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Summary
The anticancer activity of a series of novel synthesized, hydroxypyridone-based metal chelators (analogues of L-mimosine) was
evaluated in an in vitro model of melanoma consisting of malignant melanoma (A375), non-melanoma epidermoid carcinoma
(A431) and immortalized non-malignant keratinocyte (HaCaT) cells. More specifically, we have demonstrated that the
L-enantiomer of a methylated analogue of L-mimosine (compound 22) can exert a potent anticancer effect in A375 cells when
compared to either A431 or HaCaT cells. Moreover, we have demonstrated that this analogue has the ability to i) promote
increased generation of reactive oxygen species (ROS), ii) activate both intrinsic and extrinsic apoptosis and iii) induce pertur-
bations in cell cycle growth arrest. Our data highlights the potential of compound 22 to act as a promising therapeutic agent
against an in vitro model of human malignant melanoma.
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Introduction

Skin cancer is categorized into three main types based on their
cellular localization and clinical behavior including basal and
squamous cell carcinoma as well as melanoma [1, 2]. In partic-
ular, malignant melanoma is a tumor arising in melanocytes and
once in the progressive stage it can invade and penetrate beyond
the dermis layer [3]. Metastasis occurs in the lymph nodes and/
or distant sites like lungs, liver and nervous system and therefore
development of clinically effective therapeutic strategies is of
utmost importance [4]. Despite the fact that transition metals

have a significant importance in maintaining health, they can
also contribute into the development and progression of many
types of cancer. For example, elevated copper levels can pro-
mote tumor development, angiogenesis and metastasis while
other studies have shown the importance of such elevation in
the formation of soluble extracellular E-cadhenin fragment (sE-
CAD) that is implicated in cancer cell invasion [5–8]. In the case
of iron, reactive oxygen species (ROS) are formed and shown to
be involved in carcinogenesis by various means including over-
expression of proteins participating in angiogenesis and metas-
tasis (e.g. SNAIL, AP-1 andVEGF), activation of the oncogenic
NF-κB pathway and others [9–13]. Finally, zinc overload, can
lead to overexpression of zinc-depended enzymes like matrix
metalloproteinases (MMPs) that can degrade components of
the extracellular matrix (ECM) thus further contributing to an-
giogenesis and metastasis [14, 15].

For this reason, it is not surprising that metal chelators are
being considered as anticancer agents by restoringmetal homeo-
stasis and consequently inhibiting i) cell growth, ii) intracellular
ROS formation and iii) cell proliferation [16, 17]. As a result, a
variety of them have been synthesized (e.g. deferiprone; DFP
[18], desferrioxamine; DFO [19], tachpyridine [20], triapine
[21] and 2-hydroxy-1-naphthyl aldehyde isonocitinyl hydrazine
[22]) all of which are capable of acting as anticancer agents
(Fig. 1a). However, the difficulty associated with their
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development is the risk for potential side-effects due to their
ability to interact with various metalloproteins. For example,
DFP used in the treatment of iron overload is known to inhibit
lipoxygenase and tyrosine hydroxylase and is also associated
with agranulocytosis [23–25].

L-mimosine is a natural 3-hydroxy-4(1H)pyridinone (3,4-
HOPO) iron chelator containing an amino acid side chain (Fig.
1b) that is derived from the plantsMimosa andLeucaena genara
endowed with a range of bioactivities including anti-cancer,
anti-inflammatory, anti-viral, anti-fibrotic, etc. [26, 27].
Previously, L-mimosine was shown to i) inhibit tyrosinase and
thyroxine decarboxylases, ii) induce cell death and cell cycle
growth arrest, iii) suppress elongation of DNA replication, iv)
disrupt deoxyribonucleotide metabolism and v) inhibit the tran-
scription of serine hydroxymethyltransferase [28–39]. Finally,
L-mimosine has been shown to exert anticancer activity against
various melanoma cell lines and although initially appeared as a
potentially attractive anticancer agent, its marked cytotoxic side-
effects have discouraged its further development [40–42].

To the best of our knowledge, there are no reports on how L-
mimosine can enter cells. However, being a close analogue of L-
DOPA, it may be that it acts as a substrate of the large neutral
amino acids’ transporter namely LAT-1 which is known to pos-
sess a wide substrate specificity including L-DOPA [43–46].
Interestingly, LAT-1 is overexpressed in various cancer cells thus
providing an opportunity to specifically target them [47]. To
combat the side-effects of L-mimosine it is, however, necessary
to identify safer analogues. In particular, the 3,4-HOPO chelating
moiety can be replaced by relevant isomers such as 1-hydroxy-
2(1H)- pyridinone (1,2-HOPO) and 3-hydroxy-2(1H)-
pyridinone (3,2-HOPO) or the less powerful coordinating group
3-hydroxy-4-pyranone. As the ligand binding pocket of LAT-1
has hydrophobic domains provided by residues F252, F402 and
V148, L-mimosine can also be made more lipophilic to help
target the LAT-1 transport mechanism [46].

The aim of the current study was to i) design and synthesize
a series of L-mimosine analogues and ii) assess their antican-
cer activity (e.g. viability, apoptosis, necrosis, ROS and cell

Fig. 1 a Structural representation of selective metal chelators with anti-cancer properties. Deferiprone (DFP) (1), Desferrioxamine (DFO) (2),
Tachpyridine (3), Triapine (4) and 2-hydroxy-1-naphthyl aldehyde isonocitinyl hydrazone (5); b Structure of L-mimosine (6)
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cycle growth arrest) in an in vitro model of human malignant
melanoma consisting of melanoma (A375), non-melanoma
(A431) and non-malignant immortalized keratinocyte
(HaCaT) cells. The latter cell line was utilized as a control,
non-malignant one (predominantly existing in the epidermis
thereby surrounding a malignant melanocyte) allowing us to
determine potential “side” cytotoxicity. Finally, the non-
melanoma cells provide a means of assessing the specificity
of an observed anticancer activity between melanoma and
non-melanoma skin cancer cells.

Materials and methods

Chemicals, equipment and organic synthesis

All chemical reagents were purchased from Sigma-Aldrich
(St. Louis, MO, USA), Alfa Aesar (Lancashire, UK),
Fluorochem (Derbyshire, UK), TCI (Oxford, UK) and were
used without any further purification. All chemical solvents
were purchased from Fisher Scientific (Hampton, NH, USA)
and Sigma Aldrich (St. Louis, MO, USA), at either HPLC or
reagent grade. When required, solvents were dried over acti-
vated 4 Å molecular sieves.

NMR Spectroscopy was performed on JEOL ELS400 Delta
Spectrometer at frequencies of 400 MHz for 1H NMR,
101 MHz for 13C NMR. Chemical shifts were recorded as parts
per million (ppm) with tetramethylsilane (TMS) as the internal
standard. Solvents used included deuterated dimethyl sulfoxide
(DMSO-d6), deuterated chloroform (CDCl3), deuterated metha-
nol (MeOH-d4), deuterated water (D2O) and deuterated TFA
(CF3CO2D). Chemical shifts were observedwith integrals, split-
ting and J values, multiplicity of the signals were recorded as
singlet (s), doublet (d), triplet (t), quartet (q). In addition, the
multiplicities (which have further coupling) were recorded e.g.
double doublet (dd). High Resolution Mass Spectrometry
(HRMS) was performed on Thermo Q-Exactive spectrometer
with electrospray ionisation (ESI) (Thermo Fisher Scientific,
Cramlington, UK) while High Performance Liquid
Chromatography (HPLC) (Agilent Technologies, 1260
Infinity) analysis was carried out on a Phenomenex Column
(HYPERSIL 5u C18, 150 × 4.60 mm). Flash Chromatography
was performed on Biotage® Isolera One using Biotage®
SNAP-Ultra flash chromatography cartridges 10-100 g size
(Biotage, Uppsala, Sweden).

Finally, detailed description of the synthesis and character-
ization of the screened molecules is shown in the
Supplementary Material.

Cell lines

The human malignant melanoma (A375) and epidermoid car-
cinoma (A431) cell lines were purchased from Sigma-Aldrich

(St. Louis, MO, USA). The human immortalized keratinocyte
(HaCaT) cell line was kindly provided by Dr. Broby (Public
Health England, UK). All cell lines were authenticated with
the STR method and were also tested for mycoplasma con-
tamination. In addition, they were maintained in DMEM me-
dium with high glucose content, supplemented with 10%
FBS, 2 mM L-glutamine, and 1% pen/strep (100 U/mL pen-
icillin, 100 μg/mL streptomycin) and cultured in a humidified
atmosphere at 37 °C and 5% CO2, grown as monolayers and
sub-cultured at 80–90% confluency. All cell lines were cul-
tured for 15–20 passages before new stocks were utilized.
Finally, all media and reagents were purchased from Labtech
(East Sussex, UK) whereas all cell culture plasticware were
obtained from Corning (Corning, NY, USA).

Determination of cell viability

The Alamar-blue assay was utilized in this set of experiments.
Briefly, A375, A431, and HaCaTcells were seeded in 100 μL/
well into 96-well plates and incubated overnight prior to ex-
posure to each of the hydroxypyridone compounds (e.g. com-
pounds 10, 11, 18, 22, 23 and 29). Density of A375 cells was
8000, 4000, 2000 cells/well and for A431 and HaCaT cells
10,000, 5000, 2500 cells/well for 24, 48 and 72 h, respective-
ly. On the following day, cells were exposed to a range of
concentrations (10–1000 μM) over different incubation pe-
riods. For control conditions, cells were incubated with com-
plete medium only. At the indicated time points, resazurin
[dissolved in PBS (1 mg/ml final concentration)] was added
in an amount equal to 1/10 of the volume in each well and
incubated for 2–4 h (depending on the type of cancer cell line),
at 37 °C. The plates were then centrifuged, and absorbance
was recorded at 570 nm and 600 nm (reference wavelength)
using a Spark multimode plate reader (Tecan, Switzerland).
The levels of cell viability were estimated and expressed as
percentage of control cells.

Morphological observation of cells

A375 cells were seeded in 100 mm dishes and exposed to
either complete medium only (control) or 100 μM of com-
pound 22 for 24, 48 and 72 h. The density of A375 cells was
1.4 × 106, 0.7 × 106 and 0.4 × 106 per dish for 24, 48 and 72 h,
respectively. At the indicated time points, the morphology of
cells was observed by an inverted phase contrast microscope
(ZOE fluorescent cell imager, Bio-rad, CA, USA) and images
were captured at 20x magnification.

Determination of ROS

A375 cells were seeded in 100 mm dishes (1.4 × 106, 0.7 ×
106 and 0.4 × 106 per dish for 24, 48 and 72 h, respectively)
and exposed to 100 μM of compound 22. Then, they were
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harvested and washed twice with PBS and a single cell sus-
pension of 106 cells/mL was prepared. Dihydrorhodamine
123 (DHR 123; 10 μM) was added in the suspension and
incubated for 5 min at 37 °C. Then, DAPI (1 μM) was added
to each sample and incubated for 5 min in order to determine
the percent of dead cells in the suspension. Data acquisition
and analysis of 10,000 events, for each sample, was performed
using a FACS Canto II flow cytometer (BD Biosciences, San
Jose, CA, USA). DAPI-positive cells were excluded from
further analysis of the results.

Determination of apoptosis

The CellEvent Caspase 3/7 Green flow cytometry assay kit
was utilized for the detection of apoptosis according to the
manufacturer’s instructions. Briefly, cells were plated into
100 mm dishes and allowed to adhere overnight. Density of
A375 cells was 1.4 × 106, 0.7 × 106 and 0.4 × 106 cells per
dish for 24, 48 and 72 h, respectively. The next day, cells were
exposed to 100μMof compound 22 for 24, 48 and 72 h. Next,
cells were harvested, washed twice with PBS and a single cell
suspension of 106 cells/mL was prepared. Then, 0.5 μL of
CellEvent Caspase 3/7 Green detection reagent was added
into 0.5 mL of each cell suspension and samples were incu-
bated at 37 °C for 30 min. Five (5) min prior to the end of the
incubation period, 1 μMof DAPI was added. Data acquisition
and analysis of 20,000 events, for each sample, was performed
using a FACS Canto II flow cytometer (BD Biosciences, San
Jose, CA, USA). Caspase-3/7-positive cells were identified as
apoptotic whereas DAPI-positive cells as necrotic.

Determination of cell cycle kinetics

The FxCycle PI/RNase staining solution was used according
to the manufacturer’s instructions. Following exposure to
100 μM of compound 22, cells were harvested and washed
twice with PBS. The density of A375 cells was 1.4 × 106,
0.7 × 106 and 0.4 × 106 cells per dish for 24, 48 and 72 h,
respectively. Approximately 0.5 × 106 cells were fixed in cold
70% ethanol, for 1 h or longer, at 4 °C until further processing.
Cells were then washed twice with PBS to remove ethanol and
finally suspended in FxCycle PI/RNase staining solution for
30 min at RT in the dark. Data acquisition and analysis of
10,000 events, for each sample, was performed using a
FACS Canto II flow cytometer (BD Biosciences, San Jose,
CA, USA).

Preparation of cell lysates and protein determination

A375 cells were plated in 100 mm dishes and cultured over-
night at 37 °C at a density of 1.4 × 106, 0.7 × 106 and 0.4 × 106

cells per dish for 24, 48 and 72 h respectively Next day, cells
were treated with 100 μMof compound 22 for 24, 48 and 72 h

and then trypsinized, washed twice with ice-cold PBS and
pellets were collected after centrifugation at 2000 rpm for
3 min at 4 °C. Cell pellets were then lysed in lysis buffer
(10 mM HEPES at pH 7.9, 10 mM KCl, 0.1 mM EDTA,
1.5 mM MgCl2, 0.2% NP40) and supplemented with
Protease Inhibitor Tablets (Thermo Scientific, Waltham,
MA, USA). Then, they were left on ice while periodically
vortexed over a 30 min period and sonicated (three cycles at
10 amplitudes for 20 s on ice) to disrupt cellular membranes.
Cell lysates were centrifuged at full speed (15,000 rpm) for
10min at 4 °C and supernatants were transferred in new tubes.
Protein content was determined by utilizing the BCA protein
assay kit (Thermo Scientific, Waltham, MA, USA), according
to the manufacturer’s protocols. Protein extracts were stored at
−20 °C until usage.

Western immunoblotting

Forty micrograms (40 μg) of cytoplasmic protein extracts
were separated by SDS-polyacrylamide gels and transferred
electrophoretically onto PVDF membranes (either 0.45 or
0.2 μm) using mini gel tank sand mini blot modules
(Invitrogen, Carlsbad, CA, USA). The blots were then
blocked in 5% non-fat milk powder in TBST buffer (50 mM
Tris-HCl, 150 mM NaCl at pH 7.6 and 0.1% Tween-20) for
2 h at RT. After blocking, membranes were washed three
times with TBST and incubated overnight at 4 °C, under ag-
itation, with the appropriate primary antibody (e.g. 1:1000 for
anti-Caspase-8, anti-Caspase-9, anti-Apaf-1, anti-BID, and
1:20000 for anti-Tubulin) and according to the manufacturer’s
protocol. All antibodies were purchased from Cell Signaling
Technology (Danvers, MA, USA). Next day, membranes
were incubated with the appropriate horseradish peroxidase-
conjugated secondary antibody (mouse or rabbit at 1:1000) for
1 h at RT, under agitation, after being washed three times with
TBST. Membranes were washed three times with TBST and
labelled protein bands were detected by utilizing the
SuperSignal West Pico PLUS Chemiluminescent Substrate
kit from Thermo Scientific (Waltham, MA, USA) according
to the manufacturer’s protocol. Protein bands were visualized
with the use of the G:BOX Chemi XX6/XX9 gel imaging
system (Syngene, Cambridge, UK).

Statistical analysis

Data were expressed as mean values ± standard deviation
(SD) and comparisons were made between control and treated
groups. Statistical analyses were performed by one-way
ANOVA with Tukey’s test for multiple comparisons after
using the SPSS v.22 software. Finally, statistical significance
was set at p < 0.05, p < 0.01 and p < 0.001.
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Results

The anticancer activity of a number of hydroxypyridinone
(HOPO) core metal chelators was evaluated in human malig-
nant melanoma (A375) cells including those of 1,2-HOPO
(compound 18), 2,3-HOPO (compound 29), 3,4-HOPO (com-
pounds 11, 22, 23) and hydroxypyranone (compound 10).
Each compound was assessed at a range of concentrations
(10–1000μM) and time points (24–72 h). Our results revealed
that A375 cells were resistant to exposure with compounds 10
and 29 while compounds 11 and 18 only showed noteworthy
activity at concentrations as high as 1000 μM, after 72 h treat-
ment (Figs. 2a–d). However, compounds 22 and 23 showed
significant time- and concentration-dependent cytotoxicity.

More specifically, cell viability levels reached an EC50 at a
concentration of 100 μM after 48 and 72 h of exposure to
compounds 22 and 23 respectively (Figs. 2e and f).
Furthermore, at 24 h of exposure with compounds 22 and 23
cell viability levels were either decreased or remained almost
at control levels respectively. Overall, treatment with com-
pound 22 was more potent (EC50 value of 100 μM) when
compared to compound 23 (EC50 value of approximately
250 μM), after 48–72 h of exposure, an observation which
was also evident under inverted phase contrast microscopy
(Fig. 3). Although it is well established that both enantiomers
have similar activity, the preference for the L-enantiomer
(compound 22) is likely explained by the slight preference
of LAT-1 for the L-enantiomers of amino acids [44].

Fig. 2 The ability of hydroxypyridones to induce cytotoxicity in A375
cells. Cells were exposed to a range of 10–1000 μM concentrations of (a)
compound 10, (b) compound 11, (c) compound 13, (d) compound 29, (e)
compound 22 and (f) compound 23 for 24, 48 and 72 h. Data shown are

means ± SD of 5 replicates from three independent experiments. Asterisk
(*), hashtag (#) or rhombus (◊) denote statistical significance when
compared to their respective controls at p < 0.05. **, ## and ◊◊ denote
statistical significance at p < 0.01 whereas ***, ###, ◊◊◊ at p < 0.001
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Interestingly, the observed order of activity (compounds 22
and 23 > > compound 18 > compound 11 > compound 10 =
compound 29) does not match the order expected only from
their metal binding efficiency (3,4-HOPO > > 3,2-HOPO ≈
1,2- HOPO > hydroxypyranones) [44–47]. This suggests that
the activity is guided by a more complex combination of mo-
lecular properties. Finally, we evaluated the observed cytotox-
ic potency of compound 22 (at 100 μM) in non-melanoma
(A431) as well as non-malignant keratinocyte (HaCaT) cells
in an attempt to document any potential specificity towards
A375 cells. Our observations revealed that A431 and HaCaT
cells were also affected by compound 22 but nevertheless
were shown to be more resistant than A375 cells (Figs. 4a
and b). Taken together, our data indicate that compound 22
exerts a higher degree of potency against A375 cells while
A431 and HaCaT cells remain considerably more resistant.

On the other hand, the ability of compound 22 to induce
intracellular ROS generation was also evaluated by means of
flow cytometry and after utilizing a fluorescent DHR 123
probe as a ROS detector. Our data showed that the FITC
spectrum increased dramatically in the exposed group com-
pared to the unexposed (control) one (Fig. 5a). Interestingly,
treatment of A375 cells with 100 μM of compound 22

induced a significant increase in intracellular ROS levels, dur-
ing the first 24 h, which were sustained at each time point
thereafter (Fig. 5b).

Moreover, the number of apoptotic and necrotic A375 cells
was evaluated after exposure to compound 22. To distinguish
between these two modes of cell death, the CellEvent Caspase
3/7 Green detection reagent was utilized as an activated cas-
pase 3/7 activity indicator whereas DAPI as an indicator for
necrosis (Fig. 6a). Our data showed significant cell death dur-
ing the first 24 h, an effect which was intensified (over time) in
a manner where live cells were reduced while necrotic cells
remained at steady levels (Fig. 6b). In addition, a more de-
tailed characterization of various key proteins representative
of the intrinsic and extrinsic apoptotic pathways was per-
formed (by western immunoblotting) in A375 cells exposed
to compound 22 (at 100 μM). The expression levels of
cleaved and full length Caspase-8 were indicative of the in-
volvement of the extrinsic apoptotic pathway [48–51] whereas
those of Caspase- 9 and Apoptotic protease-activating factor 1
(Apaf-1) for the intrinsic one [52–55]. In addition, expression
levels of BID were reduced representative of the well-
established interplay between the two apoptotic pathways
[50]. Overall, the activation of Caspase-8 was evident by the

Fig. 3 The ability of compound 22 to induce cytotoxicity in A375 cells. Control cells (a) and those exposed to 100 μMof compound 22 at 24 h (b), 48 h
(c) and 72 h (d) were visualized under inverted phase contrast microscope
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presence of increased cleaved and/or reduced un-cleaved
“full” length protein expression levels observed as early as
24 h after exposure (and remained as such throughout the
entire time-course) thus indicating the activation of the extrin-
sic apoptotic pathway (Fig. 6c). Furthermore, the expression
levels of BID were also shown to be elevated at 24–48 h
(indicative of a concomitant activation of the intrinsic apopto-
tic pathway) while were reduced back to control levels after
72 h of exposure (Fig. 6c). Further evidence for the concom-
itant activation of the intrinsic apoptotic pathwaywas revealed
after examining the expression levels of Caspase-9 and Apaf-
1 throughout the time-course (Fig. 6c). To this end, several
studies have shown that activation of Caspase-8 as well as that
of Caspase-9 and Apaf-1 (via formation of the apoptosome)

can lead to the activation of Caspase-3 which is an established
mechanism for the execution of apoptosis [50–59].

Finally, the ability of compound 22 to induce cell cycle
growth arrest was assessed by using the FxCycle PI/RNase
staining solution for quantification of DNA content under
each phase of the cell cycle and subsequent analysis by flow
cytometry (Fig. 7a). Our results show that 24 h of exposure
cause a statistically significant elevation of the G1 phase
followed by a reduction of the G2/M phase while the S phase
remained unaffected. Interestingly, at 48 h, a significant in-
crease of the sub-G1 phase was also observed followed by a
marked reduction of the G1 phase while the S- and G2/M
phases remained relatively unaffected. Furthermore, this effect
was intensified at 72 h of exposure (Fig. 7b).

Fig. 4 The ability of compound
22 to induce cytotoxicity in (a)
non-melanoma (A431) cells and
(b) non-malignant keratinocyte
(HaCaT) cells. Cells were ex-
posed to100 μM of compound 22
for 24, 48 and 72 h. Data shown
are means ± SD of 5 replicates
from three independent experi-
ments. Asterisk (*), hashtag (#) or
rhombus (◊) denote statistical
significance when compared to
their respective controls at
p < 0.05. **, ## and ◊◊ denote
statistical significance at p < 0.01
whereas ***, ###, ◊◊◊ at
p < 0.001
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Discussion

The capacity of metal chelators to act as anticancer agents
(and potentially as clinically effective treatment options) has
been reported in various in vitro cancer models including ma-
lignant melanoma and leukemia [60, 61]. During our study, a
series of hydroxypyridinones-based analogues of L-mimosine
were synthesized and their anticancer activity was evaluated
against an in vitro model of human malignant melanoma. Of
these, a methylated analogue (L-N- substituted 3.4-HOPO) of

L-mimosine (compound 22) was shown to be the most cyto-
toxic with a higher degree of potency in A375 cells compared
to A431 and HaCaT cells. Previous experimental studies, uti-
lizing dipeptides of L-mimosine against melanoma, suggested
that the selectivity of this class of HOPO-based molecules was
mainly due to their ability to inhibit and consequently down-
regulate tyrosinase which causes perturbations in melanin pro-
duction [62, 63] the levels of which are increasing in metasta-
tic melanoma thereby reducing the outcome of radiotherapy.
On such basis, it has been postulated that inhibition of

Fig. 5 The ability of compound
22 to induce generation of
oxidative stress in A375 cells.
Cells were exposed to 100 μM of
compound 22 for 24, 48 and 72 h
and monitored by means of (a)
flow cytometry in addition to
being quantitated as (b) ROS fold
induction. Data shown are means
± SD of 3 replicates from three
independent experiments.
Asterisks (***) denote statistical
significance at p < 0.001 when
compared to the respective
controls after of exposure
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melanogenesis could potentially improve the therapeutic out-
come of radiotherapy [64, 65].

On another note, hydroquinone core-based precursors of
melanin can act as redox cyclers mainly in the presence of
iron species [66–68]. Previously, it has been shown that com-
binational therapy with metal chelators and Celecoxib (a drug
acting as a COX-2 inhibitor) can dramatically suppress meta-
static melanoma by inhibiting COX-2 associated cell

signalling pathway(s) [69]. Additionally, other experimental
studies have shown that melanoma cells produce large
amounts of extracellular superoxide anion (compared to nor-
mal melanocytes) suggesting that they are constantly exposed
to an oxidative stress environment induced by elevated levels
of intracellular ROS [70]. To this end, we have demonstrated
that treatment with 100 μM of compound 22 stimulates the
production of intracellular ROS (by approximately 4-fold)

Fig. 6 The ability of compound 22 to induce apoptosis in A375 cells.
Briefly, cells were exposed to 100 μMof compound 22 at 24, 48 and 72 h
and then the number of live, apoptotic and necrotic cells were recorded by
means of (a) flow cytometry and also quantified as (b) percent of total cell
population. Data shown are means ± SD of 3 replicates from three
independent experiments. Asterisks (**) and (***) denote statistical

significance at p < 0.01 and p < 0.001 respectively when compared to
their respective control (untreated cells); (c) The ability of compound
22 to induce the expression of intrinsic and extrinsic apoptotic markers
in A375 cells. Cells were subjected to 100 μMof compound 22 for 24, 48
and 72 h and protein expression levels of full length and cleaved
caspases-8 and -9 were recorded in addition to those of BID and Apaf-1
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Fig. 7 The ability of compound 22 to induce cell cycle growth arrest in
A375 cells. Cells were exposed to 100 μM of compound 22 at 24, 48 and
72 h and then the number of cells were recorded at each stage of the cell
cycle bymeans of (a) flow cytometry and also quantified as (b) percent of
total DNA cellular content accumulated at each phase of the cell cycle

(e.g. sub-G1, G1, S or G2/M). Data shown are means ± SD of 3 replicates
from three independent experiments. Asterisks (***) denote statistical
significance at p < 0.01 and p < 0.001 respectively when compared to
their respective control (untreated cells)
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compared to the untreated control, at 24 h post-treatment, and
this effect was retained over the entire time-course. Despite
the fact that HOPOs are known to acts as antioxidants, com-
pound 22 has been shown to induce generation of ROS pre-
sumably as a consequence of pro-oxidant effects [71, 72].
Nevertheless, this finding is in agreement with another study
utilizing glioma cells treated with L-mimosine during which
the authors observed apoptotic induction as the result of the
release of mitochondria-derived ROS together with activation
of p38 and JNK [73]. Finally, another study has shown that a
different class of metal chelators (i.e. thiosemicarbazones)
have the ability to induce cytotoxicity on melanoma cells by
disrupting the cellular antioxidant defence system thus caus-
ing elevation of intracellular ROS levels [74].

In investigating further into the anti-proliferative ef-
fect(s) of compound 22, we focused our efforts into the
mode of cell death activation. Our findings revealed trig-
gering of apoptosis evident by the induction of both extrin-
sic and intrinsic cascades (via activation of caspases-8 and
-9 respectively) suggesting that compound 22 induces ap-
optosis in a similar manner to L-mimosine [73, 75, 76]. To
this end, another study has shown that melanoma cells
induce apoptosis in response to treatment with metal che-
lators in an attempt to compensate for an increased load of
ROS [77]. On the other hand, ROS can act as second mes-
sengers capable of regulating several diverse cellular func-
tions including cell survival and proliferation [78].
Therefore, elevated levels of ROS can trigger the activa-
tion of caspases thus initiating apoptosis. In fact, lower
ROS concentrations have been shown to induce cell sur-
vival responses whereas higher ones can activate death
processes including apoptosis [79]. Last but not least, met-
al chelators can inhibit cell growth by either inducing ap-
optosis such as in Kaposi sarcoma cells [80] and/or by
blocking cell cycle progression like in the cases of breast
[32] and lung [81] cancer cells. To our knowledge, this is
the first report that (i) presents the screening of newly syn-
thesized hydroxypyridinone-based analogues of L-
mimosine and also (ii) describes how compound 22 exerts
its anticancer activity against an in vitro model of human
malignant melanoma. This is of utmost importance as there
is a great need to synthesize novel metal chelators with the
capacity to minimize side-effects and increase therapeutic
effectiveness. In the clinical setting, this is of particular
interest as it could potentially translate into better thera-
peutic management and consequently better quality of life
in these patients.
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