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Edge Solitons in a Nonlinear Mechanical Topological Insulator
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Abstract

We report localized and unidirectional nonlinear traveling edge waves in a 2D mechanical (phononic) topological
insulator consisting of a collection of pendula with weak Duffing nonlinearity connected by linear springs. This is
achieved by showing theoretically that the classical 1D nonlinear Schrödinger equation governs the envelope of 2D
edge modes. The theoretical predictions from the 1D envelope equation are confirmed by numerical simulations of
the original 2D system for various types of traveling waves and rogue waves. As a result of topological protection,
these edge solitons persist over long time intervals and through irregular boundaries. The existence of topologically
protected edge solitons may have significant implications on the design of acoustic devices.

Keywords: Phononics, Nonlinear structures, Topological protection, Acoustic wave phenomena
Declarations of interest: none

1. Introduction

The emerging field of topological mechanics utilizes
topological principles to reveal new collective excita-
tions in classical mechanical (phononic) systems [1, 2].
The definitive achievement in this field is the discov-
ery of topological acoustic metamaterials, including in
particular mechanical topological insulators (TIs). The
theory of TIs was originally developed in condensed
matter physics, with extensive literature on both one-
dimensional and multi-dimensional systems [3, 4, 5].
The one stand out property of TIs which holds the ongo-
ing interest in the topic is that a clear dichotomy exists
between the edge (surface) and the bulk of the mate-
rial as electrons are conducted only on the edge whilst
the bulk is insulating. The existence of such edge states
at the interface between two bulk materials with differ-
ent topological invariants is guaranteed by the principle
of bulk-edge correspondence [6, 7]. More recently, the
theoretical framework underlying quantum TIs has been
generalized to photonic systems governed by classical
electromagnetic fields [8, 9, 10]. In analogy to electrons
in traditional TIs, electromagnetic waves in photonic
TIs propagate along the edge with very little backscat-
tering, even in the presence of disorders such as missing
site(s) on the edge of a photonic lattice [11, 12, 13].
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The metamaterials in topological mechanics can be
classified into two families depending on whether the
topological edge modes appear at zero frequency or
high frequencies [1]. In the zero frequency case, these
edge modes are identified as floppy modes and self-
stress states in Maxwell frames [14]. Here we focus on
the high frequency case, where topologically protected
transport via phonons is enabled. Seminal work in this
direction includes analogues of the quantum Hall effect
using a lattice of hanging gyroscopes [15], and the quan-
tum spin Hall effect (QSHE) using a lattice of coupled
pendula [16] and bi-layered lattices of disks and springs
[17]. Topological phonons are subsequently classified
based on local symmetries [18].

The existing literature on nonlinear topological me-
chanics notably includes establishment of topological
solitons as the nonlinear mechanism for zero-frequency
floppy modes to propagate through the bulk of a 1D
Maxwell frame [19], and the effect of nonlinearity
on the resonant characteristics of high-frequency edge
modes in both 1D and 2D mechanical TIs [20]. How-
ever, the possibility of nonlinear waves remains open in
the high-frequency case. The theory of nonlinear waves
in continuous systems has already formed a cornerstone
of nonlinear science [21]. A fundamental result is that in
such systems, dispersion can balance with nonlinearity
to produce robust localized nonlinear traveling waves
known as solitons. The theory of nonlinear waves in dis-
crete systems has flourished more recently, especially in
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Figure 1: (Color online) Schematic view of the first unit cell S =

0 consisting of three sites on a generic lattice. The first, sec-
ond, and third rows respectively represent (x(0)

r,S , y
(0)
r,S ), (x(1)

r,S , y
(1)
r,S ), and

(x(2)
r,S , y

(2)
r,S ). Each site hosts an x (red) and a y (blue) pendulum carry-

ing a mass. Simple springs in the s-direction connecting pendula are
shown as blue lines. Couplings between pendula in the r-direction are
shown as red and green lines. Cross couplings between the x and y
pendula of neighboring sites are shown as brown and magenta lines.
Negative couplings are realized via one lever arm, and positive cou-
plings via two lever arms. Each pendulum x(0)

r,S or y(0)
r,S is connected to

solid walls by springs. The edges are implemented by replacing the
outside sites by solid walls. These walls are not shown for clarity.

the context of nonlinear optics and Bose-Einstein con-
densates [22]. In mechanical lattices, the study of non-
linear waves dates back to the classical 1D Fermi-Pasta-
Ulam-Tsingou (FPUT) lattice [23], whose 1D and 2D
extensions are still studied very recently [24, 25, 26].
Coupled pendula have been extensively studied in terms
of synchronization and destabilization [27], while co-
herent structures therein such as breathers continue to
capture considerable interest [28, 29, 30]. Nonlinear
elastic metamaterials known as granular crystals have
attracted much recent attention [31], with topological
effects already demonstrated [32].

In this Letter, we use the theory of nonlinear waves to
describe nonlinear interactions between high-frequency
edge modes in a 2D mechanical TI. The primary aim
is to discover topologically protected edge solitons
(TPES), which are nonlinear traveling edge waves that
inherit the topological protection of the corresponding
linear system. Using dimension reduction and asymp-
totic analysis, the original 2D nonlinear system is re-
duced to the classical 1D nonlinear Schrödinger (NLS)
equation [33]. This equation admits a plethora of soli-
ton solutions, all of which correspond to TPES in the
original system. Theoretical predictions are compared
to numerical simulations on relatively large domains
with excellent agreement. This practically enables ro-
bust transport of a mechanical state from one location

to another on the edge of a generic 2D lattice. We re-
mark that nonlinear topological edge states have already
been reported in photonic Floquet TIs [34, 35, 36], po-
lariton TIs [37, 38, 39], and classical optical networks
[40], but our work represents a first step into the me-
chanical (phononic) world.

2. Mathematical Framework

The 2D mechanical TI we study is the one proposed
by Süsstrunk and Huber [16], which is the first me-
chanical implementation of the QSHE. In the QSHE,
two counter-propagating helical edge modes traverse
the edge similarly with the exception of their spin de-
gree of freedom [41, 42]. The QSHE model in [16] is
two independent copies of the Hofstadter model [43] on
the 2D square lattice indexed by (r, s):

Ĥ =
∑
α=±

Ĥα,

Ĥα = f0
∑
r,s

(
â†r,s,αâr,s+1,α + eiαΦsâ†r,s,αâr+1,s,α + H.c.

)
.

Here α is a spin index that labels the two copies, f0 is
the magnitude of the hopping amplitude, â†r,s,α and âr,s,α

are respectively the creation and annihilation operators
of a particle with spin α at site (r, s), Φ = 2π/3 is the
magnetic flux, and H.c. denotes Hermitian conjugacy.
This choice of Φ makes Ĥ periodic on a 1 × 3 unit cell,
so the Hamiltonian matrix takes the form

H =

(
H+ 0
0 H−

)
,

where H± are 3 × 3 matrices. The key insight in [16] is
that H can be made positive-definite and real symmetric
through a similarity transform to serve as the dynamical
matrix for a system of coupled oscillators. This sys-
tem is then realized on a 2D square lattice where each
site contains two pendula xr,s and yr,s that are hinged
to swing only in the s-direction, with linear springs at-
tached to the pendula to achieve couplings in both s-
and r-directions. In the following, we group the sites in
the s-direction into unit cells indexed by S , with each
cell consisting of three sites (x( j)

r,S , y
( j)
r,S ), j = 0, 1, 2.

In [16], linear equations of motion are presented for
this system; here we include an additional cubic (Duff-
ing) nonlinearity inherent to pendula, which yields
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ẍ(0)
r,S = − (ω2

0 + A f )x(0)
r,S + σ(x(0)

r,S )3

+ f (x(0)
r+1,S + x(0)

r−1,S + x(1)
r,S + x(2)

r,S−1), (1)

ÿ(0)
r,S = − (ω2

0 + A f )y(0)
r,S + σ(y(0)

r,S )3

+ f (y(0)
r+1,S + y(0)

r−1,S + y(1)
r,S + y(2)

r,S−1), (2)

ẍ(1)
r,S = − (ω2

0 + A f )x(1)
r,S + σ(x(1)

r,S )3

+ f (x(0)
r,S + x(2)

r,S ) −
f
2

(x(1)
r+1,S + x(1)

r−1,S )

+

√
3 f
2

(y(1)
r+1,S − y(1)

r−1,S ), (3)

ÿ(1)
r,S = − (ω2

0 + A f )y(1)
r,S + σ(y(1)

r,S )3

+ f (y(0)
r,S + y(2)

r,S ) −
f
2

(y(1)
r+1,S + y(1)

r−1,S )

+

√
3 f
2

(−x(1)
r+1,S + x(1)

r−1,S ), (4)

ẍ(2)
r,S = − (ω2

0 + A f )x(2)
r,S + σ(x(2)

r,S )3

+ f (x(0)
r,S +1 + x(1)

r,S ) −
f
2

(x(2)
r+1,S + x(2)

r−1,S )

+

√
3 f
2

(−y(2)
r+1,S + y(2)

r−1,S ), (5)

ÿ(2)
r,S = − (ω2

0 + A f )y(2)
r,S + σ(y(2)

r,S )3

+ f (y(0)
r,S +1 + y(1)

r,S ) −
f
2

(y(2)
r+1,S + y(2)

r−1,S )

+

√
3 f
2

(x(2)
r+1,S − x(2)

r−1,S ). (6)

Here A = 3 +
√

3, f describes the linear restor-
ing forces of the springs, and ω0 and σ respectively
describe the linear and nonlinear parts of the restor-
ing forces of pendula. Consistent with [16] we choose
ω0 = 3π/2 and f = 4.16π2. The nonlinear coefficient σ
is found by expanding the restoring force of the pendu-
lum, i.e. −ω2

0 sin(θ) ≈ −ω2
0θ+

ω2
0

6 θ
3, which gives σ =

ω2
0

6 .
Figure 1 shows a schematic view of the couplings on

a generic lattice with the first unit cell (S = 0) empha-
sized. Hereafter we consider the compact matrix form

Ẍr,S (t) = (LX)r,S + σN r,S (7)

where X = [x(0), y(0), x(1), y(1), x(2), y(2)]T , t denotes time,
· denotes time derivative,L is the linear operator encod-
ing the couplings of the system, σ is the strength of the
Duffing nonlinearity, and N = X3. Unless otherwise
specified, the 2D domain is taken to be rectangular with
Nr sites in the r-direction, r = 0, 1, 2, · · · ,Nr−1, and NS

unit cells in the S -direction, S = 0, 1, 2, · · · ,NS − 1. On
a 1D domain with L chosen as the discrete Laplacian,
Eq. (7) reduces to the 1D nonlinear Klein-Gordon equa-
tion with a cubic nonlinearity [44], from which the 1D
NLS equation can be derived using the method of mul-
tiple scales [21]. Here we combine this procedure with
dimension reduction to derive a 1D amplitude equation
from the general 2D system given by Eq. (7).

In the linear problem (σ = 0), to describe an edge
state of a specific boundary, say along S , we take the
Fourier transform Xr,S (t) = eiθXE

r + c.c, c.c denoting
complex conjugacy, where the exponent θ = S k− tα(k),
with k being the wavenumber in S (along the edge), α(k)
being the dispersion relation, and XE

r being the 1D edge
state that decays in r (perpendicular to the edge). This
reduces Eq. (7) to the eigenvalue problem

L(k)XE
r = −α(k)2XE

r , (8)

where L(k) denotes the 1D linear operator after the
Fourier transform, and XE

r is normalized such that
‖XE

r ‖
2
2 =

∑
j |XE

j |
2 = 1. In the nonlinear problem

(σ , 0), similarly to [34, 35], we aim to construct a
weakly nonlinear edge mode. Since Eq. (7) does not
have a small parameter, we must introduce the small
parameter in the initial condition. This is achieved by
considering the spectral envelope with a narrow width
0 < ε � 1 at carrier wavenumber k = k0 and carrier fre-
quency α0 ≡ α(k0), in the reference frame co-moving
with the group velocity of the envelope α′0 ≡ α′(k0).
Specifically, we choose a multiple scale ansatz for the
weakly nonlinear edge mode of the form

X(r, S , S̃ , t, τ) = ε
{
C(S̃ , τ)ei(S k0−tα0)XE

r + c.c
}

+ O(ε2),
(9)

where C(S̃ , τ) is the scalar envelope function and
evolves in the slow variables S̃ ≡ ε(S −α′0t) and τ ≡ ε2t.
Thus, the time and space differential operators are now
written as ∂t = ε2∂τ − εα

′
0∂S̃ − α0i and ∂S = ε∂S̃ + k0i

respectively.
The dispersion relation α(k), k ∈ [0, 2π), numerically

computed by solving Eq. (8) on a finite 1D domain, is
shown in Fig. 2. The bulk (continuous) spectrum con-
sists of three bands (blue), and the edge (point) spectrum
exist in the two gaps (red). Thus, for each wavenumber
k there are precisely six point eigenvalues, three in ei-
ther gap, whose corresponding eigenfunctions are the
edge states that decay in r. The topologically protected
edge states are those in the bulk band gap, or more pre-
cisely the range of α where the only permissible states
are the pair of counterpropagating helical edge states.

One can now substitute the ansatz (9) directly into
Eq. (7) and expand asymptotically in ε. In particular, we
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Figure 2: (Color online) The dispersion relation α(k) computed on
the left/right edge of a rectangular lattice with Nr = 60 sites in the r-
direction. The bulk spectrum is shown in blue and the edge spectrum
is shown in red. In the latter, each eigenvalue corresponds to a pair of
edge states localized respectively on the left and on the right.

expand the dispersion relation α(k) around the carrier
wavenumber k0 in operators form as

α(k) = α0 − iα′0ε∂S̃ −
1
2
α′′0 ε

2∂S̃ S̃ + O(ε3), (10)

where α′′0 ≡ α′′(k0). At O(ε) and O(ε2) the equations
are trivial. To leading nontrivial order, at O(ε3), taking
the inner product of both sides of the equation with XE

r ,
where the inner product is defined as 〈g, h〉 =

∑
j g∗jh j,

then the 1D classical second-order NLS equation ap-
pears in canonical form:

iCτ +
α′′0
2

CS̃ S̃ +
3σ̃
2α0
|C|2C = 0, (11)

where σ̃ = σ‖XE
r ‖

4
4 ≡ σ

∑
j |XE

j |
4. The NLS equation is

a maximally balanced equation and is focusing or defo-
cusing if α′′0 α0/σ̃ > 0 or α′′0 α0/σ̃ < 0 respectively.

3. Numerical Simulations

The propagation of different types of edge solitons
around the boundaries of the mechanical lattice can now
be investigated by numerically solving Eq. (7) with the
following initial condition resulting from the ansatz (9)

Xr,S (t = 0) = εC(S )eiS k0 XE
r + c.c, (12)

where C(S ) represents the initial envelope needed to
produce the desired soliton solution to Eq. (11). Note
that the envelope C(S ) quantifies the inter-cell variation
of the pulse shape along the edge, whilst the eigenstate
XE

r quantifies both the decay of the pulse shape into the
bulk and the intra-cell variation between the three sites
forming the unit cell. Hereafter we take ε = 0.1 and ex-
plore different choices of the carrier wave as specified
by (k0, α0) with different types of envelopes C(S ).

3.1. Traveling Edge Solitons
First, we consider the focusing case where Eq. (11)

admits a two-parameter family of bright solitons [33],
where the two parameters can be taken as k0 and ε. The
bright soliton is a classical solution of the 1D NLS equa-
tion that can be obtained directly from the inverse scat-
tering transform [45]. The focusing condition implies
that bright solitons exist only for a finite interval of k0;
at each value of k0, fixing the spectral width ε fixes the
amplitude of the wave packet. The 2D bright edge soli-
ton can be obtained by considering the initial condition
(12) with the scalar envelope function

CB(S ) = Λsech (ε(S − S 0)) , (13)

where Λ =
√

2α0α
′′
0 /3σ̃ and S 0 represents the initial

location of the wave packet. According to the theory,
since the evolution is asymptotically governed by the
1D NLS equation, the bright edge soliton should persist
at least until t ∼ O(ε−2). In particular, the edge soli-
ton should maintain its shape better at the theoretically
predicted amplitude in comparison to smaller or greater
amplitudes, which we show in Fig. S1(b) and Fig. S1(c)
in Supplementary Material [46]. We remark that linear
edge modes correspond to the limit Λ → 0, which ex-
hibits even more dispersion than Fig. S1(b). At a large
time scale, the asymptotic theory may produce errors
that eventually destroy the soliton profile.

To portray these edge solitons we introduce an exci-

tation variable z(i)
r,S =

√
(x(i)

r,S )2 + (y(i)
r,S )2, for i = 0, 1, 2,

that represents the intensity of each site in the lattice.
The propagation of a bright edge soliton at (k0, α0) =

(2.827, 12.506) is shown in Fig. 3(a) where we express
the intensity on the four edges of the rectangular lattice;
the nonlinear wave traverses the boundaries of the me-
chanical lattice clockwise with almost no energy loss at
the corners. This showcases both the topological pro-
tection of the traveling wave and the robustness of the
soliton profile.

Akin to bright solitons in focusing NLS, there exists
dark soliton solutions to defocusing NLS [33], i.e. the
α′′0 α0/σ̃ < 0 case in Eq. (11). Whereas a bright soliton
is a localized rise of energy on a zero background, a dark
soliton is a localized dip in energy on a non-zero back-
ground. The initial condition for a dark edge soliton is
then given as Eq. (12) with the envelope function

CD(S ) = Λ tanh(ε(S − S 0)). (14)

Such a dark edge soliton described by NLS also exists in
for example polariton TIs [38, 39], but its propagation
around a non-periodic 2D domain has not been explic-
itly demonstrated due to the difficulty to initialize the
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (Color online) Propagation of bright and dark edge solitons.
The 2D domain consists of Nr sites in the r-direction and NS unit
cells in the S -direction. (a,c,e) A bright edge soliton on a rectangu-
lar lattice of size Nr × NS = 30 × 120. The carrier wavenumber and
frequency are (k0, α0) = (2.827, 12.506), which leads to soliton am-
plitude Λ = 1.376 in Eq. (13). (b,d,f) A dark edge soliton on a rect-
angular lattice of size Nr × NS = 30 × 101. The carrier wavenumber
and frequency are (k0, α0) = (2.146, 13.616), which leads to soliton
amplitude Λ = 1.705i in Eq. (14). Panels (a,b) show space-time plots
along the edges of a full rectangular domain, where L, T , R and B
correspond respectively to left, top, right, and bottom edges of the 2D
lattice. Panels (c,d) show snapshots of a respective bright (c) and dark
(d) edge soliton on a rectangular domain with a sharp turn cut out of
the right edge; red arrows indicate the centre of the soliton envelope
and its direction of travel. Panels (e,f) show space-time plots along
the edges of the irregular domain in panels (c,d). Video simulations
of (a-f) can be seen in Supplementary Material [46].

non-zero background. Here, we realize in Fig. 3(b) a
dark edge soliton at (k0, α0) = (2.146, 13.616) travel-

ing on a rectangular domain with little energy loss over
a long time interval. See Supplementary Material [46]
for another type of traveling wave known as the gray
soliton [33]. Next we outline the rationale behind the
construction of the initial condition, which also reveals
the origin of the topological protection of edge solitons.

3.2. Topological Protection

Assume that a finite 2D domain is dominated by a
particular type of edge, e.g. the left and right edges in
Fig. 3(a–b). Near a topologically protected frequency,
the eigenfrequencies and the corresponding eigenfunc-
tions on this 2D domain should match up well with
those on a semi-infinite 2D periodic stripe with this type
of edge. In the presence of weak nonlinearity, the en-
velope equation for the edge solitons on such a finite
2D domain should then be well approximated by the
NLS equation on the corresponding 1D periodic do-
main. Thus, a unidirectionally traveling 1D NLS soliton
corresponds to a unidirectionally looping 2D edge soli-
ton insensitive to the details of the 2D domain. The de-
tailed method to construct the edge soliton is described
in Supplementary Material [46].

Let us now consider irregular domains, for instance
by carving a sharp turn into the right edge of the lattice
(the edge opposite the initial condition) and evolving the
system using the same edge soliton initial conditions as
in Fig. 3(a,b). Since the carrier wave is topologically
protected, we expect that the nonlinear structures will
traverse the domain with little to no backscattering re-
gardless of the boundary type. This is seen in Fig. 3(c,d)
where snapshots of the 2D domain show the edge soli-
tons traverse the irregular domain in their last cycle be-
fore t = 2000. The space-time plots in Fig. 3(e,f) also
show the edge solitons passing through the sharp turn
of the right edge multiple times with little change in
the pulse shape. The same is found to occur for rough
boundaries with finer length scales, such as a Cantor-
like function carved into the same edge, as shown in
Supplementary Material [46]. These numerical experi-
ments all but confirm the general principle that weakly
nonlinear edge solitons inherit the topological protec-
tion of linear edge modes.

To further show the topological protection of edge
solitons around different types of corners, we perform
a numerical scattering analysis on bright solitons prop-
agating on the above two types of domains over a long
time period, say t ∈ [0, 1 × 104]. Since the two param-
eters characterizing the bright solitons are k0 and ε, we
consider varying them away from those in Fig. 3(a,c,e),
i.e. k0 = 2.827 and ε = 0.1.
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Firstly, we fix k0 = 2.827 and compare the three cases
ε = 0.05, ε = 0.1, and ε = 0.2. Figure 4(a,b) respec-
tively show the relative energy (the L2-norm of z on the
left edge relative to its initial value) and the maximum
amplitude (the L∞-norm of z on the left edge) over 25
propagation cycles on the rectangular domain (R) and
the domain with a wedge carved into the right edge (W).
The most remarkable feature is that neither the energy
nor the amplitude changes significantly, regardless of
the domain shape. Thus, although these edge solitons
are formally derived on the O(ε−2) time scale, they per-
sist much longer in practice. It can also be seen that a
larger ε causes the amplitude to oscillate more, while
a smaller ε causes the energy to decay more. To ex-
plain these, we recall that ε is the spectral width and ε−1

is the physical width of the soliton. A larger ε causes
greater interference between the two spectral envelopes
centered at k0 and 2π − k0 that form the soliton. This
is a unique property of mechanical systems as opposed
to optical systems, which will be further explored else-
where. On the other hand, a smaller ε makes the soliton
more spatially extended and thus causes the energy to
spread more onto the other edges.

Next, we fix ε = 0.1 and vary k0 with the stipulation
that it belongs to the topologically protected and focus-
ing regime. In this band gap, the topologically protected
set of wavenumbers is k ∈ [1.573, 4.178] and the fo-
cusing set of wavenumbers is k ∈ [0, 3.483]. As such,
in Fig. 4(c,d) we compare the three cases k0 = 2.199,
k0 = 2.513, and k0 = 2.827 on the two types of do-
mains. The soliton can be seen to propagate very well
as long as its carrier wavenumber lies in the interior of
the allowable set of wavenumbers. The wavenumbers
closer to the bulk appear to be more sensitive to the ir-
regularity of the domain shape, as seen in Fig. 4(d).

Remarkably, linear edge modes disperse differently
depending on the deformity shape, but nonlinear edge
solitons maintain their profiles independent of the de-
formity shape. The system thus functions as a nonlinear
acoustic cloak; see [47] for a similar proposal of a non-
linear optical cloak. In experiments, any waveform such
as Eqs. (13–14) can be generated at a single site and
propagated around the finite domain [16]. The required
experimental setup is no different from that in the origi-
nal experiment [16], only on a suitably larger domain to
accommodate the narrow spectral envelope.

3.3. Rogue Edge Solitons
Finally, we explore rational solutions to the clas-

sical 1D NLS equation, commonly known as rogue
waves as they have recently proven to be very promising
contenders for modeling waves with abnormally large
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Figure 4: (Color online) Numerical scattering analysis for bright soli-
tons. Panels (a,b) show the effect of fixing k0 = 2.827 and varying
ε = 0.05 (blue), ε = 0.1 (black), ε = 0.2 (red) over multiple propaga-
tion cycles on two different domains. Domain R is the fully rectangu-
lar domain, whilst domain W is the domain with a wedge carved into
the right edge. (a) Total energy of the solitons at each cycle relative to
the initial value. (b) The maximum amplitude of the solitons at each
cycle. Similarly, panels (c,d) show the effect of fixing ε = 0.1 and
varying k0 = 2.199 (blue), k0 = 2.513 (red), k0 = 2.827 (black) on the
two different domains.

heights [48, 49, 50, 51]. We first consider the famous
Peregrine soliton [52] which is the prototypical example
of a rogue wave solution. For visualization purposes,
we require the maximum amplitude to appear at some
t > 0, say t0 = 1200. Therefore we shift the tempo-
ral variable by t0 and consider the initial condition (12)
with the envelope function given by

CP(S ) = Λ

1 − 4(1 − 2it̃0)
1 + 4ε2(S − S 0)2 + 4t̃2

0

 eiθ̃, (15)

where θ̃ = α0t0 − t̃0 and t̃0 = ε2α′′0 t0. Figure 5(a)
shows the appearance of the Peregrine edge soliton
with the carrier wavenumber and frequency (k0, α0) =

(2.334, 12.113). We note that the peak does indeed ap-
pear at t ≈ t0 according to the numerics.

Let us also consider the Kuznetsov-Ma (K-M) soli-
ton, which was first derived by Ma [53] as a breathing
wavepacket in time embedded in a plane wave solution.
To generate a K-M edge soliton, we replace the enve-
lope function in the initial condition (12) by the K-M

6



(a) (b)

Figure 5: (Color online) Propagation of rogue edge solitons. Panel (a)
shows a space-time plot of a Peregrine soliton described by Eq. (15)
that peaks at t ≈ 1200. Panel (b) shows a Kuznetsov-Ma edge soliton
described by Eq. (16), peaking at t0 = 500 with modulation parameter
φ = 1, with a breathing period of about 1000. The carrier wavenumber
and frequency of both rogue waves are (k0, α0) = (2.334, 12.113), and
the size of the rectangular domain is Nr × NS = 20 × 100.

expression seen in [50], i.e.

CKM(S ; φ) = Λ

[
cos(Ωt̃0 + 2iφ) − cosh φ cosh S̄

cos(Ωt̃0) − cosh φ cosh S̄

]
eiθ̃,

(16)
where S̄ = Pε(S −S 0), P = 2 sinh φ, Ω = sinh 2φ, and φ
is the real modulation parameter defining the breathing
period. Figure 5(b) shows the appearance of a K-M edge
soliton with φ = 1 and (k0, α0) = (2.334, 12.113). We
see that the breathing period agrees with the theory.

Note that since the carrier wave belongs to the topo-
logically nontrivial regime, the propagation of these
rogue edge solitons in the mechanical lattice is topo-
logically protected, just like the traveling edge solitons
presented earlier. See Supplementary Material [46] for
another type of rogue wave known as the Akhmediev
breather [54]. See also [55] for rogue waves in the
FPUT lattice and granular crystals through reduction to
NLS.

4. Discussion and Summary

Among 2D edge solitons, TPES are special in that
their propagation through arbitrary boundaries can be
described by 1D NLS. By contrast, non-topologically
protected edge solitons around the corners are found
to exhibit a combination of transmission, reflection and
scattering into the bulk. Thus, the existence of TPES
could serve as an important benchmark in incorporat-
ing nonlinearity into the design of perturbative topolog-
ical metamaterials [56]. Compared to photonic TIs, me-
chanical TIs contain much simpler components, which
may allow TPES to be observed in tabletop experi-

ments. Moreover, the time reversal symmetry of me-
chanical systems implies bidirectional wave propaga-
tion and thus potentially richer dynamics than their pho-
tonic counterparts.

In summary, we have realized edge solitons theoret-
ically and numerically in a 2D nonlinear mechanical
topological insulator exhibiting the QSHE. The deriva-
tion can be readily generalized to other mechanical TIs
with discrete elements [17, 57], possibly with dissipa-
tion [58] and forcing [20] included. Further extensions
may include TIs in nonlinear continuous media, such
as recent proposals based on magnetic solitons [59] and
water waves [60].

The tunable and lossless nature of TPES may have
significant impacts on existing applications of TIs such
as optical and acoustic delay lines [61, 62] and robust
manipulation of light and sound [63, 64]. In photonic
TIs, TPES have been applied to nonlinear filtering and
switching [36] and optical isolation [65]; analogs in me-
chanical TIs may soon emerge. Future applications of
TPES to logic devices may benefit from the possibility
for collision-based computing provided by such nonlin-
ear coherent structures [66].
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Supplementary Material:
Edge Solitons in a Nonlinear Mechanical

Topological Insulator
David D. J. M. Snee and Yi-Ping Ma

The Supplementary Material here is organized into five
sections and accompanying films for the bright and dark
soliton simulations. In the first section we enclose the
method used to construct edge solitons with non-zero
background. The second section then looks closely at
the bright and dark solitons and shows that the theoreti-
cally predicted NLS amplitude derived from the asymp-
totic analysis is the most efficient amplitude for the evo-
lution of solitons in the system. Next we explore the
interaction of two bright NLS solitons initialized on the
same lattice and qualitatively show the phase shift that
occurs in such a collision. We then consider the propa-
gation of bright and dark solitons on domains with finer
length scales to further show the topological protection
of such nonlinear waves. Finally we verify the nonlinear
theory further by exploring gray soliton and Akhmediev
breather solutions to the classical 1D NLS, and realize
them in this mechanical topological insulator.

CONSTRUCTION OF EDGE SOLITONS

To facilitate initialization of the non-zero background
one must compute the full 2D profile, which is a linear
combination of 2D eigenfunctions Xi

r,S , based on the
criterion that the left edge contains precisely the initial
condition Eq. (12). Formally, given the 1D soliton pro-
file, say CD(S ), and a set of wavenumbers ki, we need to
use an inverse discrete Fourier transform (IDFT) to find
the coefficients Xi such that

CD(S )eik0S =
∑

i

XieikiS . (S1)

For each 2D eigenvalue there exists a set of 2 orthog-
onal 2D eigenfunctions that we may restrict to the left
edge (r = 0) and write in the form u1 = cos(kiS + θ)
and u2 = sin(kiS +θ), each with the dual harmonics ±ki.
We can isolate the ±ki harmonic by forming the linear
combination u1 ± iu2. The 2D eigenfunctions are then
normalized to make the left edge of the form eikiS by
finding a scaling factor giXi

r,S = XE
r such that the values

of all 6 variables in the central cell (S = S 0) agree with
the 1D eigenfunction in the least squares sense. The 2D
eigenfunctions are now recast into a form most compat-
ible with the initial condition Eq. (12).

We then compute the IDFT to find the coefficients
X j: multiplying Eq. (S1) by e−ik jS and summing over S

leads us to

X j =
∑

S

e−ik jS CD(S )eik0S

LS
, (S2)

where LS is the number of cells.
The wavenumber k j can be determined accurately by

utilizing the following relationship between neighbor-
ing cells of a particular component, say x(0)

r=0,S :

x(0)
r=0,S =n+1 = eik j x(0)

r=0,S =n, (S3)

where n is a cell location sufficiently far enough away
from the corners of the lattice. Rearranging Eq. (S3)
allows us to explicitly write the wavenumbers as k j =

Re(−i loge(x(0)
r=0,S =n+1/x(0)

r=0,S =n)).
Finally, we need to choose LS such that the wavenum-

bers on the left edge extracted from the 2D eigenfunc-
tions agree with the wavenumbers on the 1D periodic
domain. The wavenumbers for successive 2D eigen-
functions are approximately equally spaced whilst, on
a 1D periodic domain of length LS , the spacing be-
tween the wavenumbers of successive eigenfunctions is
2π/LS . The equality of the two wavenumber spacings
determines LS , which generally may not be an integer.
This is an inherent imperfection of our method that we
aim to fix in the future.

The 2D profile can then be constructed as the linear
combination of the normalized 2D eigenfunctions:

Xr,S (t = 0) =
∑

j

X jX
j
r,S + c.c. (S4)

THE NLS AMPLITUDE

We will now consider what happens when we force
an amplitude other than the one predicted by the asymp-
totic analysis onto the bright soliton envelope (13) and
the dark soliton envelope (14) whilst keeping the other
parameters unchanged.

Firstly, let us take the bright edge soliton in Fig. 3(a),
with wavenumber k0 = 2.827, frequency α0 = 12.506,
and theoretically predicted NLS amplitude Λ = 1.376,
as a case study for the varied amplitudes. The nonlinear
wave travels clockwise around the domain, completing
a full cycle with a period of about 300. The longtime
profile of this edge soliton shows little decay as seen in
Fig. S1(a): at t ≈ 2000 (t ≈ 4000), the soliton has com-
pleted about 6 (12) cycles of the domain and the soli-
ton amplitude has only decayed to approximately 96%
(93%) of its initial theoretically predicted value.

Taking a smaller amplitude than the theoretically pre-
dicted results in a compelling amount of decay of the
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Figure S1: (Color online) Propagation of solitons with differing amplitudes. (a,b,c) Bright solitons on a rectangular lattice of size Nr×NS = 30×120
with carrier wavenumber and frequency (k0, α0) = (2.827, 12.506), and soliton amplitudes (a) Λ = 1.376; (b) Λ = 0.7; (c) Λ = 2.8. (d,e,f) Dark
solitons on a rectangular lattice of size Nr × NS = 30 × 101 with carrier wavenumber and frequency (k0, α0) = (2.146, 13.616), and soliton
amplitudes (d) Λ = 1.705i; (e) Λ = 0.8i; (f) Λ = 3.5i. Profiles are taken initially (blue-solid) and after a long time interval (red-dashed). Solitons
(a) and (d) are precisely the solitons with theoretically predicted NLS amplitudes seen in Fig. 3.

bright soliton profile. This is seen in Fig. S1(b) where
we have considered an amplitude that is approximately
half of the predicted, i.e. Λ = 0.7. Here, the peak of
the soliton has decayed to 61% of its original value long
after the initial time (≈ 4000 time units), which is a sig-
nificant decrease in comparison to the 93% seen before
(Fig. 1(a)). Moreover, the Gaussian profile has dis-
persed out to the point where the tail ends of the bright
soliton are cut off by the corners of the 2D rectangular
domain. In contrast to this, Fig. S1(c) shows the effect
of initializing a larger amplitude, where we have consid-
ered approximately double the theoretically predicted,
i.e. Λ = 2.8. We see that this has a severe consequence
on the structure of the bright soliton and the crest of the
initial Gaussian curve has almost doubled in size; the re-

mainder of the soliton has a somewhat random structure
to it. This phenomenon is down to an overfocusing ef-
fect where the energy to the immediate left and right of
the initial peak has been redistributed to the peak itself.

The dark soliton can be explored in a similar man-
ner by initializing an amplitude of half and double the
theoretically predicted, seen in Figures S1(e) and S1(f)
respectively. These two profiles are comparable to the
dark soliton profile in Fig. S1(d) with the predicted am-
plitude Λ = 1.705i, wavenumber k0 = 2.146, and cor-
responding frequency α0 = 13.616. As shown in Fig.
S1(d), at t ≈ 4000 the general structure of the dark soli-
ton has not altered much at all and the fluctuations in the
carrier wave are caused by the imperfectly constructed
initial condition. Taking an amplitude which is less than
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Figure S2: (Color online) Phase shift of a bright soliton directly af-
ter the interaction with another bright soliton on a rectangular lat-
tice of 9 × 350 cells, with periodic boundary conditions on the top
and bottom edges. The co-moving soliton has carrier wavenumber
and frequency (k0, α0) = (0.524, 11.138), which leads to soliton am-
plitude Λ = 2.345 in Eq. (13), whilst the interacting soliton has
(k0, α0) = (0.7850, 11.219) and Λ = 2.306.

that of the theoretically predicted, we see that the trough
of the dark soliton widens. Contrary to this, taking an
initial amplitude which is greater than that of the theo-
retically predicted causes a narrowing and distortion in
the envelope itself; sporadic fluctuations are also pro-
duced in the carrier wave. Therefore, we see once again
that the NLS amplitude is the best amplitude for the evo-
lution of the dark soliton.

Overall, it is clear that the amplitude theoretically
predicted by the NLS equation (11) which governs the
envelope of these nonlinear traveling waves is truly the
best amplitude for the formation of solitons in this MTI.
If one considers an initial amplitude other than this then
the nonlinear and dispersive terms are no longer bal-
anced causing effects such as overfocusing and severe
profile distortion as the soliton evolves in time.

INTERACTION OF TWO BRIGHT SOLITONS

Let us now initialize two bright solitons on the same
edge of the MTI and allow them to collide. For this we
move to an s-periodic domain and transfer to the co-
moving frame of one of the waves to best visualize the
structure of the collision. Since the waves are nonlinear
we expect that the interaction should not be a simple
linear superposition of the two waves.

Figure S2 shows the interaction of the two bright soli-
tons on a periodic domain of 9 × 350 cells. Here we
allow both waves to travel up the periodic edge with
one wave having a greater group velocity, thus catching
the other wave some time after initializing. The slower
soliton has wavenumber k0 = 0.524 and correspond-
ing frequency α0 = 11.138, whilst the faster soliton has
wavenumber k0 = 0.785 and frequency α0 = 11.219.

(a) (b)

(c) (d)

Figure S3: (Color online) Propagation of bright and dark solitons on
a finer domain. The 2D domain consists of a rectangular lattice with
a Cantor-like design cut out of the right edge. (a,c) A bright soliton
with same parameters as in Fig. 3(a,c,e). (b,d) A dark soliton with
the same parameters featured in Fig. 3(b,d,f). As in Fig. 3, panels
(a,b) show snapshots of the respective soliton as it propagates through
the irregular edge. Red arrows indicate the position and direction of
the soliton envelope. panels (c,d) show space-time plots of the edge
solitons traversing the irregular domain multiple times.

Here we transfer into the co-moving frame of the slower
wave. The figure shows that immediately after the col-
lision has occurred, the faster wave has passed through
the slower with both structures intact and with the same
amplitude and group velocity as before. However, the
slower wave has been visibly phase-shifted as a direct
consequence of the nonlinear collision.

DOMAINS WITH FINER LENGTH SCALES

The concept of TPES has already been shown for
rectangular domains and domains with sharp corners cut
into the middle of an edge, however we are not limited
to domains of these type. We show here a further exam-
ple of the topological protection of solitons on an edge
with a rough structure carved into the lattice that adopts
a Cantor-like design.

Figure S3 shows the propagation of bright and dark
edge solitons around the domain with finer length
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Figure S4: (Color online) Panel (a) shows the propagation of a gray
soliton on a rectangular lattice of 30×101 cells with carrier wavenum-
ber and frequency (k0, α0) = (2.146, 13.616), parameter ψ = π/3, and
soliton amplitude Λ = 0.1705i given by Eq. (S5). Panel (b) shows
the appearance of an Akhmediev breather described by Eq. (S6) on
a rectangular lattice of 20 × 100 cells, with carrier wavenumber and
frequency (k0, α0) = (2.334, 12.113), that peaks at t ≈ 1200 with
modulation parameter φ = 0.6.

scales. Notably we see that both types of soliton traverse
the irregular domain with little change in the structure of
the initial pulse. This is expected from TPES as, regard-
less of the edge shape, we expect such unique nonlin-
ear waves to pass through irregular edges without major
backscattering of the energy. We do however note the
appearance in Fig. S3(d) of an extra gray soliton stem-
ming from the initial condition on the right edge of the
lattice. This gray soliton appears due to an imperfec-
tion in the 2D reconstruction method but we note that
this extra soliton is also topologically protected, show-
ing exactly the robust nature of TPES when generated.

GRAY SOLITON AND AKHMEDIEV BREATHER

We have already seen particular examples of travel-
ing and rogue wave solutions realized in this mechani-
cal topological insulator. However, any solution to the
classical 1D NLS equation should theoretically produce
an analogue structure in our system. Here we realize
two more solutions of 1D NLS including the gray soli-
ton and the Akhmediev breather.

Let us first consider another traveling wave solution
which is the gray soliton. The gray soliton appears as a
localized dip in energy, but unlike the dark soliton, it is
not limited to an envelope minimum of strictly zero am-
plitude. The gray soliton envelope takes a form similar
to that of the dark soliton and is given explicitly as

CG(S ;ψ) = Λ
[
cosψ + i sinψ tanh ψ̃

]
, (S5)

with ψ̃ = ε(S − S 0) sinψ and ψ an arbitrary real pa-
rameter. We see that the dip in energy is then described

by the sinψ term and choosing ψ = π/2 recovers the
dark envelope (14). Figure S4(a) shows the space-time
evolution of a gray soliton initialized with wavenum-
ber k0 = 2.146, frequency α0 = 13.616, and ψ = π/3
on a rectangular domain. As expected, the evolution of
the gray soliton is in fact similar to the dark soliton for
the same wavenumber-frequency pairing, with a primar-
ily undistorted profile throughout the evolution and little
decay in the background field after a long time interval.

Finally, let us explore another rogue wave solution
known as the Akhmediev breather [54]. In contrast to
the K-M soliton which is time-periodic, the Akhmediev
breather is a spatially periodic solution that is localized
in time. The scalar envelope function is given by the
Akhmediev expression in [50], i.e.

CA(S ; φ) = Λ

[
cosh(Ωt̃0 + 2iφ) − cos φ cos S̄

cosh(Ωt̃0) − cos φ cos S̄

]
eiθ̃,

(S6)
where θ̃ = α0t0 − t̃0, t̃0 = ε2α′′0 t0, S̄ = Pε(S − S 0),
P = 2 sin φ, and Ω = sin 2φ. As with the Peregrine
soliton, we initialize the time-localized structure well
before its maximum amplitude, which is designed to ap-
pear at time t0 = 1200. Note that one can recover the K-
M solution (16) from the Akhmediev expression by us-
ing the parameter transformation φ → iφ. Figure S4(b)
shows the appearance of an Akhmediev breather. It is
clear to see the spatially periodic nature of the breather
as all peaks form their maximum amplitude at t ≈ t0 and
then decay away beyond this time which is consistent
with the analytic solution (S6). The Peregrine soliton
(15) is in fact the limiting case (φ→ 0) of both the K-M
soliton and the Akhmediev breather.
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