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Abstract. Perhaps the most iconic feature of melting Arctic sea ice is the distinctive

ponds that form on its surface. The geometrical patterns describing how melt water is

distributed over the surface largely determine the solar reflectance and transmittance

of the sea ice cover, which are key parameters in climate modeling and upper ocean

ecology. In order to help develop a predictive theoretical approach to studying

melting sea ice, and the resulting patterns of light and dark regions on its surface

in particular, we look to the statistical mechanics of phase transitions and introduce

a two dimensional random field Ising model which accounts for only the most basic

physics in the system. The ponds are identified as metastable states in the model,

where the binary spin variable corresponds to the presence of melt water or ice on

the sea ice surface. With the lattice spacing determined by snow topography data as

the only measured parameter input into the model, energy minimization drives the

system toward realistic pond configurations from an initially random state. The model

captures the essential mechanism of pattern formation of Arctic melt ponds, with

predictions that agree very closely with observed scaling of pond sizes and transition

in pond fractal dimension.

Submitted to: New J. Phys.

1. Introduction

While snow and ice reflect most of the sunlight incident on Arctic sea ice, melt ponds

absorb most of it. The ponds largely control the albedo, or solar reflectance of sea ice,

as well as its transmittance [30, 7, 21, 25, 29], which in turn impact the heat and mass

balances of the ice cover and the partitioning of energy in the upper ocean and lower

atmosphere. The ponds play a critical role in ice-albedo feedback, a key mechanism in

the rapid decline of the summer Arctic ice pack [22]. In fact, by accounting for ponds
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in climate simulations, predicted ice pack volumes are significantly lower [8], and the

yearly Arctic sea ice minimum can be accurately forecast from melt pond area in spring

[29]. The impact of melt pond evolution extends into the biosphere as well [2, 19, 11],

where the ponds act as windows for light to shine into the upper ocean, affecting Arctic

marine ecology. Typical pond configurations are shown in Fig. 1(a).

There has been significant progress on numerical models of melt pond evolution

[30, 25, 8, 29], although current generation melt pond parameterizations in climate

models track melt water volume, not how melt water is distributed on the ice surface.

However, the geometry of melt ponds and their spatial patterns impacts various sea ice

and upper ocean processes such as albedo evolution, the break-up of floes, the evolution

of the floe size distribution, and the patterns of light in and under the ice, which can

affect photosynthetic activity and the ecology of microbial communities.

There are two key, benchmark observations of melt pond geometry that must be

accounted for by a statistical physics theory of melt ponds. The first dates back to the

1998 SHEBA expedition and the measurement of melt pond sizes from images taken

from helicopters [23]. The pond size distribution function prob(A) exhibits power law

scaling prob(A) ∼ Aζ with the observed value of the exponent ζ for pond areas in the

range 10 m2 < A < 1000 m2 being about −3/2.

Area−perimeter analysis of images of melt ponds from SHEBA as well as the

2005 Healy–Oden Trans Arctic Expedition (HOTRAX) has shown that as the ponds

grow and coalesce into much larger connected structures they display a transition in

fractal geometry [10], evolving from simple Euclidean shapes into complex, self-similar

regions whose boundaries behave like space–filling curves. The fractal dimension of the

boundary curves transitions from 1 to about 2 around a critical area of about 100 m2.

In addition to constraining the geometry of melt pond evolution, the area – perimeter

relationship is key to quantifying components of pond growth, such as vertical vs. lateral

melt, regulating the extent of the water-ice interface where lateral expansion of the ponds

can occur.

Recent work shows that these geometrical characteristics are consistent with

behavior exhibited by continuum percolation models [5, 35, 12]. In [3] a melt pond

boundary is the intersection of a random surface representing the snow topography

with a horizontal plane representing the water level. As the plane rises the ponds

grow and coalesce. An autoregressive class of anisotropic random Fourier surfaces with

correlation parameters based on snow data provides topographies that yield realistic

ponds, the observed transition in fractal dimension, and a framework to analyze how

the shape of the fractal transition depends on topographic characteristics.

In [26] a void model for melt ponds is introduced, where disks of varying size which

represent ice and can overlap are placed randomly on the plane, with the voids between

them representing the ponds. Data on pond sizes, area fractions, and correlations

measured from helicopter photos of melt ponds are incorporated through parameters

input into the model. The model yields the observed fractal transition and pond size

distribution, and can be used to explore the generality of the behavior.
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Here we address the challenge of developing a predictive theoretical model of melt

ponds which accounts for the most basic physics of the system, and which yields realistic

pond configurations obtained through minimization of the energy of the model. After

all, we are interested in a solid–liquid phase transition from sea ice to sea water, albeit

over large length and time scales. We turn then to the statistical mechanics of the

Ising model to introduce such an approach [38, 5]. Only the most essential physics is

incorporated – in the same way that the original Ising model includes only the most

basic aspects of a ferromagnet in an external magnetic field.

We envision a square lattice of surface patches or pixels of melt water or ice,

corresponding to the classical spin up or spin down states, respectively. They are

collectively influenced by an external forcing field, and interact only with their nearest

neighbors. The energy of the melting sea ice system is expressed similarly to how the

energy of a ferromagnet is estimated in the Ising Hamiltonian. Pond-like configurations,

or connected regions of “up spins,” result from a series of energy reducing updates of

an initially random state. Glauber spin flip dynamics guide the flow of configurations

toward realistic melt pond states which are local energy minima, or metastable states.

We remark that while we can estimate the time scale associated with a spin flip − that

is, melting or freezing a surface patch under certain conditions, we are not using the

present model to directly describe the time evolution of ponds over the melt season.

Our introduction of a melt pond Ising model addresses a central issue in climate

science, that is, linkage of scales. How can knowledge of local interactions be used

to predict macroscopic behavior relevant to large scale, coarse-grained models? This

is the type of fundamental problem that is solved in statistical physics [5, 38] and

homogenization for composite materials [16, 35]. Illustrating the potentially broad

applicability of this approach, an Ising model for tropical convection was developed

[13] to represent atmospheric processes unresolved by coarse scale climate models.

2. Theoretical framework

First, we recall the most general form of the classical Ising free energy,

H = −
∑
i

Hisi −
∑
〈i,j〉

Jijsisj, (1)

where i ranges over a two dimensional square lattice with periodic boundary conditions,

the si are spin variables taking the values +1 or −1 corresponding to spin up or spin

down, and 〈i, j〉 denotes nearest neighbors. The parameters Hi and Jij represent the

external magnetic field and coupling constants, respectively. In our melt pond Ising

model the state variable is a binary (or spin) variable si such that si = +1 corresponds

to absorptive melt water on the surface of our pixelated model sea ice floe and si = −1

corresponds instead to reflective ice or snow on the surface. In addition, a temperature T

can be defined which characterizes the strength of thermal fluctuations, but here we set

T = 0 assuming for simplicity that environmental noise does not significantly influence

melt pond formation. The two dimensional nature of the Ising model we consider here
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(a) (b)

Figure 1. Melt pond configurations and the update step in Glauber dynamics. (a)

Helicopter photos of melt ponds on sea ice in the western Beaufort Sea (D. Perovich).

On the left, each side of this 15 July 1998 photo is 826 meters; on the right, each side of

this 14 August 2005 photo is 193 meters. (b) Illustration of the tiebreaker update step

in Glauber dynamics. Here each site i is assigned a pre-melt ice height hi, and colored

dark blue for water (si = +1) and white for ice (si = −1). Site P , to be updated, is

adjacent to two water sites A and D, and two ice sites B and C. Since water tends to

fill troughs, we require that sP = +1 if hP < 0, and −1 otherwise.

is most relevant to thinner, flatter first year sea ice, rather than thicker multiyear ice

where it may be more important to include three dimensional effects.

To describe nontrivial spin clustering at zero temperature, the Hi and/or Jij are

chosen as random variables; the resulting models are collectively known as disordered

Ising models [39]. In particular, one recovers the classical random field Ising model

(RFIM) if the Hi are independent random variables and the Jij are constant. At zero

temperature, the system is usually assumed to follow Glauber single spin flip dynamics

[14]: at each update step, the flip is accepted if H decreases and rejected if H increases.

The spins are updated until no spin flip can further decrease H. At this point, the

system has found a local minimum of H, known as a metastable state. Note that this

state is not necessarily the ground state, which is the global minimum of H.

Metastable states are especially relevant to physical systems near phase transitions,

including supercooled liquids [4] and atmospheric aerosol particles [27]. On a short

time scale, the system appears to be at an equilibrium state, but on longer time

scales, it undergoes transitions between different metastable states [15]. For disordered

Ising models, metastable states have been realized experimentally in, for example,

doped manganites [17] and colossal magnetoresistive manganites [36]. Despite their

importance, there are many unresolved issues concerning metastable states [14], with

analytical results largely restricted to one dimension [6].

3. Random field Ising model

The key factor controlling melt pond configurations is the pre-melt sea ice topography,

represented by random variables hi. In the spirit of creating order from disorder, these

variables are assumed to be independent Gaussian with zero mean and unit variance.
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The lattice constant a = 1 m is specified as the length scale above which important

spatially correlated fluctuations occur in the power spectrum of sea ice topography (see

Supplementary Materials). We use the following update rule for Glauber dynamics,

depending on whether there is a majority among the four nearest neighbors of a chosen

site. If a majority exists, the site is updated to align with the majority due to heat

diffusion between neighboring sites. Otherwise, we introduce a tiebreaker rule that

describes the tendency for water to fill troughs: the chosen site is updated to ice if its

pre-melt ice height is positive, and water otherwise; see Fig. 1(b). This update rule does

not depend on any parameters other than hi.

The above update rule can be restated as minimizing the classical RFIM free energy

[1, 20]

H =
∑
i

(hi −H)si −
∑
〈i,j〉

Jsisj, (2)

with the uniformly applied field H = 0 and the coupling constant J → +∞; see

Supplementary Materials for a brief discussion of the H 6= 0 case. To facilitate

comparison with geophysical observations, the order parameter will be taken as the

pond fraction F , which is defined as the fraction of up spins and therefore related to

the magnetization M by F = (M + 1)/2. At J = 0, there is a unique metastable state,

namely the ground state, given by si = +1 if hi < H, and si = −1 if hi > H. This

process can only yield the correct melt pond geometry if the random variables hi are

highly correlated [3]. As J increases, metastable states appear [37] at a wider range of

pond fractions, with the entire range F ∈ [0, 1] covered for large enough J . As J → +∞,

the two ground states are given by si = +1 or si = −1 for all i.

4. Geometry of metastable states

Below we present numerical results for the zero temperature Glauber dynamics of the

RFIM, with the lattice size taken to be 1024 × 1024. The input spin configurations

si are independent binary variables (Bernoulli trials) that equal +1 with probability

Fin and −1 with probability 1 − Fin, where Fin denotes the input pond fraction. Note

that these variables are uncorrelated with the hi. Following a random update sequence,

the Glauber dynamics eventually yield a metastable state with output pond fraction

Fout. Note that this metastable state is generically distinct from the two ground states

unless Fin = 0 or 1. Fig. 2 shows the output configurations with Fout = 0.15, 0.30, and

0.45, which respectively result from Fin = 0.34, 0.42, and 0.48. This metastability is

consistent with previous findings from a dynamical systems analysis [34].

The visual resemblance between the simulations in Fig. 2(a), (c) and the photos in

Fig. 1(a) is now apparent, particularly in the well developed ponds where the minimum

energy configurations of the model are quite evolved, coarse-grained and “pond-like”

in comparison to the purely random initial states. In the following we will analyze in

detail the up spin clusters in Fig. 2(c) at Fout = 0.45.
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(a) (b) (c)

Figure 2. Melt ponds as metastable islands of like spins in our random field Ising

model. Simulation results are shown for metastable states of the RFIM at H = 0

and J = 5. The output spin configurations are shown on a 128 × 128 portion of the

1024 × 1024 lattice with (a) Fout = 0.15; (b) Fout = 0.30; (c) Fout = 0.45. Pixels are

colored blue for water (si = +1) and white for ice (si = −1).

Fig. 3(a) shows the log-log plot of the perimeter P versus the area A for these

clusters (shown in physical units as Pa and Aa2). Fig. 3(b) shows the pond size

distribution function prob(A). It exhibits power law scaling prob(A) ∼ Aζ with the

exponent ζ = −1.58 ± 0.03 for pond areas in the range 10 m2 < A < 1, 000 m2, in

excellent agreement with the observed value [23] of about −3/2.

A key feature of multi-cluster systems is the tendency for smaller clusters to have

simple shapes and larger clusters to have complex shapes. This onset of complexity

can be quantified by an increase in the fractal dimension D, defined in terms of the

perimeter P and the area A as P ∼
√
A
D

. The input spin configuration corresponds

to a site percolation process with occupation probability Fin < 0.5, below the site

percolation threshold of about 0.593 [31]. The Ising model takes these purely random

states as input and produces the metastable states represented by the cloud of points in

Fig. 3(a). The upper edge of this cloud has an almost constant fractal dimension close

to the theoretical value of 91/48 ≈ 1.896 for site percolation clusters right below the

percolation threshold [31]. Therefore, this upper edge represents the unphysical clusters

reminiscent of the original input, which are least affected by the Glauber dynamics. To

identify the physical clusters that resemble real melt ponds, we thus choose the lower

edge, or equivalently the smallest possible P for each A, as highlighted in Fig. 3(a).

Within this data set, we further exclude both the smaller ponds with A < 15 m2 which

are affected by the discreteness of the lattice, and the larger ponds with A > 400 m2

which are subject to substantial sampling variability because of their rareness.

Fig. 3(c) compares our Ising model D(A) function (thin solid black curve) with

the observed fractal dimension dependence on area for real melt ponds (thick gray data

curve) [10]. The model thin black curve is a best fit to the data points in the (A,P )-

plane for model ponds, as in [3]. From this best fit curve we find that the transition

happens around the inflection point Aca
2 ≈ 90 m2. This predicted value agrees well

with the observed value [10] of about 100 m2, with the full observed D(A) for real

ponds reproduced in Fig. 3(d). The width of the transition regime in log (A) in Fig.
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Figure 3. Geometrical characteristics of Ising model melt ponds. Simulation data in

this figure are for the up-spin clusters in Fig. 2(c). (a) Log-log plot of the perimeter P

versus the area A, rendered as a (rescaled) density plot. The lower edge of this cloud

of points, highlighted by filled black circles, is determined by dividing log (A) into bins

of size 0.2 and computing the minimum of log (P ) for each bin. The reference lines

have slopes 0.5 and 1, which correspond respectively to the fractal dimensions D = 1

and D = 2. (b) Log-log plot of the pond size distribution function prob(A), with bin

size 0.2 and very small ponds with A < 5 m2 excluded. The reference line has slope

−1.58. (c) Plot of the fractal dimension D as a function of A (log scale) for our melt

pond Ising model (thin solid curve) compared with the data curve (gray) for real melt

ponds in (d) [10]. The solid curve is computed by fitting a suitable smooth function

to the lower edge of the data points in panel (a) within the range 15 m2 < A < 400

m2. (d) (Reproduced [10] with permission.) Fractal dimension as a function of area

(log scale) based on image analysis of real melt ponds [10]. In panels (a)-(c), A and P

are shown in physical units with the lattice constant a = 1 m, and the number of sites

is increased to 8192× 8192 to improve the statistics.

3(c) also agrees well with Fig. 3(d). Finally, Supplementary Fig. 2 displays another

quantifier of the onset of complexity that accounts for the entire collection of points in

the (A,P )-plane. It yields the same critical transition area as before.

5. A scheme for more realistic pond boundaries

One discrepancy with observations is that our smaller model ponds are non-Euclidean

on average, namely that they have an average fractal dimension greater than 1 (see
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Fig. 2(c)). To address this issue and better describe the physical process of melt pond

formation, we can allow the ice topography hi to co-evolve with the spin configuration

si. A possible evolution scheme is outlined next.

Let us introduce a discrete time index n, and denote the ice topography and the

spin configuration at time n respectively by hni and sni . The evolution from time n to

time n + 1 proceeds as follows. First, sn+1
i is determined as before by minimizing the

RFIM free energy H, with hni being the pre-melt ice topography and sni being the input

spin configuration. Second, hn+1
i is determined by the following formula

hn+1
i = f(n, hni , s

n
i , s

n+1
i ) + gn+1

i , (3)

where the function f and the random field gn+1
i represent the deterministic and

stochastic mechanisms of the topography evolution, encompassing internal processes

of melting and freezing, as well as external influences such as environmental forcing,

drainage processes, seasonal patterns, etc. In this evolution scheme, the system

transitions between metastable states of an evolving free energy landscape, with the

equilibration time estimated to be 4 to 5 days (see Supplementary Materials).

Here, instead of proposing a realistic expression for the function f , we simply

consider f = 0 for illustration purposes. In this case, the hni at successive time steps

n = 0, 1, 2, · · · are independent (in both space and time) Gaussian variables with zero

mean and unit variance. As shown in Fig. 4, the boundaries become smoother as n

increases. As a result, the fractal dimensions of the smaller ponds become closer to 1,

while for the larger ponds it remains close to 2, as is evident from comparing Fig. 3(a)

and Fig. 4(e). The shapes of the simulated ponds in Fig. 4(b) closely resemble those of

the observed melt ponds in Fig. 4(d). The power law scaling exponent of the pond size

distribution function is found to be ζ = −1.71± 0.02, as shown in Fig. 4(f).

6. Discussion

Our melt pond Ising model – with only one measured input parameter – produces ponds

that are not only quite realistic in appearance, but with geometrical characteristics that

quantitatively match very closely the observations on pond sizes and fractal dimension.

This one parameter sets the length of a side of a square pixel in the lattice, and represents

the scale above which the variations in snow topography are significant. Moreover, as

energy is minimized via Glauber dynamics the model creates order from disorder, flowing

from a random initial state to a configuration with long range order.

The description of complex melt ponds in terms of a simple disordered system

may well advance our ability to model the future trajectory of the Arctic sea ice pack,

e.g., through parameterizations in climate models. Our approach based on energy

minimization in statistical mechanics potentially opens new avenues for incorporating

ponds, particularly in higher resolution, micro- and meso-scale models for regions up to

hundreds of kilometers across. Efficient numerical algorithms which yield not only melt

water volume but fast, accurate information about how it is distributed – based on the
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Figure 4. Time evolution of metastable states with an evolving ice topography.

Simulation results are shown for metastable states of the RFIM at H = 0 and J = 10.

The hni at n = 0, 1, 2, · · · are assumed to be independent Gaussian variables with zero

mean and unit variance. The input configuration s0i has pond fraction Fin = 0.495.

The output configurations sni are shown on a 165× 165 lattice at (a) n = 2; (b) n = 4;

(c) n = 8. Pixels are colored blue for water (si = +1) and white for ice (si = −1). (d)

Aerial image of Arctic melt ponds. Each side of this photo is 165 meters. Panels (e,f)

show the geometric characteristics of the up-spin clusters in panel (b). (e) Log-log

plot of the perimeter P versus the area A, rendered as a (rescaled) density plot. The

reference lines are at the same location as those in Fig. 3(a) to facilitate comparison.

(f) Log-log plot of the pond size distribution function prob(A), with bin size 0.2 and

very small ponds with A < 5 m2 excluded. The reference line has slope −1.71.
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ambient conditions, would be broadly useful in sea ice dynamics, thermodynamics, and

ecology. Assumptions about melt pond spatial structure influence the sub-grid scale

spatial pattern of melt pond depths, meaning how water is distributed over the sea ice

thickness distribution. These variations in water depth in turn markedly impact grid

scale albedo.

The basic model presented here can be augmented to incorporate more detailed

processes, such as the effect of changes in snow topography – potentially relevant in a

changing climate. For example, effects of anisotropy in the topography can be included,

as was studied in detail in [3]. The melt pond Ising model also offers the potential

for efficient yet geometrically sophisticated parameterizations of melt ponds and their

impact in climate models, as well as more refined models of sea ice physics and biology.

In addition, the statistical physics approach developed here may be generalizable to

other systems near the transition point between ice and water, such as tundra permafrost

lakes, where the melting front has been described using a curve-shortening flow [33].

Minimal models such as the RFIM necessarily have limitations. Mathematically,

the geometry of a fractal cannot be fully captured by its interpolation on a lattice.

Physically, the RFIM is inherently unable to resolve processes at length scales smaller

than the lattice constant. There, one may expect narrow water channels responsible

for connecting smaller ponds into larger ponds. The inability to resolve such features

likely causes the percolation threshold of the RFIM to differ from observations. For

the metastable states obtained from random inputs, the percolation threshold is very

close to 0.5 at H = 0 (see Supplementary Materials). This threshold decreases as H

decreases, but likely always exceeds the value for real melt ponds.
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Supplementary Figure 1. Snow depth power spectral density (gray curve) with

corresponding null red noise spectrum (black curve). The lattice constant a = 1 m is

indicated by a vertical dashed line.

Supplementary Materials

Spatial scale from snow topography data. — The lattice constant a must be small

relative to the 10-20 m length scales prominent in sea ice and snow topography [24].

We set a = 1 m as the length above which the power spectral density (psd) of observed

snow topography exceeds a null red noise spectrum (Supplementary Fig. 1). For this

calculation, we used 13 radar transects collected during the Surface Heat Budget of

the Arctic Ocean (SHEBA) project [32]. To estimate the psd via the Welch modified

periodogram, we calculated the power spectrum for each transect with a Hanning

window and 50% segment overlap, and then averaged the results across the transects.

We calculated the corresponding null red noise spectrum based on lag-one spatial

autocorrelation [9] averaged across the transects.

Temporal scale from vertical energy balance. — The melt pond system can be

modeled as a thin active layer on top of the bulk sea ice floe, subject to incoming

and outgoing radiation and heat exchange with the bulk. Let R+ be the net radiation

received by water, and R− be the net radiation received by ice:

R+ = ISR+ −OLR, R− = ISR− −OLR, (S1)

where ISR and OLR respectively represent the incoming shortwave radiation and the

outgoing longwave radiation. The former is ISR+ = Q(1− α+) and ISR− = Q(1− α−),

where Q = 460 W ·m−2 is the mean solar insolation during polar summer, and α is

the surface albedo with α+ = 0.1 for water and α− = 0.5 for ice. The latter is

OLR = σ(T + 273)4, where σ = 5.67× 10−8 W ·m−2K−4 is the Stefan-Boltzmann

constant, and the temperature T ≈ 0 Celsius for both water and ice. Therefore we

obtain R+ = 99 W ·m−2 and R− = −85 W ·m−2.
Bulk sea ice as a porous composite of brine and ice on the microscopic scale often

has a temperature just below zero Celsius during the melt season. Meanwhile, the heat

transfer between the bulk sea ice and the active layer of melt ponds is known to be

very efficient. As a result, a patch of water in the active layer always has a temperature
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slightly above zero Celsius due to the positivity of R+, and a patch of ice in the active

layer always has a temperature slightly below zero Celsius due to the negativity of R−.

If external influences such as surface topography and interactions with the

surroundings are present, a patch of water in the active layer can transition into ice,

and vice versa. We assume that the transition of a patch of water to ice is facilitated

by changing the net radiation from R+ to R−, and that the transition of a patch of

ice to water is facilitated by changing the net radiation from R− to R+. The required

energies per unit area to freeze water and to melt ice are respectively E+ = −Lρ+h
and E− = Lρ−h, where L = 3.34× 105 J · kg−1 is the latent heat of fusion, ρ+ =

1× 103 kg ·m−3 is the density of water, ρ− = 9.2× 102 kg ·m−3 is the density of ice,

and h = 0.1 m is a realistic value for the height of the active layer. Therefore, the time

scales required to freeze water and to melt ice under these assumptions are respectively

τw→i = E+/R− = 5 days and τi→w = E−/R+ = 4 days. For example, this rough

estimate gives a time scale of about 20 days, or 4 steps of spin flipping, for a well-

developed network of ponds like those in Fig. 4(b) to evolve, which is reasonable.

Alternative quantifier of the onset of complexity. — To account for the entire

cluster of points in the (A,P )-plane in Fig. 3(a), we define a new quantifier of the

onset of complexity as the variance σ of log (P ), hereafter referred to as the elasticity.

As shown in Supplementary Fig. 2, there exists a critical area Ac such that σ(log (P ))

increases with log (A) for simple ponds with A < Ac, and decreases with log (A) for

complex ponds with A > Ac. The onset of complexity may then be identified with

maximum elasticity, which occurs at Aca
2 ≈ 90 m2. This coincides with the critical

area determined from Fig. 3(c) by the inflection point in the best fit.
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Supplementary Figure 2. Plot of the variance σ(log (P )) as a function of A (log

scale), with bin size 0.2. The maximum occurs at Aca
2 ≈ 90 m2.

Percolation threshold and correlation length exponent. — For a two dimensional

square lattice with occupation probability p, the site-site correlation function g(ri, rj)

gives the probability that a site at rj is a member of the same cluster as a site at ri.

The function g is assumed to decay with large distance d = |ri − rj| according to

g(d) ∼ exp

(
− d

ξ(p)

)
, (S2)
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Supplementary Figure 3. (a) Probability of percolation as a function of area

fraction. The curve is a hyperbolic tangent fit with inflection point close to 0.5

indicating the percolation threshold pc. (b) Comparison of output from the Ising model

(filled circles) to the line with slope−ν = −4/3 given by the universal correlation length

exponent ν.

where ξ(p) is referred to as the correlation length. Theory indicates that ξ(p) should

obey

ln ξ(p) ∼ −ν ln(|p− pc|), p −→ p−c , (S3)

where ν = 4/3 is the universal critical exponent in two dimensions and pc is the

percolation threshold. For the two-dimensional square site lattice, pc ≈ 0.59274621

[18]. For the RFIM, analysis of 5,000 model realizations on 1024× 1024 lattices yields a

value close to pc = 0.5 (Fig. 3a), with correlation lengths aligning reasonably with the

universal exponent ν = 4/3 (Fig. 3b). This result indicates that the spatial correlation

structure of melt ponds in this model is sufficiently short-ranged so that the system falls

within a standard universality class [12].

Nonzero uniformly applied field. — Let us choose H 6= 0 and keep J → +∞ in the

RFIM given by Eq. (2). Then the tiebreaker rule for a chosen site i changes to si = +1

if hi < H, and si = −1 if hi > H, which favors ice for H < 0 and water for H > 0. Here

we only consider two limiting cases when the tiebreaker rule completely favors ice or

water: (I) 0� −H � J ; (II) 0� H � J . In these cases, the random field hi does not

affect the kinetics, so the RFIM reduces to the classical Ising model without disorder,

H = −H
∑
i

si − J
∑
〈i,j〉

sisj. (S4)

The corresponding metastable states are known as Wulff droplets [28]. In case (I) the

up-spin clusters are more elongated, and the percolation threshold is below 0.5. In

case (II) the up-spin clusters are more circular, and the percolation threshold is above

0.5. These geometrical features afforded by varying H (and possibly also J) provide

additional prospects to describe detailed shapes of real melt pond patterns.

Alternative update rule and free energy. — Let us retain the RFIM update rule

when a majority exists among the neighboring sites, but adopt the following tiebreaker
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rule: the chosen site is updated to ice if its pre-melt ice height is larger than the average

between the two neighboring ice sites, and water otherwise. For example, in Fig. 1(b)

we require that sP = +1 if hP < (hB + hC)/2, and −1 otherwise. This new update rule

can be restated as minimizing an interfacial energy between water and ice: if a water

site i neighbors an ice site j, then a penalty W − hj is imposed, where W � 0 is a

constant. The total free energy H can then be written in two equivalent forms,

H =
∑

〈i,j〉:si>0, sj<0

(W − hj) ≡
∑
i

si∆ih−
∑
〈i,j〉

1

2
sisj(W − Ωijh), (S5)

where ∆i and Ωij represent, respectively, the discrete Laplacian at site i and the average

between sites i, j,

∆ih ≡ hi −
1

4

∑
j:〈i,j〉

hj, Ωijh ≡
1

2
(hi + hj). (S6)

The new “effective” random fields ∆ih, being the curvature of hi, are more correlated

than the hi by themselves. As a result, at output pond fraction Fout = 0.45, the critical

area for the transition in fractal dimension and the critical area for maximum elasticity

are both Aca
2 ≈ 120 m2. The corresponding power law scaling exponent for the pond

size distribution is ζ = −1.57± 0.03.


