of long loops when d = 1 is an easy exercise, and when d = 2 it follows
from the works of Pfister [31] and Ioffe, Shlosman, and Velenik [26]; see [20, Theorem
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9.2] for a clear exposition. Their result is that the infinite-volume Gibbs state is invariant
under spin rotations, so m̃(2, J ) = 〈cos(2φ0)〉J,0

Z2 = 0. This proves (c).

For (d), it can be shown that
〈
cosφ0

〉J,0
Zd > 0 implies that

〈
cos(2φ0)

〉J,0
Zd > 0, see [31,

Corollary 3.6].We now use the fundamental result of Fröhlich, Simon, Spencer about the
occurrence of long-range order in O(N ). Let 〈·〉J,per

Zd denote the infinite-volume Gibbs

state obtained as the limit L → ∞ of the state 〈·〉J,perGL
with even L and periodic boundary

conditions. The claim [21, Theorem 3.1] is that

lim‖x‖→∞
〈
cosφ0 cosφx

〉J,per
Zd = c(d, J ), (7.7)

with c(d, J ) > 0 for d ≥ 3 and J large enough—the theorem actually holds for all
N ∈ N, not only N = 2. Since the state

〈·〉J,perGL
is translation and rotation invariant, the

infinite-volume limit is equal to the state in (7.5). Then

lim‖x‖→∞
〈
cosφ0 cosφx

〉J,per
Zd = lim‖x‖→∞

1

2π

∫ 2π

0

〈
cosφ0 cosφx

〉J,ψ
Zd dψ

= 1

2π

∫ 2π

0

(〈
cosφ0

〉J,ψ
Zd

)2
dψ

= 1
2

(〈cosφ0〉J,0
Zd

)2
.

(7.8)

We used 〈cosφ0〉J,ψ
Zd = 〈cos(φ0 + ψ)〉J,0

Zd = cosψ 〈cosφ0〉J,0
Zd and we integrated the

angular integral. It follows that 〈cosφ0〉J,0
Zd = √

2c(d, J ) is positive for J large enough,
and so is m̃(d, J ).

Notice that the extremal state decomposition (7.5) is only proved for almost all J ;
but using the claim (a) about monotonicity in J , we get the existence of Jc as stated in
(d). ��
Proof of Theorem 5.2. By Proposition 6.1 (b), the left side of the equation of Theo-
rem 5.2 is equal to the limits L → ∞ then n → ∞ of the correlation function
22k

〈
ϕ

(1)

x (n)
1

ϕ
(2)

x (n)
1

. . . ϕ
(1)

x (n)
2k

ϕ
(2)

x (n)
2k

〉J
GL

.

We use Pfister’s theorem (7.5) and the fact that extremal states are clustering; we get

22k
〈
ϕ

(1)

x (n)
1

ϕ
(2)

x (n)
1

. . . ϕ
(1)

x (n)
2k

ϕ
(2)

x (n)
2k

〉J
GL

= 〈
sin(2φ

x (n)
1

) . . . sin(2φ
x (n)
2k

)
〉J
GL

L→∞−→
1

2π

∫ 2π

0

〈
sin(2φ

x (n)
1

) . . . sin(2φ
x (n)
2k

)
〉J,ψ
Zd dψ

n→∞−→ 1

2π

∫ 2π

0

(〈
sin(2φ0)

〉J,ψ
Zd

)2k
dψ. (7.9)

The expectation in the rotated Gibbs state can be expressed in term of m̃(d, J ), namely,

〈
sin(2φ0)

〉J,ψ
Zd = 〈

sin(2φ0 + 2ψ)
〉J,0
Zd

= cos(2ψ)
〈
sin(2φ0)

〉J,0
Zd + sin(2ψ)

〈
cos(2φ0)

〉J,0
Zd .

(7.10)
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We have
〈
sin(2φ0)

〉J,0
Zd = 0 by symmetry φx �→ −φx . We recognise m̃(d, J ) in the last

term. We obtain

lim
n→∞ lim

L→∞ 22k
〈
ϕ

(1)

x (n)
1

ϕ
(2)

x (n)
1

. . . ϕ
(1)

x (n)
2k

ϕ
(2)

x (n)
2k

〉J
GL

= m̃(d, J )2k
1

2π

∫ 2π

0
sin2k(2ψ) dψ

= m̃(d, J )2k
(2k − 1)!!

2kk! .

(7.11)

This is precisely the formula (4.12) for Meven
θ=1 (2k). This completes the proof of Theorem

5.2. ��
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