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Consensus of hybrid multi-agent systems with
malicious nodes

Yilun Shang

Abstract—This brief investigates resilient consensus problems
of hybrid multi-agent systems containing both continuous-time
dynamical agents and discrete-time dynamical agents. A hybrid
censoring strategy is developed to reach resilient consensus for
cooperative agents in the directed networks in which some Byzan-
tine agents are present. The number, location, and dynamics of
Byzantine agents are assumed to be unavailable to the cooperative
agents. Sufficient conditions based on network robustness are
established when the number of Byzantine agents is locally
bounded. They are further extended to cope with resilient scaled
hybrid consensus where dictated ratios instead of a common value
can be reached. Numerical examples are presented to illustrate
the theoretical results.

Index Terms—Resilient; hybrid multi-agent system; continuous
time; discrete time; scaled consensus.

I. INTRODUCTION

Cooperative control of multi-agent systems has copious
applications and has attracted considerable attention from
many fields including system engineering, computer science,
and sociology [1], [2]. A key research topic of multi-agent
systems is reaching consensus, where the states of agents in
the network reach an agreement based on distributed interac-
tion in continuous-time or discrete-time. Advanced research
themes such as convergence rate, control scheme, faulty tol-
erance, communication delay, and system uncertainty, have
been intensively investigated in the recent years; see e.g. the
comprehensive surveys [3]–[5] and references therein.

Until recently consensus problems have only been studied in
networks composed of entirely discrete-time agents or entirely
continuous-time agents. Nevertheless, complicated networked
systems are oftentimes hybrid showing both discrete-time and
continuous-time characteristics [6]–[8]. Robots with discrete-
time dynamics, for example, are integrated into the collective
behavior of a group of continuous-time cockroaches for mod-
ifying their shelter location selections [9]. Three consensus
protocols are introduced in [10] to deal with consensus in
first-order hybrid multi-agent systems. Sufficient and neces-
sary conditions for consensus are characterized. The results
are further extended in [11] to second-order consensus of
hybrid multi-agent systems. In [12], consensus analysis is built
upon a game-theoretic approach to regulating the interaction
between discrete-time and continuous-time agents. Switched
multi-agent systems [13], [14] containing continuous-time and
discrete-time subsystems alternately have also been explored.
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All results mentioned above concern consensus without fault
tolerance ability and all agents in the network are assumed to
be cooperative. However, in the real world, cyber physical
attacks and malicious agents are not uncommon, which make
the system vulnerable and undermine the consensus behavior
[15], [16]. In this paper, we aim to study resilient consensus
against malicious agents in hybrid multi-agent systems mod-
eled by directed networks.

The main contribution of this brief is summarized as
follows. First, we define the resilient consensus problem
with multiple agents governed by both continuous-time and
discrete-time control laws, and put forward the hybrid resilient
consensus strategy. This strategy extends the Weighted-Mean-
Subsequence-Reduced (W-MSR) algorithms by simultane-
ously accommodating both continuous-time and discrete-time
dynamical systems. So far W-MSR has only been applicable
for discrete-time [17], [18], continuous-time [19], [20], and
switched [21] fault-tolerant consensus. Second, based upon
the concept of graph robustness [17], sufficient conditions are
established to enable cooperative agents to reach consensus
in spite of the misbehavior of locally bounded Byzantine
agents. The concurrency of continuous-time and discrete-time
agents entails novel treatment of the convergence analysis
(c.f. Remark 2). As a consequence, unlike [17], the positive
lower bound for the weights of communication link is no
longer required. Third, resilient scaled consensus is explored
in hybrid systems as a further generalization. Scaled consensus
has been proposed in [22] as a novel framework for controlling
states such that any prescribed ratios between different agents
can be achieved. We show that scaled consensus can be
achieved not only between a pair of discrete- or continuous-
time agents but also between a discrete-time agent and a
continuous-time agent.

The rest of the brief is organized as follows. In Section 2, we
present some preliminaries and formulate the hybrid system
model with malicious nodes. The main results are provided in
Section 3 with numerical simulations worked out in Section
4. Finally, the conclusion is drawn in Section 5.

II. PRELIMINARIES

A. Graph theory

Let N and R be the sets of nonnegative integers and real
numbers, respectively. Let G = (V, E) be a directed graph
of order n, where V = {v1, · · · , vn} is the node set and
E ⊆ V × V is the directed edge set. Interaction between
nodes (or agents) is characterized by graph G, which we split
into two parts: C for cooperative nodes and B for Byzantine
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nodes such that V = C ∪ B. The number and identities of
Byzantine nodes are in general not available to cooperative
nodes, which aim to reach a common decision. An edge of
G starting from vi ending at vj is denoted by (vi, vj) ∈ E .
The neighborhood of vi consisting of all edges leading to vi

is signified by Ni = {vj ∈ V : (vj , vi) ∈ E}. A directed path
between a pair of distinct nodes vi and vj is a finite array
of edges (vi, vi1), (vi1 , vi2), · · · , (vil

, vj). The graph G has a
directed spanning tree with root v` ∈ V if there is a directed
path from v` to every other node in V . For S ⊆ V , if there
is vi ∈ S satisfying |Ni\S| ≥ r for some r ∈ N, then S
is called r-reachable [17]. G is said to be r-robust if for any
pair of nonempty and mutually exclusive subsets in V , one of
these two sets is r-reachable. The following results is shown
in [17].
Lemma 1.Given s, r ∈ N and s < r. Suppose that H is
obtained by deleting up to s incoming edges of every node in
an r-robust directed graph G. Then H is (r − s)-robust. In
addition, G being a 1-robust directed graph is equivalent to G
having a directed spanning tree.

B. System model

Recall that hybrid multi-agent system contains both
continuous-time and discrete-time agents. Let VC =
{v1, · · · , vm} and VD = {vm+1, · · · , vn} represent the groups
of continuous-time and discrete-time agents, respectively. The
state of the agent vi at time t ≥ 0 if it has continuous-time
dynamics (or at time k ∈ N if it has discrete-time dynamics)
is denoted by xi(t) ∈ R (or xi(k) ∈ R).
Definition 1. (resilient consensus for hybrid systems) We
say that the cooperative nodes achieve resilient consensus if for
any initial conditions {xi(0)}vi∈V , we have limk→∞ xi(k) −
xj(k) = 0 for vi, vj ∈ C and limt→∞ xi(t) − xj(t) = 0 for
vi, vj ∈ C ∩ VC .

For k ∈ N, the dynamics of a continuous-time cooperative
node vi ∈ C ∩ VC is described by

ẋi(t) =ϕC
i

(
{xi

j(t) : vj ∈ (Ni ∪ {vi}) ∩ VC}
∪ {xi

j(k) : vj ∈ Ni ∩ VD}
)
, t ∈ [k, k + 1) (1)

and the dynamics of a discrete-time cooperate node vi ∈ C ∩
VD is described by

xi(k + 1) = ϕD
i

(
{xi

j(k) : vj ∈ Ni ∪ {vi}}
)
, (2)

where ϕC(·) and ϕD(·) define the state evolution of coopera-
tive node vi, xi

j(t) is the state value transmitted from node vj

to node vi at time t, and xi
j(t) = xj(t) for vj ∈ C. For ease of

notation, for vi ∈ VD we will conveniently set xi(t) := xi(k)
for t ∈ [k, k + 1) throughout the paper. Namely, we assume
that the information passed from a cooperative vi ∈ VD to its
neighbor during [k, k + 1) is invariably equal to xi(k).

Malicious nodes can exert different individual control laws
that are unavailable to the cooperative ones. In particular, the
Byzantine nodes are defined as follows.
Definition 2. (Byzantine node) vi ∈ B∩VC (or vi ∈ B∩VD,
respectively) is called Byzantine if it exerts a different control
law ϕ̃C

i (or ϕ̃D
i , respectively), or at some time t > 0 not all

of its neighbors receive the same value from it.

Byzantine nodes are oftentimes thought to be the worst
attackers [18], [20], [21], who possess a perfect knowledge
of the entire network and are capable of transmitting faulty
information within their neighborhoods via point-to-point
communication or broadcasting. We naturally assume that the
number of Byzantine nodes in G is constrained in some way.
In particular, given R ∈ N, for each vi ∈ C we assume
|Ni ∩ B| ≤ R, which is referred to as R-locally bounded
model [19], [20] in the literature.

C. Hybrid R-censoring strategy

In order for cooperative nodes to reach consensus, we
design the following purely distributed censoring strategy
generalizing the well-known W-MSR algorithm [17], [18].

Fix R ∈ N. For any k ∈ N, cooperative node vi ∈ C∩VC at
t ∈ [k, k+1) receives the information {xi

j(t)} of its neighbors,
and arranges {xi

j(t)}vj∈Ni in an decreasing order (recall that
xi

j(t) = xi
j(k) for vj ∈ VD). The highest R values which are

higher than xi(t) in this ordered list are discarded (if there
exist fewer than R such values, all of them are discarded).
The analogous censoring procedure is adopted to the lowest R
values. The values (or equivalently, their corresponding nodes)
that are deleted by vi at time t is signified by a set Ri(t).
vi ∈ C ∩ VC changes its state using the following ϕC

i (·) in
(1):

ẋi(t) =
∑

vj∈[(Ni∪{vi})\Ri(t)]∩VC

ϕij(xi
j(t), xi(t))

+
∑

vj∈[Ni\Ri(t)]∩VD

ϕij(xi
j(k), xi(t)), t ∈ [k, k + 1), (3)

where the function ϕij : R2 → R satisfies (C1) ϕij is locally
Lipschitz continuous, (C2) ϕij(x, y) = 0 ⇔ x = y, and (C3)
ϕij(x, y)(x− y) > 0 for x 6= y. In a similar way, cooperative
node vi ∈ C ∩VD at time k receives the information {xi

j(k)}
of its neighbors, and arranges {xi

j(k)}vj∈Ni in an decreasing
order. The highest R values that are higher than xi(t) in the
above ordered list are discarded (if there are fewer than R
such values, all these values are discarded). The analogous
censoring procedure is adopted to the lowest R values. The
nodes that are deleted by vi at time k is signified by Ri(k).
vi ∈ C ∩ VD updates its state using the following ϕD

i (·) in
(2):

xi(k + 1) =
∑

vj∈(Ni∪{vi})\Ri(k)

wij(k)xi
j(k), (4)

where wij(k) represents non-negative weight on edge
(vj , vi) ∈ E satisfying (D1) wij(t) = 0 if vj 6∈ Ni ∪ {vi},
and (D2)

∑
vj∈(Ni∪{vi})\Ri(k) wij(k) = 1.

Remark 1. For discrete-time dynamics (4), a positive lower
bound for wij(k) is no longer needed as we will apply different
techniques from those in [17], [21]. A uniform choice for
wij(k) is wij(k) = (|Ni|+ 1− |Ri(k)|)−1 for all k ∈ N. Re-
garding continuous-time dynamics (3), ϕij(x, y) = aij(x−y)
with aij > 0 being the adjacency weights of the network is
canonical in the literature of consensus problems [3], [4]. We
call the above algorithm as hybrid R-censoring strategy.
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III. MAIN RESULTS

we in this section investigate the consensus of hybrid sys-
tem (1)-(4) with malicious nodes characterized by R-locally
bounded model. The highest and lowest states of all coopera-
tive nodes are defined, respectively, as M(t) := maxvi∈C xi(t)
and m(t) := minvi∈C xi(t) for t ≥ 0. Note that these
definitions are valid for both continuous- and discrete-time
agents as per our notation.
Theorem 1. Consider a directed graph G = (V, E), in which
cooperative nodes adopt the hybrid R-censoring strategy. In
R-locally bounded model, for vi ∈ C ∩ VC , we have xi(t) ∈
[m(0),M(0)] for t ≥ 0; for vi ∈ C∩VD, we have xi(k+1) ∈
[m(k),M(k)] for k ∈ N.
Proof. For vi ∈ C ∩ VD, it is clear from (4) that
xi(k + 1) is in the form of a convex combination of
{xi

j(k)}vj∈(Ni∪{vi})\Ri(k), each of which sits in the range
[m(k),M(k)] in R-locally bounded model when hybrid
R-censoring strategy is invoked. Hence, xi(k + 1) ∈
[m(k),M(k)] for k ∈ N.

For vi ∈ C ∩ VC , we only prove the upper bound xi(t) ≤
M(0) and the lower bound follows with similar arguments. If
the upper bound does not hold, there exists t∗ ∈ [k∗, k∗ + 1)
and t∗ < t for some k∗ ∈ N such that (i) xj(t′) ≤ M(0) for
all t′ ≤ t∗ and vj ∈ C and (ii) xi(t∗) = M(0) and ẋi(t∗) > 0.
It follows from (3) that

0 < ẋi(t∗) =
∑

vj∈[(Ni∪{vi})\Ri(t∗)]∩VC

ϕij(xi
j(t

∗), xi(t∗))

+
∑

vj∈[Ni\Ri(t∗)]∩VD

ϕij(xi
j(k

∗), xi(t∗)). (5)

Recall that there cannot be R + 1 Byzantine nodes in
any cooperative node’s neighborhood. Under the hybrid R-
censoring strategy, xi(t∗) = M(0) ≥ xi

j(t
∗) for vj ∈

[(Ni ∪ {vi})\Ri(t∗)] ∩ VC . On the other hand, xi
j(k

∗) =
xi

j(t
∗) ≤ M(0) = xi(t∗) for vj ∈ [Ni\Ri(t∗)] ∩ VD. In

the light of (C2) and (C3), we arrive at that the right-hand
side of (5) is at most zero. This contradicts with ẋi(t∗) > 0,
and hence concludes the proof. 2

From Theorem 1, it can be seen that both sequences
{m(k)}k∈N and {M(k)}k∈N are monotonic and bounded. The
network topology G is essentially dynamic due to the censor-
ing strategy implemented. We make the following assumption
on the rate of change, i.e., the dwell time.
Assumption 1. Signify by {τl}l∈N the array of time instances
where Ri(t) varies for some i. There exists τ > 0 satisfying
|τl+1 − τl| ≥ τ .
Theorem 2. Consider a directed graph G = (V, E), in which
cooperative nodes adopt the hybrid R-censoring strategy. In
R-locally bounded model, resilient consensus is reached if G
is (2R + 1)-robust and Assumption 1 holds.
Proof. For any t > 0, without loss of generality we assume t ∈
[k, k+1) for some k ∈ N. Denote by Φ(t) = M(t)−m(t) the
difference between the two extreme states of cooperative nodes
and Φ(t) is non-negative. Given a function ϕ(t) : R → R, its
Dini derivative is defined as D+ϕ(t) = lim suph→0+(ϕ(t +
h)−ϕ(t))/h. Furthermore, define VM (t) := {vi ∈ C : xi(t) =
M(t)} and Vm(t) := {vi ∈ C : xi(t) = m(t)}.

If VM (t) ∩ VC 6= ∅, we define the index iM satisfying
ẋiM

(t) = maxvi∈VM (t)∩VC ẋi(t). By the basic property of
Dini derivative [23], the Dini derivative of M(t) taken with
respect to the trajectory of (3) follows

D+M(t) = ẋiM
(t) = ∑

vj∈[(NiM
∪{viM

})\RiM
(t)]∩VC

ϕiM j(xiM
j (t), xiM

(t))

+
∑

vj∈[NiM
\RiM

(t)]∩VD

ϕiM j(xiM
j (k), xiM

(t)). (6)

We obtain xiM
(t) ≥ xiM

j (t) when vj ∈ VC in the first term on
the right-hand side of (6); xiM

(t) ≥ xiM
j (t) = xiM

j (k) when
vj ∈ VD in the second term on the right-hand side of (6). By
the assumption (C3), we know that D+M(t) ≤ 0. Similarly, if
Vm(t) ∩ VC 6= ∅, we define the index im satisfying ẋim(t) =
maxvi∈Vm(t)∩VC ẋi(t). Therefore, the Dini derivative of m(t)
taken with respect to the trajectory of (3) follows

D+m(t) = ẋim(t) =∑
vj∈[(Nim∪{vim})\Rim (t)]∩VC

ϕimj(xim
j (t), xim(t))

+
∑

vj∈[Nim\Rim (t)]∩VD

ϕimj(xim
j (k), xim(t)). (7)

A similar analysis as above leads to D+m(t) ≥ 0. If VM (t)∩
VC = ∅, we define the node viM

to be any one in the set VM (t)
and D+M(t) = ẋiM

(t) = 0 when t 6= k by the property of
Dini derivative [23]. If Vm(t) ∩ VC = ∅, we likewise define
the node vim to be any one in the set Vm(t) and D+m(t) =
ẋim(t) = 0 when t 6= k. Combining the above discussion, we
have D+Φ(t) = D+M(t) − D+m(t) ≤ 0 for t ∈ (k, k + 1).

From the comments below Theorem 1, we know that m(k)
and M(k) change monotonically and both are bounded. We
define

ρm := lim
k→∞

m(k) ≤ ρM := lim
k→∞

M(k). (8)

Therefore, limk→∞ D+Φ(k) = 0. Next, we will show
limt→∞ D+Φ(t) = 0. Assume the contrary, that this does not
hold. There exist ε0 > 0, δ0 > 0, and a sequence of {sp}p∈N
such that (i) sp → ∞ as p → ∞ and (ii) D+Φ(sp) ≤ −ε0

and |sp+1 − sp| > δ0 for p ∈ N.
Consider any range I satisfying I∩N = ∅ and I∩{τl}l∈N =

∅, where {τl}l∈N are given in Assumption 1. Note that D+Φ(t)
is continuous in I and ẋi(t) is bounded for any vi ∈ C (by
condition (C1) if vi ∈ C ∩VC , and ẋi(t) = 0 for t ∈ I if vi ∈
C ∩ VD). Therefore, D+Φ(t) is uniformly continuous within
I . There exists δ1 > 0 such that for any pair of time points
t1, t2 ∈ I and |t1 − t2| < δ1, |D+Φ(t1) − D+Φ(t2)| < ε0/2
holds. It follows from Assumption 1 that there is δ2 ∈ (0, δ1)
satisfying for any p ∈ N, the interval [sp − δ2, sp + δ2] is a
subset of a range I delineated above. For t ∈ [sp − δ2, sp +
δ2], we estimate that D+Φ(t) = −|D+Φ(sp) − (D+Φ(sp) −
D+Φ(t))| ≤ −(|D+Φ(sp)| − |D+Φ(sp) − D+Φ(t)|) ≤ − ε0

2 .
We choose 0 < δ < δ2 satisfying that the intervals {[sp −
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δ, sp + δ]}p∈N are mutually exclusive. Drawing on the fact
that D+Φ(t) ≤ 0, we have∫ ∞

0

D+Φ(t)dt ≤ − lim
N→∞

N∑
p=1

∫ sp+δ

sp−δ

ε0

2
dt = −∞. (9)

This contradicts with the non-negativity of Φ(t). Hence, we
proved limt→∞ D+Φ(t) = 0 by the method of contradiction.

From the discussion in the beginning of the proof, we know
for any t ≥ 0, D+M(t) is non-positive and D+m(t) is non-
negative. In view of (8), limt→∞ M(t) = limt→∞ xiM

(t) =
ρM and limt→∞ m(t) = limt→∞ xim(t) = ρm. Assume that
ρM > ρm, and we will prove this is not the case. Recall
that G is (2R + 1)-robust, and the interaction topology in the
hybrid multi-agent system contains a directed spanning tree at
any time under the hybrid R-censoring strategy by Lemma 1.
There exist some time T > 0 and ε > 0 satisfying xiM

(t) >
ρM −ε > ρm +ε > xim(t) for t ≥ T . Under our assumptions
and the hybrid R-censoring strategy, we have the following
observation.

(i) If viM
∈ VC , then limt→∞ ẋiM

(t) = 0,
which means limt→∞ xiM

j (t) − xiM
(t) = 0

for vj ∈ [(NiM
∪ {viM

})\RiM
(t)] ∩ VC and

limt→∞,t∈[k,k+1) xiM
j (k) − xiM

(t) = 0 for
vj ∈ [NiM

\RiM
(t)] ∩ VD;

(ii) If viM
∈ VD, then limk→∞ xiM

(k) = ρM , which means
limk→∞ xiM

j (k) = ρM for vj ∈ (NiM
∪{viM

})\RiM
(k);

(iii) If vim ∈ VC , then limt→∞ ẋim(t) = 0,
which means limt→∞ xim

j (t) − xim(t) = 0
for vj ∈ [(Nim ∪ {vim})\Rim(t)] ∩ VC and
limt→∞,t∈[k,k+1) xim

j (k) − xim(t) = 0 for
vj ∈ [Nim\Rim(t)] ∩ VD;

(iv) If vim ∈ VD, then limk→∞ xim(k) = ρm, which means
limk→∞ xim

j (k) = ρm for vj ∈ (Nim ∪ {vim})\Rim(k).
Since G is finite, there is time T ′ ≥ T such that there are two

direction paths in the interaction network at T ′ one starting
from the root vertex v` ending at viM

the other starting from
v` ending at vim . Moreover, x`(T ′) > ρM − ε and x`(T ′) <
ρm + ε. This is impossible. Hence, we derive that ρM = ρm,
which means the consensus has been achieved. 2

Remark 2. Due to the concurrency of both continuous-
time and discrete-time dynamical agents, a discrete-time agent
may have both continuous-time and discrete-time neighbors,
which can be cooperative and/or Byzantine. A continuous-
time Byzantine node can not be well kept in check when
only discrete time steps are examined as in [17], while the
information flow of a discrete-time Byzantine node is not
differentiable. These obstacles have been worked around by
our proposed algorithm and mathematical analysis.

Given real number γi 6= 0 for every agent vi ∈ G, we define
hybrid resilient scaled consensus as below.
Definition 3. (resilient scaled consensus for hybrid sys-
tems) Given (γ1, · · · , γn), the cooperative nodes are said to
achieve resilient scaled consensus if for any initial conditions
{xi(0)}vi∈V , we have limk→∞ γixi(k) − γjxj(k) = 0 for
vi, vj ∈ C and limt→∞ γixi(t) − γjxj(t) = 0 for vi, vj ∈
C ∩ VC .

Scaled consensus has numerous applications in real life
ranging from water distribution systems to compartmental
mass-action systems [22]. Based upon the hybrid R-censoring
strategy described in Section II.C, we consider a modified hy-
brid scaled R-censoring strategy, which sorts {γjx

i
j(t)}vj∈Ni

for each cooperative node vi, compares with γjxi(t), and
replaces the control laws (3) and (4), respectively, with

ẋi(t) = sgn(γi)
∑

vj∈[(Ni∪{vi})\Ri(t)]∩VC

ϕij(γjx
i
j(t), γixi(t))

+ γi

∑
vj∈[Ni\Ri(t)]∩VD

ϕij(γjx
i
j(k), γixi(t)), (10)

and

xi(k + 1) = sgn(γi)
∑

vj∈(Ni∪{vi})\Ri(k)

wij(k)γjx
i
j(k), (11)

with sgn(·) indicating the signum function, ϕij satisfying the
same conditions (C1)-(C3), wij(k) satisfying again (D1) and
(D2’)

∑
vj∈(Ni∪{vi})\Ri(k) |γi|wij(k) = 1.

The following theorem can be shown as Theorem 2 follow-
ing the similar arguments (hence omitted here) by resetting
M(t) := maxvi∈C γixi(t) and m(t) := minvi∈C γixi(t).
Theorem 3. Consider a directed graph G = (V, E), in
which cooperative nodes adopt the hybrid scaled R-censoring
strategy. Given (γ1, · · · , γn). In R-locally bounded model,
resilient scaled consensus is reached if G is (2R + 1)-robust
and Assumption 1 holds.
Remark 3. Theorem 3 generalizes Theorem 2 in the sense
that the restriction γ1 = γ2 = · · · = γn = 1 is lifted. This
provides desired flexibility especially in hybrid systems since
autonomous robots, for example, are allowed to have different
or even opposite tasks from natural critters in a group [9].

Fig. 1. 3-robust graph G having VC = {v1, v2, v3} and VD = {v4, v5, v6}.

IV. SIMULATIONS

In this section, we consider a directed graph G = (V, E)
with VC = {v1, v2, v3} and VD = {v4, v5, v6}; see Fig. 1.
It is direct to check that G is 3-robust. We choose the initial
configuration of the agents as x1(0) = 3, x2(0) = 2, x3(0) =
−1, x4(0) = 0, x5(0) = 1, x6(0) = −2.
Example 1. We choose C = {v1, · · · , v5} and B = {v6}.
v6 is the only Byzantine node follows the discrete-time dy-
namics x6(k +1) = x6(k)+ ln(k)/20. Every continuous-time
cooperative node vi ∈ C adopts ϕij(x, y) = 0.1 · (x − y)
in (3) and discrete-time cooperative nodes take wij(k) =
(|Ni| + 1 − |Ri(k)|)−1 for vj ∈ (Ni∪{vi})\Ri(k) in (4). By
using the hybrid 1-censoring strategy, the evolution of agents’
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states are shown in Fig. 2(a). We observe that all cooperative
agents converge despite the malicious behavior of v6 as one
would expect according to Theorem 2. In the inset of Fig. 2(a),
the malicious node v6 succeeds when the protocol without
censoring is performed.
Example 2. In this example, we choose C = {v2, · · · , v6}
and B = {v1}. v1 is the only Byzantine node follows the
continuous-time dynamics ẋ1(t) = x1(t)/5. The cooperative
nodes follow the same protocols as in Example 1. We ob-
serve from Fig. 2(b) that resilient hybrid consensus has been
achieved asymptotically in line with Theorem 2. Similarly, in
the inset of Fig. 2(b), we see that the states of other nodes are
led by the malicious node v1 when the censoring mechanism
is absent.
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Fig. 2. States of the agents over network G, where (a) v6 is the Byzantine
node and (b) v1 is the Byzantine node, with censoring (main panels) and
without censoring (insets).

V. CONCLUSION

In this brief, resilience consensus problems are studied for
systems composing of multiple dynamical agents governed by
both continuous-time and discrete-time control laws. We frame
hybrid R-censoring strategies to withstand possible Byzantine
nodes enabling cooperative nodes to reach consensus when
malicious behaviors are bounded in neighborhoods of cooper-
ative nodes. The designed strategy is purely distributed and
has low complexity. It is further generalized to deal with
resilient scaled hybrid consensus where dictated ratios instead

of a common state can be achieved. Sufficient conditions
are established to solves resilient scaled hybrid consensus
problems. For future work, it would be desirable to consider
the effect of time delay and event-triggered consensus [5] in
hybrid multi-agent systems.
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