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Abstract: In this paper, we numerically investigate the 
generation of parabolic pulse (PP) in a silicon waveguide taper with 
simultaneous variations of the group-velocity dispersion and 
nonlinearity along the propagation direction. The design of such a 
waveguide taper is based on the condition of self-similar 
propagation of the PP. When Gaussian, hyperbolic secant, and 
super-Gaussian pulses are propagated inside the waveguide taper 
designed, the evolution processes under the ideal condition are 
analyzed. Then the PP generation from Gaussian input is shown 
when higher-order dispersion, higher-order nonlinearity, linear 
loss, two-photon absorption, free-carrier absorption, and free-
carrier dispersion are taken into account. Moreover, the influences 
of the initial chirp, pulse width, peak power, and waveguide length 
on the PP generation are further discussed. It is demonstrated that 
high-quality PP can be obtained with a mismatch parameter as low 
as 1.3 × 10-3 in the designed silicon waveguide taper. 

Keywords: parabolic pulse; silicon waveguide; self-similar 
theory 

1. Introduction 
Parabolic pulse (PP) represents a class of optical pulses that 

are wave-breaking free in the presence of group-velocity 
dispersion (GVD) and nonlinearity [1]. Recently, the PP has 
been attracting much interest because of its important 
applications in high power amplifiers [2], ultrashort pulse 
generation [3], etc. Generally speaking, the PP can be 
asymptotically generated in optical fiber amplifiers with normal 
dispersion profile [4], where the fiber gain plays a key role on 
providing excessive nonlinear phase accumulation for the pulse 
shaping. Theoretical analysis has proved that an equivalent gain 
can be obtained in passive tapered nonlinear media [5], where 
the influence of the spontaneous emission noise amplified in 
active nonlinear media can be avoided. Several schemes on the 
PP generation in passive optical fiber tapers have been reported 
[6, 7]. With the development of on-chip integrated optical 
devices, recent works are focused on the PP generation in 
integratable silicon photonic wire [8]. However, the intrinsic 
two-photon absorption (TPA) and free-carrier absorption (FCA) 
in silicon material have detrimental influences on the PP 
generation. Theoretically, the PP generation is an asymptotic 
process, which obeys the self-similar rules. Thus, it is necessary 
to investigate the waveguide design based on the condition of 
self-similarity. In our previous work, the PP generation in the 
amorphous silicon waveguide tapers designed with respectively 
hyperbolically decreasing GVD or exponentially increasing 

nonlinearity is reported [9]. However, in the actual situation, a 
waveguide taper with single changing GVD or nonlinearity is 
hard to achieve because they both vary with the waveguide 
width. Up to now, there is still no report on the exact waveguide 
design with simultaneous variations of the GVD and 
nonlinearity for the PP generation. 

In this paper, we report the generation of the PP in silicon 
waveguide taper with simultaneous variations of the GVD and 
nonlinearity. Different from previous work in which the passive 
waveguide tapers for PP generation are designed without 
considering the relation between GVD and nonlinearity, here we 
construct the relation of GVD and nonlinearity and then design 
the silicon waveguide taper by using the bisection method. In 
this newly designed waveguide, we consider the pulse evolution 
to PP with the input of super-Gaussian, Gaussian and hyperbolic 
secant profiles. Moreover, we consider the effects of higher-
order dispersion (HOD), higher-order nonlinearity (HON), 
linear loss, TPA, FCA, and free-carrier dispersion (FCD) in the 
designed silicon waveguide taper. The influences of the initial 
chirp, pulse width, peak power, and waveguide length are also 
studied. 

2. Theoretical model 
We start from the variable-coefficients nonlinear Schrödinger 

equation (NLSE) with the linear loss term as following 
( )2

0 0 0( ) ( ) ,z ttA iD z A i z A A z Aθ γ ε ρ η= − + −     (1) 
where A(z, t) is the slow-varying envelop of the electric field, 
and z and t are the propagation distance and retarded time. D0 = 
β2(0)/2, γ0, and ρ0 = α(0)/2 are the initial values of the GVD, 
nonlinear coefficient, and linear loss, respectively. θ(z), ε(z), and 
η(z) describes the normalized variations of the GVD, 
nonlinearity, and linear loss. For the waveguide with a normal 
dispersion profile, where D0 > 0 and θ(z) > 0, we define 

0
( ) ( ) ,

z
z x dxκ θ= ∫        (2)                                           

where κ(z) is a monotonic function and there is an inverse 
function z(κ), then Eq. (1) can be written as 

( )2
0 0 0

( ) ,
( ) ( )ttA iD A i A A Aκ

η κε κγ ρ
θ κ θ κ

= − + −       (3) 

To transform Eq. (3) into the form of NLSE with the gain, we 
define 

( ) ,A a uκ=                   (4)                                                                                    
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Substituting Eq. (4) into Eq. (3), we have 
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A constant gain can be obtained if 

0 ( ) ( ) ,
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where g is a constant determined by the waveguide taper profile. 
To support the self-similar propagation of the PP, we have 

                 
2 ( ) ( ) 1,
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a κ ε κ
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Combining Eq. (6) and Eq. (7), we have 

( ) ( ) ( ) ( )0 0

1exp 2 ,g d
κ

ε κ θ κ κ ρ η κ κ
θ κ

 
′= +  ′ 

∫    (8)           

Now we return to the scale with z and Eq. (8) is written as 
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′
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Thus, the relation between the nonlinearity and GVD can be 
described as 
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Eq. (10) is the condition of self-similarity to guarantee the 
design of a waveguide with simultaneous variations of the GVD, 
nonlinearity for generating a PP. g(z) is an equivalent gain given 
as  
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       (11)                   

We can see that the value of g is determined by ε(z), θ(z), ρ0, 
and η(z). If the linear loss is assumed to be a constant, namely 
η(z) = 1, the solution of Eq. (1) is 

( ) ( ) ( )1 22 2, 1 2 exp , ,FA z t P z t t z tφ = −         (12)                   

where P(z) is the peak power, tF is the full width at half 
maximum (FWHM), and φ(z, t) is the phase whose initial value 
is assumed to be zero. By adopting the self-similar technique 
[10], we finally obtain P(z) as 
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where E0 is the energy of input pulse. The solutions of the pulse 
width and phase terms are given as 
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It can be seen from Eqs. (13)-(15) that P(z), tF(z), and φ(z, t) are 
jointly determined by E0, D0, γ0, θ(z), ε(z), and ρ0. Compared 
with the active fibers where the PP generation only depends on 
the input energy and intrinsic gain, more parameters can be 
utilized to control the PP generation in a passive nonlinear taper. 

                              

3. Design of the silicon waveguide taper 
Based on the condition of self-similarity which indicated by 

Eq. (10), a passive silicon waveguide taper with constant height 

(H) of 220 nm, varying width (W) from 1600 to 800 nm along z 
and waveguide length of 1 cm is proposed. In order to 
investigate the variations of the optical field and the 
confinement loss of the silicon waveguide taper at 1550 nm, the 
effective mode area Aeff and energy ratio Er are calculated along 
as functions of the reduction of waveguide width. Aeff and Er can 
be calculated based on the fundamental mode distribution [11] 
and Er is obtained by calculating the ratio of energy flow in the 
core and cladding regions of the silicon waveguide taper, 
respectively. The energy flow can be obtained from the integral 
of the Poynting vector over the whole cross-section. For the TE 
mode considered, Er is calculated with the following formula, 
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where S is the Poynting vector, Ex and Hy represent the electric 
field in the x direction and the magnetic field in the y direction, 
respectively. Re() means the real part of the argument inside the 
parenthesis. The calculation results are shown in Fig. 1. As the 
waveguide width decreases, Aeff decreases from 0.33 to 0.18 μm2, 
and the confinement loss gradually increases, which can be seen 
from the reduction of Er. However, the change of Er is very small. 
Thus, it is not necessary to consider the energy attenuation 
caused by the confinement loss during the propagation, which 
is very meaningful for practical application. 

 
Fig. 1. The variations of effective mode area Aeff (red solid curve) and energy 
ratio Er (blue dashed curve) as functions of waveguide width.  

The finite element method is used to calculate β2(W) and γ(W) 
under different W. Then Eq. (10) is solved to obtain γ once β2(W) 
is chosen at W, e. g. 1600 nm which corresponds to the 
propagation distance of z = 0. The obtained γ is compared with 
γ(W) at the chosen W. If the difference between them is very 
small, it is confirmed that β2, γ, and W at z = 0 is found. The 
determined β2 and γ satisfy Eq. (10). Thereafter, the values of β2, 
γ, and W at z + Δz can be also obtained by using the same 
procedure. After the loop calculation for many times, the 
relations of β2, γ, and W between z which is changed from 0 to 
1 cm can be finally obtained. In our calculation, ρ0 is chosen as 
0.25 dB/cm. This value is reasonable with current fabrication 
technology of silicon waveguide [12-15]. In fact, after carefully 
designing the cross-section of waveguides and optimizing the 
lithography and dry etching processes, the scattering loss caused 
by the sidewall roughness can be reduced. In Fig. 2(a), the 
relations of β2 and γ between z are fitted by 5-th order 
polynomials, which satisfy Eq. (10). Figure 2(b) shows the 
relation between W and z. Insets I and II in Fig. 2(b) show the 
three-dimensional sketch and cross-section of the proposed 
silicon waveguide taper. Because of the large refractive index 
contrast between the Si and SiO2, the optical mode fields can be 
well confined at the input and output ports of the waveguide 



taper. The waveguide taper can support multiple modes. 
However, in our simulation, we found that the group-velocity 
difference between the fundamental mode and higher-order 
modes so large that the walk-off length is much less than the 
waveguide length. As a result, the higher-order modes have a 
slight influence on the fundamental mode. Thus, we only 
consider the pulse evolution of fundamental mode. As W is 
gradually decreased as z increases and resulting in a smaller 
mode field area at the output port, γ increases along z, as shown 
in Fig. 2(a). 

 
Fig. 2. (a) The variations of β2 and γ along z, the solid curves are the calculation 
results with the bisection method, and the hollow circles correspond to the 
polynomial fitting. (b) The variation of width (W) along z, the solid and hollow 
curves corresponding to the calculation result with the bisection method and the 
polynomial fitting, respectively. Insets I and II in (b) show the three-dimensional 
sketch and cross-section of the silicon waveguide taper, along with the optical 
field distributions at the input and output ports, respectively. 

4. Simulation results and discussion 
The peak power, pulse width, and phase of the PP can be 
theoretically predicted for a certain waveguide taper from Eqs. 
(13)-(15), as plotted by the black curves in Fig. 3. If the input 
pulse is not PP, the pulse power, width, and phase would 
gradually evolve to the theoretical values [4]. To verify the 
generation of PP from different input profiles, the super-
Gaussian pulse, A(0,t) = (P0)1/2exp[-(t/T0)2m/2], the Gaussian 
pulse, A(0,t) = (P0)1/2exp[-(t/T0)2/2], and the hyperbolic secant, 
A(0,t) = (P0)1/2sech(t/T0) are launched into the designed silicon 
waveguide taper, respectively. The three kinds of pulses have 
the same E0 and P0 of 0.88 pJ and 4 W, respectively. T0 can be 
derived from E0 and P0. For super-Gaussian pulse, E0 = 
Γ(1/2m)T0P0/m and m =2 in our simulation. For Gaussian pulse, 
E0 = (π)1/2T0P0 and for hyperbolic secant pulse, E0 = 2T0P0. The 
corresponding T0 for the three pulses are 121.3 fs, 124.1 fs and 
110 fs. The output pulses are plotted in Fig. 3(a), where the three 
kinds of pulses are well fitted by the parabolas. But for the 
super-Gaussian pulse, the deviations at the leading and trailing 
edges are obvious. In Fig. 3(b), the chirps of the three pulses 
vary linearly in the center region of the pulse, but the curvatures 
at the leading and trailing edges of the pulse are different. For 
Gaussian and hyperbolic secant pulses, the overlap of the chirp 
at the center region of the pulse with the theoretical curve is not 
as high as that of the super-Gaussian pulse. However, the chirps 
of Gaussian and the hyperbolic secant pulses at the leading and 
trailing edges are not curved severely compared to the super-
Gaussian pulse. Therefore, in Fig. 3(c), although the peak 
powers of the three pulses gradually approach the theoretical 
curve during the propagation, the evolutionary trajectory of the 
super-Gaussian pulse is slightly different from those of the other 
two pulses. At the initial stage, the peak power of the super-
Gaussian pulse gradually deviates from the theoretical curve. 
After the deviation reaching the maximum value, it starts to 
quickly approach the theoretical curve. Finally, the peak powers 
of the three pulses are almost the same at the output end of the 
waveguide taper. As a contrast, the peak powers of the Gaussian 

and hyperbolic secant pulses smoothly approach the theoretical 
curve during the evolution. Root-mean-square (RMS) pulse 
width [16] is used to characterize the pulse width in the complex 
pulse reshaping process. The RMS pulse width versus z is 
plotted in Fig. 3(d). The evolution trajectories of the three pulse 
shapes can also be seen in this figure. The super-Gaussian pulse 
could have a distinctive evolution trajectory because its top is 
flatter than the Gaussian and hyperbolic secant pulses. It 
requires a higher peak power to reshape the center region of 
temporal pulse evolve to the PP. Although the evolution of the 
super-Gaussian pulse into the PP was reported [17], it is still 
worth investigating the evolution process, especially for the 
passive waveguide considering the loss. The process of pulse 
evolution to PP can be classified as two regions: transition 
region and asymptotic self-similar region. Transition region 
means that the values of peak power and pulse width are far 
away from the theoretical values while the asymptotic self-
similar region means the values of peak power and pulse width 
are almost overlapping [18, 19]. It can be seen from Figs. 3(c) 
and 3(d) that the evolutions of the three kinds of pulses are in 
the transition region. We attribute this to the unoptimized 
parameter of input peak power, pulse width and waveguide 
length in our simulation [20]. However, in the passive fibers, it 
has been proved that the asymptotic self-similar region can be 
reached via the additional second segment fiber [21] or 
optimized initial pulse duration, chirp and energy [22]. It is 
envisioned that the evolution of these three kinds of pulses will 
eventually enter the asymptotic self-similar region after further 
optimization. To quantize the difference between the generated  

 
Fig. 3. (a) The temporal output at z = 1 cm of super-Gaussian (red solid curve), 
Gaussian (blue solid curve), and hyperbolic secant (pink solid curve) pulses. The 
black, mazarine, and green dots represent the parabolic fitting of super-Gaussian, 
Gaussian, and hyperbolic secant pulses, respectively. (b) The theoretical (black 
solid curve) and output chirps of super-Gaussian (red solid curve), Gaussian 
(blue dashed curve), and hyperbolic secant (pink dashed-dot curve) pulses. (c) 
The theoretical peak power and (d) RMS pulse width (black solid curve), along 
with output results of super-Gaussian (red circle dot), Gaussian (blue triangle 
dot), and hyperbolic secant (pink diamond dot) pulses. (e) The variations of 
mismatched parameter δ2 with z for the three kinds of pulses. 

pulse and PP, a mismatched parameter δ2 is introduced as 

( ) ( )

( )

2

2

2
,

fP t P t dt
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δ

+∞

−∞
+∞

−∞
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∫

          (17)                          

where P(t) and Pf (t) are the powers of the output pulse and 
parabolic fitting, respectively. The evolution of δ2 with z is 
shown in Fig. 3(e). From Fig. 3(e), the initial pulse form plays 
an important role in the self-similar evolution. Although the 



initial super-Gaussian pulse is very close to the PP, the flat-
topped property makes it difficult to evolve to the PP. As a result, 
the complex reshaping processes accompanied by oscillating δ2 
during the propagation is observed. Although the initial δ2 of the 
hyperbolic secant pulse is larger than that of Gaussian pulse, the 
hyperbolic secant pulse can evolve to the PP faster because of 
its sharper top, as shown in Fig. 3(e). However, the large value 
of δ2 at the output port, especially for the super-Gaussian and 
hyperbolic secant pulses (~ 4.2×10-3), indicates that the self-
similar evolutions are in the transition region. 

Next, we focus on the effects of HOD, HON, linear loss, TPA, 
FCA and FCD in the designed silicon waveguide taper on the 
evolution to PP. The HOD includes the third-order to the sixth-
order dispersion, which is obtained by the Taylor expansion of 
GVD. The HON contains self-steepening and intra-pulse 
Raman scattering. The variations of all effects along the length 
for the proposed waveguide are considered in our simulation. 
The comprehensive model of an optical pulse propagating in a 
passive silicon waveguide taper can be described by the 
generalized NLSE [23, 24] 
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  (18)     

where A(z, t) is the pulse envelope, βn(z) (n=1, 2, 3,…6) is the 
GVD coefficients at z, and γ(z) = 2πn2/[λAeff(z)]+iβTPA/[2Aeff(z)], 
where n2 = 4.5 × 10−18  m2/W is the nonlinear refractive index 
and βTPA= 7.9 × 10−12 m/W is the TPA coefficient. R(t) = (1 − 
fR)δ(t) + fRhR(t) is the nonlinear response function, where hR(t) 
is the Raman response function and fR = 0.043 for the silicon 
material. The functional form of hR(t) can be deduced from the 
Raman gain spectrum [24]. The remaining terms that σf = σ(1 + 
iμ)Nc and σl = 2ρ0 are the nonlinear and linear losses, 
respectively, where σ = 1.45 × 10−21 m2 is the FCA coefficient, 
μ = 2kck0/σ represents the FCD with kc = 1.35 × 10−27 m3, Nc 
governs the free-carrier density, which is determined by the rate 
equation [23] 
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where tc ≈ 3 ns is the effective carrier lifetime. For femtosecond 
pulse with low repetition rate, free-carrier density

( )2 2
TPA 0 0 02 3c effN P T h Aβ ν≤ ,  where T0 is the pulse width and 

TFWHM = 1.665T0 is the FWHM, h is the Planck constant, ν0 is 
the frequency, and Aeff is the effective mode area. We use the 
Gaussian pulse as an example of the input pulse for PP 
generation. The Gaussian pulse profile is 

( ) ( ) ( )2 2 2
0 0 00, exp 1 2 ,A t P iC P t Eπ = − +         (20)                     

where P0 = 3.2 W and E0 = 0.88 pJ, C is the chirp parameter.  
To clearly demonstrate the influence of each effect, we 

consider the four cases: Case I (the ideal case), Case II (HOD 
and HON), Case III (HOD, HON, and linear loss), and Case IV 
(full model), respectively. For the four cases, C is set to be zero. 
In the previous work, we investigated the mid-infrared self-
similar pulse compression for the four cases [25]. Here, we 
focus on the PP generation at wavelength 1550 nm. For the ideal 
case, only the interaction between GVD and nonlinearity is 
considered. The full model considers all the factors including 
the HOD, HON, linear loss, TPA, FCA, and FCD. The 
generalized NLSE of Eq. (18) combining with Eq. (19) is 

numerically solved and the results are shown in Fig. 4. We can 
see that linear chirp with a positive slope is observed from Fig. 
4(a). HOD and HON almost have no influence on the chirp, but 
the losses, especially the nonlinear loss, significantly reduce the 
chirp slope. The variation of δ2 versus z is shown in Fig. 4(b). It 
can be seen from Fig. 4(b) that the evolution track of δ2 for the 
case IV deviates from the other three cases. From 0 to 0.57 cm, 
the value of δ2 for case IV is the smallest among the four cases. 
However, δ2 for the other three cases gradually become smaller 
than that of case IV after z = 0.57 cm. At the end of propagation, 
δ2 for the four cases are 1.36×10-3, 1.36×10-3, 1.48×10-3 and 
1.83×10-3. The largest δ2 possessed by case IV indicates that the 
nonlinear loss induced by the TPA and FCA degrades the self-
similar evolution. At the end of propagation, the peak power of 
temporal pulse is decreased to a so low level that the self-similar 
evolution cannot go on. However, the output pulse of Case IV 
can be well fitted by the parabola in Fig. 4(c), which indicates 
that the PP can be obtained in the proposed waveguide taper. 
Comparing with the nonlinear loss, other effects such as HOD, 
HON and linear loss has no obvious influence on the pulse 
evolution. In Fig. 4(d), the output spectra under different cases 
are shown. The intensity reduction caused by the linear and 
nonlinear losses can clearly be seen. Besides, it is easy to 
observe that the output spectral shapes are not parabolic. This 
indicates that the pulse has not completely evolved into a PP and 
proves that the pulse evolution is in the transition region [5, 17]. 

 
Fig. 4. (a) The output chirps for Case I (ideal case), Case II (HOD and HON), 
Case III (HOD, HON, and linear loss), and Case IV (full model). (b) δ2 with 
respect to z. (c) Output pulses for the four cases, the blue and red hollow circles 
indicate the parabolic fitting for the ideal case and full model, respectively. (d) 
Output spectra for the four cases. 

In order to investigate the effect of chirp on the PP generation, 
the chirp parameter C in Eq. (20) is set to be ±0.4 and ±0.8, 
respectively. And the outputs for the case IV in the 1-cm tapered 
silicon waveguide are calculated. The simulation results are 
shown in Fig. 5. Figure 5(a) shows the output temporal pulse 
and its parabolic fitting for C = 0. Figures 5(b) and 5(c) show 
the output temporal pulse and its parabolic fitting for C = ±0.4 
and ±0.8, respectively. By comparing Fig. 5 (a) with 5(b), the 
width of the output pulse at C = −0.4 is slightly smaller than that 
at C = 0. However, when C = 0.4, the width of the output pulse 
is slightly larger than that of C = 0. This is because when the 
chirp parameter is negative, the generated positive chirp during 
the self-similar evolution will be canceled and result in pulse 
narrowing. In contrast, the positive chirp parameter leads to 
pulse broadening, which is consistent with the trend of self-
similar evolution. These qualitative features can be observed in 
Fig. 5(c) when C = ±0.8. 



 

Fig. 5. The output temporal pulses (solid curves) and its parabolic fitting (hollow 
circles) for (a) C = 0 (blue), (b) C = −0.4 (red) and C = 0.4 (blue), and (c) C = 
−0.8 (pink) and C = 0.8 (green). 

The influences of input C on the output chirp, spectrum, and 
δ2 are shown in Fig. 6. It can be clearly seen from Fig. 6(a) that 
the negative C severely degrades the linear chirp of the PP. The 
larger negative C causes the chirp curve bending more severely. 
In contrast, positive C degrades the linear chirp much less. As 
in the case of a negative C, larger positive C deteriorates the 
linear chirp more noticeably. Figure 6(b) shows the output 
spectrum for different C. It can be seen that the negative C leads 
to the narrowing of spectrum and the positive C leads to the 
spectral broadening. It means that the spectral evolution for the 
self-similar evolution is weakened when the C is negative. The 
variation of δ2 in Fig. 6(c) further reveals the influence of C on 
the self-similar evolution. The negative chirp accelerates the 
self-similar process at the initial propagation, but then the pulse 
deviates from self-similar evolution. While the positive C slows 
down the self-similar process, δ2 is almost unchanged at the end 
of propagation. Therefore, negative C has a worse impact on 
self-similar evolution. In order to show the influence of chirp 
more clearly, the minimum δ2 during the propagation and δ2 at 
the output port for different C are given in Fig. 6(d). It can be 
seen that for all chirps, only the minimum δ2 and output δ2 for C 
= 0 and 0.4 are overlapped, which indicates the influence of C 
= 0.4 is the smallest. The minimum δ2 and output δ2 for C = 0 
and 0.8 have different values at z = 1 cm, which means the 
general trend of self-similar evolution has not been changed. In 
contrast, the minimum δ2 and output δ2 for C = −0.4 and −0.8 
are very different from that for C = 0. Thus, negative C can 
significantly affect the PP generation. 

 

Fig. 6. (a) The output chirps, (b) spectral intensity and (c) mismatched parameter 
δ2 for C = 0 (black curve), −0.4 (red curve), 0.4 (blue curve), −0.8 (pink curve) 

and 0.8 (green curve). (d) The minimum δ2 (hollow circle) and output δ2 (solid 
circle) for C = 0 (black), −0.4 (red), 0.4 (blue), −0.8 (pink) and 0.8 (green). 

In Fig. 7, the evolutions of temporal pulses along z are 
demonstrated under four cases. The white dashed arrow 
indicates the position where the peak power of the pulse is 2 W. 
it can be seen that for the four cases, the pulse widths are 
increased and peak powers are decreased during the propagation. 
In the Figs. 7(a) and 7(b), the white dashed arrows have the same 
location of z = 0.55 cm, which means the pulse evolution is not 
influenced by the HOD and HON. Instead, the white dashed 
arrow shifts to z = 0.45 cm in Fig. 7(c), which indicates the peak 
power reduction to 2 W happens earlier because of the linear 
loss in Case III. When the nonlinear loss participates in pulse 
evolution, the white dashed arrow is moved to z = 0.3 cm in Fig. 
7(d) due to the strong influence of nonlinear loss in Case IV. 
However, comparing with the results reported in Refs. [24, 26], 
the pulse distortion induced by FCA is not observed in this work. 
We attributed it to the low pump peak power and ultrashort 
pulse used in the simulation. 

 
Fig. 7. The pulse evolutions along z for (a) Case I, (b) Case II, (c) Case III, and 
(d) Case IV. 

Using the bisection method, silicon waveguide taper with 
different length L can be designed to investigate the impact of L 
on the PP generation. When L is set to be 0.5, 1, 2, and 5 cm, δ2 
under different TFWHM and P0 input can be obtained from a 
numerical simulation. The input TFWHM and P0 are changed from 
50 to 500 fs and 1 to 20 W, respectively. The results are shown 
in Fig. 8 where the bright and dark areas represent the large and 
small values of δ2, respectively. Figure 8 shows the processes of 
pulse evolution for different L. When L is 0.5 cm, the bright area 
is small and located at the center of upper side, as shown in Fig. 
8(a). Then it enlarges and becomes more luminous when L is 
increased to 1 cm, as seen from Fig. 8(b). This means the 
degradation of generated PP is more obvious. When L is 2 cm 
in Fig. 8(c), the brighter area moves to the right side and 
becomes smaller than that in Fig. 8(b). More importantly, 
although the brighter area keeps moving to the right side and the 
size is smaller, and yet the dark area starts to lighten in Fig. 8(d). 
This means for L = 5 cm, it is difficult to obtain high-quality PP 
for the whole input peak power and pulse width. While the 
smallest values of δ2 in Figs. 8(a) and 8(b) have the same value 
of 1.30 × 10-3, it increases a litter to 1.52 × 10-3 in Figs. 8(c) and 
8(d). More seriously, as L increases to 5 cm, the average value 
of δ2 has obvious increment. Considering the larger linear loss 
of a longer waveguide, this quality degradation is reasonable. 
Despite longer waveguide may be in favor of PP generation in 
passive fibers [22], we conclude that high-quality PP can only 
be obtained before the self-similar evolution is broken by the 



linear and nonlinear losses. Our simulation suggests that the L 
should be less than 5 cm if one wants to obtain high-quality 
within large ranges of input parameters. Although only the case 
of Gaussian pulse input is investigated in the model of 
generalized NLSE, the obtained results are also applicable for 
the case of super-Gaussian and hyperbolic secant pulses inputs. 

 
Fig. 8. The distribution of δ2 under different inputs of TFWHM and P0 when the 
length of silicon waveguide taper L is designed as (a) 0.5, (b) 1, (c) 2, and (d) 5 
cm, respectively. 

5. Conclusions 
In summary, the PP generation in a silicon waveguide taper 

with simultaneous variations of the GVD and nonlinearity is 
investigated. The pulse evolutions in the newly designed silicon 
are analyzed under the inputs of super-Gaussian, Gaussian and 
hyperbolic secant pulses. We found that under the ideal case, all 
kinds of pulses can evolve to PP and the evolution stay in the 
transition region. When the HOD, HON, linear loss, TPA, FCA, 
and FCD are considered, PP can still be obtained in the designed 
silicon waveguide taper. However, the chirp, especially the 
negative chirp degrades the self-similar evolution severely. 
Further investigation shows that for the 1-cm silicon waveguide 
taper, losses play important roles in the peak power reduction. 
However, the quality of generated PP is almost uninfluenced by 
the losses. This situation changed when the silicon waveguide 
tapers with different length are used, high-quality PP is more 
easily obtained in a shorter silicon waveguide taper in which the 
detrimental influence caused by losses are not so obvious. 
Besides, the PP generation is sensitive to the input pulse width 
and peak power. Larger range of input parameters for high-
quality PP generation can be obtained in a shorter waveguide. 
Our research is expected to have important applications in on-
chip optical pulse shaping, pulse compression and signal 
processing. 
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