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Cell mitosis  detection  using  deep neural  networks
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a b s t  r  a c t  

Quantitative  analysis of cell  mitosis,  the  process by which  cells regenerate, is important  in  cell  biology.
Automatic  cell  mitosis  detection  can greatly  facilitate  the  investigation  of cell  life  cycle. However,  cell-  

type  diversity,  cell  non-rigid  deformation  and high  cell  density  pose di�culties  on handcrafting  visual
features  for  traditional  approaches. Aided  by massively  captured  microscopy  image sequences, deep neu-  

ral  networks  have recently  become available  for  automatic  cell  mitosis  detection.  This paper proposes an
end-to-end  framework  named as F3D-CNN for  mitosis  detection,  and F3D-CNN is directly  trained  from
data without  requiring  designing  domain  dependent  features. Well-trained  F3D-CNN “rst  “lters  out  po-  

tential  mitosis  events based on the  static  information  in  each individual  image, and further  discriminates
candidates  by incorporating  the  spatiotemporal  information  from  image sequences. The state-of-the-art
performance  of F3D-CNN was con“rmed  in  experiments  on two  public  datasets (multipotent  C3H10T1/2
mesenchymal  stem cells and C2C12 myoblastic  stem cells).
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. Introduction

Cell mitosis  [1]  is a complex  process by which  mature  cells pro-
uce next-generation  cells. During  this  process, the  ancestor cell•s
embrane  divides  to  form  two  new  cells, and its  genetic  mate-

ial  is duplicated  and evenly  distributed.  To measure cell  prolifer-
tion  and analyze the  cells• responses to  various  stimuli,  cell  bi-
logists  usually  perform  tedious  and time-consuming  procedures

n  wet  laboratories.  In particular,  they  monitor  cells over  time  to
ollect  informative  data, then  study  the  cell  dynamics.  However,
odern  microscopy  image capture  systems can automatically  and

egularly  take images of the  monitored  cells [2]  . Using computer
ision  based approaches, cell  mitosis  can be studied  from  a large
olume  of collected  high-quality  biomedical  data without  interven-
ng  with  cell  processes [3]  . Apparently,  there  is a keen require-

ent  for  automatic  and robust  approaches that  can detect  the  time
nd location  of cell  mitosis  events from  given  image sequences [1]  .
s cells undergo  non-rigid  deformations,  and are generally  diverse
nd densely  packed, developing  e�cient  cell  mitosis  detection  ap-
roaches remains  a challenging  problem.  

Deep neural  networks  (DNNs) have achieved state-of-the-art
erformance  in  various  tasks [4,5]  , as they  can automatically  learn
epresentative  features  from  high-dimensional  data [6]  . With  rep-
esentation  learning  [7]  , the  performance  of data-driven  mitosis
� Corresponding  author.
E-mail addresses: zy3381@gmail.com  (Y. Zhou), huamao@scu.edu.cn (H. Mao),

hangyi@scu.edu.cn (Z. Yi).
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etection  from  histology  images has been improved  [8,9]  . Convo-
utional  neural  networks  (CNNs) [10]  , which  constitute  one class of
NNs, differ  from  traditional  multilayer  perceptrons  (MLPs) by em-
loying  local  connectivity  and shared weights  to  reduce the  num-
er of free parameters,  thereby  preventing  over-“tting  problems.

n microscopy  images, modeling  spatiotemporal  features  are im-
ortant  for  mitosis  detection  rather  than  only  focus on static  fea-

ures  [1,11,12]  . In 3D convolutional  neural  networks  (3D-CNNs), the
xtended  3D convolutional  kernels  can process temporal  data, e.g.,
uman  actions  can be recognized  from  image sequences [13]  . In
ypical  CNN-based applications  [14]  , high-dimensional  input  im-
ges or image sequences are mapped  into  (usually)  simple  re-
ult  labels such as classi“cation  tasks. Fully  convolutional  networks
FCNs) include  up-sampling  layers that  perform  image-to-image
rediction  [15]  . The network  output  of an FCN can be sized iden-
ically  to  the  input  images. CNN and its  variants  offer  several ad-
antages in  cell  mitosis  detection.  First, they  automatically  learn
obust  features  from  raw  data, avoiding  the  need for  domain  de-
endent  feature  designing.  Second, 3D-CNNs can e�ciently  capture
oth  spatial  and temporal  features  simultaneously.  Finally,  CNNs
an be easily parallelized  on computing  platforms  with  graphical
rocessing units  (GPUs) for  e�cient  computing.  

In order  to  automatically  detect  cell  mitosis  events from  mi-
roscopy image, by combining  FCNs and 3D-CNNs, this  paper pro-
oses a deep neural  network  named as F3D-CNN. F3D-CNN com-
rises two  stages: candidate  detection  and mitosis  discrimination.
n the  candidate  detection  stage, after  learning  static  features  of
ell  mitosis  events in  a supervised  manner,  FCNs retrieve  areas,

http://dx.doi.org/10.1016/j.knosys.2017.08.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2017.08.016&domain=pdf
mailto:zy3381@gmail.com
mailto:huamao@scu.edu.cn
mailto:zhangyi@scu.edu.cn
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Fig. 1. Example of a cell mitosis event  in  consecutive microscopy images. Cell mi-  
tosis (indicated by the arrow)  appears in  the “fth image of the  sequence.

Fig. 2. Architecture  of a CNN with  one convolutional layer  using a (3 × 3) kernel,  
one pooling layer  using a (2 × 2) kernel,  and two  fully connected  layers. Flatten  
transforms the feature matrices to vectors.
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where  contain  potential  cell  mitosis  events, from  individual  mi-
croscopy images. As cell  mitosis  processes usually  span several
consecutive  images, a positive  mitosis  event  can only  be concluded
after  considering  both  spatial  and temporal  information  from  ad-
jacent  image frames. In the  mitosis  discrimination  stage, previ-
ous detected  candidates  are further  discriminated  by 3D-CNNs. The
proposed  F3D-CNN relaxes the  requirement  of manual  feature  de-
signing  and selection,  as it  can automatically  learn  robust  and
representative  features, including  the  static,  spatial,  and temporal
ones, directly  from  captured  data. As F3D-CNN is an end-to-end
solution,  it  is applicable  given  any type  of cell  and image captur-
ing  equipment  without  tedious  feature  designing  and parameter
tuning.  After  training,  the  time  e�ciency  of F3D-CNN meets the
requirement  for  real-time  microscopy  image processing, because
feed-forward  computation  is always  e�cient.  The performance  of
F3D-CNN, including  the  precision  of position  and time  of “nally
detect  mitosis  events, has been empirically  veri“ed  on a publicly
available  dataset of microscopy  image sequences [16]  , and a com-
parison  study  with  other  methods  [1,17,18]  has also been con-
ducted.  Experimental  results  indicate  that  F3D-CNN outperforms
state-of-the-art  approaches. 

The rest of this  paper is organized  as follows.  Section 2 re-
views  and discusses related  works,  and Section 3 brie”y  introduces
the  basic models  of the  proposed  framework.  The details  of F3D-
CNN, including  the  candidate  detection  and mitosis  discrimination
stages and the  practical  considerations,  are presented  in  Section 4 .
Section 5 conducts  a thorough  empirical  study  and a comparison
study  on publicly  available  datasets, and analyzes the  results.  The
paper concludes with  Section 6 . 

2. Related  works

Existing  cell  mitosis  detection  methods  can be grouped  into
two  categories:  cell  tracking  detection  and candidate  discrimina-
tion  methods.  In the  former  category, cell  segmentation  [2]  is typ-
ically  followed  by trajectory  tracking  [19]  . Here, the  trajectories  are
constructed  by associating the  cells in  consecutive  frames [20]  . One
cell  at the  present  frame  could  be associated with  any individual
at the  next  frame,  and the  likelihood  of such associations between
cells are quanti“ed  by cost functions.  By optimizing  the  cost func-
tion,  the  relationship  among cells in  consecutive  image frames can
be constructed.  One mitosis  event  could  be detected  if  there  one
cell  at the  present  frame  is associated to  two  new  cells at the  next
frame.  Apparently,  the  performance  of mitosis  detection  highly  de-
pends on the  tracking  algorithm.  Most  importantly,  tracking  of all
cells, regardless of whether  they  will  undergo  future  mitosis  or not,
is ine�cient.  Moreover,  the  segmentation  performance  is degraded
by cell  overlaps  and the  indistinctness  between  cell  membrane  and
background,  and long  term  tracking  is prone  to  drift  [21]  . There-
fore, the  precondition  of cell  mitosis  detection  is unreliable.  

Candidate discrimination  methods  “rst  extract  the  candidate
sequences that  might  contain  cell  mitosis  events, and select their
representative  features  [22]  . Mitosis  events in  the  candidate  se-
quences are then  identi“ed  through  supervised  learning  [23]  . As
candidate  sequences which  may contain  mitosis  events are “rst  “l-
tered  out,  the  search space has been reduced, therefore  this  type
of approaches are more  effective  than  tracking  based ones. How-
ever, constructing  candidate  sequences from  the  images requires
carefully  designed image processing algorithms,  which  are highly
depend on various  conditions,  e.g., cell  type  and population,  illu-
mination  conditions,  and the  image acquisition  equipments.  

Additionally,  supervised  learning  is usually  performed  based on
In particular,  brightness  characteristic  has been extensively  used
for  constructing  candidate  sequences, and descriptive  features  (e.g.
gradient  histogram,  local  binary  pattern)  are used to  characterize
speci“c  cell  mitosis  events. Based on that,  typical  machine  learning
pproaches, like  conditional  random  “eld,  sparse Gaussian process,
an determine  the  location  and time  of mitosis  events [1,11,12,24]  .
s feature  designing  and selection  are largely  depend on prior  do-
ain  knowledge,  to  the  best of our  knowledge,  there  has not  been
niversal  solution  for  mitosis  detection  in  general. 

. Preliminaries

In this  section, we formally  describe the  cell  mitosis  detection
roblem,  then  brie”y  introduce  the  deep neural  networks  used in

his  paper, including  CNNs [10]  , FCNs [15]  , and 3D-CNNs [13]  . More
etails  could  be found  in  the  suggested references. 

.1. Cell mitosis detection 

A distinctive  feature  of cell  mitosis  [1]  is the  division  of the
ncestor cell•s membrane  to  form  two  new  cells. A cell  mitosis
vent  is de“ned  from  the  moment  that  a clear boundary  appears
etween  two  daughter  cells. Given a sequence of microscopy  im-
ges capturing  the  cell  activities  over  time,  cell  mitosis  detection
ims to  determine  the  timing  (i.e., the  exact frame  in  the  sequence)
nd location  (in  that  frame)  of a mitosis  event. An example  of
ell  mitosis  is shown  in  Fig. 1 . The event  manifests  as a sequence
f patches cropped  at a “xed  position  in  consecutive  original  mi-
roscopy images. The timing  and location  of the  mitosis  event  are
ndicated  by the  arrow  in  the  “fth  frame  and the  position  of the
atch  in  the  original  images, respectively.  

.2. Convolutional  neural networks (CNNs) 

CNNs [10]  are composed of convolutional  layers, pooling  lay-
rs and fully  connected  layers ( Fig. 2 ). The weights  of the  con-
olutional  layers, called kernels,  locally  connect  to  the  input  and
re updated  by a back-propagation  algorithm  during  training.  CNNs
ith  stacked convolutional  layers can learn  features  with  hierarchi-
al structure.  The pooling  layer  relieves  the  computational  burden
y shrinking  the  feature  maps, and confers transformation  invari-
nce. After  the  convolutional  and pooling  layers, the  neuron  activ-

ties  are mapped  to  an output  vector  by the  fully  connected  layers.
Let the  indices  of an L-layer  CNN be l ( 1 � l � L ), and denote  the

eight  and bias by w and b , respectively.  P and Q represent  the
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Fig. 3. Comparison  between 2D and 3D convolutions  with  kernel  sizes of (3 × 3) and (5 × 3 × 3), respectively. The stride is 1 in  both convolutions.  In this example, the  
2D convolution  convolves on 1 frame using a 2D kernel,  whereas the 3D convolution  convolves on 5 frames using a 3D kernel.
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functions  considered.
ize of the  kernels.  A non-linear  activation  function  f ( · ) is applied
n each layer;  common  choices are sigmoid  and recti“er  func-
ions  [25]  . The activation  of the  lth  layer  at position  ( c, r ) is de-
oted  by a l c,r  , and is calculated  as follows:  

 l c,r =  f

�

b l +  

P �  

i = 1

Q �  

j= 1

w l i, j · a lŠ1 
c+  i, r+  j

�

. (1)  

.3. Fully convolutional  networks (FCNs) 

In MLPs, the  dimensions  of weight  matrices  between  fully  con-
ected layers are directly  determined  given  the  number  of neu-
ons in  each layer.  Differently,  in  CNNs, the  sizes of convolutional
ernels  between  layers have no such strong  constrain,  and could
e even independent  from  the  size of adjacent  layers. As a vari-
nt  of CNNs, FCNs focus on learning  convolutional  kernels  for  gen-
ral  purpose  without  imposing  constrains  regarding  the  sizes of in-

ermediate  representation  layers, therefore  arbitrarily  sized inputs
ould  be processed. In FCNs, each layer  is obtained  by convolu-
ional  operations  towards  the  previous  layer,  and its  size can be
etermined  by the  previous  layer  and convolutional  kernels  dur-

ng  running  time.  For example,  it  is known  as semantic  segmenta-
ion  [15]  when  the  size of the  output  layer  is set as the  same as
he  input  layer.  

To ensure the  same size between  the  output  and input,  the  spa-
ial  resolution  loss of the  input  is compensated  by up-sampling
ayers. The up-sampling  is commonly  achieved through  deconvo-
ution  [26]  and un-pooling  [27]  layers, which  perform  the  reverse
perations  of convolution  and pooling  respectively.  Training  FCNs

rom  scratch is prone  to  over-“tting.  Practically,  an informative
NNs learned  from  a different  but  related  domain  is usually  used
s the  initialization,  where  its  fully  connected  layers have been
onverted  to  1 × 1 convolutional  layers through  net  surgery.  After
ppending  up-sampling  layers, FCNs are later  “ne  tuned  based on

he  dataset. 
The original  FCN design also included  skip  connections  from  the

own-sampling  to  the  up-sampling  for  recovering  the  “ne-grained
nformation.  

.4. 3D Convolutional  neural networks (3D-CNNs) 

3D-CNNs [13]  extend  the  original  CNNs by introducing  3D con-
olution  operations,  which  incorporate  the  temporal  information
ver  consecutive  image frames into  the  network.  Therefore, 3D-
NNs can learn  the  features  in  both  spatial  and temporal  dimen-
ions. Whereas a 2D convolution  kernel  operates on one area of a
ingle  image frame,  a 3D convolution  kernel  operates on the  same
rea stacked over  multiple  consecutive  frames, as shown  in  Fig. 3 . 
Similarly  to  Eq. (1)  , the  3D convolution  is computed  as follows:

 l x,y,z =  f

�  

b l +  

P �  

i = 1

Q �  

j= 1

R �  

k = 1

w l i, j,k · a lŠ1
x +  i,y +  j,z+  k

�

(2)  

here  z denotes the  third  dimension  of the  input  data, and w is
he  three  dimensional  weight  matrix  of the  lth  layer  at position
 i, j, k ), with  size R along the  temporal  dimension,  a lŠ1  

x,y,z represents
he  activation  value of the  (l-1)th  layer.  

. F3D-CNN

The proposed  framework,  F3D-CNN, can be regarded  as a two-
tage candidate  discrimination  based mitosis  detection  approach.
s shown  in  Fig. 4 (right),  the  microscopy  images are sequentially

ed into  a FCN, and the  output  score maps indicate  the  location
f candidate  events on each image. Those candidates  are further
iscriminated  by incorporating  temporal  information  from  adjacent

mage frames to  “nally  determine  positive  mitosis  events. F3D-
NN is directly  learned  from  data, and the  available  event  annota-

ions  contribute  to  the  training  procedure  of both  stages. As man-
ally  feature  designing  and selection  are no longer  needed, F3D-
NN can be regarded  as a universal  end-to-end  solution  for  mi-

osis detection.  The details  and practical  considerations  about  the
rchitecture  of F3D-CNN will  be presented  in  this  section. 

.1. Candidate detection 

Candidate detection  identi“es  positions  of potential  of cell  mi-
osis events in  each frame.  Previous studies  “ltered  out  candidates
epending  on the  variation  of brightness  [1,11,24]  . Brightness  char-
cteristic  is a feature  which  typically  exhibits  in  the  process of mi-

osis events. However,  the  magnitude  of pixel  intensity  variation
ppears to  be different  among cell  mitosis  events, and can exhibit
ast diversity  between  different  type  of cells. Hence, it  requires  a
arefully  designed threshold  to  utilize  brightness  to  detect  candi-
ates, and may prone  to  artifacts.  Different  from  previous  methods,
e  build  an FCN to  alleviate  these problems  in  candidate  detection
ith  following  customizations:  

€ Point  annotation  conversion.  To fully  exploit  context  of cell  mi-
tosis events, a Gaussian-like  smoothing  method  is applied  to
point  annotations.

€ Training  with  crops. As mitosis  events are sparsely distributed,
for  training  e�ciency,  original  images are cropped  into  smaller
ones.

€ Multi-loss  objective  function.  To mitigate  multi-scale  issue of
cell  size and gradient  vanishing  problem,  there  are multiple  loss
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Fig. 4. Left:  a conventional two  stages cell mitosis detection  framework [1] . Right:  the  proposed F3D-CNN framework.  Event annotations  are only used during the training
stage, as indicated  by dash arrows.

Fig. 5. Example of a cropped microscopy image (left)  and its  corresponding  score
map (right).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Input  image overlapped with  its  output  score map. The centers of squares
and circles represent  candidates and annotated  cell mitosis events, respectively.

 

t  

l  

s  

c  

l  

t  

a  

l  

r  

b  

C  

F  

c  

d  

o  

a

M  

a  

t  

c  

v  

a  

t  

t  

“  

t  
Point  annotation  conversion  . Public  cell  image datasets com-
monly  mark  only  the  point  annotation,  de“ned  as the  centroid
point  of a cell  mitosis  event  [1]  . However,  this  annotation  does
not  fully  exploit  the  context  around  cell  mitosis  events. To deal
with  this  problem,  the  score maps are generated  by applying  a
Gaussian-like  smoothing  strategy  to  the  point  annotations  of train-
ing  set. Formally,  the  positions  of mitosis  events in  a microscopy
image I t are represented  in  a score map S t of the  same size as I t ,
where  t is the  time  step and the  value at each point  in  S t repre-
sents the  probability  of a cell  mitosis  event  at the  corresponding
image position.  The FCN maps image I t to  a same-sized score map
S t in  an image-to-image  prediction  manner.  A microscopy  image
and its  corresponding  score map are displayed  in  Fig. 5 . Speci“-
cally,  cell  mitosis  events on a given  frame  at time  step t can be de-
noted  as G t =  { p t 1 , p t 2 , . . . , p ti  } , where  p ti  is the  location  of the  i th
centroid  of the  cell  mitosis  events marked  at frame  t , or G t =  { �  }
for  a frame  containing  no mitosis  events. Hence, the  point  annota-
tions  are denoted  as G =  { G 1 , G 2 , . . . , G T } , where  T is the  number
of frames, and the  value S 

p 
t of the  score map at time  step t and

position  p is generated  by the  following  process: 

S 
p 
t =  

�
e 

Š �  ̄p Š p�  
2 � 2

s p̄ �  G t and �  p̄ Š p�  <  r s ,
0 otherwise 

(3)

where  � s denotes the  variance  of the  mitosis  event  at the  cen-
troid  positions  and r s controls  the  truncated  spatial  context  scope
of each cell  mitosis  event. 

Training  with  crops  . Because cell  mitosis  events are sparsely dis-
tributed  on each frame,  most  of the  pixels  on a frame  are la-
beled as non-mitosis,  which  imbalances  the  FCN learning  dataset.
To cope with  this  imbalance,  we crop the  small  regions  centered
on the  events. 
Convolutional  networks  learn  local  features  with  local  connec-
ions.  For a given  image, those learnt  kernels  are applied  upon
ocal  areas subject  to  their  receptive  “eld  regardless the  image•s
ize. With  an appropriate  receptive  size, and cropped  patches
over mitotic  cells, non-mitotic  cells, artifacts  and backgrounds,  the
earnt  convolutional  kernels  can effectively  discover  potential  mi-
osis events. Given a higher  resolution  input  image, kernels  are
pplied  in  the  feed forward  computation.  Kernels learned  from

ow-resolution  images patches can be applied  on original  high-
esolution  images, but  the  size of the  “nal  representation  layer  will
e larger,  which  is the  distinctive  feature  of FCNs from  traditional
NNs. In addition,  similar  strategy  was also adopted  for  training
CNs in  the  literature  in  [28]  . For a well-trained  FCN, candidates
an be obtained  by suppressing  the  non-maximal  scores on its  pro-
uced score maps for  a given  input  image. Fig. 6 shows an example
f detected  cell  mitosis  candidates  and their  corresponding  point
nnotations.  

ulti-loss  objective  function  . Although  cells in  microscopy  im-
ges are generally  considered  within  an unique  scale [1]  , cell  mi-

osis events generally  exhibit  deformation  which  results  in  varying
ell  sizes. Meanwhile,  deep FCN models  are vulnerable  to  gradient
anishing  which  may leads to  training  di�culty.  Therefore, the  FCN
rchitecture  design focuses mainly  on the  receptive  “eld  size and

he gradient  vanishing  problem.  The receptive  “eld  is the  area of
he  lower  layers connected  by units  in  the  higher  layers [15]  . This
eld,  which  determines  the  scale of the  detectable  features  [29]  . As
he  receptive  “eld  size increases with  increasing  network  depth,
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Fig. 7. FCN for  mitosis candidate detection. Each hidden  layer  is followed  by an
auxiliary loss layer. The training  and testing  are performed on cropped and whole
images, respectively.
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Fig. 8. Left:  CRF based model  for  mitosis event  temporal  localization. Spatial fea- 
tures designing is “rstly employed, then  it  models the temporal  dynamic  of mitosis
events through hidden  state ( h i ) transition,  and output  a probability  y i determines
there is a mitosis event  at time step i . Right:  3D-CNN for  mitosis discrimination.
It  directly learns spatiotemporal feature from context of candidates obtained from
score map, and produce a probability  y i which  indicates there is a mitosis event.
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ierarchical  features  at different  levels focus on different  scaled
bjects. Low layer  captures  small  size cell  mitosis  events while

arge size events are captured  by high  layers. In FCN, skip  connec-
ions  [15]  are typically  used for  combining  features  from  both  high
ayers and low  layers, and it  uses a single  loss function  for  the  “-
al  output.  As deep layers commonly  give better  results  than  the

ow  layers, the  skip  connections  don•t explicitly  provide  guidance
or  low  layers to  capture  small  size objects. While  a FCN with  aux-
liary  output  loss on intermediate  layers can alleviate  this  short-
ge [30]  , due to  it  regularizes  each output  to  produce  score map at
 certain  scale. With  these considerations,  a FCN is constructed  as
he  detailed  architecture  shown  in  Fig. 7 . 

Formally,  for  an FCN with  L layers, the  feature  map a l+1  at
l  +  1)th  layer  is computed  as follows:  

 l+ 1 =  f (w l c � a l )

here  0 <  l <  L and a 0 =  I t . The parameter  of the  lth  convolutional
ayer  is denoted  as w l c , � is the  convolution  or pooling  operation
hat  shrinks  the  feature  maps, and f ( · ) is an activation  function.  

The output  o l at the  lth  layer  is computed  as follows:  

 l+ 1 =  f (w l d � a l )

here  w l d denotes the  parameters  of the  lth  deconvolutional  lay-
rs, and � is the  deconvolution  operation  that  enlarges the  feature
aps to  the  size of I t . 

Finally,  the  network  is trained  by optimizing  the  objective  func-
ion  as follows:  

 1 ( ��� ) =  

L �  

l= 1

µ l · � (o l , S t ) 

here  L  1 is the  cost function  w.r.t.  a set of parameters  of the  FCN,
( o l , S t ) denotes the  cross entropy  loss about  output  o l and the

core map S t , and µ l is a parameter  for  weighting  each loss func-
ion.  

By taking  advantage of spatial  context  of cell  mitosis  events, the
CN learn  to  “lter  candidates  without  relying  on handcraft  fea-

ures, and training  FCN with  cropped  images is effective.  More-
ver, by using multi-loss  function,  low  layers are explicitly  guided
o produce  multi-scale  features. Meanwhile,  it  prevents  the  mag-
itudes  of gradient  in  each layer  from  vanishing,  due to  the  error
ignal  of intermediate  layers always  comes from  both  local  output
nd high  layer  losses, rather  than  only  from  the  “nal  output  loss. 

.2. Mitosis discrimination  

Individual  image provides  FCNs static  features  to  detect  mito-
is candidates. It  dramatically  reduces the  search space, but  may
isidentify  two  close cells as a mitosis  event. To alleviate  this
roblem,  the  candidate  detection  stage is followed  by a 3D-CNN

hat  discriminates  the  true  mitosis  events among the  detected  can-
idates. The 3D-CNN accepts a candidate  with  spatiotemporal  con-

ext  as input,  and outputs  a probability  indicate  whether  it  is a
ell  mitosis  event. On the  other  side, CRF based models  are exten-
ively  adopted  to  capture  temporal  dynamic  of cell  mitosis  events
hrough  their  hidden  state transitions  [1,17]  , and are able to  simul-
aneously  perform  both  sequence classi“cation  and temporal  local-
zation.  Unfortunately,  they  heavily  depend on the  candidate  se-
uences construction  and representative  spatial  feature  designing,
hich  may not  capable of describing  sophisticated  characteristics
f cell  mitosis  events. Comparison  between  CRFs and 3D-CNNs is
epicted  in  Fig. 8 . 

To train  the  3D-CNN, the  candidates  are labeled  as training
amples. Speci“cally,  a patch  centered  on a candidate  is selected as
 frame  of a candidate  sequence, and patches at the  same position

n  adjacent  frames are then  selected in  the  same way  to  construct
he  candidate  sequence. In particular,  patches centered  on annota-
ions  are extracted  as positive  samples, and augmented  by rotation
nd mirroring.  Formally,  each candidate  at position  p and time  step
 is denoted  as p t , and its  closest annotation  is p̄ t . A candidate  is
abeled  as a positive  sample if  �  p̄ t Š p t �  <  r s , where  r s represents
ts  spatial  context  scope as that  used in  candidate  detection  stage.
therwise,  the  candidate  is labeled  as a negative  sample. Examples
f training  samples are shown  in  Fig. 9 . For a well-trained  3D-CNN,
he  candidate  patch  sequences are constructed  identically  to  those
n  the  training  stage, and each of them  is assigned with  a prob-
bility  of containing  a mitosis  event. Among  spatially  overlapped
etections,  the  one with  the  highest  probability  is decided  as a mi-

osis event  occurrence. 

As most  of the  candidates  classi“ed  by the  FCNs are negative
amples, the  class imbalance  presents a di�culty  to  effective  learn-
ng  by the  3D-CNNs (e.g. the  number  of negative  samples is gener-
lly  8 times  more  than  that  of positive  samples.). To deal with  this
i�culty,  we introduce  a weighted  cost function.  Formally,  the  set
f training  samples H comprises  a set H +  of positive  samples and
 set H Š of negative  samples. Let X represent  an input  sample. The
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Fig. 9. Each row  is a patch sequence. The centroids of the  green circles numbered 1
to 4 are candidates detected by FCNs. Green squares are annotations.  Sequences 1…
2 and 3…4 are positive  and negative  samples, respectively. (For interpretation  of the
references to color  in  this  “gure legend, the  reader is referred  to the web  version
of this  article.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1
Mitosis event  amount statis-  
tics of datasets.

Sequence Amount

C3H10T1/2-1 465
C3H10T1/2-2 379
C3H10T1/2-3 319
C3H10T1/2-4 324
C3H10T1/2-5 245
C2C12 679

Fig. 10. Architecture  of the  FCN for  candidate detection. Numbers attached  to each
layer  represent  the  amount of feature maps. Images on left  and following the re-  
gressors are input  and score maps, respectively.
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weighted  cost function  is then  given  by 

L  2 ( ��� ) =  Š
�  

X�  H +
� log P X Š

�  

X�  H Š
(1 Š � ) log (1 Š P X ) (4)

where  � =  | H +  | /  | H| , ��� represents  the  parameters  of 3D-CNNs, and
P X is the  output  for  a given  sample X , which  indicates  the  proba-
bility  of that  sample is positive.  

Cell mitosis  discrimination  by 3D-CNN should  capture  the  mo-
tion  information  in  both  spatial  and temporal  dimensions.  More-
over, the  3D-CNNs replace the  design of handcrafted  volumetric
features  covering  the  whole  image sequence [31]  by automatically
learning  of the  spatiotemporal  features  from  sequence data. As an
extreme  case, 3D-CNN can be independently  used to  detect  mitosis
events in  the  whole  sequence with  a sliding-window  fashion.  

5. Experiments

The proposed  F3D-CNN framework  was evaluated  empirically
on publicly  available  datasets C3H10T1/2 and C2C12 [16]  . Follow-
ing  commonly  used metrics,  like  the  precision  of position  and
time  of “nally  detect  mitosis  events, the  performance  of the  pro-
posed method  was compared  with  existing  approaches. This sec-
tion  presents the  F3D-CNN training  and evaluation  details,  includ-
ing  the  datasets descriptions,  network  architectures  and all  ob-
tained  results.  

5.1. Datasets 

The CMU cell  image analysis group  provides  two  types of mi-
croscopy image sequences for  cell  mitosis  detection;  C3H10T1/2
and C2C12, representing  multipotent  C3H10T1/2 mesenchymal
stem cells and C2C12 myoblastic  stem cells respectively.  C3H10T1/2
contains  “ve  image sequences (210 frames for  each), and C2C12
contains  a single  1013-frame  image sequence. The resolution  of all
images is (1392  × 1040)  pixels.  The time  elapse between  frames
is 5 min.  Cell mitosis  events (speci“cally,  the  center  of each critical
state of an event)  have been manually  annotated  by cell  biologists.
The number  of the  cell  mitosis  events in  each sequence are sum-
marized  in  Table 1 . 

5.2. Training setup 

The F3D-CNN is sequentially  trained.  First, a FCN learns to  de-
tect  mitosis  candidates  from  the  annotations.  Then a 3D-CNN is
trained  to  discriminate  mitosis  events by exploiting  candidates•
patiotemporal  context.  The F3D-CNN can be used for  automati-
ally  mitosis  detection  after  they  are well  trained.  Training  setup
f F3D-CNN is described  in  this  section. 

.2.1. FCN 

In the  candidate  detection  stage, � s was set to  3 to  represent
he  variance  of mitosis  event  centroid  positions  and r s was set to
5 to  control  context  scope of mitosis  events through  cross val-

dation.  Approximately  440 cropped  smoothed  score maps were
enerated  for  each sequence, all  of which  were  used for  training
he  FCNs. The threshold  for  eliminating  the  background  and non-
itosis  areas in  the  non-maximum  suppression  was set to  0.1. 

To deal with  the  insu�cient  training  data, a CNN with  “ve  stage
onvolutional  layers and two  fully  connected  layers [32]  was “rst
rained  on Imagenet  dataset [33]  . Although  the  images are from
 different  domain,  the  “lters  in  its  lower  layers act as corner
etectors,  which  are suitable  for  cell  edge detection.  In order  to
onstruct  a fully  convolutional  model  with  suitable  receptive  “eld
ize and low  computational  cost, all  fully  connected  layers and
he last stage of convolutional  layers were  removed.  Besides, each
tage was followed  by a convolutional  layer  to  produce  a single
hannel  feature  map, deconvolutional  layer  was used to  up-sample
hat  feature  map and sigmoid normalization  was employed  to  pro-
uce the  regression  output.  Recti“er  [25]  activation  function  was
pplied  after  each convolutional  layer  in  the  four  stages. Details
f the  FCNs architecture  was illustrated  in  Fig. 10 . Moreover,  co-
daption  of intermediate  features  was reduced  by dropout  regular-

zation  [14]  , and the  invariant  transformation  and rotation  proper-
ies of the  cell  images were  enhanced by data augmentation  (mir-
or,  rotation  and distortion).  
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Fig. 11. Examples of candidate detection  results on C 3 H 10 T 1/2 (top row)  and C 2 C 12 (bottom  row)  data set, respectively. Generated score maps are shown in  the left  side,
and original images overlapped with  score maps are shown in  the right side. Squares indicate  detected candidat e cell mitosis events, and centroid of circles are the given
annotations.

Table 2
Architecture  of 3D-CNN used mitosis discrimination.

Layers Type Filter  size Stride Filters Units

1 3D Conv 3 × 3 × 3 1 × 1 × 1 64 …
2 3D Conv 3 × 3 × 3 1 × 1 × 1 64 …
3 3D Conv 3 × 3 × 3 1 × 1 × 1 64 …
4 3D Max-pool 1 × 2 × 2 1 × 2 × 2 … …
5 Dropout(0.25) … … … …
6 3D Conv 3 × 3 × 3 1 × 1 × 1 128 …
7 3D Conv 3 × 3 × 3 1 × 1 × 1 128 …
8 3D Conv 3 × 3 × 3 1 × 1 × 1 128 …
9 3D Max-pool 1 × 2 × 2 1 × 2 × 2 … …
10 Dropout(0.25) … … … …
11 3D Conv 3 × 3 × 3 1 × 1 × 1 256 …
12 3D Conv 3 × 3 × 3 1 × 1 × 1 256 …
13 3D Conv 3 × 3 × 3 1 × 1 × 1 256 …
14 3D Max-pool 2 × 2 × 2 2 × 2 × 2 … …
15 Dropout(0.25) … … … …
16 FullyConnected … … … 10 0 0
17 Dropout(0.2) … … … …
18 FullyConnected … … … 128
19 Dropout(0.2) … … … …
20 FullyConnected … … … 2
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Table 3
Performance  of candidate detection. ( seq represent  sequence).

Training  seq Testing seq Recall Candidate numbers

C2H10T1/2 1 2,3,4,5 0.986 33,181
2 1,3,4,5 0.986 28,265
3 1,2,4,5 0.995 31,921
4 1,2,3,5 0.996 36,475
5 1,2,3,4 0.988 25,036

C2C12 part1 part2 0.988 5082
part2 part1 1 7430
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As a result,  candidate  detection  was performed  by an FCN. Ker-
el  size was set to  (3 × 3) for  convolutional  layers in  each stage,
nd a stride  of 1 prevents  the  feature  map from  shrinking.  The
onvolutional  layer  for  producing  single  channel  output  in  each
tage adopts (1 × 1) for  both  its  kernel  and stride.  All  max-pooling
ayers down-sample  the  feature  map with  (2 × 2) for  both  its  ker-
el  and stride.  For up-sampling,  the  kernel  size and stride  of de-
onvolutional  layers are set to  2 n and 2 n Š1  respectively,  where  n
enote  the  stage number.  As discussed in  the  previous  section, the
igmoid activation  function  was adopted  after  each up-sampling

ayer  to  produce  a normalized  regression  output,  and cross entropy
s adopted  as loss function  for  each regressor. With  this  architec-
ure,  scale of cell  size are explicitly  handled  by different  stages, and
he FCN generates 4 score maps with  different  receptive  “eld  sizes.
n particular,  the  score map generated  from  the  last stage was se-
ected  as the  “nal  output  for  a well-trained  FCN, which  is mainly
ecause the  Gaussian-like  strategy  considers area of cell  mitosis
vents in  a unique  scale. Loss with  other  regressors were  allocated
s regularizers.  The weighting  terms  of µ l were  all  set to  1. The
yper-parameters  to  train  the  FCN include:  leaning  rate  ( 1 e Š 06 ),
eight  decay ( 2 e Š 4 ), momentum  (0.9), and training  epochs (10).
etails  of the  FCNs architecture  is illustrated  in  Fig. 10 . 

.2.2. 3D-CNN 

In the  mitosis  discrimination  stage, spatiotemporal  context  is
ecided  by the  size of patch  sequence, which  is set to  (3 × 51 × 51).
n order  to  learn  a 3D-CNN for  accurate temporal  localizing,  tem-
oral  scope r t is set to  1, due to  each event  is annotated  within
 frame.  Meanwhile,  r s is set to  the  same value as that  in  FCN.

nspired  by Tran et al. [34]  , we modeled  the  spatiotemporal  fea-
ures  of cell  mitosis  events by a 3D-CNN with  small  kernels.  Specif-
cally,  we aggregated the  spatial  and temporal  information  using
3 × 3 × 3) 3D convolutional  kernels  and (2 × 2 × 2) max pooling
perations.  The 3D features  are mapped  to  the  last output  layer,
nd softmax  normalization  was adopted  to  produce  a probability
hich  indicates  whether  the  input  patch  sequence contains  a cell
itosis  event. Recti“er  activation  function  was applied  after  3D
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Table 4
Performance  comparisons of mitosis detection.

Training Testing Precision Recall F1 AUC

C3H10T1/2 F3D-CNN seq1 seq2,3,4,5 0.837 0.821 0.829 0.899
seq2 seq1,3,4,5 0.824 0.799 0.811 0.880
seq3 seq1,2,4,5 0.753 0.732 0.741 0.805
seq4 seq1,2,3,5 0.743 0.743 0.742 0.808
seq5 seq1,2,3,4 0.801 0.729 0.763 0.833

EDCRF [1] 0.740 0.703 0.720 0.66
HCRF + SVM [17] 0.604 0.585 0.594 0.466
HCRF + CRF [18] 0.583 0.565 0.574 0.463

C2C12 F3D-CNN part1 part2 0.889 0.829 0.858 0.944
part2 part1 0.886 0.830 0.857 0.928

EDCRF [1] 0.880 0.828 0.853 0.819
HCRF + SVM [17] 0.550 0.520 0.535 0.270
HCRF + CRF [18] 0.687 0.650 0.668 0.473

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Examples of cell mitosis detection results on sequence C3H10T1/2-1 .
Squares represent  cell mitosis event  annotations, and circles represent  detections
produced by proposed method.  There are totally  34 detections, only 4 of them are
false positives. More details of those events with  numbers enclosed by yellow cir- 
cles are shown in  Fig. 13 . (For interpretation of the  references to color  in  this “gure
legend, the  reader is referred  to the web  version  of this article.)
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convolutional  layers and fully  connected  layers, and the  loss func-
tion  is described  as Eq. (4)  . The architecture  of 3D-CNN is detailed
in  Table 2 . 

The training  and testing  were  implemented  in  Keras on Theano,
and all  computation  was boosted by NVIDIA GeForce GTX TITAN
X. Hyper-parameters  to  train  the  3D-CNN include:  leaning  rate
( 5 e Š 3 ), weight  decay ( 1 e Š 6 ), momentum  (0.9), and training
epochs (25). 

5.3. Evaluation 

Experimental  setting  adopted  in  two  most  closely  related  liter-
atures [1,17]  is training  on one sequence while  evaluating  on the
rest. In particular,  each C3H10T1/2 sequence was iteratively  eval-
uated  in  [17]  . In order  to  conduct  a fair  comparison  with  existing
mitosis  detection  approaches, we followed  the  same experimental
setting.  For C3H10T1/2, one sequence was used for  training,  while
the  remaining  ones were  reserved for  testing.  The sequence in  the
C2C12 dataset was divided  into  two  sub-sequences for  training  and
testing,  and each contains  approximately  half  number  of mitosis
events. To evaluate  the  performance  of FCN, the  number  of de-
tected  candidates  was adopted  as a metric.  Similar  to  Huh  et al. [1]  ,
the  performance  of F3D-CNN was evaluated  by four  metrics:  pre-
cision  (P), recall  (R), f1-measure  (F), and area under  curve  (AUC):

P =  
T P 

T P +  F P 
, R =  

T P 

T P +  F N 
, F =  

2 · P · R
P +  R 

(5)

where  TP, FP and FN denote  the  total  numbers  of true-positive,
false-positive  and false-negative  detection  results,  respectively.  

In particular,  the  undetected  mitosis  events in  candidate  detec-
tion  stage are counted  as false negatives. The AUC was obtained  by
varying  the  decision  probability  of each detected  mitosis  event. 

5.4. Results and analysis 

In the  candidate  detection  stage, the  proposed  method  can pro-
cess a (1392  × 1040)-pixel  image in  less than  0.3 s. This fast run-
time  is attributable  to  the  FCNs, which  enable e�cient  localization
of mitosis  event  candidates. Ideally,  the  method  should  reduce the
search space while  maintaining  a high  sensitivity  of true  positives.
The candidate  numbers  and recall  results  of our  proposed  method
are listed  in  Table 3 . 

The results  con“rm  that  FCNs can effectively  detect  cell  mitosis
candidates, and accurately  reject  the  background  and non-mitotic
cells. In each dataset, the  recall  approximated  1, meaning  that  al-
most  none of the  cell  mitosis  events were  missed in  the  candi-
date detection  stage. The candidate  numbers  in  Table 3 denote
all  candidates  detected  in  the  remaining  four  testing  sequences.
Note that,  there  are fewer  candidates  were  found  in  C2C12 than
n  C2H10T1/2, as the  cell  density  in  C2C12 is lower.  Examples of
andidates  detected  by the  FCNs are shown  in  Fig. 11 . 

Batch processing in  the  mitosis  discrimination  stage identi“ed
he  candidates  in  one frame  in  less than  0.1 s. The total  computa-
ional  time  of cell  mitosis  detection  by F3D-CNN was below  0.4 s
er sequential  frame,  corresponding  to  a cell  mitosis  detection  rate
f up to  2.5 frames per second (fps). As this  time  frame  is much

ess than  the  acquisition  time  of a microscopy  cell  image, our  F3D-
NN would  be applicable  in  real-time  analysis in  advanced mi-
roscopic  imaging  techniques.  The training  of FCNs and 3D-CNNs
equired  approximately  1 and 8 h respectively  on a single  GPU.
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Fig. 13. Details of detections.  Frames range from 122 to 129 in  sequence C3H10T1/2-2 . Circles represent  the  detection  results and centers of squares represent  the  annotations.
(For interpretation  of the  references to color  in  this  “gure legend, the  reader is referred  to the web  version  of this  article.)

Fig. 14. Temporal  localization  performance. The dataset name is shown as the “rst line  of each “gure•s caption. Average and standard  deviation  of timing  error  in  terms  of
absolute frame difference are shown as the second line  of each “gure•s caption.
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f  
y applying  a sliding-window  technique,  mitosis  can also be de-
ected  by 3D-CNNs alone. However,  the  search space of this  tech-
ique  was (1392  × 1040 × 210)  patch  samples per C3H10T1/2
equence, at least 40 0 0 times  higher  than  in  the  F3D-CNN method
see Table 3 ). The high  complexity  of the  sliding-window  method
s infeasible  in  practical  applications.  

Due to  some of the  birth  event  of mitosis  cannot  precisely  ob-
erved within  only  one frame,  it  is reasonable to  evaluate  timing  of
etected  events within  a small  timing  error.  In particular,  the  de-

ection  result  are considered  as true  positive  only  when  the  timing
rror  is not  greater  than  1, and quantitative  results  of cell  mitosis
etection  by the  proposed  method  (F3D-CNN) and state-of-the-art
ethods  are compared  in  Table 4 . 

F3D-CNN consistently  outperformed  EDCRF [1]  ,
CRF+SVM [17]  and HCRF+CRF [18]  on both  datasets (C3H10T1/2
nd C2C12). The superior  performance  of F3D-CNN was especially
pparent  when  using the  “rst  or second C3H10T1/2 sequence as

raining  data, possibly  because more  mitosis  events are available
or  training  in  these sequences. Although  the  C2C12 dataset con-
ains  more  mitosis  events than  any of the  C3H10T1/2 sequences,
t  comprises  a single  sequence, which  must  be split  into  two
ub-sequences for  the  training  and testing  data. Single-sequence
plitting  invariably  introduces  variances because cells deforms  over
ime.  Moreover,  C2C12 dataset presents a di�culty  of identify  mi-
otic  cells with  high  adhesion. With  these challenges, F3D-CNN still
chieved a comparable  performance  compare  to  the  other  meth-
ds, which  demonstrated  it  can deal with  different  circumstances.
n addition,  when  timing  of mitosis  event  is not  considered,  the
ethods  of EDCRF [1]  , HCRF+SVM [17]  and HCRF+CRF [18]  are
etecting  sequences which  may contain  mitosis  events, instead
f detecting  birth  event  of mitosis,  which  is different  from  the
xperiment  setup adopted  in  Table 4 . 

Fig. 12 presents detailed  cell  mitosis  detection  results  on se-
uence C3H10T1/2-1.  Here, the  centers of the  yellow  circles  and
reen squares represent  the  detection  results  and annotations,  re-
pectively.  To depict  the  detailed  detection  results  along the  tem-
oral  dimension,  we also present  the  patch  sequences between

rames 122 and 129 in  Fig. 13 . The cell  mitosis  events were  de-
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tected  within  1-frame  difference,  demonstrating  that  F3D-CNN can
effectively  model  the  spatiotemporal  information  of cell  mitosis
events. 

To further  quantitatively  evaluate  temporal  localization  per-
formance  of proposed  method,  timing  error  of detecting  mitosis
events in  terms  of frame  difference  is adopted  as a metric.  In par-
ticular,  we keep considering  the  detection  result  as true  positive
only  when  timing  error  is not  greater  than  1. The distribution  of
the  frame  differences  between  annotations  and true  positive  sam-
ples on C3H10T1/2 and C2C12 is shown  in  Fig. 14 . The better  per-
formance  on C2C12 sequences possibly  because that  its  brightness
characteristic  is more  distinct  than  that  in  C3H10T1/2. 

6. Conclusion

This paper proposed  a deep neural  network  based framework
(F3D-CNN) for  automatic  cell  mitosis  detection  from  captured  mi-
croscopy images. F3D-CNN employs  FCNs and 3D-CNNs for  can-
didate  mitosis  detection  and further  discrimination,  respectively.
Representative  features  are learnt  automatically  instead  of hand-
craft  feature  designing.  The F3D-CNN architecture  is carefully  de-
signed to  deal with  the  challenges of cell  image processing. Specif-
ically,  the  point  annotations  are processed by a smoothing  and
cropping  strategy  in  the  candidate  detection  stage, which  reduces
the  memory  cost and alleviates  the  imbalance  training  set prob-
lem. In the  training  phase, the  multiple  loss layers in  the  FCNs
mitigate  the  gradient  vanishing  problem  and explicitly  guide  the
hidden  layers to  learn  multi-scale  features. In the  mitosis  discrim-
ination  stage, candidates  with  spatiotemporal  context,  which  are
further  discriminated  by a well-trained  3D-CNN. Finally,  the  F3D-
CNNs were  validated  on C3H10T1/2 and C2C12 datasets released
by the  CMU cell  image analysis group.  In terms  of performance
metrics  of cell  mitosis  detection,  F3D-CNN outperformed  compet-
ing  state-of-the-art  methods.  
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