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Abstract 

The aim of the present study is to comprehensively analyse scale effects on the mechanical 

characteristics of carbon nanotubes (CNTs) with viscoelastic properties. A scale-dependent 

coupled longitudinal-transverse nonlinear formulation is presented for this aim. The role of 

both the longitudinal and transverse motions as well as the viscosity effect due to the internal 

loss of the total energy are taken into account. The influence of large deformations due to the 

geometric nonlinearity is also taken into account. The nonlocal strain gradient theory (NSGT) is 

applied so as to describe scale effects on the mechanical characteristics of viscoelastic CNTs. 

Compared to the classical nonlocal theory, the NSGT better estimates scale effects since it is 

able to describe both the stiffness-hardening and –softening behaviours. The Kelvin–Voigt 

approach is used to capture the influence of the internal energy loss. Application of the NSGT 

together with the Hamilton principle yields the energy potential, the external work and the 

coupled longitudinal-transverse equations of the CNT. To determine an accurate numerical 

solution, the Galerkin scheme of discretisation and a continuation approach are finally utilised. 

The role of different parameters of the nanosystem in the nonlinear coupled mechanics of 

viscoelastic CNTs is discussed. 

Keywords: Coupled longitudinal-transverse motion, Viscoelastic CNTs; Nonlinear mechanics; 

Nonlocal strain gradient model 
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1. Introduction 

Carbon nanotubes (CNTs) have many promising applications in microelectromechanical 

and nanoelectromechanical systems (MEMSs and NEMSs) due to their unique electrical and 

mechanical features. In order to apply them properly in some ultrasmall devices such as 

nanoelectromechanical sensors and resonators, their time-dependent deformation under 

mechanical stresses should be investigated first.  

In addition to experimental techniques, some theoretical models have been developed to 

estimate the mechanical behaviour of CNTs. A refined theoretical model for these valuable 

ultrasmall structures should be size-dependent since size effects have been proven to be 

significant at nanoscale levels. Furthermore, the model should include the influence of internal 

friction due to the fact that CNTs possess viscoelastic properties [1]. In the present study, the 

Kelvin–Voigt scheme is employed to describe the effect of internal dissipation.  

A considerable number of size-dependent theoretical formulations have been proposed 

to extract the mechanical response of both microscale and nanoscale structures. For example, 

Setoodeh et al. [2] utilised a nonlocal Mindlin theory of plates to extract the nonlinear vibration 

response of graphene sheets. Moreover, Beni and Malekzadeh [3] examined the nonlinear 

vibration of non-prismatic skew nanoscale plates using a nonlocal formulation. In another 

investigation reported in Ref. [4], scale effects on the vibration of short nanoscale tubes 

surrounded by an elastic matrix were investigated. In addition, a nonlocal model with surface 

effects [5], a nonlocal two-variable refined model [6] and a nonlocal model with piezoelectric 

effects [7] have been developed for the vibration of nanoscale plates.  
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Some theoretical analyses have been performed on the mechanical characteristics of 

carbon nanotubes and nanobeams [8] since the invention of carbon nanotubes in 1991 [9]. For 

example, theoretical formulations have been developed for the postbuckling of smart 

composite nanotubes [10], wave propagations in nonlocal beams [11], vibrations of functionally 

graded nanobeams [12] and flexoelectric nanobeams [13]. In addition, various scale-

edependent advanced models such as the classical [14], stress-driven [15] and higher-order [16] 

versions of nonlocal strain gradient model have been utilised for nanotubes. Furthermore, an 

analytical solution was presented by Setoodeh et al. [17] to predict the post-buckling response 

of CNTs  via use of the Eringen theory of elasticity. Moreover, this nonlocal theory was used by 

Aydogdu [18] to analyse the longitudinal vibration of nanorods and CNTs embedded in a 

polymer matrix via a size-dependent model since size effects are important at small-scale levels 

[19]. Valipour et al. [20] studied the nonlinear vibration of nanotubes conveying fluid via a 

nonlocal model and a perturbation method. In another investigation, She et al. [21] explored 

the nonlinear static deflection and oscillation of porous small-scale tubes made of functionally 

graded materials. Khosravani and Weinberg [22] studied the mechanics of composite T-joint 

connections subject to various conditions. Malekzadeh and Shojaee [6] also examined the free 

vibration of nanobeams with a variable cross-sectional area by developing a nonlocal beam 

model incorporating the effects of large amplitudes since large deformations are important in 

many systems such as resonators [23] and actuators [24] as well as many structures such as 

small-scale beams [25] and plates [26]. The linear time-dependent deformation of nanoscale 

mass sensors using CNTs was studied by Aydogdu and Filiz [27] via a beam theory and the 

Eringen theory of elasticity. The influence of the internal friction on the oscillation of CNTs was 
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explored by Chang and Lee [28] within the framework of a nonlocal theoretical model. 

Furthermore, Lei et al. [29] suggested a viscoelastic model to describe the internal friction 

effect on the vibration of tubes at ultrasmall levels; they used the Kelvin–Voigt model. The 

vibration and buckling of viscoelastic CNTs containing fluid flow were investigated by Bahaadini 

and Hosseini [30] with the help of the Eringen theory of elasticity. Moreover, Zhang et al. [31] 

analysed the vibration of axially prestressed nanoscale beams with viscoelastic mechanical 

properties. The dynamics of viscoelastic nanocomposites made of CNTs with small 

deformations was also studied by Karlicic et al. [32] employing a nonlocal theoretical model; in 

their analysis, it was assumed that the nanocomposite was subject to a magnetic loading. 

Mohammadimehr et al. [33] used a size-dependent plate theory with consideration of shear 

deformations for examining the linear vibration of CNT-reinforced composite ultrasmall plates 

incorporating the internal energy loss; they employed a meshless technique in order to obtain 

the linear vibration characteristics.  

More lately, a refined scale-dependent beam model based on a strain gradient model and 

the Eringen theory has been introduced [34]. It has been shown that the mechanical behaviour 

predicted using this theory is reasonably consistent with molecular dynamics (MD) results while 

neither the classical elasticity nor the nonlocal theory can estimate the mechanical behaviour 

properly [35]. The literature on the time-dependent deformation analysis of viscoelastic carbon 

nanotubes employing the nonlocal strain gradient theory (NSGT) is restricted. Few linear 

studies have been reported on the mechanical behaviour of viscoelastic CNTs using NSGT-based 

models [36, 37]. In addition, Ghayesh and Farajpour [38] developed a NSGT model for the large-

amplitude oscillation of nanotubes; the effects of coupled motions and internal energy loss 
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were not captured in this investigation. Moreover, in another analysis reported in Ref. [39], the 

effects of a geometric imperfection on the nonlinear mechanics of nanotubes were 

investigated; the internal energy loss was not considered in this analysis. Ghayesh et al. [40] 

also utilised the couple stress theory so as to analyse chaos in microscale tubes conveying 

pulsatile microfluid; nonlocal and strain gradient effects were not incorporated. To the best of 

authors’ knowledge, no investigation has been performed on the coupled dynamics of 

viscoelastic CNT via the NSGT yet. Recently, it has been reported that taking into account both 

longitudinal and transverse displacements (i.e. coupled dynamic analysis) at small-scale levels is 

of high significance in order to obtain more accurate results [41]. 

The aim of the present investigation is to comprehensively analyse scale effects on the 

nonlinear dynamic behaviour of viscoelastic CNTs incorporating both displacements along the 

longitudinal and transverse directions. Large deformations induced by the geometric 

nonlinearity are also incorporated into the scale-dependent formulation. Scale effects are 

captured via a nonlocal strain gradient model. The NSGT enable the continuum model to 

describe both the stiffness-hardening and –softening behaviours. Furthermore, the Kelvin–

Voigt approach is employed to describe the influence of internal energy loss. According to the 

Euler–Bernoulli theory, the NSGT and the Hamilton principle, the nonlinear scale-dependent 

equations of motions are derived for both displacements along the longitudinal and transverse 

directions. In order to obtain an accurate numerical solution, the Galerkin scheme of 

discretisation and a continuation approach are utilised. The role of different nanosystem 

parameters in the nonlinear coupled dynamics of viscoelastic CNTs is examined.   
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2. A NSGT coupled viscoelastic tube model  

A scale-dependent couple NSGT-based model is developed in the following so as to 

investigate the nonlinear dynamics of viscoelastic CNTs incorporating large deflections [42]. 

Both displacements along the longitudinal and transverse directions are taken into 

consideration. Figure 1 depicts a clamped-clamped CNT subject to an external loading along the 

transverse direction. The length and the average diameter of the CNT are indicated by L and d, 

respectively. The x axis of the coordinate frame is taken along the length of the nanotube while 

the z axis is taken along its thickness. 

Using the model of Euler–Bernoulli beams, the nonlinear relation between the strain and 

displacement components is given by [43] 


   

   
   

2 2

2

1
,

2
xx

u w w
z

x x x
         (1) 

where  xx , u and w are the axial strain, the axial displacement and the transverse displacement 

[44]. The NSGT stress of the CNT with consideration of the internal energy loss [45] can be 

written as [34] 

  l l
 

   
 

       
 

2 2 2 2 2 2
0 ,xx xx

xx xx xx sg xx sgt e a t E E
t t

     (2) 

where txx, E and   denote the axial total stress, Young’s modulus and the viscosity constant of 

the single-walled carbon nanotube, respectively; lsg represents the strain gradient parameter 

while e0a indicates the nonlocal parameter [46]; e0 and a are respectively a constant for 

calibrating the continuum model and an internal characteristic length [47]; in Eq. (2), 2 stands 

for the Laplace operator [48]. It is worth stating that the terms with e0a are related to nonlocal 
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effects while the terms with lsg incorporates strain gradient influences. Strain gradient and 

nonlocal parameters can be determined from the experimental or molecular dynamics results. 

The former is utilised to simulate the effects of large deformation gradients at small-scales 

while the latter is associated with a decrease in structure stiffness. The stress resultants are 

given by 

 , 1, ,xx xx xx

A

N M t z dA          (3) 

in which A is the cross-sectional area [49]. Nxx and Mxx stand for the force and moment 

resultants. Substituting Eq. (1) into Eq. (2) and then using Eq. (3), one obtains  

 

l l





        
                    

        
                    

2 2 2
2 2
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2 2 2
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xx xx
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

 
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 
   
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2 2

0 2 2

2 3
2 2 2 2

2 2
,
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x t x
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       (4) 

where I is the tube moment of inertia [50]. According to the NSGT, the variation of the CNT 

elastic energy (Uel) is expressed as 

       

    

      

   
     
   

  

  

(1) (1)
( ) ( ) ( ) ( )

(1) (1)
( ) ( ) ( )

0 0

.

el xx el xx xx el xx xx el xx el xx

V V V

L L

xx el xx xx el xx xx el xx

A V A

U dV dV dV

dA t dV dA

   (5) 

Here  ( )xx el ,  (1)
( )xx el ,   and V are the elastic part of the axial zeroth-order nonlocal stress, the 

elastic part of the axial first-order nonlocal stress, the gradient operator and the volume of the 
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CNT, respectively. In addition, the variation of the work carried out by the viscous parts of 

nonlocal stresses (Wvis) is given by   

       

    

        

   
      
   

  

  

(1) (1)
( ) ( ) ( ) ( )

(1) (1)
( ) ( ) ( )

0 0

,

vis xx vis xx xx vis xx xx vis xx vis xx

V V V

L L

xx vis xx xx vis xx xx vis xx

A V A

W dV dV dV

dA t dV dA

  (6) 

where  ( )xx vis  and  (1)
( )xx vis  denote the viscoelastic parts of the axial zeroth- and first-order 

nonlocal stresses, respectively. The relations between the total, zeroth- and first-order nonlocal 

stresses are defined as  

 

 

 

 

 

 

(1)

(1)
( ) ( ) ( )

(1)
( ) ( ) ( )

,

,

.

xx xx xx

xx el xx el xx el

xx vis xx vis xx vis

t

t

t

         (7) 

On the other hand, the relations between the elastic and viscoelastic parts of nonlocal stresses 

are given by   

  

  

 

 

 

( ) ( )

( ) ( )

(1) (1) (1)
( ) ( )

,

,

.

xx xx el xx vis

xx xx el xx vis

xx xx el xx vis

t t t

          (8) 

Now let us consider a viscoelastic single-walled CNT of mass per length m. One can formulate 

the variation of the total motion energy (Tk) as   

  
    

  
    
 
0 0

.
L L

k

u u w w
T m dx dx

t t t t
       (9) 

The viscoelastic CNT is subject to an external load f(x,t) in the z direction. The variation of the 

work done by this load (WF) can be written as [51] 

  0 ( , ) d .
L

FW f x t w x                         (10) 
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It is assumed that the variation of the external load is of the harmonic one. In this way, one can 

write [52] 

   ( , ) cos ,f x t F x t          (11) 

in which F(x) and   are the forcing amplitude and the excitation frequency of the external 

load, respectively. The variation of the elastic energy due to the elastic polymer matrix (Upm) 

can be formulated as 

    
3

1 2

0 0

d d ,
L L

pmU k w w x k w w x         (12) 

where k1 and k2 stand for the linear and nonlinear constants of the elastic polymer matrix, 

respectively. The Hamilton energy/work principle, as a derivation method, is given by 

         
2

1

d 0.
t

F k vis el pmt
W T W U U t        (13) 

Substituting Eq. (11) into Eq. (10) and then substituting the resultant equation as well as Eqs. 

(5), (6), (9) and (12) into Eq. (13), one can obtain  

 

 


 

    
    
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2

2

2 2
3

1 22 2

1
,

1 1 1
.

xx

xx
xx

N u

m x t

M w f w
N k w k w

m x m x x m m t

     (14) 

The following expressions can be derived for the force and moment stress resultants of the CNT 

via use of Eqs. (4) and (14)  

 l l





        
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         
                       

2 2 2

2 2 2 3
22 2 2 2

0 2

1

2

1
,

2

xx

sg sg

u w u w w
N EA A

x x t x x t x

u w u w w u
EA A m e a

x x t x x t x x t

 



10 
 

       

l l 
   

      
     
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0 0 0 1 22
.

xx sg sg
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w w
m e a e a N e a f k w k w

t x x

    (15) 

Inserting Eq. (15) into Eq. (14) leads to the following coupled nonlinear equations for 

viscoelastic CNTs subject to an external load with constant forcing amplitude (i.e. F(x)=F1) 

l

l 

          
      

          
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      
   
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m
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 



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4
2
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u
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       (16) 
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  (17) 

To obtain a numerical solution, first the coupled differential equations (i.e. Eqs. (16) and (17)) 

should be made non-dimensional using the following non-dimensional parameters    

l




 

 

  



 
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     

0

4 4 2
1 2

1 22

3 4
1

1 2

,  ,  ,   ,

,   ,   ,    ,

,   ,   ,   ,   . 
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sg

e ax u w
x u w

L r r L

k L k L rEI
K K

L m EL EI EI

F LL I t EI L m
r F t

r A EI L m EI

     (18) 

Here   is the slenderness ratio, and r denotes the gyration radius of the viscoelastic CNT. 

Employing the above non-dimensional parameters, Eqs. (16) and (17) can be rewritten as 
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    (20) 

For the sake of convenience, the star notation is removed from the above equations. Assume 

that ( )ir t  and ˆ ( )iu x  are respectively the axial generalised coordinate and shape function; also 

( )iq t  and ˆ ( )iw x  are employed to denote the transverse generalised coordinate and shape 

function, respectively. The displacement components can be described as 













1

1

ˆ( , ) ( ) ( ) ,

ˆ( , ) ( ) ( ).

x

z

N

i i
i

N

i i
i

u x t r t u x

w x t q t w x

          (21) 

In the above relations, Nx and Nz represent the number of shape functions in the x and z 

directions, respectively [53]. Using Eqs. (21) in conjunction with the Galerkin scheme, one can 

discretise the coupled equations of motion as  
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   (23) 

To obtain the coupled dynamic characteristics of the viscoelastic CNT with clamped boundary 

conditions at both ends (see Fig. 1), a continuation solution method is used for a nanosystem 

with eight base functions along both directions. A computer program is written based on this 

solution method, which can be used for extracting unstable and stable branches as well as 

bifurcation points. At the first step, a continuation parameter such as the arclength s in the 

direction of a solution branch is employed. Then, a number of state variables are utilised for 

rewriting time-dependent differential equations. At the next step, to determine the equilibrium 

position, generalised coordinates are differentiated with respect to s, and Newton-Raphson 

technique is also utilised. 
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3. Numerical results 

In this section, a chiral single-walled CNT with chirality (10,5) is taken into consideration 

to examine the coupled nonlinear dynamics. The length, thickness and average diameter of the 

CNT are set to 20, 0.34 and 1.0357 nm, respectively. The slenderness ratio, the strain gradient 

coefficient and the nonlocal coefficient are also as 51.8939, 0.05 and 0.1, respectively. The 

system elastic properties are assumed as E=1.0 TPa, ν=0.19, and ρ=2300 kg/m3 in which E, v and 

ρ represent the elasticity modulus, Poisson’s ratio and the mass per unit volume of the chiral 

CNT. The viscosity coefficient of the nonlinear viscoelastic model is η=0.0005 while the modal 

damping ratio of the linear damping model is set to ζ=0.006. 

Figure 2 demonstrates the frequency-amplitude diagrams of CNTs for the coupled 

nonlinear motion along both directions for χnl =0.1 and χsg=0.05. The forcing amplitude, the 

linear and nonlinear elastic constants of the foundation are taken as F1=0.30, K1=20.0 and 

K2=25.0, respectively. The nonlinear coupled dynamics of viscoelastic CNTs embedded in an 

elastic medium is of hardening type. In fact, as the excitation frequency increases, first there is 

a gradual increase in motion amplitudes; however, it is followed by a sudden reduction in the 

motion amplitudes of the nanotube at the first saddle node. This sudden reduction can be 

interpreted as an increase in the stiffness (hardening behaviour). Two saddle nodes (SNs) are 

also found in the nonlinear dynamic behaviour of the nanosystem (SN1: Ω/ω1=1.2270; SN2: 

Ω/ω1=1.0465). Figure 3 shows the large-amplitude coupled dynamic characteristics of the 

viscoelastic CNT of Fig. 2 at Ω/ω1=1.20; the time traces of q1 and r2 as well as their phase-plane 

diagrams are plotted. 
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Figure 4 indicates the influences of the nonlocality and strain gradients on the coupled 

frequency-amplitude response of the viscoelastic nanotube for the motions along both axes. 

The results of the nonlocal strain gradient model (χnl =0.1; χsg=0.05) are compared with those of 

the classical elasticity (χnl =0; χsg=0). The forcing amplitude, the linear and nonlinear constants 

of the elastic medium are assumed as F1=0.30, K1=20.0 and K2=25.0, respectively. Moreover, 

the viscosity coefficient of the nonlinear viscoelastic model is η=0.0005. It is found that the 

NSGT resonance frequency is smaller than the classical one since nonlocal effects are dominant 

(the nonlocal coefficient is twice the strain gradient one), which yield a slight decrease in 

structure stiffness. In addition, the classical elasticity overestimates the peak amplitude of 

viscoelastic CNTs.   

Plotted in Fig. 5 is the force-amplitude diagrams of the viscoelastic chiral CNT for χnl =0.1, 

χsg=0.05, F1=0.30, K1=20.0, K2=25.0, and η=0.0005. Both stable and unstable responses are 

shown in the figure. It is observed that increasing the forcing amplitude leads to a gradual 

increase in the amount of the amplitude along both axes. However, this gradual increase is 

followed by a notable sudden increase at the first saddle node (F1=0.6215). Another saddle 

node at F1=0.1249 is also observed in the nonlinear coupled force-amplitude response of the 

viscoelastic CNT. 

Figure 6 depicts the strain gradient and nonlocal effects on the force-amplitude diagrams 

of the viscoelastic CNT for the coupled motion. The non-dimensional parameters are set to 

K1=20.0, K2=25.0, η=0.0005, and Ω=24.0. Neglecting the NSGT effect results in lower forcing 

amplitudes associated with the saddle nodes. Furthermore, for large values of F1, the classical 
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elasticity predicts smaller motion amplitudes than those of the NSGT while the classical 

elasticity overestimates the CNT amplitude for small forcing amplitudes.  

Two damping mechanisms (i.e. the linear viscous damping and the Kelvin-Voigt nonlinear 

damping) are compared in Fig. 7. The nonlinear resonance frequency of the viscoelastic chiral 

CNT versus the forcing amplitude is plotted in this figure. It is found that the gap between the 

two damping mechanisms can be neglected for small forcing amplitudes. Nonetheless, for 

higher values of F1, the linear damping mechanism leads to higher nonlinear resonance 

frequencies.  

Illustrated in Fig. 8 is the nonlinear resonance amplitudes versus the forcing amplitude 

obtained based on two damping mechanisms. Again, it is observed that the difference between 

the two mechanisms can be neglected for small forcing amplitudes while for large ones, the 

Kelvin-Voigt nonlinear damping mechanism leads to smaller nonlinear resonance amplitudes 

along both axes.  

The influence of the linear spring constant on the frequency-amplitude response of the 

viscoelastic chiral CNT for the coupled motion is shown in Fig. 9; the non-dimensional 

parameters are set to F1=0.30, K2=25.0, and η=0.0005. From the figure, it can be seen that 

higher linear spring constants result in higher non-dimensional excitation frequencies 

associated with the resonance. The mechanics reason for this is that increasing the linear spring 

constant increases the structure stiffness, especially at small-scale levels, and this consequently 

increases the resonance frequency of nanotubes. However, the peak amplitude is slightly 

smaller for higher linear spring constants. 
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Figure 10 demonstrates the influence of the linear spring stiffness on the force-amplitude 

response of the viscoelastic CNT for K2=25.0, η=0.0005, and Ω=23.0. It can be concluded that 

the linear spring stiffness does not change the type and number of saddle nodes of the 

nanosystem. Nonetheless, increasing linear spring stiffness reduces the value of the forcing 

amplitude associated with saddle nodes. 

 

4. Concluding remarks 

The coupled mechanical behaviour of viscoelastic CNTs was studied taking into account 

both displacements along the longitudinal and transverse directions. The effects of large 

deformations induced by the geometric nonlinearity were also taken into account. The NSGT 

was used to capture scale effects on the coupled mechanical behaviour. In addition, the Kelvin–

Voigt approach was employed for incorporating the influence of the internal energy loss. 

Applying the NSGT and the Hamilton principle, the scale-dependent equations of the coupled 

motion were derived for both displacements along the longitudinal and transverse directions. 

The Galerkin scheme of discretisation and a continuation approach were employed to obtain an 

accurate numerical solution.  

From the numerical results, it was found that for higher values of the forcing amplitude, 

the linear damping mechanism results in overestimated nonlinear resonance frequencies. 

Moreover, the linear spring stiffness does not change the type and number of saddle nodes of 

the viscoelastic CNT. Nonetheless, higher linear spring constants lead to higher excitation 

frequencies associated with the resonance while the peak amplitude is slightly lower for higher 

spring stiffnesses. The coupled mechanics of viscoelastic CNTs embedded in an elastic bed is of 
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hardening type with two saddle nodes. Furthermore, it was concluded that the classical 

elasticity overestimates the peak amplitude of the nanosystem. The present nonlinear 

formulation and numerical results provide a theoretical platform for future experimental 

investigations on the nonlinear dynamics of nanotubes. 

 

Appendix A. Comparison studies 

A comparison with the existing results for the linear vibration of nanoscale tubes with 

simply supported ends [54] is given in Fig. 11 so as to validate the present formulation. The 

nonlocal and strain gradient parameters are   0 0.02nl e a L  and l   0.03sg sg L , 

respectively. Other nanosystem properties can be found in Refs. [54, 55]. The effects of the 

internal energy loss are ignored. Furthermore, the large deflections associated with the 

geometrical nonlinearity are not taken into consideration. From the figure, a good match 

between the results of the present formulation and those extracted by Li et al. [54] using the 

NSGT is found.  

A comparison between different theories involving the classical, nonlocal, strain gradient 

and nonlocal strain gradient is given in Fig. 12 for the natural frequencies of simply supported 

nanoscale tubes. The classical, nonlocal, strain gradient and nonlocal strain gradient theories 

are denoted by CT, NT, ST and NSGT, respectively. Nanosystem properties are found in Refs. 

[54, 55]. The effects of the internal energy loss and large deformations are ignored. It can be 

seen that the NT gives the lowest natural frequency while the ST leads to the highest one. This 
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is rooted in the fact that strain gradient effects lead to an increase in structure stiffness 

whereas nonlocal effects yield a decrease in the stiffness.   
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Fig. 1. A coupled viscoelastic CNT under the action of a harmonic distributed force. 
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(a) 

 
(b) 

 
Fig.2. Frequency-amplitude diagrams of the viscoelastic nanotube; (a) the maximum of q1; (b) the minimum of r2. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Fig.3. Large-amplitude dynamic characteristics of the viscoelastic nanotube of Fig. 2 at Ω/ω1=1.20; (a, b) time 
traces of q1, and r2, respectively; (b) phase-plane diagrams of q1, and r2, respectively. 
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(a) 

 
(b) 

 
Fig.4. NSGT effects on frequency-amplitude response of the viscoelastic nanotube; (a) the maximum of q1; (b) the 

minimum of r2; F1=0.30, K1=20.0, K2=25.0, and η=0.0005. 
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(a) 

 
(b) 

 
Fig.5. Force-amplitude diagrams of the viscoelastic nanotube; (a) the maximum of q1; (b) the minimum of r2. 
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(a) 

 
(b) 

 
Fig.6. NSGT effects on force-amplitude plots of the viscoelastic nanotube; (a) the maximum of q1; (b) the minimum 

of r2. 
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Fig.7: Resonance frequency versus the forcing amplitude determined based on two damping mechanisms; hollow 

circles show the linear viscous damping mechanism (with ζ=0.006) while solid squares show the Kelvin-Voigt 
nonlinear damping mechanism (with η=0.0005). 
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(a) 

 
(b) 

 
Fig.8: Resonance amplitude of (a) q1 and (b) r2 versus the forcing amplitude determined based on two damping 

mechanisms; hollow circles show the linear viscous damping mechanism (with ζ=0.006) while solid squares show 
the Kelvin-Voigt nonlinear damping mechanism (with η=0.0005). 
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(a) 

 
(b) 

 
Fig.9. Effect of the linear spring stiffness on frequency-amplitude response of the viscoelastic nanotube; (a) the 

maximum of q1; (b) the minimum of r2; F1=0.30, K2=25.0, and η=0.0005. 
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(a) 

 
(b) 

 
Fig.10. Effect of the linear spring stiffness on force-amplitude response of the viscoelastic nanotube; (a) the 

maximum of q1; (b) the minimum of r2. 
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Fig.11. A comparison with the existing results for simply supported nanoscale tubes [54]. 
 

 

Fig.12. A comparison between different theories for simply supported nanoscale tubes. 

0

100

200

300

400

1 2 3 4 5 6

D
im

en
si

o
n

le
ss

 n
a

tu
ra

l 
fr

eq
u

en
cy

 

Mode number 

Present results

Reported results

0

200

400

600

800

1 2 3 4 5 6 7 8

D
im

en
si

o
n

le
ss

 n
a

tu
ra

l 
fr

eq
u

en
cy

 

Mode number 

CT

NT

ST

NSGT


