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ABSTRACT Trends in energy management schema have advanced into legislating consumer-centered
solutions due to inclination interests for personal owned distributed energy resources at the low-voltage level.
Thence, this paper proposes a tailorable energy manager tool that empowers Prosumer(s) in a nanostructured
distribution network to take sole precedence when prosuming optimal services to the energy system. It too
acts as an aggregator that attests cooperative energy management processes amongst Prosumers to enhance
demand-side responses and economics. The suggested nano-biased energy manager engages multi-agent
network as the basis coordinator for peer-to-peer advocacy in a decentralized environment. The agents
were then programmed with reinforcement and extreme learning machine intelligence on a layered coalition
model to compute joint decision-making processes with constraint relaxation relaxed decision constraints
and policies. The problem formulations assure engagement of energymanagement in the liberalizedmarket is
sustainable, reliable, and non-discriminated. Computational validations were analyzed using MATLAB and
Java agent development framework on four aggregated Nanogrids representing the residential, commercial,
and industrial building. Results have shown positive eco-strategic managerial avenues where cooperative
assets scheduling and bidding-abled decorum were autonomously acquired. Reduced operating costs were
gained from energy trading profit margin due to strategic use/sell of electricity based on real-time tariff and
conferred incentive packages but constrained within the mandatory obligation to demand-side management.
The subsidiary, the inauguration of meshed communication infrastructure has shown adequate monitoring
and commanding resolutions for decentralized Agent(s) to function collaboratively.

INDEX TERMS Demand-side management, multi-agent systems, adaptive scheduling, hybrid power
system, stochastic processes and nanostructured power grid.

NOMENCLATURE
DER Distributed Renewable/Energy Resource
DSO Distributed Network Operator
ELM Extreme Learning Machine
EM Energy Management
JADE Java Agent DEvelopment
LCM Layered Coalition Model
MAN Multi-Agent Network
MG Microgrid

The associate editor coordinating the review of this manuscript and
approving it for publication was Ramakrishnan Srinivasan.

NG Nanogrid
SHSES Small-scaled Hybrid Sustainable Energy Source
SOC State of Charge (Battery)
STS Short-Term Scheduler
TSO Transmission Network Operator
WAICS Wide-Area Information & Communication

System

I. INTRODUCTION
As an integral part of the recent liberalization in the
electricity market and digitalization for decentralized
EM infrastructure, scientific communities are constantly
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resynthesizing stackable-ecotechnological EM solutions that
radically address Consumer’s expectations when embracing
sustainable energy integrations [1], [2]. Indeed, at global
perspective, decentralized EM schemas have already become
a pivotal topic drivers involving self-suffice or standalone
energy legislations, balancing electricity market partici-
pations, strengthening demand-side responses, and annex
cloud database for secure data transportations [3], [4].
Conjointly, innovations in aggregating separate EMs too
have shown significant importances where multi-objective
optimization using evolutionary algorithms were adopted to
cipher comprehensive energy administrations betweenDSOs,
Energy Retailers, and Prosumers uniquely [5], [6]. In this
sense, it calls for new Prosumers-centred business model
and socio-technical connection that can resolve decentral-
ize complexity in both technical, economical, and social
dimensions.

A. RELATED WORKS AND RESEARCH GAPS
Presently, research community in decentralized EM systems
have focused much dependency on DSO administrations to
procure optimal coordination of supply-demand balancing at
distribution level. Core services such as demand-side man-
agement, scheduling and anticipating DER penetrations, and
energy market operations are some typical avenues that only
DSO-TSO have the competency to superintend. At this sense,
DSOs are yet placed as an energymediator between Prosumer
and Retailer where EM solutions could be biased towards
local optimization approaches.

Habib et al. [7] proposed a coordinated strategy for optimal
rate of DER utilizations based on electricity market price
guidance alongside with MAN hierarchical control frame-
work. The paper highlights proposition in devising price
guidance coordination strategy for energy storage scheduling
and flexible load capacity response to improve Consumer’s
energy consumptions based on real-time electricity tariffs.
Moreover, the authors formulated an evaluation indexing that
can quantify EM merits between distributed and central-
ized control method based on different planning schemes.
Diversely in [8], Almeida et al. addressed few recent inno-
vation projects involving DSO-TSO interactions that high-
light optimization functionalities for larger set of problem
statements during energy trading between Prosumer(s). Thus,
new business model was brought forth to render strategic EM
schemes that serves as a generic standard tool in the DSO
toolbox. Its purpose was to provide a joined solution that
deals with line congestion management, energy balancing,
use of market flexibility, real-time control and supervision,
and network planning. Several learning pointers were noticed
from the proposed test case studies in relations to EM opti-
mization functionalities; i) the ability to expand its decision-
making search space based on previous EM experiences,
ii) Adaptable- and configurable-environment when EM par-
ticipants starts to aggrandize. Succeedingly in [9], Saint-
Pierre and Mancarella introduced a novel framework for
active EM distribution system that uses a dual-horizon

rolling scheduling model to obtain optimal power flow
dynamics inflicted byDERpenetrations. The proposedmodel
offers real-time operation planning realistically for DSOs
to optimize and schedule available generation resources
against demand capacity, incorporating Nonlinear Program-
ming schema to cipher uncertainty elements. It too facilitates
local energy reserve planning for DSO-TSO to treat load bal-
ancing mismatches under the influence of DER uncertainties
in distribution network at different time horizon.

From the above mentioned methodologies, it is trivial for
sole EM avocations to revolve around a centralised policy
maker which can be favorable for DSO-Retailer but detri-
mental on Prosumer(s) as energy trading democracy at low-
voltage level is still limited. Prosumer(s) are seeking new
DER-installed business models that allow full ownership in
personalising use of electricity while having full participation
privileges during energy trading and market operation, hop-
ing to gain good rate of return on investments. However, such
undertakings can propagate predicaments when participation
of Prosumer starts to escalate; i) inducing unsighted opera-
tions for DSO in times of energy crises, ii) monopolism in the
electricitymarket and possible obsoletion of energy player(s),
iii) demand-side management will be overly complex due to
DER penetration and electricity tariff, and iv) power system
reliability due to intermittent intentional islanding operations
and DER integrations.

B. CONTRIBUTIONS
This paper unveils realization to advance EM mediation to
be brought closer to Consumers granting grassroot-based
(bottom-up and bilateral) administrations, transacting indi-
vidualistic in-house energy manager platform that can insti-
tute either idiosyncratic or interdependent assessments. The
intention is to position DSO as a neutral energy market
facilitator for trading transactions while authorizing build-
ing or residential owners as the principal energy manager of
its own during demand-side response settlements. Therefore,
reversed obligatory role is transcend accrediting Prosumer(s)
at low-voltage level to constitute scheduling- and bidding-
abled model that relies on joined decision-making processes
involving resource availability, demand load profiles, and
feed-in against electricity price tariff in real-time. Impor-
tantly, constitution of the proposed Prosumer-centric EM
must be habitable for successive integration of NG mod-
els, alleviating competency complications towards DSO’s
decision-making process.

Essentially, the key component for the suggested nano-
biased EM for Prosumer(s) and DSO when facilitating
the energy market is peer-to-peer data management where
resource allocation is efficient, maintains constant connec-
tivity, and data are encrypted. Indeed, ‘one-size-fits-all’
approach for data management is impracticable thus, this
paper introduces a meshed-type wireless wide-area commu-
nication system that hybridizes with multi-agent network
where interoperability and autonomous coordination for dif-
ferent operating Standards can be achieved. The Agents were
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then programmed with reinforcement and extreme learning
machine intelligences on a layered coalition model to evoke
relaxed bidding-abled EM strategy that apt in prioritizing par-
ent exigencies while masterminding other neighboring con-
straints. Significantly, these Agents were primarily tasked to
regulate power flow transactions based on in-house engage-
ments to curb operating costs while maximizing energy use
competencies. The proposed methodology was then tested on
the nanostructured distribution network comprising 4 Testbed
systems (2 residential, 1 commercial, and 1 industrial
building) using MATLAB and JADE framework for MAN
deployment.

The paper is organized as follow; Chapter II proposes
the Testbed system comprises of four aggregated NGs at
distribution level and interpreting the concept of NG engi-
neering. Chapter III establishes the deployment of MAN
in layered coalition model where Agents are defined and
classified with unique allotted roles. In addition, layout of
the wireless WAICS is presented for corroborative commu-
nication linkage between NGs. Chapter IV proposes control
proceedings for Prosumer-centric EM system that involves
supervised reinforced and extreme machine learning algo-
rithms on Agent(s) to bid and generate global tractable
solutions based on energy trading policy constraints and opti-
mal demand-side management. Moreover, the algorithm also
previsions operation’s uncertainties and quantifies required
spinning reserve needed to sustain during unexpected down-
time. Chapter V exhibits simulation results attained from
selected case studies to view the impacts of egocentric
(sole NG) and altruistic (cooperative NGs) EM proceed-
ings during demand-side operations. Chapter VI investigates
operating cost efficiency and addressing uncertainty in unit
commitment problems between proposed against other pub-
lished EM methodologies. Lastly, Chapter VII concludes the
paper.

II. DESIGNING DISTRIBUTION NETWORK INTO
NANOGRID PERSPECTIVE
NG conceptions have taken its precedence towards creat-
ing an ultimate solution for building’s energy awareness.
It embraces incremental adjustments rather than relocating
to something fundamentally new when embracing DER inte-
grations at respective Prosumers’ electrical network. Such
transition enables DSO to have comprehensive EM jurisdic-
tion for individual energy participant when dealing with Pro-
sumers’ energy consumptions or contributions during market
operations. Here, a single NG is confined within a building-
scale electrical network (residential or commercial build-
ing) tagged with Prosumers’ identity. Each NG represents a
unique EM domain that governs demand-side management
through strategic scheduling of all local assets (i.e. SHSES
and Appliance Loads) while creating time-based avenues for
electricity market participations.

To visualize NGs deployment practicability at low-voltage
level, careful selection of industrial-based electronic devices
constituting present consumer’s electrical networks were

FIGURE 1. Proposed small-scaled distribution network.

TABLE 1. Power consumptions and generations for corresponding
nanogrids.

modelled shown in Fig. 1. It consists of four peculiar
NG systems involving two 25kV A Residential, a 2MV A
Commercial (Hospital), and a 2MV A Industrial building
denoted as NG1 to NG4 correspondingly. Using MATLAB,
the mentioned NGs are integrated with relevant SHSES
capacities and then coupled to the 3-ph 22kV AC primary-
side of distribution network.

Detailed modelling of adopted SHSES in respective NG is
exhibited in Fig. 15 of Appendix A. The installed capacity
of SHSES from one NG to another may differ based on
the space availability or prescribed demand load profiles,
assuming that all NGs minimally inaugurated a single local
power generation with energy storage system. Moreover,
to better comprehend separate EM proceedings in relations
to bidding strategies and energy trading, the deployed SHSES
was deliberately designed with undersized capacity in contra
to NG’s base demand load ratings. Forcing NGs to revert
it dependency on Energy Retailers and purchase electricity
based on real-time tariffs. Table 1 presents the approximate
data of local power usage and generation collected for typi-
cal residential and commercial building. Unfortunately, this
paper does not incorporate deployment of back-up diesel
generator into EM composition which can serve as a auxiliary
during blackout crises. Instead, exploiting energy storage
SOC as spinning reserve roles.
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III. PROPOSED INFORMATION & COMMUNICATION
FRAMEWORK AND DEPLOYMENT OF AGENTS
When performing decentralize EM, it is essential to extend
wireless WAICS across the distribution network to establish
two-way communication infrastructure for operation visibil-
ity. Likewise, connection interoperability between all mon-
itoring devices must be synchronized under a standardized
communication protocol in order to secure transmitting coor-
dination of recorded data from one NG or appliance to
another [13], [14]. Henceforth, deployment of smart meter-
ing and other remote control devices supported by WAICS
can propagate close relationship synopses on on-line assets’
status before undertaking desirable EM consequences.

Succeedingly, Agents of MAN are strategically positioned
along respective NG to superintend parallel coordination of
multiple on-line devices. These Agents are programmed to
interact among themselves with certain degree of collabo-
rative intelligence to perform joined (cooperating or com-
peting) decision-making approach based on time-logged
commands. Alternatively, due to Prosumer-centric EM
domain, Agent’s communication too can be confined within
the NG boundary constituting uncooperative EM manage-
rial with other NG. Nevertheless, parallel deployment of
WAICS with role-assigned Agents under layered coalition
model were proposed to comprehend complete EM domi-
nance respective NG during operations.

A. WIDE-AREA WIRELESS INFORMATION &
COMMUNICATION FOR SINGLE NANOGRID
To commemorate in-house or local point-to-point broadcast-
ing service for sensory and automated actuation devices,
Zigbee technology proffers smart network congestion super-
vision with high data rate transfer within low bandwidth
spectrum. It uses a unique periodic logging of data (non-
beacon and beacon mode) operations which results in low
energy performance suitable for low-powered electric appli-
ances [15], [16]. However, Zigbee solution only performs at
its best for short range wireless transmitting/receiving mesh
deployments targeted for in-house connection. Therefore,
to establish continuous connectivity across neighboring NGs
and other on-line energy player(s), advance broadband wire-
less access usingWiMAX technology was employed to serve
as a network extender for cooperative intercommunication.
Together, both communication systems were integrated under
a single wireless personal area network interoperated using
IEEE 802.15.4 protocol platform to provide centralised data-
centric communication management model. Fig. 2 presents
deployment of Zigbee and WiMAX technologies across a
single NG to monitor electrification signatures.

B. DEPLOYMENT AND CHARACTERISATION OF AGENTS
IN LAYERED COALITION MODEL
HavingWAICS being established, Agents of MANwere then
parallelly tagged to respective communication devices under
the hierarchical-based LCM. Agents will be programmed

FIGURE 2. Layout of WAICS for each NG network.

with self-taught intelligences that apt in procuring non-linear
decision-making processes under predefined operation com-
mitments. Using reward- and penalty-driven learning func-
tionality, Agents are to cipher joined decisional resolution
based on high accumulative payoff from the decentralized
search space while acknowledging priority constraints ren-
dered by LCM. The functionality of LCM provides per-
sonalized layered arrangement in segregating problem areas
into level of importance based on user’s preferences. Fig. 3a
demonstrates the deployment of Agents along the distribution
network while Fig. 3b represents the proposed LCM arrange-
ments in hierarchical order.

Constitution of Agents seen in Fig. 3a were modelled
in JADE. JADE is an open source multi-agent software
that establishes synergy between heterogeneous Agents in
compliance to IEEE Foundation of Intelligent Physical
Agents standards. It aims to cede interoperability and trans-
act autonomous coordination with other online technologies
given in their respective Standard domains [17]. It promotes
software portability, instil security policies for data sharing,
and endorse object oriented dataflow computing model to
enhance Agent’s operations when dealing with decisions.
Using the inbuilt Agent Directory Facilitator, users can easily
define and store Agent’s associated service descriptions into
Agent-to-Agent data exchange database.

1) AGENT’S CUSTOM ROLES
Following defines Agent’s deployment roles involving its
authorities, functionalities and communication relations:
• Distribution Service Operator (DSO) Agent- It sched-
ules base and reserve power pooling in view of power
delivery and exchange trends procured from aggregated
NGs (i.e. export and import electricity capacity pro-
files, Duck Curve profile). It too acquaint energy price
market and penalty for Consumers, serving as a price
benchmarking during bidding process and poor EM
respectively [18], [19].

• Power Condition Monitoring (PCM) Agent- Invigilate
voltage, current and power level at secondary distribu-
tion network. PCM Agent interacts closely with DSO
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FIGURE 3. (a) Agents of MAN deployed in NG network. (b) MAN cooperative layer model representing single NG.

to coordinate power transactions between Utility and
aggregated NGs, updating the status of the grid’s quality
and flagging possible threads.

• Circuit Breaker Grid (CBG) & Monitor (CBM) Agents-
CBG Agent disengages NGs from Utility (Islanded
mode) when it detects abnormality transpired from
upstream while CBMs are only deployed at low-voltage
level targeting a single NG or individual integrated
devices to perform isolation operations.

• Point of Common Coupling Monitor (PCCM) Agent-
Represents an identification for peculiar NG, officiating
all power delivery transactions and monitoring system’s
stability. Program to interact with neighboring NGs to
initiate bidding and negotiation strategies for better elec-
trification policies to suit unique needs [20], [21].

• Critical Load (CL) & non-Critical Load (non-CL)
Agent- Both Agents exemplify load entity, constantly
attuning with PCCM Agent to govern grid balancing
services. Diversely, for CL Agent, availability of incom-
ing power must be fulfilled continually while non-
CL allows load shedding avocations based on power
availability.

• Generation Source (GS) Agent- Representing identifica-
tion for respective integrated power generation resources
(DC or AC-based technology).

• Energy Storage/Load Device (ES/LD) Agent- ES/LD
Agent is a dual operated system that functions as a
power generation or load (non-critical) interchangeable.
It monitors state-of-charge level and instruct charg-
ing or discharging operations.

• Integrated Assets (IA) Agent- IA Agent helps to encap-
sulate and monitor all integrated assets (SHSES), com-
prehending power availability at individual integrated
system while employing STS to evaluate operational
status at different time intervals.

2) MAN HIERARCHY IN LAYERED COALITION MODEL
Fig. 3b illustrates the decisional task allocation at respective
LCM’s layers. Order of computational hierarchy is organised
from bottom layer to top with the consideration of taking
layer-to-layer compromising components before converging
to an absolute solution [22]. Thus, the Agent’s learning
capacity will gain computational complexity as it advances
higher into the hierarchy known as the ‘‘n-1 coordination
criterion’’ effects. Such approach allows Agent’s interactions
to bring forth site-specific emergence of comprehensive sys-
tem behaviour, opening up new possibilities for all energy
participants:
• 1st Layer- It provides primary load balancing across all
online loads and monitor power consumptions of non-
critical loads while ensuring critical loads are protected.
Involving Agents required to address power mismatches
and retrieve control operandi commands to perform
switching operations based on generation availability
and update power flow distributions within seconds
across the network in real-time.

• 2nd Layer- There are two governing sub-controllers,
Distribution and STS. The Distribution control strate-
gies involve in-house and Utility power flow delivery
to schedule online load against generation availability
with respect to electricity price market and local HSESs.
The objective is to send managerial commands based
on strategical planning in maximising local power pro-
duction and maintaining enough reserve energy pool.
To back it up, STS compliments in providing analyti-
cal information (i.e. day-ahead forecast, energy storage
planning, etc.) that informs possible threads based on
the estimated parameters. Measurements are recorded
every second intervals.

• 3rd Layer- The management proceedings render two
unified mediator, creating a linkage between Utility
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(Local Corresponder) or neighboring NGs (External
Corresponder) with the local NG. The Local Corre-
sponder imports power generation requests from Util-
ity or vice versa. It too communicate with PCM Agent
to create a bidding platform where diplomatic electricity
price tariffs are tabulated in real-time. Such decisional
transactions are mediated based on 30mins intervals, re-
mapping its planning to be in sync with the wholesale
electricity tariff. For External Corresponder, it focuses
mainly in trading with other NGs as an alternative for
power exchange and again a separate bidding proceed-
ings will be brought upon.

• 4th Layer- It responses closely to PCM Agent’s com-
mands to match required power delivery. To overcome
oversized energy pooling from Utility, it studies demand
load profiles and comprehend power mismatches trends.
Such predicaments avoid Utility from issuing penalties
to local NG for poor power management and improve
Duck Curve crisis. Conjointly, it will broadcast whole-
sale electricity prices giving PCM Agents more options
in purchasing their electricity either from Utility or the
neighbouring NGs.

FIGURE 4. Agents of MAN in a collaborative network.

Supplementary, the LCM has a distributed cloud database
for separate layers. It serves as a data access point where
Agents can selectively share information across any hierar-
chy layer to ensure objectives are tracked and data are well
managed.

IV. PROPOSED CONTROL AND
MANAGEMENT INNOVATIONS
A. COORDINATION AND FUNCTIONALITY OF AGENT
A systematized codification of Agent’s governance shown
in Fig. 4 proposes a collaborative network that orientates
dataflow interactions among Agents while Table 2 provides
description of data transaction operations (exchange infor-
mation) at respective Agent’s roles. These messages contain
user-centric directive commands that direct NG’s operations
based on Agent’s commitments driven by data interventions.
Through such collaborative assignments, the perceptive of
Agent’s obligatory is clearly visible when tendering ingenuity
solutions. Agents in the collaborative network are constantly

TABLE 2. Agents of MAN coordination and tasks.

FIGURE 5. STS time-based allotment for appointed agents.

updating their individual findings to achieve compound-
ing effects until all involving Agents reach convergence.
All computational proceedings entail all online CLAgent’s to
concede prior settlement before advancing to other decision
making processes.

Succeedingly, deployment of Agents for STS seen in Fig. 5
is divided into two-level scheduling approach; day-ahead and
real-time scheduler. The day-ahead aids in forecasting short-
term resolutions based on historical data while real-time
performs ad-hoc corrections to atone day-ahead predictions.
The scheduling architecture to ensure local power generation
availability is sized without over- or under-fitting capacities.

Finally, appropriate allocation of Ontologies is designed
to secure cooperative communication between Agents. The
Ontologies provide Agents to better understand structured
information that are exchanged during operations, typically
packaged with Agent’s ID and a target action [23]. Fig. 6 rep-
resents the proposed ’NanogridOntology’ for participating
Agents using JADE platform.

VOLUME 7, 2019 52547



M. R. Bin Mohamad Saifuddin et al.: Nano-Biased Energy Management Using Reinforced Learning Multi-Agent

FIGURE 6. Ontology for agent’s real-time communication and control protocol in NG.

B. INDIVIDUALISTIC SUPERVISED
INTELLIGENCES FOR AGENT
Among indeterministic exertions instigated mainly from
SHSES operations and shiftable demand load profiles, ELM
intelligence serves as a cogent avenue that envisages prob-
abilistic quantifications on uncertainties while ordering rea-
soning skills relevant tomulti-objective constraints [24], [25].
Moreover, its datamining capacity and adaptive learning apti-
tude perceive influencing circumstances that can affect per-
formance optimality in gaining desirable results. In this sense,
the proposed ELM model was modelled using supervised
neural network architecture is entrenched with regularized
ensemble regression to enact better universal approximation
abilities. Each ELM-based Agents (i.e. IA, non-CL loads,
and DSOAgent) procure analytical information that serves as
some prognostic initiations based on their operational profiles
ruled by STS proceeding. They are programmed to cipher
uncertainty into near approximate certainty throughout time,
t → (t + nth) as shown in Table 3. Those predicted results
endorses possible propositions that can strategically influence
apt decisional making processes involving local NG’s power
generation availability versus online non-critical load adjust-
ments to gain desirable energy trading and usage benefiting
for both Prosumers and DSO-TSO.

TABLE 3. ELM-based agents computational assignments.

The ELM-based Agent is defined using 3 separate lay-
ers (input, hidden and output layer) and interlinked using
weighted lines that bridges each node from respective lay-
ers as shown in Fig. 7a. Subsequently, it uses an ensemble

FIGURE 7. Single ELM neural network block. (b) Ensembled ELM
formation.

approach to combine multiple ELMs shown in Fig. 7b to
reduce fluctuating performances and increase accuracy as
compared to a single structured ELM. The input layer con-
sists of sampled historical data abstracted from each Agent
attached to an entity. Likewise, the input layer can also
function in a multi-dimension criterion, taking more than
a single variable (i.e. power, voltage, SOC, weather status
and the list goes on). The hidden layer interlinks the input
layer to the output layer, transforming data into implicit
information where linguistic features from the input nodes
are redefined into relational representations between input
and output’s objective. Here, non-linear activation function
resides at every nodes in the hidden layer to control result’s
scalability. The function enable resultant data to be within
acceptable range, procuring useful data for the subsequent
computations. Finally, the output layer presents estimated
solution in a single variable domain.

The weighted lines interconnecting input to hidden layer
and hidden to output layers attune correlation magnitude to
cipher in-between exchanging of data. These weights rep-
resent best fit estimations bearing minimal error between
actual and estimated results based on its learning algorithm.
In ELM, single iterative estimations are only done at the
output’s weighted line thus, reducing computational time as
compared to other gradient-descent based training schemes.
Additionally, the regularised factor, I/δ, and ensemble for-
mation were incorporated to resolve performance consistency
regardless of input or hidden layer sizes. (1) to (8) demon-
strate derivations of ELM:

H [n, z] = X[nsamples,mvariables]∗W1[m, zhidden nodes] (1)

z = ((m+ 1)/2)+
√
n (2)
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Y [n, 1] = g(H ) ∗W2[z, 1] (3)

g(H ) = 1/(1+ e−Hi,j ) (4)

W2 = H†
∗ Y (5)

H†
= (HT

∗ H + (I/δ))−1 ∗ HT (6)

|Ŷ − Y |min = |(Hout ∗W2)− Y |min (7)

constrained to:

Ŷ =


0, Ŷ < 0
Ymax , Ymax ≤ Ŷ
Ŷ , otherwise

(8)

where matrix W1 is randomly assigned integer (0 < x < 1).
g(.) denotes a sigmoid-based activation function. X and Y
are the input and actual output matrices that have equal
number of rows. H expresses the hidden layer matrix formed
by the number of collected samples against the calculated
hidden nodes [n × z]. I refers to an identity matrix while
δ is a real number proportionate to z, ideally. Lastly, W2
is the regularised output weights connecting to the output
layer. Using W2, generation of new testing set will be gen-
erated which corresponds the estimated output, Ŷ . Further
evaluation is then rendered to check sanity of the predicted
results using (7). It aims to gain least square error between
estimated and actual output. Thereon, ensemble technique is
performed on the concatenate ELMs intending to reduce root
mean square deviation errors, RMSD, and increase accuracy
resolution against the actual output, Y .

ŶESM =

∑N
i=1 Ŷi
N

(9)

RMSD =

√∑N
i=1(Ŷi − Yi)2

N
(10)

C. REINFORCED LEARNING FOR COOPERATIVE
TENDENCY IN LAYERED COALITION MODEL
Based on Prosumer’s perspective towards an ideal EM
bureaucracy for local NG operations, the preferred objective
statement mainly dwell on; i) strategic procuration of bar-
gained electricity based on real-time tariffs, ii) maximising
incentive policies for green efforts, iii) minimizing operating
costs of SHSES by securing higher feed-in tariff when selling
back to grid. However, such managerial proceedings can
propagate possible monopolism in the electricity market and
reliability issues at low-voltage level. Prosumer(s) will try
to summon low ball bidding techniques that constantly offer
marginally cheaper electricity price during peace time and
hike in price when the network faces interruptions. Moreover,
complications in utility protection schemes will rise (i.e. false
tripping of feeder, unsynchronized reclosing, and prevention
of automatic reclosing) due to large operation of islanding
mode. In this sense, self-centered EM can bring forth poor
energy coordination and predicaments for top-level players
especially DSO and Retailers. Scheduling of power genera-
tion capacity becomes uncertain and incompetent as demand
shift profiles get larger due to renewable penetrations.

Core operations such power system stability guarding volt-
age and frequency levels can potentially be afflicted due
to inadequate load balancing or following management
caused by renewable generation intermittency. Therefrom,
the relationship between Prosumer, DSO, and Retailers must
co-exist in securing demand-side management and market
operations. DSO will be remodel as a neutral energy facilita-
tor that enables competitive access to an open and accessible
electricity market markets for Prosumers. To increase cooper-
ative energy transactions at mass, DSO will present incentive
packages for participants who are involved in demand-side
responses. Such innovation initiates cooperative EMplanning
for NG to formulate optimal use of local SHSES to be both
producer and consumer; enabling security, sustainability and
affordability that supports operation optimizations for all
energy participants.

In consequence, adaptation of reinforced learning in
LCM aims to pilot Agents into endorsing swamp comput-
ing that promotes interdependency and bidding-abled EM
platform across participants at low-voltage level. Negotia-
tion protocols were exercised to sieve out some candidacy
action sets based on learning payoff received as a coali-
tion propensity. It too promotes learning of energy trading
management where Agents arbitrate optimal solution from
Agent’s individualistic decision to gain uniform coalition
payoff. Thus, probability stagnation schema was committed
to ensure build-up convergence is attained during learning
developments [26]–[28].

Here, deployment of Q-learning for Agents is separated
into two computation tiers, Tier-1, handles EM administra-
tions based on a single NG operation influenced by Pro-
sumer’s expectations while Tier-2, extents collaborative EM
bidding across interconnecting NGs. Both Tiers will incorpo-
rate constraints required byDSO acting as a governor and pol-
icy makers during energy trading while maintaining national
balance between supply and demand across distribution net-
work in real-time. The aims are to establish fair and neutral
EM which favors cooperative solutions under the governance
of Prosumer(s), enhancing demand-side management. DSO
will be challenged to support fair, transparent and competitive
market mechanisms that will steer energy players to annex
liveliest playing-field environment.

1) MODELLING Q-LEARNING FOR AGENT(S) IN LCM
The Agent’s learning algorithm is quantified using Q-value
where primitively it is set to be a random positive inte-
ger value. Agents will then execute respective actions,
a1, a2, ... based on individual state-action pairs under the
influence of defined policies. Subsequently, only relevant
actions will be stored under a specified state, s. When the
state in environment changes s′ due to Agent’s actions,
the Agent will then be assigned with a reward. Through such
online rewarding and training system, Agents are constantly
embedded with updated Q-value as it advances through the
layers of LCM before it converges into a global optima
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expressed in (11).

Q(st , at )new← Q(st , at )current

+ α[re+1 + γ ∗ Q(st+1, at+1)− Q(st , at )current ] (11)

where α and γ are real integer numbers (0 < x < 1)
defining Agent’s learning rate and temporal discount factor
respectively. re+1 denotes acquired payoffs either reward
(+) or penalty (−) received when moving from current state
s to the next s+1. Q(st , at )new projects the estimated action-
value function based on action taken. It too observes severity
of temporal difference (TD) factor, re+1 + γ ∗Q(si+1, ai+1),
where it depicts Agent’s learning value functions under no
prior knowledge Q(si, ai) deviate from the targeted conse-
quence. Agents’ would need towait for payoff status to reflect
reward before state-action pair values can be updated.
(a) Cooperation Tendency-Consider there are nth num-

ber of Agents and ai represents corresponding actions
thus, [a1, a2, ..., an] or

−→a encapsulates the action set
of peculiar Agent. N (−→a ) is the number of action
set performed. ϕ is a boolean data type that denotes
the learning stagnation or convergence status. CP(−→a )
quantifies the cooperation probability in relation to ϕ
where largerCP offers higher cooperation tendency for
Agents and vice versa. Hence, the following derivations
present computations of the cooperation tendency in
LCM; i) initializing CP(−→a ) randomly for involving
joint action sets, ii) compute new CP after execut-
ing Agent’s actions based on respective objectives,
iii) equate N ′(−→a ) = N (−→a +1), iv) assign 0 to ϕ if the
state of Agents did not change or 1 for otherwise, and
lastly v) compute CP given in (12).

CP(−→a )new = CP(−→a )+ [(ϕ − CP(−→a ))/N ′(−→a )]

(12)

where

ϕ =

{
0, Agent solution becomes stagnated
1, otherwise

(b) Payoff (PO) Function-It is a reward system that
provides coalition probability comprehension from
Agents’ performed actions. The payoff capacity derive
in (13) denotes desirable learning processes achieved
by Agents and it will be reflected on respective
Q-value. Thus, payoff will ultimately guide Agents
to take the best possible actions from individual
Q-learning algorithms. Given that the operations of
Agents in NG can either be disjoint or synergetic
EM, the payoff assignment for poor decision-making
actions will be separated into two domains; negative
and neutral net values respectively.

PO(−→s ,−→a ,AG) = QAG(
−→s , aAG) ∗ CP(−→a ) (13)

where the computed payoff reflects solely for that pecu-
liar Agent based on all actions and states implied. Let
aAG be the actions performed by a peculiar Agent AG.

n is the number of Agents deployed and−→s represents
the state of all joint Agents.

(c) Candidate Policy-The candidacy in selecting Agent’s
actions are influence heavily from payoffs capacity
thus, Agents are forced to perform actions that are
reward-driven to gain high coalition payoffs. Firstly,
it selects some action sets and goes through Nash Bar-
gaining Theorem (NBT) where candidate policies will
sieved relevant action-selection criterion. The sequence
in establishing the candidate policy procedure are as
follows; i) use transferable utility to choose some can-
didate action sets for all involving Agents denoted by
AC (
−→s ). ε, bounded with a threshold limit between

0 to 1, denotes the controls size of candidate action
sets shown in (14), ii) compute the target policy, π (−→s ),
given in (15) expressing which action to be taken in
state −→s mapping deterministic action aAG from state
−→s , iii) employ maxima function arguments based on
NBT theorem for each action set−→a ∈ AC (−→s ) against
the minimum of Q-value, q∗AG. It uses Cartesian Sum-
Product on finite state and action spaces of all Agent’s
belief as a probability.

maxval = max−→a

[
n∑
i=1

PO(−→s ,−→a ,AG)
]

(14)

if (maxval−
∑n

i=1 PO(
−→s ,−→a ,AG)) ≤ (ε∗maxval) then

add−→a into Ac(−→s ).

π (−→s ) = argmax−→a

[
n∏

AG=1

PO(−→s ,−→a ,AG)− q∗AG

]
(15)

(d) Personalized Q-learning using LCM-The formulated
candidate policy for each Agent endorses payoff coali-
tion comportment and records situation of Agents in
Q-Table. The Q-Table neglects taking each individ-
ual Agent’s action into review. The flowchart given
in Fig. 8 illustrates the Q-learning of Agents in LCM
domain.

FIGURE 8. Agents’ Q-learing flowchart sequence in LCM.

2) FORMULATE AGENTS’ REINFORCE
LEARNING AND POLICIES FOR EM
Subsequently, algorithm delegations in view to EM prob-
lems at demand-side are fused into the proposed reinforced
learning to visualize how these four Agents, ELM-based
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DSO and IA, PCM & PCCM, parallelly negotiate in keep-
ing power delivery balanced. The criteria involves strategic
scheduling of SHSES and non-critical loads, comprehending
data abstractions from ELM-based Agents, devise economic
wager to offer bidding propositions that can influence better
regulatory of peak demand intervals, generate healthy power
generation profiles by cultivating whole system optimization
perception, and facilitate energy market arrangements for
DSO-Prosumers trading chain.

1) PCCM Agent: Action a1, Candidate Policy- The focal
objective is to govern online load capacity in a NG
through load balancing theorem (equality constraint).
Here, the algorithm engages non-CL Agent to forecast
desirable online load capacity at the next time stamp.
Therefrom, (16) and (17) formulate load minimization
approach that proffers optimal electrification criterion
where scheduling of shiftable loads are strategically
shed based on generation availability. The time con-
straints dictated for computations were restricted to
half-hour time span.

min
n∑
t=1

[Ploadonline − Ploadobjective]2(t) (16)

Ploadonline(t) = [Ploadforecast + Online− Offline](t)

(17)

where Ploadonline(t) and Ploadobjective(t) are actual
and desirable load capacity at time t respectively.
Ploadforecast refers to combination of critical and
non-critical load consumptions while Online(t) and
Offline(t) are the connected and disconnected load at
time t during the load shifting intervals. Individually,
Online(t) and Offline(t) are separated into two defini-
tions; incremental and decremental of connected load
devices shifted at time t and precede t (forecasted)
correspondingly as shown (18) & (19).

Online(t) =
t−1∑
i=1

D∑
d=1

Adi(t)P1d

+

P−1∑
p=1

t−1∑
i=1

D∑
d=1

Adi(t−1)P(1+p)d (18)

where Adit denotes the number of devices, d shifted
from time t to (t + 1). P is the duration span of device
being online, and P1d & P(1+p)d are the power ratings
consumed at first time stamp and the next, (1 + p)
respectively at reciprocal devices d . Correspondingly,
Offlineload (t) includes initial and estimated energy con-
sumptions from time t to iwhere device is fully discon-
nected.

Offline(t) =
t+del∑
i=t+1

D∑
d=1

Ad(t)iP1d

+

P−1∑
p=1

t+del∑
i=t+1

D∑
d=1

Ad(t−1)iP(1+p)d (19)

where del implicates maximum time delay. The mini-
mization statement has its constraints where selection
of least one shiftable load device (Adti > 0; ∀d, t, i)
and the number of load devices shifted in between time
stamps i, i+1 cannot bemore than the number of online
non-CL Agents,

∑N
t=1 Adit ≤ non-CL(i).

The policy assigned to a1 determines the maximum
demand, MD, capacity at respective NG. For every
15mins intervals, the Onlineload (t) will be compared
againstMD to ensure its capacity is belowmax MDtotal .
Note that the MD policy may defer based on load cat-
egory (i.e. mechanical or electrical) and user-defined
diversity factor percentage,DivF .MD reflects the high-
est permissible electricity consumptions given at any
time stamp, suppressing sudden peak demand which
can excites unscheduled generation. Hence, DSO will
imposes penalty to Prosumer(s) due to poor manage-
ment of electricity usage. For these reason, realizing
maximum MD and minimizing demand factor DF can
aid in shaving peak load crises.

maxMDtotal =
D∑
d=1

[(PnonCLd ∗ DivFd )+ PCLd ]

(20)

DF(t) = MD(t)/Ploadonline(t) (21)

payoff (−→s ,−→a ,AG) =

−1, 1.0 > DF(t)

1, 1.0 < DF(t)
(22)

2) PCCMAgent: Action a2, Candidate Policy- In conjunc-
tion with a1, PCCM Agent too is modelled based on
a data-driven computing consequences that relies on
the forecasted data prescribed by ELM-based Agents.
These sampled data (5mins interval) will influence
Agent’s decisional performances in attaining optimal
EM and assets deployments.
The policy for a2 ensure forecasting results are not
overfitted and data are not misinterpreted due to data
‘‘noise’’ picked as part of the model during learning
processes. Therefrom, to increase predictive accuracy,
training and testing sets errors are to bemonitored using
k-fold cross validation where it appreciates model’s
performances against unseen data. Explained in [29],
it highlights the importance in splitting predictive
model into size of training and testing sets, and shuf-
fling of data subset selections to gain interpretation
accuracy.

Ek (λ) =
∑

i∈k th part

(yi − xiβ̂−k (λ))2 (23)

CV (λ) =
1
K

K∑
k=1

Ek (λ) (24)
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payoff (−→s ,−→a ,AG) (25)

=


0.5, 10<MAPE(t)<20%
1.0, MAPE(t)<20%
0, otherwise

(26)

where λ is the estimated tuning parameter, Ek com-
putes the error in predicting k th which typically set at
k = 5 or 10, CV (λ) depicts the cross validation error
through iterative procedure in changing λ, and MAPE
measures the percentage of error between forecast and
actual values.

(c) PCM Agent: Action a1, Candidate Policy- The actions
delivered by a1 is separated by two interlinked domains
which involved ordering of energy based on load power
mismatch and scheduling of local battery operations.
Primitively, PCM Agent focuses on procuring a bal-
anced power criterion that schedules local SHSES
individually or import power from the Retailer(s) to
compensate demand shift capacity at time, t .

1PDIFFi (t) = [Pgrid +
N∑
i=1

PDG,i + Pbatt ](t)

− Ploadonline(t) (27)

1PADJDG,i(t) =
(PMAXDG,i − PDG,i(t)) ∗1P

DIFF
i (t)∑N

i=1 P
MAX
DG,i − PDG,i(t)

(28)

where 1PDG,i(t) denotes the power change in time t
incurred by individual SHSES only referring to ther-
mal or renewable power generating units. 1PDIFFi (t)
indicates the power difference between online genera-
tion capacity and load, 1PADJDG,i(t) quantifies the power
adjustments required for each local source at specific t .
Note that, when exploiting local thermal generating
units, asset’s constraints involving valve-point loading
effect needs to be consideredwhen adopting (28). Thus,
with (29) & (30), proper delegations of generating units
were rendered to satisfy 1PDIFFi .
when generating unit output increases:

PTU ,i(t)− PTU ,i(t − 1) ≤ URi
min[PTU ,i(t − 1)+ URi(t),

PTU ,i(t − 1)+1PADJTU ,i(t)] (29)

when generating unit output decreases:

PTU ,i(t − 1)− PTU ,i(t) ≤ DRi
max[PTU ,i(t − 1)− DRi(t),

PTU ,i(t − 1)−1PADJTU ,i(t)] (30)

where PTU refers to local online thermal unit generator
where applicable. URi(t) and DRi(t) are corresponding
increase and decrease valve-point loading capacity at
fixed interval time steps.
Inevitably, there will be instances when 1PDIFFi (t)
will not be satisfied thus, power dependency will
divert to either Retailers, energy storage or mixture

of both. Therefore, involvements in energy storage uti-
lization needs strategical control measures to ensure
healthy investment return is gained and substantial
reserve power pooling is observed before resorting to
Retailer(s). It should be noted that constant maximiza-
tion of energy storage may not necessarily be an opti-
mal solution.

Pbatt (t) = [(
N∑
i=1

PTU ,i + Prenew,i)+ Pgrid ](t)

−Ploadonline(t) (31)

if Pbatt > 0 AND Pbatt < Pbatt(max) is charging.
if Pbatt < 0 AND Pbatt > Pbatt(reserve) is discharging.
where Prenew refers to the renewable power genera-
tion sources. Conventionally, exploitations the battery’s
SOC% aids in monitoring the energy threshold levels
Pbatt(reserve) or Pbatt(max) regions. Based on the SOC%
levels at time t , coupled batteries are to perform per-
petual interchangeable operations between charging,
discharging or remain disengaged.

SOC%(t) = SOC%(t − 1)+ (
∫ t

0

1
Cbatt

dt) (32)

CG(t) = CG(t − 1)+ [1t ∗
ηDPbatt

Vbatt (t)
∗ Pbatt (t)]

(33)

DCG(t) = DCG(t − 1)− [1t ∗
ηDPbatt

Vbatt (t)
∗ Pbatt (t)]

(34)

where CG(t) and DCG(t) represent the battery’s cor-
responding SOC operation and capacity at respective
time stamps, ηDPbatt refers to the battery’s efficiency
incorporating depreciation factor over time, Vbatt mea-
sures the voltage level at battery terminal, and Cbatt is
the amount of electric charge passed through the battery
expressed in ampere an hour.
To obtain optimal utilizations of energy storage in rela-
tion to power dependency from Retailers while secur-
ing load balancing criterion, (35) and (36) are policies
that pivoted on real-time electricity tariff profiles and
how Prosumer can reschedule its demand load and
generating assets to transact maximum profit margin.

maxProfit(t) = [Revenue− Expenses](t) (35)

Profit(t) = [ET ∗
N∑
i=1

PDG,i + ET .Pgrid ](t)

− [ET .Pgrid +
N∑
i=1

bid(PDG,i)] (36)

where ET refers to the wholesale electricity price and
bid(PDG,i) is the bidding price to DSO for respec-
tive local power sources i. However, deployment of
local SHSES needs further exploration into defin-
ing it credibility towards the market operations and
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Prosumers’ expectations when bidding excess genera-
tion back to Utility. Thus, Feed-in tariff (FiT) policy
was introduced to proffer cost-based compensation to
SHSES producers through stable long-term agreement
(15-25 years period) with DSO. The contract guaran-
tees bidding price certainty that helps finance renew-
able energy investments while releasing incentives for
SHSES deployments to fund FiT scheme [30]. Thus,
to accelerate investments, (37) maximizes FiT policy
revenue streams by predominating the wholesale elec-
tricity tariff [31].

LCOE

=

∑N
n=0 Cn ∗ (

1+i
1+d )

n∑N
n=0Qn ∗ (1− D)n

max
∑
t

[(PDG,i ∗ ρLCOE )+ (PDG,export ∗ ρFiT )

− (Pgrid ∗ ρwholesale)− (Pchargegrid ∗ ρwholesale)

+ (Pdischargegrid ∗ ρwholesale)](1t) (37)

subjected to:

0 ≤ PDG,export (t) ≤ PDG,excess(t) (38)

PDG,excess(t) ={
PDG − Ploadonline, PDG > Ploadonline(t)
0, otherwise

(39)

where Cn is the investment costs of SHSES involving
installations to full deployment to maintenances, Qn
constitute energy produced in kilo-Watt hour inclusive
of efficiency degradation factor, D percentage change
per annum, except at Q0 where it omits out degrada-
tion impact. N states the system’s expected lifespan
expressed in years while i and d denote the inflation
and discount rates representing investment percentage
change per annum. (37) formulates the objective func-
tion in gaining maximum profit margin when incorpo-
rating SHSES into the energy mix during operation.
ρLCOE , ρFiT , and ρwholesale denote the real-time operat-
ing costs of SHSES defined as liveliest cost of electric-
ity (LCOE), the promised tariff offered by DSO based
on FiT policy, and wholesale prices are actual real-time
rates that Prosumer are paying for every kilo-Watt hour.
Pchargegrid corresponds to the power rating absorbed
from Retailers while Pchargeexcess and Pdischarge
indicate the ordered power level that charges the battery
due to excess local generation or discharging to satisfy
1PDIFF respectively. Lastly,PDG refers to the available
power capacity generated by local power generation
units.
In addition, the objective function needs to include
scheduling of charging and discharging of energy stor-
age supported either from grid or local generations:

charge(t) = charge(t − 1)

+ [(ηDPbatt ∗ Pchargeexcess(t))

+ (ηDPbatt ∗ Pchargegrid (t))

− (
Pdischarge(t)

ηDPbatt
)] (40)

Ploadonline(t) = [Pgrid + PDG − PDG,export
− Pchargeexcess − Pchargegrid
+ Pdischarge](t) (41)

1PDIFFi (t) = [Pdischarge+ Pgrid ](t) (42)

(d) DSO Agent: Candidate Policy- When endorsing large
penetration of local power generations at low-voltage
level, DSO is constantly challenged with load bal-
ancing crises and unpredicted energy scheduling as
operations of renewable system can instigate Pro-
sumers’ electricity usage profiles throughout the day.
To worsen, as Retailers are singly bounded with
contract agreements stating individual expectancy for
power generation capacity, DSO will be trapped in a
situation where power difference compensations could
not be met thus leading to network failure. Sudden
hike in electricity price too can be seen as energy
reserve pooling is being tapped causing Prosumers
to pay premium tariffs. Such phenomenon leads to
demand load demography which undertakes a Duck
Curve profile where the Duck’s neck region repre-
sents low renewable penetrations thus inflicting high
demand of energy from Retailers. Contrarily, the belly
region depicts high penetration of distributed gener-
ation causing Retailers to suffer losses due to under
utilized spinning reserves. Hence, DSO is requires to
recognize Prosumer’s baseline load trends especially at
the peaks of two period: absence and high penetrations
on SHSES against demand load profiles. Such criterion
aids in achieving optimal scheduling of thermal gen-
erators per day to meet immediate shortfalls of power
imbalance despite high uncertain fluctuations provoked
by SHSES.
The role of DSO Agent is to comprehend demand load
profile trends and estimate required reserve generation
capacity ciphered by the ELM-based STS. Thus, imple-
mentation of state-action pairs were omitted. However,
the policy ensures Duck Curve profile is guarded and
constant energy utilisation is above baseline level,
PbaseL . Large coalition payoff will be rewarded to Pro-
sumer that aids in minimising power deviation, Pdeviate,
contributions. Suchmotives introduces gradual inclina-
tions on demand curve profile with manageable power
ordering from thermal generating units.

Pdeviate(t) = Pgrid (t)− Pgrid (t − 1)
Pgrid (t) ≥ PbaseL(24hrs) (43)

for t = 15mins intervals.

payoff (AG) =

+1.0, Pdeviate(t) <
∑N

i=1URi(t)
+1.0, Pdeviate(t) >

∑N
i=1DRi(t)

−1.0, otherwise
(44)
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(e) IA Agent: Action a1, Candidate Policy- Endorsing
SHSES with battery storages brings forth concerns
when searching for an economically solution that pro-
cures high return on investments and performance
index. Prosumers are expecting maximum profit mar-
gins from SHSES operations, hoping to gain bargained
operating costs. Hence, incorporating IA Agent, it gov-
erns LCOE of local SHSES integrations by evaluating
it’s economic assessment in contrast to themarket oper-
ations. Here, formulated LCOE was further enhanced
using (45) to (50) defining its combination deployment
of NG’s power generations and energy storage.

EDG = Erenew + ETU (45)

LCOEDG+batt =

∑N
i=1 CE(DGi+batt)∑N
i=1 E(DGi+batt)

(46)

CEDGi+batt = LCOEi ∗ Ei (47)

LCOEDG+batt =

∑N
i=1 LCOEi ∗ Ei∑N

i=1 Ei

=

N∑
i=1

LCOEi ∗ αi (48)

αi =
1t ∗ βi ∗ Pi

1t ∗ βDG+batt ∗ PDG+batt
(49)

βi = [
Ebatt,in
Ebatt,rated

∗
ηi

1+ ηi
]

≤ 50% typically (50)

where LCOEDG+batt quantifies the total worth of elec-
tricity produced by SHSES in dollars. CE denotes the
cost of energy. E and αi represent energy generated
by respective local generation source while βi defines
the capacity factor of energy storage in relations to the
charging and discharging transactions. ηi equates the
efficiency of respective local generation sources.
The policy administered involves piloting excess power
generation that neither was stored nor consumed by
local loads. Due to poor utilisation of energy storage
during high penetrations of renewable resources, own-
ers are resulted to selling local surplus power at low
prices and vice versa based on the market electric-
ity tariff. Thus, the policy aids in managing excess
power generation which are eventually sold to the
grid.

EUSEDG (t) =
N∑
i=1

[EDG,i − EwasteDG,i ](t) (51)

Ebatt,in(t) = UI ∗ EUSEDG (t), where UI ≤ 1.0 (52)

EDG+batt (t) = [1− UI ] ∗ [Ebatt,out (t)

+ (EUSEDG (t)− Ebatt,in(t))] (53)

payoff (−→s ,−→a ,AG) ={
0.0,

∑N
i=1 E

waste
DG,i (t)>

∑N
i=1 E

waste
DG,i (t − 1)

1.0, otherwise
(54)

where EwasteDG,i (t) denotes excess energy that is dumped
to Utility due to mismatch load balance or unscheduled
use of storage at time t . Ebatt,in(t) defines the energy
level stored into battery while UI scales the harvested
generations capacity available for charging the battery.
Lastly, EDG+batt (t) quantifies the amount of energy
generated by battery and local generation sources.

FIGURE 9. Agent’s rules of engagement in gaining proposed EM at
demand-side.

D. PROPOSED ENERGY FLOW MANAGEMENT
A detailed flowchart diagram illustrated in Fig. 9 interprets
Agents’ interactions based on proposed EM at individual NG.
It transacts day-ahead and real-time asset scheduling capabil-
ities though adaptations of hybridized ELM- and LCM-based
Agents. Comprehensively, Agents are to autonomously nego-
tiate and avoid decisional conflicts in procuring optimum
power sharing transactions based on available generation
resources against demand load at time of request.

V. CASE STUDIES
Investigations were done on two separate case studies:
(a) Managing asset utilizations using proposed methodol-
ogy on a single NG network, NG1, based on individualism
interests, (b) Inspecting level of intelligence in piloting four
aggregated NGs, NG1-NG4, based on a coalition settlements
to transact power exchange among themselves. Exceedingly,
observations were also laid upon to analyses how the pro-
posed methodology can serve as a lead energy regulator in
ciphering DSO’s typical obligatory during grid-tied opera-
tions.

A. EM OPERATIONS OF A SINGLE NANOGRID SYSTEM
(RESIDENTIAL, NANOGRID 1)
24-Hrs simulation analyses were performed on a single-
phased 220V AC , 50Hz Residential NG1 given in Fig. 14
where real-time data of respective integrated systems were
sampled at every 5mins intervals. As proposed, the 25kV A
network involves a 3.5kW PV system with a 2.2kWh energy
storage unit(initial 0% SOC) and a back-up diesel generator
rated at 2.2kWh. Contrarily, the online demand loads were
recorded in the summer where a mixture of critical, non-
critical home appliances and a charging point for electrical
vehicle (EV) were conceded.

In reference to Fig. 10b and 10c, all endorsed ELM-based
GS and non-CL Agents were deployed to forecast available
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FIGURE 10. Forecast power and energy profiles for NG1 w/o proposed EM (24-Hrs data sampling at 5mins intervals). (a) Load balancing proceedings
w/o asset scheduling against electricity price tariffs. (b) 3.5kW PV system against forecast data. (c) Online demand load against forecast data
conjointly identify critical and non-shiftable appliances. (d) Flagging large energy deviation gratified by the utility.

TABLE 4. ELM-based agent’s forecasting performances.

PV generations and online non-critical demand capacities.
As explained in Section IV-B, personalized ensemble units
were tuned to control ELM’s learning behaviour for cor-
responding applications. For GS Agent instances, under-fit
regularization was engaged to reduce risk of overrated gener-
ation availability and vice-versa for non-CL Agent. Perfor-
mances of ELM-based Agents are summarized in Table 4
based on a 2 years training and 1 year testing datasets. Subse-
quently, the ELM-based STS Agents will retrieve all forecast
data and generate a timed-based predicament report, Table 5,
suggesting plausible alarming exposures during operations.

TABLE 5. STS agent forecasting alarm report.

It also forecasts consumption patterns for non-critical loads,
separating them from shiftable and non-shiftable loads as
shown in Table 6. Primitively, critical load capacity can
be determined by recognizing the network’s baseline load
while the non-CL are classified by distinguishing appliance’s
operating duration against predefined threshold of 30mins
intervals.

Conversely, without implementing proposed methodology,
Fig. 10a illustrates unambiguous energy transactions where
the battery charges when excess power generated from PV.
Mobilization of available stored energy is deployed to satisfy
load balancing criterion at t . Fig. 10d evaluates large energy
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TABLE 6. STS agent forecast shiftable and non-shiftable consumption
patterns (30mins intervals).

deviation drawn from Utility to compensate 1PDIFFi (t). The
attained results conclude to have poor EM that avow Duck
Curve phenomenon to transpire and deployment operating
costs of SHSES were not optimized. Large power demand
shift instances were noticed during two peak periods where
local PV generation is inactive and energy storage is depleted
thus, plausible divergence in load balancing may surface due
limitation in generators’ ramp rates. Likewise, high operating
costs was propagated firstly due to unitary dependency on
Retailers after 1720hrswhere electricity pricing starts to esca-
late and secondly violations of max MDtotal were exposed
initiating penalties to be imposed on Prosumer.

Diversely, deployment of cooperative Q-learning for
LCM-based Agents were rendered to view its impacts on
ciphering optimum EM in response to Prosumer’s electri-
fication interests and demand-side management regulatory.
Fig. 11 presents results attained from adopting the pro-
posed nano-biased energy manager based on an initial 0%
SOC, maintaining at least 75% of Prosumer’s electrification
lifestyles and securing minimal baseline load of 1.2kW sup-
ported solely by Retailers. Fig. 12 exhibits Agent’s search
space and learning regression in ciphering optimal EM
operations.

In Fig. 11a, results depict respective components of
demand load profiles involving Prosumer’s online shiftable
loads that are continually tuned in accordance to a time-based
shifting algorithm. An interval of half-hourly load classifica-
tions limits the algorithm’s search space when redistributing
the non-shiftable loads as not to promote high load shedding
percentage. Objective is to protect Prosumer’s lifestyle where
100% serviceability for shiftable loads is maintained and yet
rendering bargained electricity bills. In this sense, partici-
pating LCM-based Agents were refrained from exploiting
shedding solutions or rescheduling beyond time-stamp
threshold (30mins) to gain superiority in operating

FIGURE 11. Proposed EM proceedings on NG1. (a) Power exchange
transactions between utility and scheduling of shift-able loads.
(b) Charging & discharging profile of battery storage unit with fixed LCOE
of 1.22e-4 $/Wh.

costs or evade from possible grid-tied violations. Spotted
two instances of shedding non-shiftable loads were directed
(highlighted in red lines) for a duration of 10 and 5mins
respectively primarily to conserve max MD criterion despite
having shiftable loads suppressed and energy storage atoning
at maximum discharging rate.

Fig. 11b presents energy transactions from Retailers and
meeting load balance in NG1. It has shown significant
improvements in scheduling1EDeviate(t) capping at less than
170Wh for any operation time t to (t + 1), elevating sudden
power deviation in the demand curve. In consequence, it trims
overestimated spinning reserve dilemma and levelised with
demand shift deviations based on generator’s ramp-rate lim-
its. Moreover, the power curve profile of import power from
Retailer has complied fully to max MD and baseline load
constraints. However, the Duck Curve phenomenon has not
shown significant improvements as EM was biased towards
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energy market oriented operations. Greedy-based task allo-
cations were observed when tuning demand loads and local
energy storage capacity against real-time electricity tariff.
In addition, Prosumer had to pay higher tariff premium by
3%, excluding incentives due to preserving max MD level
and 1EDeviate(t) thresholds, where shiftable loads are exi-
gently shifted into the high electricity tariff regions during
the eleventh hour.

Fig. 11c exhibits operations of the 6.6kW energy stor-
age with a 184Wh charging and 180Wh discharging rate for
every 5mins. With operative report generated by STS Agent,
the energy storage is strategically scheduled to anticipate
charging and discharging operations to concede optimal oper-
ating costs at time, (t + 1). The energy storage utilizations
were based on electricity tariff (3-tier price regions), PV
generation (highest energy harvested) and demand load (peak
order) profiles. Supplementarily, the deployment of energy
storage can be exploited to compensate large1PDeviategrid capac-
ity, compensating sudden inclination or declination of load
balance. The operations of ES Agent ensures a minimal SOC
threshold of 15% is maintained dictated by the assigned
policy for reserve energy pooling. However, there were two
admissible instances where the battery’s SOC plunges below
threshold at 0550hrs and 2200hrs. The first event was to
discharge excessive stored energy and embrace oversized PV
capacity while the second was to lead profiteering electricity
price bidding and curtail energy consumptions across the day.
Both cases did not surfaced any critical concerns when secur-
ing energy reserve capacity as; (a) network adopts a back-up
diesel generator in times of service interruptions occurred at
primary-side, (b) demand capacity begins to decline towards
the baseline load level and electricity price are low.

Contrarily, through incentive programmes for MD regula-
tory, Prosumer can gain compensated operating costs despite
ordering of electricity from Retailers when tariff is at its high-
est. Compared to conventional EM proceedings, it focuses on
shifting demand loads into spotted regions where tariffs are
it lowest or depriving energy consumptions based on local
SHSES generation availability. Practically, such transactions
will not be pragmatic as Prosumer will be restricted with
their daily electricity usage and peak demand crises will still
surface due to consumer’s social lifestyles. Likewise, in view
of SHSES penetrations, it rises grieving concerns for DSO
to schedule excess generation feeding back to the grid when
dealing with multiple NG operations. Therefrom, introducing
max MD constraint can facilitate safe demand-side responses
where violator will be charged with higher penalty premium
and portion it out to abider as a reward/incentive. To com-
prehend such proceedings, Table 7 illustrates operating costs
differences corresponding to max MD constraint.
Supplementarily, decision in determining ideal energy stor-

age size can influence NG’s operating costs. Referring to
Fig. 11c, instances where acquisition of electricity from
Utility for charging energy storage is not deterministically
cheap. Moreover, bidding strategy between Agents gets com-
plicated when accrediting energy storage into taking capacity

TABLE 7. Operating cost comparisons based on 91kWh energy
consumption.

FIGURE 12. Agents’ Q-learning regression and reward profiles.
(a) Inspecting Q-learning convergence of agents’ in LCM with multiple
iterations. (b) Inspecting agents’ reward based on individualism against
cooperative tendency.

size constraint into consideration. Such crises can easily be
determined through monitoring Agent’s cooperative reward
assignments. Instances when IA Agent was forced to exhaust
energy storage during low electricity prices to propel succes-
sive PV penetrations at time (t + 1) or limit its discharge rate
when servicing peak demand load. Likewise, considerations
of levelised costs affiliated to PV and energy storage need
to be monitored before selling back to the Utility. Therefore,
strategic sizing of energy storage capacity is vital in refining
return investment profit margin and suppressing other plausi-
ble grid-tied violations as shown in Table 7.

Fig. 12a illustrates responses of Agents’ Q-Learning prob-
abilistic regression in securing NG’s optimal operating costs
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TABLE 8. Parameters for Q-learning.

in a cooperative tendency domain based on the predefined
functions shown in Table 8. During Agents’ auctioning pro-
cesses, penalty issued for respective state-action pair that
gratify cooperative tendency is much lower than sole EM
administrations for a single NG. Such penalty resolution
foster Agents to advance into cooperative tendency to meet
global objective functions after prior adjustments made dur-
ing sole EM proceedings. The Agent’s learning regression
behaves within a discrete action spaces bounded by a time-
step of every 5mins intervals. It can be seen that all learning
gradient at any iteration set was able to reach convergence
with a standard deviation of less than 0.4, locating uniform
global minima for the system’s operating costs at differ-
ent time stamps. The learning search space improves pro-
portionately to the number of iterations executed at time t
by preceding lesser steps to locate optimal solution. Thus,
to refrain from computational intensity and time in recognis-
ing solution-optimality, it is recommended to run higher order
of iteration (>7th).

On the contrary, Fig. 12b presents the Agents’ payoffs
during cooperative tendency. The payoff absorbs positive and
negative rewards due to unseen prior knowledge when pair-
ing action-state against desirable consequences. The reason
behind employing a negative payoff and assigning smaller
positive reward is to give Agents a clear comprehension of
the actions performed in a state which accelerate Agents’
learning process in gaining desirable actions and computa-
tion convergence. In the case of poor decisions were made
by Agents’, respective Q-values will drastically decrease
thus alerting Agents’ to refrain from performing previous
action in the future. Similarly, a sequential rewarding sys-
tem was introduced for cooperative tendency of Agents.
However, enforcement of negative reward on cooperative
tendency was not implemented as to provide learning relax-
ation on Agents to gain convergence. It allows Agents to
prioritize individual objective which is important for NG
operations before heading forward in earning higher coop-
erative rewards for cooperative tendency during Agents’ bid-
ding process. Nevertheless, no reward is awarded if Agents’
solution does benefit the operations of all interconnected
Agents.

B. EM OPERATIONS OF AGGREGATED NANOGRID
SYSTEMS (COMMERCIAL & RESIDENTIAL)
In this section, operations of the four aggregated NGs,
NG1-NG4, as shown in Fig. 14 were deployed on-line to view
performances of cooperative EM strategies on energy trading.
The Agents’ learning search space is now broaden up, extend-
ing respective nano-biased energy manger serviceability to
other neighbouring NGs. Thus, dependency on electricity
pool market for DSO and separate PCMAgents are no longer
restricted as compared to a single-bounded EM operations.
The role of PCM Agent is to interact closely with IA Agent
in recognising surplus energy capacity excluding reserve pool
available for disposal at time (t + 1). Simultaneously, gener-
ating a price model for spinning reserve market.

The electricity tariff oriented PCMAgents is separated into
two authorities; i) classical marginal pricing (MP) determined
by DSO Agent during any electrification transactions occurs
between NGs and Retailers, ii) bid-as-request (BAR) pricing
where forward bilateral contracts are negotiated between Pro-
sumers. In this paper, considerations of in-depth compliance
in the electricity pool policies involving competing regula-
tions and codes of practice for Market Rules were omitted
when formulating the problem statements. It assumed that
the open electricity market is stable and the focus is directed
on trading energy either between NG to another (PCM-to-
PCM) or NG toDSO (PCM-to-DSO).With that, PCMAgents
coordinate its involvements in the bidding market at time
(t + 1) based on the defined policies, strategically allot avail-
able energy for trading or disengages its involvements for any
transactions.

The analytic studies were mainly focused on highlighting
beneficiary attained in transacting superior operating costs
with demand-side management and impeding Duck Curve
phenomenon at low-voltage level. Fig. 13 exhibits available
surplus energy ready to be auctioned at time t between NG-
to-NG (limited only to commercial building) or NG-to-DSO.
Fig. 13a depicts the surplus energy capacities generated at
individual NG system. Fig. 13b displays successful bidding
strategies directed between NGs or resorted in selling back
to the Utility through DSO Agent. Finally, Fig. 13c profiles
the Utility’s energy generation managed by DSO where its
constraints were bounded by a baseline load of 8.2kWh,
maxMD capped at 62.8kWh, and preserved 1PDeviate less
than 3.5kWh.

In view of the electricity pooling at respective NG, diversi-
fied bilateral trading models were introduced to inspect profit
margin earned during bidding transactions. NG3 exploits
a discharge scheduling strategy that services peak demand
episodes where electricity tariff is expected to be high, taking
its dominance by auctioning a marginal cheaper price that
conclusively lured PCM Agents’ of other NGs to divert its
purchase away from Retailers. Whereas, NG4 prioritizes
in suppressing Duck Curve phenomenon which benefits
demand-side response from confronting any possible load
balancing violations and relieve large deviation stress on
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FIGURE 13. Agents’ bidding strategies on exploiting available surplus
energies in aggregated operations. (a) Surplus energy capacity available
for bidding. (b) Transactions of NG purchasing energy from each other
and selling back to utility. (c) Energy generation profile at utility supplying
the four aggregated NGs.

generation units. It has a relaxed bidding strategy, auctioning
its electricity at the lowest threshold rate in the hopes to break-
even by wagering on incentives issued by Utility. Adversely,
NG2 adopts oversized SHSES capacity accompanying with
low electricity consumptions to increase electrification sus-
tainability which averts itself from participating in the auc-
tioning process. Contrarily, NG1 is a highly active bidder
due to its undersized HSES and steep demand profile. At the
bare minimal in governing the bilateral energy market, DSOs
has implemented regulations that rule out possible monopo-
lism on the bidding process. Residential(s) are restricted to
perform direct bidding transactions with other residential(s)
as to discourage home owners from setting large SHSES
that may impose hazardous threads to the living community.
Thus, DSO Agent will be assigned as a mediator when

TABLE 9. Profit margin comparisons between single-bounded and
aggregated EM approach.

coordinating home-to-home energy trading. Whereas,
commercial-building Prosumers are contracted to sell power
level at min-max threshold of < 1MW and > 10MW , assert-
ing generation certainty for Utility to positively schedule
its loading of generators to anticipate peak- and off-peak
demands.

Consequently, Table 9 gives a comparative analyses on the
profit margins earned at respective NG based on assigned bid-
ding strategy.NG3 has enhance its operating cost by profiting
highly from other bidders during the trading process while
NG4 suffered a small marginal loss based on a small-scaled
incentives fixed at $0.03kWh across all individual services.
NG2 managed to breaks even based on limited contributions
in the bidding process to compensate induced LCOE from its
SHSES while NG1 gained the highest profit margin in the
aggregated system encompassing all grid-tied incentives and
successfully bid for cheaper electricity tariff.

VI. COMPARISONS WITH OTHER METHODOLOGIES
In this section, evaluations of the proposed methodology
against two others were presented to view respective superi-
ority in addressing EM optimality for aggregated NG oper-
ations. Indeed, respective authors have unique EM models
depending on the unparalleled grid components when for-
mulating problem statements. However, they shared a com-
mon aspirations in trimming system’s operation costs from
strategic utilisation of local SHSES. Hoping to absorb prof-
iting incentives from the energy market during electric-
ity trading without violating any power system operation
requirements in real-time. All proposed controllers were
appraised against the 4 evaluation indices: Operation Costs
Consistency (OCC), Penalty Costs imposed on grid partici-
pant (PC), Load Shifting Factor (LSF) and Market Clearing
Incentives (MCI).

OCC =

√√√√∑10
i=1(cost(t, i)−

∑10
i=1 cost(t,i)

10 )

10

2

(55)

PC =

∑10
i=1(Penaltygrid + LCOEloss)(t, i)

10
(56)
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LSF = min(
shiftedload
totalload

(t1hr , 1), . . . ,

shiftedload
totalload

(t1hr , 10)) ∗ 100% (57)

MCI =

∑10
i=1(Profitbid + Incentivegrid )(t, i)

10
(58)

i denotes the number of iterations performed by the discrete
computation at time, t to view solution consistency, OCC
calculates the standard deviation of the operating costs at
time t , PC estimates the average penalty costs imposed by
Utility at time t , LSF quantifies the amount of load shifted at
time t1hr for a duration of an hour where smaller percentage
depicts greater conservation of consumer(s) lifestyle, and
MCI computes the profit margin or incentives gained at time t
(combination of Utility and levelised revenue from SHSES).

A. HIERARCHICAL ENERGY MANAGEMENT SYSTEM
Author Tian et al. [32] proposed a hierarchical EM system
(HEMS) that performs two-level hierarchical optimisation
method for Micro-grid community operations at distribution
level. The proposed hierarchical optimisation statement is
separated into two phases: (a) First stage optimisation run in
the lower level EM in a scheduled period, forecasting a day-
ahead of SHSES output power, charge/discharge powers of
the energy storage and load demands in time intervals basis
of 1hr . Furthermore, the optimal exchanged power values
between an individual Micro-grid and the upstream distri-
bution network were deduced. (b) From the results, second
stage optimisation uses linear mixed-integer programming
(LMIP) is deployed to solve multi objective functions defined
in eq. (16), (20), (27)-(28), (31), (35), (37) and (43) with its
corresponding constraints.

Implicit logic constraints is added into the problem formu-
lation modelling to gain greater linearized approximation.

B. SCENARIO-BASED STOCHASTIC ENERGY
MANAGEMENT SYSTEM
Author Shen et al. [33] proposed a scenario-based stochas-
tic EM system (SSEMS) for Micro-grid operation. It takes
electricity pool market into consideration when scheduling its
controllable loads to maximize profit margin. The proposed
algorithm uses two level stochastic optimisation methods to
address uncertainties and risk-constrained elements procured
from the integrated SHSES. The first level attains information
from the economic operation scheme based on the forecasted
data using deviation compensator method. The second level
provide solutions in scheduling the controllable units based
on real-time data using Monte Carlo scenario-based. Com-
prehensively, to constrain the risk in misinterpreting profit
margin, risk management is fused into the objective function
using conditional value.

As proposed by the author in formulating the maximum
profit operations, the objective function defined in (37) will
be replaced in accordance to the paper while the remaining
formulations remained same.

TABLE 10. Comparing different EM methodologies against proposed.

C. PERFORMANCE AND RESULT EVALUATIONS
Analytical results comparing EM performances rendered by
HEMS, SSEMS and proposed are presented in Table 10.

The results attained from employing HEMS had shown
detrimental impacts on the overall operating costs due to the
weak resolution in solving functions with multi-constraints
in a discrete-time approach when using LMIP. Constraints
involving LSF has shown great deficiency as the algorithm
focuses deeply on elevating operating costs at the expense
of shedding shiftable loads. It fails to comprehend strategical
solutions in rescheduling within the time duration boundary
(t = 1hr) which ultimately causes shiftable load capacity to
recede. In addition, the proposed LMIP lacks in cooperative
optimisation causing penalty imposed by Utility to inflate,
failure to procure cohesive electricity consumptions which
resultant to large 1EDeviate induced at Utility.As a result,
Duck Curve phenomenon becomes conspicuous which even-
tually cascaded to other grid-tied violations. Nevertheless,
given with such problem formulation, such episodes can be
prevented by introducing cooperative strategies into LMIP as
suggested in [34] where the author infused model predictive
control to address overall energy system using rewarding
schema.

In contrast to SSEMS, the results attained are much com-
parable due to its large search space in generating numer-
ous number of scenarios representing uncertain parameters.
It uses Latin hypercube sampling technique to reduce alge-
braic computation time without affecting accuracy of the
optimized results. However, with the suggested risk manage-
ment model, it heavily penalized the electricity price mar-
ket to compensate weak forecasting of uncertainties under
the normal distribution curve. Hence, proposed technique
guarantees the profit margin figure despite succumbing to
variability.
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VII. CONCLUSIONS
This paper presents a reformed nano-biased EM that resolves
future’s predicaments in steering high penetrations of
SHSES at low-voltage distribution level. It avows Prosumer
sovereignty in gaining greater dominance at demand-side
with DSO-Retailers adequately supporting their preferences
in terms of connection, quality, security, and continuity of
power supply. Such proceeding enables managerial perspec-
tive to be more apparent and habitable, relieving DSO-TSO
from orchestrating nano-managing roles for individual Con-
sumer(s) and focus more on relaxing the level-playing elec-
tricity market and establish congestion management.

The proposed EM methodology was designed to service
each successive NG as a single virtual power plant aggregator
that adopts layered coalition model to manage interdependent
EM platform. The algorithm hybridises ELM forecasting
technique with cooperative reinforced learning Agents in
MAN to successfully comprehend and schedule uncertain-
ties transpired during NG operations. These involve trading
and bidding of electricity in the energy market while shift-
ing non-critical demand loads to secure optimal operating
costs at each time step based on collegial discrete solution.
Indeed, the results have shown positive and comparable EM
performances for both DSO-TSO and Prosumer(s) when
benchmarked with other methodologies using the proposed
aggregated NGs network.

However, the proposed EM operations can arise potential
monopolism in the energy market during bidding of elec-
tricity. Prosumer(s) tend to model preferable energy trad-
ing requirements and yet render a balanced energy system
which leads DSO-TSO astray from ill-defined competition
rules. Electricity prices at Customer-end will start to inflate
in proportional to the size of active Prosumers with online
SHSES on the balancing market. On the contrary, tendency
of Prosumer(s) shifting into the paradigm where they could
be regarded as Retailers are plausible as DSOs are blinded
by the safe power system analysis proceeding. The impor-
tance of Retailers fades away along with the relationship
between DSO-TSO. Therefore, for future research topics,
reviseMarket Rule implementing new policies and regulatory
are essential to ensure a transparent and competitive trading
environment are preserved based on an economical point of
view for all energy players.

A typical reinforced learning model (RLM) is used in this
paper to determine Agent’s optimal reactions given in a state
environment using Markov Decision Process. Influenced by
awarding rewards for each executed actions, Agents’ are
believed to be directed towards optimality until it reaches
convergence. The RLM set-up is defined by the 5-tuple
(S,A,P,R,γ ) where S is a set of states while A describes the
set of actions. P denotes the state transition probability and R
designates the reward, R : SXA −→ R. Lastly, γ (γ ∈ (0, 1])
aids in tracking which action that had procured the optimal
policy function. It is tasked to learn the policy function π :
S −→ A that maps from states to actions and search for

FIGURE 14. Q-learning algorithm process in composing and updating the
look-up table.

TABLE 11. Q-learning algorithm for energy management.

optimal policy that has the maximized sum of rewards. For
an example in load balancing problem:

State: retrieve online load capacity.
Actions: Generation sources tuned their output capacity
(increment or decrement).
Reward: 1 if supply = demand, 0 otherwise.

APPENDIX A
A. REINFORCED LEARNING OPTIMISATION
The optimal policy function, π∗ can be calculated:

π∗ = argmax
π

E
[∑
t≥0

γ tRt |π
]

(59)

To gain optimal policy, it employs Q-Learning algorithm that
learns function of state-action pairs. Q-learning is basically
a lookup table that calculates the maximum expected reward
for action at each state, searching for the best action at each
state. The Q-function exploits Bellman equation that has two
input variables, state (S) and action (A):

Qπ (St ,At ) = E[Rt+1 + γRt+2 + γ 2Rt+3 + . . . |St ,At ] (60)

Using (11)-(15) the Q results will be assigned into the cells
of the table based on (22), (26), (44), and (54) learning pay-
offs incorporation with respective constraints. The Q values
will be continuously updated based on the iterations perform
given in a single time frame using the Q-learning process
illustrated in Fig. 14 and Table 11. During the process of
Agent exploring possible actions and states, an epsilon greedy
strategy will be employed to size the exploration environment
as shown in (11). In the initial computation, large epsilon rates
are used giving Agents the freedom to choose actions ran-
domly due to uncertainties. After few iterations, the epsilon
rate will be decreased progressively as the confidence level
increases in estimating the Q-values.
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FIGURE 15. Proposed nanogrid networks coupled to 22kVAC medium-voltage utility grid. (a) NG1, 220VAC single-phase system for residential. (b) NG3,
415VAC three-phase system for commercial building (hospital). (c) NG2, 220VAC single-phase system for residential. (d) NG4, 415VAC three-phase system
for commercial building (industry).

B. NANOGRID 1 TO 4 MODELS
All simulation analyses were based on the proposed NG
models created in MATLAB shown in Fig. 15. It repre-
sents respective Nanogrid electrical systems for both resi-
dential (NG1, NG2) and buildings (NG3 Commercial, NG4
Industrial).
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