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Protein  secondary structure  prediction  by using  deep learning  method
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a b s t  r  a c t  

The prediction  of protein  structures  directly  from  amino  acid sequences is one of the  biggest challenges
in  computational  biology.  It  can be divided  into  several independent  sub-problems  in  which  protein  sec- 
ondary  structure  (SS) prediction  is fundamental.  Many  computational  methods  have been proposed  for  SS
prediction  problem.  Few of them  can model  well  both  the  sequence-structure  mapping  relationship  be- 

tween  input  protein  features  and SS, and the  interaction  relationship  among residues which  are both  im-  

portant  for  SS prediction.  In this  paper, we proposed  a deep recurrent  encoder…decoder networks  called
Secondary Structure  Recurrent  Encoder…Decoder Networks  (SSREDNs) to  solve this  SS prediction  prob-  

lem. Deep architecture  and recurrent  structures  are employed  in  the  SSREDNs to  model  both  the  complex
nonlinear  mapping  relationship  between  input  protein  features  and SS, and the  mutual  interaction  among
continuous  residues of the  protein  chain. A series of techniques  are also used in  this  paper to  re“ne  the
model•s performance.  The proposed  model  is applied  to  the  open dataset CullPDB and CB513. Experi-  

mental  results  demonstrate  that  our  method  can improve  both  Q3 and Q8 accuracy compared  with  some
public  available  methods.  For Q8 prediction  problem,  it  achieves 68.20% and 73.1% accuracy on CB513 and
CullPDB dataset in  fewer  epochs better  than  the  previous  state-of-art  method.
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. Introduction

Discovering  protein•s  structure  and biological  functions  are very
mportant  for  understanding  their  biological  processes, such as the
rotein-protein  interactions  [1]  , protein  complexes  identi“cation

2]  and protein structure  prediction.  Protein  structure  prediction,
lucidating  the  complex  relationship  between  a protein  sequence
nd its  structure,  is one of the  most  important  challenges in  com-
utational  biology  [3]  . The most  elemental  task of protein  structure
rediction  is protein  secondary structure  (SS) prediction,  which
ims to  discover  the  structural  states of amino  acids. SS represents

he  local  conformation  of the  polypeptide  backbone of proteins  and
rovides  a bridge  that  links  the  primary  sequence and the  tertiary
tructure,  which  is very  helpful  for  many  structural  and functional
nalysis tools  [4,5]  . 

Typically,  protein  secondary structures  can either  be divided
nto  three  states ( � -helix  (H), � -strand  (E) and coil  region  (C)) or
e further  classi“ed  into  eight  “ne-grained  states (3 10 -helix  (G),
-helix  (H), � -helix  (I), � -strand  (E), � -bridge  (B), � -turn  (T), high
urvature  regions  (S) and irregular  loop  (L)). SS prediction  is usu-
lly  evaluated  by Q3 and Q8 accuracy, which  measures the  per-
� Corresponding  author.
E-mail addresses: mellowxu@gmail.com (Y. Wang), huamao@scu.edu.cn (H.

ao), zhangyi@scu.edu.cn (Z. Yi).
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entage of residues for  which  3-state  or 8-state  SS is correctly  pre-
icted.  Currently,  extensive  research efforts  have been spent  on ap-
lying  computational  methods  to  address the  Q3 prediction  prob-

em, but  very  few  to  the  more  challenging  Q8 prediction  problem.  

Hidden  markov  model  (HMM)  has been applied  to  3-state  SS
rediction  problem  [6]  . Although  HMM  can describe the  inter-
ctions  among adjust  residues, it•s very  challenging  for  HMM  to
odel  the  complex  nonlinear  relationship  between  input  protein

eatures  and SS. Support  vector  machine  (SVM) [7]  can deal with
his  complex  nonlinear  mapping,  but  it•s challenging  for  SVM to
ake into  consideration  the  interactions  among adjacent  residues.
o our  best knowledge,  by using a 2-stage neural  networks  (NNs)
ethod  [8]  , so far  the  best Q3 accuracy is about  80%. For the  Q8
rediction  problem,  existing  methods  [9,10]  fail  to  provide  promis-

ng  results.  The problem  may be that  most  of these mentioned
ethods  are shallow  architectures.  The limitation  of them  is that

t•s very  di�cult  for  a relatively  shallow  architectures  to  model
ell  both  the  complex  sequence-structure  relationship  between  in-
ut  protein  features  and SS, and the  mutual  interaction  relation-
hip  among residues. However,  they  are both  important  for  SS
rediciton  [10,11]  . 

Nowdays,  NNs with  deep architectures,  also called deep neu-
al  networks  (DNNs) become the  most  powerful  machine  learning
echniques  for  pattern  recognition  [12,13]  . With  the  ability  of map-
ing  unorganized  low-level  features  into  high-level  laten  data rep-
esentations  which  are more  suitable  for  a “nal  classi“cation  prob-

http://dx.doi.org/10.1016/j.knosys.2016.11.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.11.015&domain=pdf
mailto:mellowxu@gmail.com
mailto:huamao@scu.edu.cn
mailto:zhangyi@scu.edu.cn
http://dx.doi.org/10.1016/j.knosys.2016.11.015
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Fig. 1. (a) Deep feed-forward  networks. (b) Deep recurrent  networks.
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lem  [14]  , DNNs can better  model  the  complex  sequence-structure
relationship  for  SS prediction.  Cheng [15]  proposed  a typical  deep
belief  networks  model  for  Q3 prediciton,  in  which  each layer  is a
restricted  Boltzmann  machine  (RBM). Another  DNNs approach  is
reported  in  [16]  , which  develop  a multi-step  iterative  deep net-
works  model  that  predicts  four  different  sets of structural  prop-
erties  including  3-state  SS. In order  to  better  capture  the  mu-
tual  interactions  among residues, a deep convolutional  generative
stochastic  network  is proposed  in  [17]  for  a 8-state  SS prediction
problem,  which  may be the  best 8-state  predictor  as we know.
However,  the  performance  of this  approach  is sensitive  to  the  cho-
sen convolution  window  size which  is di�cult  to  determine.  Re-
current  neural  networks  (RNNs) are also adopted  for  this  problem
as they  can employ  contextual  information  of input  sequence and
learn  the  variable-width  dependencies in  the  protein  chain  [11]  .
However,  the  gradient  problem  still  limits  the  application  of these
RNN-based approaches [18]  . 

In this  paper, we proposed  a deep recurrent  network,  called
the  Secondary Structure  Recurrent  Encoder…Decoder Networks
(SSREDNs) for  the  challenge  of both  Q3 and Q8 prediction.
SSREDNs employ  the  encoder…decoder architecture  [19]  , a typi-
cal deep architecture  to  model  the  sequence-structure  relationship.
This architecture  allows  its  encoder part  to  encode a given  pro-
tein  sequence into  a representation  layer  and the  its  decoder part
decodes this  learned  representation  into  new  feature  space. Com-
pared with  classical deep architectures,  it  enhances the  model•s
learning  and representation  abilities  [19]  . Second, different  with
[17]  which  use a deep convolutional  networks,  we use a new-typed
recurrent  structure,  called gated recurrent  units  (GRUs) [20]  in
our  networks  to  model  the  mutual  interaction  relationship  among
residues. It  overcomes the  gradient  problem  and can better  learn
both  the  adjacent  and long-range  interactions  among residues
without  the  problem  of choosing  the  size of the  convolution  win-
dow.  The proposed  networks  can model  both  the  complex  non-
linear  sequence-structure  mapping  between  input  protein  features
and SS, and the  mutual  interaction  relationship  among residues. In
particular,  a stack auto-encoder  (SAE) architecture  [21]  is also con-
tained  in  the  encoder part  of our  networks  to  automatically  learn
compact  and representative  features  for  input.  It•s especially  help-
ful  for  proteins  as we lack the  necessary intuition  or knowledge  for
hand-crafting  features  involving  multiple  amino  acids [22]  . A series
of techniques  are also adopted  to  re“ne  the  performance  of the
networks,  such as the  dropout  technique  [23]  and the  optimized
algorithm  named Adam [24]  . 

For the  evaluation  purpose, the  proposed  method  is applied  to
the  benchmark  dataset CB513 and CullPDB for  both  Q3 and Q8 pre-
diction.  First, SSREDNs outperforms  the  best Q8 predictor  [17]  , es-
pecially  on some SS types which  are di�cult  to  predict.  Further-
more,  it  also outperforms  most  of the  public  available  methods  for
both  Q3 and Q8 prediction.  

The paper is organized  as follows.  Section 2 gives an outline
of the  deep learning  architectures  and techniques  used in  this
work.  In Section 3 , the  proposed  networks  model  and its  learn-
ing  algorithm  are introduced.  Experimental  details  are elucidated
in  Section 4 . Finally,  the  conclusions  and future  work  are drawn  in
Section 5 . 

2. Preliminary

In this  section, a brief  introduction  of DNNs and the  SAE are
presented.  In addition,  the  GRUs used to  deal with  the  long-term
interactions  between  residues are also described. 

2.1. Deep neural networks (DNNs) 

DNNs are arti“cial  neural  networks  with  multiple  hidden  lay-
ers between  the  input  and output  layers. In DNNs, the  deep-seated
ayers enable the  extraction  of more  abstract  features  from  lower
ayers. Although  DNNs are typically  designed with  feed-forward
ayers, recently  researchers have successfully  developed  DNNs with
ecurrent  structures  for  applications  such as natural  language pro-
essing [25]  . As shown  in  Fig. 1 (a), deep feed-forward  networks
an represent  complex  data in  a multi-layer  network  structure.
ith  su�cient  layers of learning  neurons,  it  can map unorganized

ow-level  features  to  a high-level  data manifold,  which  is more
uitable  for  a “nal  classi“cation  or regression  task. 

Recurrent  units  has connections  between  neural  units  to  form
 directed  cycle, which  allows  them  to  exhibit  dynamic  tempo-
al  behavior  of arbitrary  sequential  inputs,  as shown  in  Fig. 1 (b).
eep networks  with  recurrent  structure,  also called deep recurrent
eural  networks  (DRNNs) have already  been successfully  used for
omplex  sequential  data analysis, such as speech recognition,  im-
ge semantic  understanding  and online  handwritten  recognition.
ith  the  extra  capability  of capturing  the  spatial/temporal  depen-

encies within  sequences, DRNNs are more  di�cult  to  train  due to
he  vanishing-gradient  and over-“tting  problems  [18]  . 

.2. Stack auto-encoder (SAE) 

The classical auto-encoder  (AE) [26]  is a three-layer  neural  net-
ork  (as shown  in  Fig. 2 (a)):  an encoder layer  maps input  to  a rep-

esentation  layer  and a decoder layer  reconstructs  the  input  from
he representation  layer.  The “rst  two  layers are regarded  as an en-
oder, while  the  later  two  layers are regarded  as a decoder. Given
nput  x and let  y denote  the  state of neurons  in  the  representation
ayer,  an AE•s feed-forward  process can be formalized  as follows:  

 =  � ( W h x +  b h ) , (1)

  =  g 
�
W T h y +  b o 

�
, (2)

here  �  x is the  reconstruct  output,  and W h , b h , W
T 
h and b o respec-

ively  denote  the  weight  matrix  of the  encoder, bias vector  of the
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Fig. 2. (a) A typical with  three-layer  AE. The input  x and output  � x have the same 
shape. After  trained,  the  weights  of both encoder and decoder are “xed.  The en- 
coder part  can be stacked to an SAE then.  (b) A four-layer  Stack AE. It  is pre-trained
layer-by-layer  as thr ee stack AEs. The representation  learned  at the  previous AE is
used as input  for  learning  the next AE•s representation.
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Fig. 3. (a) Classical recurrent  unit.  (b) Gated recurrent  Unit.
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idden  layer,  weight  matrix  of the  decoder and bias vector  for  the
utput  layer.  As the  reconstruction  error  is minimized  in  a well
rained  AE, the  cost function  J AE can be de“ned  as: 

 AE =  L ( x, �  x ) , (3)  

here  L ( ·) is the  function  measuring  the  difference  between  the
riginal  inputs  and the  reconstructed  ones. 

AE can be trained  by the  standard  back-propagation  algorithm
27]  . AEs can be further  stacked to  create an stacked auto-encoder
SAE) [21]  (as shown  in  Fig. 2 (b)).  In a SAE, the  representation
earned  at the  previous  level  is used as input  for  learning  the
ext  level•s representation,  which  yields  a better  representation  for
eeper networks.  It  can automatically  discover  and extract  useful

eatures  or representations  in  a layer-wise  procedure.  The training
f SAE follows  the  recently  proposed  pre-training  and “ne-tuning
aradigm.  Automatically  learning  feature  is important  for  the  pro-

ein  SS prediction  as prior  knowledge  for  hand-crafting  features  in-
olving  multiple  amino  acids is barely  available.  Therefore, SAE is
dopted  in  SSREDNs to  pre-train  the  feed-forward  layers that  fol-

ow  the  input  layer  to  learn  better  features  automatically.  

.3. Gated recurrent  units (GRUs) 

.3.1. Classical recurrent  unit  

Recurrent  units  have connections  towards  themselves.  A clas-
ical recurrent  unit  is shown  in  Fig. 3 (a), its  update  procedure  is
ormalized  as in  Eq. 4 : 

 t =  g ( W h · [  x t , h t Š1 ]  ) , (4)  

here  x t is the  input  at time  t, h t and h t Š1  is the  hidden  state
f the  recurrent  unit  at time  t and t Š 1 , respectively.  W h is the
eights  matrix.  The bias is omit  here. 

As the  nonlinear  active  function  g ( ·) will  act on the  recurrent
nit  repeatedly  over  time,  it  is di�cult  to  train  a recurrent  net-
orks.  The gradient  tends to  either  vanish  (most  of the  time)  or
pproach  in“nity  during  the  training  process. This makes gradient-
ased optimization  method  di�cult,  and it  becomes even more
roblematic  because the  effect  of long-term  dependencies is hid-
en (being  exponentially  smaller  with  respect to  sequence length)
y the  effect  of short-term  dependencies [20]  . 

.3.2. Gated recurrent  unit  

As classical recurrent  units  have the  gradient  problems  when
raining,  a new-typed  recurrent  unit  called GRU is used in  our
ork.  GRU was proposed  to  solve the  gradient  problem  in  train-
ng  recurrent  networks  by allowing  each recurrent  unit  to  capture
he  dependencies of different  time  scales in  an adaptive  manner
see Fig. 3 (b)).  Unlike  the  classical recurrent  unit,  the  activation  h t 

f the  GRU at time  t is a linear  interpolation  between  the  previous
ctivation  h t Š1  and the  candidate  activation  �  h t :  

 t =  z t �  h t +  ( 1 Š z t ) h t Š1 . (5)

ere, z t denotes the  update  gate of GRU. It  decides how  much  the
nit  updates its  activation  or content.  This allows  the  error  to  eas-

ly  back-propagate  through  the  unit  without  vanishing  too  quickly
r blowing  up as a result  of passing through  multiple  time  steps,
nd thus  reducing  the  di�culty  of training  the  recurrent  networks.
 t is computed  as follow:  

 t =  � ( W z · [  x t , h t Š1 ]  ) , (6)  

( x ) =  
1 

1 +  e Šx . (7)  

he candidate  activation  �  h t is computed  as [20]  : 

�   t =  tan  h ( W · [  x t , r t � h t Š1 ]  ) , (8)  

hich  is similar  to  the  traditional  recurrent  unit  except  for  the  in-
lusion  of the  r t � h t Š1  term;  r t is a set of reset gates and � is an
lement-wise  multiplication.  r t is computed  as follows:  

 t =  � ( W r · [  x t , h t Š1 ]  ) , (9)  

( x ) =  
1 

1 +  e Šx . (10)  

e use x t to  denote  the  sequential  input  at time  t . With  GRUs, it
s easy for  each unit  to  remember  the  existence of a speci“c  fea-
ure  in  the  input  stream  over  a long  series of time  steps. Any fea-
ure  that  is decided  to  be important  by the  update  gate will  not  be
verwritten.  
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Fig. 4. The proposed secondary structure  recurrent  encoder…decoder networks.
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3. The proposed  model  and  algorithm

As the  major  part  of this  article,  the  proposed  secondary struc-
ture  recurrent  encoder…decoder networks  (SSREDNs) will  be pre-
sented in  this  section. Its architecture  and the  algorithm  for  learn-
ing  parameters  from  data will  be discussed in  detail.  We use a bi-
directional  GRU structure  here to  deal with  the  spatial  interaction
information  in  protein  chain. Adam algorithm  is used to  learn  the
network  weights  from  data. 

3.1. Secondary structure  recurrent  encoder…decoder networks 

(SSREDNs) 

As shown  in  Fig. 4 , secondary structure  recurrent  encoder…
decoder networks  (SSREDNs) is essentially  a deep recurrent  net-
work  with  feed-forward  layers and recurrent  architectures.  It  is
consisted  of an encoder part,  a decoder part  and a representation
layer.  Both the  encoder and decoder part  contain  feed-forward  lay-
ers, recurrent  layers and special training  mechanisms.  The encoder
part  learns a good representation  for  the  input  protein  feature  se-
quence that  re”ects  both  immediate  and long-term  amino  acid de-
pendencies, and the  decoder part  uses the  representation  for  the
“nal  SS prediction  which  also takes consideration  into  the  spatial
dependency.  GRUs are used in  the  encoder and decoder to  learn
the  amino  acid interaction  information  within  the  protein  chain. 

3.1.1. Encoder part  

In the  encoder part,  a SAE is “rst  used to  pre-train  the  “rst
few  layers of the  networks  for  better  feature  extraction.  This SAE
is train  by a unsupervised  layer-wise  strategy.  Then, weights  from
he trained  SAE are used to  initialize  these layers. By using this
re-training  strategy,  the  networks  can get more  e�cient  features
utomatically  at the  beginning  of the  training  process. Through  the
ncoder part,  it  allows  the  encoding  of the  input  sequence into  a
ood representation  at the  representation  layer.  Bidirectional  GRU

ayers are used here to  capture  the  context-dependent  relationship
interaction  among residues)  here. 

.1.2. Decoder part  

The decoder part  decodes the  learned  representation  of the  rep-
esentation  layer  into  the  structure  space for  SS prediction.  Bidirec-
ional  GRU recurrent  layers are also used to  learn  additional  global
ependence information  for  the  “nal  prediction.  We use a soft-
ax  layer  as the  “nal  layer  to  output  the  probability  of the  eight

econdary structural  states. Finally,  the  recurrent  encoder…decoder
etwork  is trained  by a supervised  way  using the  back-propagation

earning  algorithm.  

.1.3. Training 

As shown  in  Fig. 4 , when  training  we use the  amino  acid fea-
ures  as input  to  the  network„residue  by residue  along the  protein
hain„and  the  encoder generates a stable representation  contain-
ng  the  contextual  information  of the  input  sequence. We normal-
ze the  activation  level  of the  representation  layer  through  an extra
utput  layer.  Next,  the  decoder predicts  the  Q8 state for  the  cur-
ent  input  residue  using the  representation  from  the  encoder. As
e use recurrent  structures  to  model  the  sequence-structure  re-

ationship,  the  window  size problem  of the  convolutional  method
oes not  exist.  At each time  step, the  network  receives one residue
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Fig. 5. Bidirectional GRU Layer.
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Algorithm  1 B-GRU learning  Algorithm.  

Require:  

Input  Data  : 

X =  { x 1 , x 2 , . . . , x N } : Sequence input  X with  length  N
Ensure:  

Feed forward:  

for  t =  1 to  N do  

a 
prorsad 
t =  GRU(x t ) 

a prorsad =  { a 
prorsad 
1 , a 

prorsad 
2 , . . . , a 

prorsad 
N } 

end  for  

for  t =  N to  1 do  

a re v erse 
t =  GRU(x N+1  Št ) 

a re v erse =  { a re v erse 
N , . . . , a re v erse 

2 , a re v erse 
1 } 

end  for  

for  all  t  �  (1 , 2 , .., N) do  

a t =  concat 
�

a 
prorsad 
t , a re v erse 

N+1  Št 

�

a =  { a 1 , a 2 , . . . , a N }
end  for  

Back propogation:  

for  all  t  �  (1 , 2 , .., N) do  

Backward  pass for  output  layer,  storing  the  back error  � at 
each timestep  

end  for  

for  t =  N to  1 do  

BPTT for  reverse GRU layer,  using the  stored  � from  output  

layer  

end  for  

for  t =  1 to  N do  

BPTT for  prorsad  GRU layer,  using the  stored  � from  output  

layer  

end  for  
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rom  the  protein  chain  as input  and then  outputs  its  secondary
tructural  state. 

.2. Bidirectional  GRU 

As the  protein  sequence contains  both  forward  and reverse or-
er dependency  information  between  adjacent  positions  on the
rotein  chain, we used bidirectional  recurrent  layers [28]  with
RUs in  the  networks.  A bidirectional-GRU  (B-GRU) layer  is shown

n  Fig. 5 . The B-GRU layer  contains  two  reversed parallel  GRU lay-
rs which  are not  connected  to  each other.  Sequential  information
ows  through  the  two  layers in  reversed order  as time  progresses. 

Consider a sequence of protein  data of length  N with
he  networks•  input  denoted  as X =  ( x 1 , x 2 , . . . , x N ) . Each x i , i �
( 1 , 2 , . . . , N ) is a feature  vector  that  contains  the  feature  informa-
ion  of the  acids at position  i . The learning  algorithm  for  the  B-GRU
s shown  in  Algorithm  1 : 

The “rst  GRU layer  (forward  GRU layer)  will  accept the  in-
ut  from  x 1 to  x N at each time  step. The second GRU layer  (re-
ersed GRU layer)  will  start  at x N and accept the  input  from  x N 
own  to  x 1 ; i.e., in  the  backward  time  direction.  In this  way,  when
rocessing a sequence input  X =  ( x 1 , x 2 , . . . , x N ) , the  prorsad  GRU

ayer  will  capture  the  information  a 
prorsad 
t at any time  step t , t  �

( 1 , 2 , . . . , N ) , which  contains  the  dependence relationship  of the
revious  t positions,  while  the  reverse GRU layer  captures  the  re-
ersed information  a re v erse 

N+1  Št , which  contains  the  dependence rela-
ionship  of the  t previous  positions  in  reverse direction.  Therefore,
nce the  B-GRU layer  is trained,  the  forward  and backward  GRU

ayers• outputs  a t , t  �  ( 1 , 2 , . . . , N ) may include  the  full  dependence
elationships  for  its  input  sequence at any position  t . Both the  for-
ard  and backward  GRU layers• outputs  will  pass upward  to  the
utput  layer  of the  B-GRU to  form  a better  representation  for  the
ubsequent  layers. Furthermore,  in  the  back-propagation  process,
he  forward  and backward  GRU layers are processed in  decreas-
ng  and increasing  time  order,  respectively,  by using the  BPTT al-
orithm  [29]  . 

Compared with  a generic  recurrent  layer,  the  B-GRU can better
eal with  both  the  spatial  dependencies in  protein  sequence and

he gradient  problems  that  normally  occur during  network  train-
ng, which  are usually  the  biggest challenge  for  training  classical
ecurrent  networks.  

.3. Training 

The network  was trained  with  Adam, the  stochastic  gradient-
ased optimization  method  proposed  by Kingma  [24]  . It  com-
ine  the  advantages of two  recently  popular  optimization  meth-
ds: AdaGrad [30]  , the  adaptive  gradient  algorithm,  and RMSProp,
hich  is similar  but  introduces  an additional  decay term.  Adam
omputes  individual  adaptive  learning  rates for  different  parame-
ers of the  networks  from  estimates  of “rst  and second moments
f the  gradients.  It  has been shown  that  Adam performs  equal to  or
etter  than  some other  optimization  methods,  regardless of hyper-
arameter  setting.  

In SSREDNs, the  learning  of the  representation  layer  is very  im-
ortant  for  the  “nal  performance,  because it  connects both  the  en-
oder and the  decoder. As we known,  the  outputs  of SS predic-
ion  must  be a continuous  structural  states that  adjacent  residues
orm  the  uniform  structure  in  space, eg. the  SS state H may consist
f several acids. So a better  activation  of the  representation  layer
hould  be that  different  input  features  may have similar  represen-
ation  at the  hidden  representation  layer  if  they  have the  same
utput  label  at the  end during  the  training  process. For this  pur-
ose, a additional  output  layer  is added followed  the  representa-

ion  layer  with  Mean Square Error  cost function  to  constrain  its
ctivation  level.  It  will  force different  input  feature  to  obtain  ap-
roximate  activations  at representation  layer  if  they  have the  same

abel. So there  are actually  two  output  layers in  the  training  proce-
ure, the  gradients  ”ow  from  both  output  layers. One updates the
hole  networks  but  the  other  one just  re”ects  the  encoder. After

he  weights  of the  networks  is trained  we only  use the  “nal  out-
ut  layer  (red  part  in  Fig. 6 ). The cost functions  of the  two  output

ayers are as follows:  

 1 ( x, � ) =  
1 

m 

m �  

i = 1

n �  

j= 1

�
x 

j 
i Š y 

j 
i 

� 2
, (11)  

 2 ( x, � ) =  Š
1 

m 

m �  

i = 1

n �  

j= 1

(y 
j 
i log (P (x 

j 
i ))  +  (1 Š y 

j 
i )(1 Š log (P (x 

j 
i ))))  ,

(12)



120

Fig. 6. Multi-output  training. A additional output  layer  with  Mean Square Error
(MSE) cost is added followed the representation  layer  during the training  process.
It  help to adjust  the  activity of the  representation  layer  for  the  “nal prediction.  It
also help to speed up the training  process to some extent.
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where  � is the  parameter  set, and x 
j 
i , y 

j 
i denote  the  j-th  element  of

the  i-th  sample of the  input  set x and the  target  set y , respectively.
We use the  Adam algorithm  [24]  to  optimize  the  SSREDN

in  training  process. Moreover,  the  “nal  cost function  L ( x, � ) of
SSREDNs is a sum of cost at the  two  output  layers. � denotes the
whole  parameter  set of the  networks  and we use � to  balance the
contribution  of the  two  output  layers. 

L ( x, � ) =  L 1 ( x, � ) +  � L 2 ( x, � ) (13)

4. Experiments

In order  to  evaluate  the  performance  of proposed  SSREDNs
a series of experiments  are performed  on open datasets CullPDB
[31]  and CB513 [10]  . Detailed  data description  is “rst  provided  in
Section 4.1 . In Section 4.2 , the  model  training  setup is presented.
First, variations  of network  architectures  of different  layers were
tested  to  re“ne  the  model•s performance.  Among  them,  we select
the  one with  best performance  for  later  comparison  with  other  ex-
isting  approaches. We also have evaluated  the  in”uence  of the  pre-
train  strategy  using the  SAE on the  “nal  prediction  performance.
The performance  analysis is presented  in  Section 4.3 . It  shows that
our  method  smoothly  converges with  fewer  training  epochs and
improves  almost  all  of the  8 statas•s sensitivity  and precision  ac-
curacy on the  CullPDB testing  set compared  with  [17]  which  may
be the  best 8-state  predictor.  Our method  is also compared  with
some public  methods  (SSpro [32]  , RaptorX [10]  , PSIPRED [8]  ) on
both  CullPDB and CB513 dataset. It  outperforms  the  others  on both
Q3 and Q8 accuracies. 

4.1. Features and dataset 

The major  purpose  of predict  the  SS types for  each amino  acid
of a given  protein  sequence. We solve both  the  Q8 and Q3 predic-
tion  problems  in  this  paper. We evaluated  the  proposed  SSREDN
or  both  Q3 and Q8 on two  datasets CullPDB [31]  and CB513 [10]  ,
hich  are also used by other  related  investigations  [10]  . CullPDB,
 large non-homologous  dataset (identity  less than  30%), contains
128 protein  amino  acid sequences labeled  with  Q8 secondary
tructure,  and has been randomly  divided  into  training  (5600),  val-
dation  (248),  and testing  (280)  sets. A separate evaluation  is also
erformed  on CB513 dataset, which  contains  513 proteins,  while
raining  on CullPDB dataset further  “ltered  to  remove  sequences
ith  more  than  25% identity  with  the  CB513 dataset. 

Protein  sequence pro“les  with  evolutionary  information  have
ecome a breakthrough  for  SS prediction.  Thus, Position  Speci“c
coring Matrix  (PSSM) features  have been used here, which  are
idely  used features  that  can be extracted  from  protein  pro“les  by
e“ne  Secondary Structure  of Proteins  (DSSP) and Position  Speci“c

terated  Basic Local Alignment  Search Tool (PSI-BLAST). In [17]  , the
ata used for  training  contained  features  and labels in  56 channels
22 for  PSSM, 22 for  amino  acid sequence, 2 for  terminals,  2 for
olvent  accessibility  labels, 8 for  secondary structure  labels). The
raining  data include  700 amino  acids. It•s considered  to  provides
 good balance between  e�ciency  and coverage as the  majority
f protein  chains are shorter  than  700 amino  acids. When  train-

ng  and testing,  shorter  sequences (less than  700 amino  acids) are
added with  0. 

Thorough  our  experiments,  only  PSSM features  (22)  and amino
cid sequence features  (22)  were  used here for  the  8-state  predc-

ion.  We also further  removed  the  •Noseq• channel  as a convention
17]  . So the  input  pro“les  in  our  experiment  consist  of 50 chan-
els (21 for  PSSM, 21 for  the  amino  acid sequence, 8 for  secondary
tructure  labels). 

.2. Training setup 

.2.1. Networks setup 

In the  encoder and decoder framework,  the  ReLU layers with
0…300 units  are used as feed-forward  layers. GRU layers always
ontains  10 0…30 0 gated recurrent  units.  In the  B-GRU layer,  out-
ut  from  the  bidirectional  forward  and backward  layers are con-
atenated  into  a single  vector  to  be used as input  in  the  following
ayers. 

Weights  of the  SAE were  initialized  in  a greedy layer-wise  man-
er, which  map the  layers• inputs  back to  themselves.  Next,  the
ther  weights  in  each layer  are sampled  uniformly  between  Š0.05
nd 0.05 and biases are initialized  at 0. The initial  hidden  states of

he  GRU layers ( �  h , h ) are all  set to  0 and updated  during  the  train-
ng  procedure.  We use 50% dropout  at the  B-GRU and GRU layers
o avoid  the  over-“tting  problem.  

A ReLU activation  function  [33]  is used for  all  the  feed-forward
ayers other  than  the  output  layer.  When  training,  a softmax  activa-
ion  function  is used on the  “nal  classi“cation  layer  and a sigmoid
ctivation  function  is used on the  middle  extra  output  layer,  as
hown  in  Fig. 6 . The learning  rate  for  the  SAE stage is 0.05. When
raining  the  whole  encoder…decoder network,  the  Adam algorithm,
hich  only  requires  “rst-order  gradients  and little  memory,  is ap-
lied  to  control  the  parameter  updates with  the  default  settings
 � =  0 . 001 , � 1 =  0 . 9 , � 2 =  0 . 999 , 	  =  1 e Š 8 ). Here, � is the  learn-
ng  rate, � 1 , � 2 are parameters  for  exponential  moving  averages of
he  gradient  and the  squared gradient,  respectively,  	 is a small pa-
ameter  used to  avoid  singularities  associated with  a zero denom-
nator.  We just  set � to  1 for  an equivalent  contribution  between
he two  output  layers in  Eq. (13)  . 

All  parameters  were  trained  globally  by Adam algorithm  with
he  “nal  cost function  in  Eq. (13)  . The maximum  number  of train-
ng  epochs is 100 and the  batch  size is 40 in  our  experiment.
ll  the  training  procedures  are implemented  by Python  based on
heano and Keras libraries.  The training  procedure  was executed
ased on Nvidia  Tesla K40 GPUs. 
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Table 1
Prediction  accuracies is given  for  SSREDNs with  different  architectures.

Model Q8 Accuracy (%) Segment overlap  score

3SAE,1BGRU,2FNN,1GRU 71 .84 77 .17
5SAE,1BGRU,2FNN,1GRU 70 .51 76 .70
3SAE,2BGRU,2FNN,2BGRU 72 .51 77 .95
3SAE,2BGRU,1GRU,2FNN,1BGRU 72 .36 77 .64
3SAE,2BGRU,2FNN,1BGRU 73 .14 78 .20

Table 2
Comparison  of the  performance  with  and without  pre-train using SAE.

Model (3SAE,2BGRU,2FNN,1BGRU) Q8 Accuracy Segment overlap  score

Without pre-train 72 .13 77 .12
Pre-train  using SAE 73 .14 78 .20

4
 

a  

a  

c  

t  

p  

G  

d  

t  

p  

s  

4  

b  

l  

l  

R  

l  

}  

C

4
 

T  

a  

f  

f  

t  

t  

T  

f  

C  

t  

I  

s

4

4
 

v  

2  

t  

p  

f  

p  

t  

f  

G  

S  

Table 3
Performance  of individual secondary structure  state on CullPDB
testing  set.

Sec. Sensitivity Precision Frequency Description

H 94 .11 /93.5 86 .96 /82.8 35 .8/35.4 � -helix
E 84 .52 /82.3 78 .07 /74.8 24 .1/21.8 � -helix
L 64 .01 /63.3 58 .24 /54.1 21 .3/18.6 loop
T 53 .97 /50.6 57 .96 /54.8 10 .1/11.1 � Š turn  
S 28 .29 /15.9 49 .13 /42.3 5 .0/7.9 bend
G 35 .99 /13.3 40 .4 8/ 4 9.6 3 .4/4.1 3 10 Š helix 
B 7 .4 /0.1 45 .63/ 50 0 .2/1.1 � Š brige 
I … /„ … /00- 0 / 0 � Š helix 

Fig. 7. Model performance  during the training  process on CullPDB dataset. (a) The
curve converges to a stable state within  20 epoches on CullPDB training  dataset. (b)
The whole performance  curve of SSREDNs within  100 training  epochs.
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.2.2. Architecture analysis 

We tried  a set of various  network  architectures  to  “nd  a suit-
ble model  for  protein  SS prediction  problem.  Their  performances
re shown  in  Table 1 . The segment  of overlap  (SOV) score, which
an be interpreted  as SS segment-based  accuracy, is also used here
o evaluate  the  performance  of different  network  architecture.  Em-
irically,  we found  that  a 3-layer  SAE is a suitable  choice. The B-
RU layers always  get better  results  than  the  standard  GRU layers
uring  the  training  process. It  veri“es  that  the  bidirectional  struc-

ure  can better  capture  the  interaction  relations  of residues in  the
rotein  chain  both  in  the  encoder part  and the  decoder part.  Be-
ides, the  recurrent  layer  will  also affect  the  training  results  (row
 vs 5 in  Table 1 ). The optimal  structure  (in  row  5) was found  to
e: {300-256-128  Stacked Auto-encoder  } … {256 Bidirectional  GRU

ayers(0.5  dropout)  } � 2 … {256-128 ReLU layers } … {64 ReLU Rep
ayer  } … {128 Bidirectional  GRU layer  (0.5 dropout)  } … {256-128
eLU layers}  … {8 sigmoid  layer}.  Furthermore,  a {8 sigmoid  layer}

ayer  with  MSE cost function  was added on the  {64  ReLU Rep layer
. It  obtained  73.14% Q8 accuracy and 78.20% SOV scores on the
ullPDB testing  (272)  set. 

.2.3. Stack auto-encoder 
Feature learning  is a very  important  process for  SS prediction.

he discovery  of good features  may bene“t  the  prediction  process
nd improve  the  prediction  accuracy. A SAE architecture  is used

ollowed  the  input  layer  in  our  model  to  extract  better  features
rom  the  input  protein  features  automatically.  After  pre-training,
he  SAE part  learned  robust  representation  from  the  input  fea-
ures. It  will  also be “ne-tuned  when  training  the  whole  networks.
o con“rm  if  this  pre-train  strategy  using SAE is really  helpful
or  improving  the  prediction  accuracy, we trained  a model  on the
ullPDB training  set with  and without  the  pre-train  strategy  and

est  it  on the  CullPDB testing  set. The result  is shown  in  Table 2 .
t  improves  the  “nal  Q8 accuracy from  72.13% to  73.14% and SOV
core from  77.12% to  78.20%. 

.3. Performance 

.3.1. Performance on testing set 
The prediction  sensitivities,  precisions  and frequencies  for  indi-

idual  secondary structure  states of the  CullPDB testing  set with
72 sequences are shown  in  Table 3 . Compared with  [17]  , for
he  four  major  states, H, E, L and T, our  SSREDNs method  im-
roves the  prediction  sensitivity  and precision.  The improvement

or  the  prediction  of state T, i.e., the  � Š turn  prediction  which  de-
ends on the  long-range  inter-residue  interactions,  indicates  that

he  SSREDNs model  can learn  the  long-range  structure  features
rom  the  input  protein  chain  sequence. Predictions  for  the  states
, S and B are di�cult  because of their  less frequencies,  and the
SREDNs also makes better  predictions  for  them  compared  with
17]  on prediction  sensitivities.  The lower  prediction  precisions  for
tates G and B are accounted  for  by their  relative  rarity  in  the
raining  set compared  with  our  test  set (3.1 vs 4.1, 0.2 vs 1.1).
n the  other  hand, SSREDNs is essentially  a data-driven  model,
nd it  can learn  the  complex  interdependencies  of residues from
 mass of training  sequences. The SSREDNs has some limitation
or  predicting  the  rarity  state G, B and I ( 3 10 Š helix, � Š brige and

Š helix ) due to  their  few  frequencies  (only  around  5% in  total)
n  the  train  sequences. These states will  also be a focus of future
ork.  

.3.2. Convergence 
Fig. 7 (a) shows the  training  accuracy for  the  CullPDB dataset.

he SSREDNs show  a powerful  learning  ability  that  always  con-
erges within  20 training  epochs to  a prediction  accuracy rate  of
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Table 4
Q8 accuracy on CullPDB and CB513.

Model Q8 Accuracy

CB513 CullPDB

GSN [17] 66 .4 72 .1
The optimal SSREDNs 68 .2 73 .1

Table 5
Q8 and Q3 accuracy on datasets CB513 and CullPDB.

Method Q8 Q3

CB513 CullPDB CB513 CullPDB

SSpro 63 .5 66 .6 78 .5 79 .5
RaptorX-SS8 64 .9 69 .7 78 .3 81 .2
PSIPRED … … 79 .2 82 .5
Ours 68 .2 73 .1 82 .9 84 .2
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[  
about  72%, equal to  the  best result  in  [17]  , which  requires  300
epochs. In Fig. 7 (b), it  shows that  SSREDNs will  smoothly  converges
to  its  optimal  result  on validation  set within  about  70 training
epochs, and this  optimal  model  is used for  the  testing  set in  our
experiments.  

4.3.3. Comparasion with  other methods 

As shown  in  Table 4 , we compared  the  Q8 accuracy of our
method  with  the  deep generative  stochastic  network  (GSN) method
in  [17]  , which  may be the  best 8-state  predictor.  For this  valida-
tion,  we trained  a model  in  which  the  CullPDB dataset was “l-
tered  to  remove  sequences having  homology  with  CB513 sequences
(more  than  25% identity).  We also just  consider  the  PSSM features
and amino  acid sequence features  in  the  testing.  With  the  optimal
model,  we achieve a Q8 accuracy of 68.2% on CB513 and 73.1% on
CullPDB, which  outperforms  the  best result  of GSN model.  

With  the  same network  architecture  and parameters  set, we
also compare  our  method  with  the  following  public  available  pro-
grams:  PSIPRED for  3-states  SS prediction;  SSpro, RaptorX for  both
8-states  and 3-states  SS prediction  on the  datasets of CB513 and
CullPDB. The SSpro package is used without  template(i.e.,  not  using
a solved structure  in  PDB as template).  All  the  programs  are run-
ning  with  their  parameters  set according  to  their  respective  papers.
As listed  in  Table 5 , our  method  outperforms  the  others,  including
the  popular  PSIPRED on Q3 prediction,  SSpro and RaptorX on both
Q3 and Q8 prediction.  In terms  of both  Q3 and Q8 accuracy on
CullPDB and CB513, we obtains  84.2%, 82.9%, 73.1% and 66.4%, re-
spectively.  

5. Conclusion  and  future  work

In this  article,  we proposed  a deep recurrent  encoder…decoder
network  and employed  it  to  predict  the  secondary structure  of
residues in  amino  acid sequences. The combination  of encoder…
decoder architecture  and GRUs is well  suited  to  model  both
the  sequence-structure  relationship  between  input  protein  fea-
tures  and SS, and the  mutual  interactions  among residues. It  also
achieves better  performance  on both  Q3 and Q8 accuracy. For fur-
ther  development  of the  learning  ability  of SSREDNs, however,  a
method  must  be developed  for  determining  the  architecture  and
parameters  of the  networks,  such as layer  type,  layer  size, optimal
method  and initialization.  This is also a challenge  for  deep learning
and machine  learning  in  general. To further  improve  the  learning
ability  of the  present  model,  multi-task  prediction  may be an av-
enue worth  pursuing,  such as the  prediction  of both  the  secondary
structure  and the  solvent  accessible surface area. 
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