
���������	
���
�����	��

�	�
�	��� � �
��� � �
����� � �
�� � ��
 �
�� � �	� � ��
�� � �� !"# � $���	� � �����
�% � ��������
&��	��	����%���	����&�'
��	��������(�)��*'��+,
���-%������!!.(�&&(�!!/+!�0(
1--�� 2/ +" /!�

$��'	�����%��3'�4	�

5��� � ���&��66��	(���6! (! !768(����%�(� !7(!!(!/
9���&��66��	(���6! (! !768(����%�(� !7(!!(!/:

;�	� � 4��	�� � *
� � ��*�'�
�� � <��� � ���������	
 � ��
��� � �	���
���&�66��'(���������	
(
�(��6	�6&�	��6027"/6

���������	
�5�	4��	�%��
���4'�&�����������	
���
�����	�������#�����
�'�����
�� �
���� � �� �5�	4��	�%=����
��� � ���&��(� ��&%�	��� �>�
�� � ���
' � �	���� �<�� � 	��� � ��
����
����
	����%����	��	4	��
'�
�������#�
��6����������&%�	�����*���(��-	��'���&	�
�<�<�''�	�����
�����&�������� �	�&'
%�����&�<������
����	4�������	���&
��	��	��
�%
<���
�������	���<���&����
'���
�����������%�����
�	��
'��������+<��+&��?��&��&���
*	����� � &�	�� � &��	��	�� � �� � ��
��� � &��4	�� � �� �
������� � �	�' �
�� � <�'' � �	�'	���
&�	�
��
	'��
���	4���
��*''�
��
��%&�'	���
��6���5�����������	�	�
'���
�
�
�&
�(�;�
��������������������
����	��
�%�*
%(�@�''�	�����������������'��������	
''%�	��
�%
<���
�������	���*	������<���
' �&��	��	����<������&%�	������'��(� �;��<�''�&�'	�%�	�

4
	'
�'���'	��� ���&�66��'(���������	
(
�(��6&�'	�	�(���'

;�	�����������
%��	A��<�������?�
'��&��'	����4��	����<������
����
����
����
�
��
4
	'
�'���'	��	��
�����
���*	���&��'	����&�'	�	�(�;���
��
��6����	��<������
&��'	��� �4��	�� � �< � �� � ��
���� �&'
� �4	�	� � �� �&��'	���=� � *��	� � �
 � ������	&�	��
�
%����B�	��(#

������������������������

http://nrl.northumbria.ac.uk/policies.html

Protein secondary structure prediction by using deep learning method

Yangxu Wang, Hua Mao
� , Zhang Yi

Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, People•s Republic of China

Keywords:
Deep learning
Secondary structure prediction
Encoder…decoder networks
Recurrent neural networks

a b s t r a c t

The prediction of protein structures directly from amino acid sequences is one of the biggest challenges
in computational biology. It can be divided into several independent sub-problems in which protein sec-
ondary structure (SS) prediction is fundamental. Many computational methods have been proposed for SS
prediction problem. Few of them can model well both the sequence-structure mapping relationship be-

tween input protein features and SS, and the interaction relationship among residues which are both im-

portant for SS prediction. In this paper, we proposed a deep recurrent encoder…decoder networks called
Secondary Structure Recurrent Encoder…Decoder Networks (SSREDNs) to solve this SS prediction prob-

lem. Deep architecture and recurrent structures are employed in the SSREDNs to model both the complex
nonlinear mapping relationship between input protein features and SS, and the mutual interaction among
continuous residues of the protein chain. A series of techniques are also used in this paper to re“ne the
model•s performance. The proposed model is applied to the open dataset CullPDB and CB513. Experi-

mental results demonstrate that our method can improve both Q3 and Q8 accuracy compared with some
public available methods. For Q8 prediction problem, it achieves 68.20% and 73.1% accuracy on CB513 and
CullPDB dataset in fewer epochs better than the previous state-of-art method.

1

i

p

[

e

a

p

p

a

t

p

s

a

i

b

�

c

a

M

c

d

p

l

p

a

m

f

t

t

T

m

p

i

m

i

w

p

s

p

. Introduction

Discovering protein•s structure and biological functions are very
mportant for understanding their biological processes, such as the
rotein-protein interactions [1] , protein complexes identi“cation

2] and protein structure prediction. Protein structure prediction,
lucidating the complex relationship between a protein sequence
nd its structure, is one of the most important challenges in com-
utational biology [3] . The most elemental task of protein structure
rediction is protein secondary structure (SS) prediction, which
ims to discover the structural states of amino acids. SS represents

he local conformation of the polypeptide backbone of proteins and
rovides a bridge that links the primary sequence and the tertiary
tructure, which is very helpful for many structural and functional
nalysis tools [4,5] .

Typically, protein secondary structures can either be divided
nto three states (� -helix (H), � -strand (E) and coil region (C)) or
e further classi“ed into eight “ne-grained states (3 10 -helix (G),
-helix (H), � -helix (I), � -strand (E), � -bridge (B), � -turn (T), high
urvature regions (S) and irregular loop (L)). SS prediction is usu-
lly evaluated by Q3 and Q8 accuracy, which measures the per-
� Corresponding author.
E-mail addresses: mellowxu@gmail.com (Y. Wang), huamao@scu.edu.cn (H.

ao), zhangyi@scu.edu.cn (Z. Yi).

r

t

p

r
entage of residues for which 3-state or 8-state SS is correctly pre-
icted. Currently, extensive research efforts have been spent on ap-
lying computational methods to address the Q3 prediction prob-

em, but very few to the more challenging Q8 prediction problem.

Hidden markov model (HMM) has been applied to 3-state SS
rediction problem [6] . Although HMM can describe the inter-
ctions among adjust residues, it•s very challenging for HMM to
odel the complex nonlinear relationship between input protein

eatures and SS. Support vector machine (SVM) [7] can deal with
his complex nonlinear mapping, but it•s challenging for SVM to
ake into consideration the interactions among adjacent residues.
o our best knowledge, by using a 2-stage neural networks (NNs)
ethod [8] , so far the best Q3 accuracy is about 80%. For the Q8
rediction problem, existing methods [9,10] fail to provide promis-

ng results. The problem may be that most of these mentioned
ethods are shallow architectures. The limitation of them is that

t•s very di�cult for a relatively shallow architectures to model
ell both the complex sequence-structure relationship between in-
ut protein features and SS, and the mutual interaction relation-
hip among residues. However, they are both important for SS
rediciton [10,11] .

Nowdays, NNs with deep architectures, also called deep neu-
al networks (DNNs) become the most powerful machine learning
echniques for pattern recognition [12,13] . With the ability of map-
ing unorganized low-level features into high-level laten data rep-
esentations which are more suitable for a “nal classi“cation prob-

http://dx.doi.org/10.1016/j.knosys.2016.11.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.11.015&domain=pdf
mailto:mellowxu@gmail.com
mailto:huamao@scu.edu.cn
mailto:zhangyi@scu.edu.cn
http://dx.doi.org/10.1016/j.knosys.2016.11.015

116

Fig. 1. (a) Deep feed-forward networks. (b) Deep recurrent networks.

l

l

l

r

c

c

W

l

s

a

r

D

n

c

a

W

d

t

2

w

r

t

c

i

l

y

�x

w

t
lem [14] , DNNs can better model the complex sequence-structure
relationship for SS prediction. Cheng [15] proposed a typical deep
belief networks model for Q3 prediciton, in which each layer is a
restricted Boltzmann machine (RBM). Another DNNs approach is
reported in [16] , which develop a multi-step iterative deep net-
works model that predicts four different sets of structural prop-
erties including 3-state SS. In order to better capture the mu-
tual interactions among residues, a deep convolutional generative
stochastic network is proposed in [17] for a 8-state SS prediction
problem, which may be the best 8-state predictor as we know.
However, the performance of this approach is sensitive to the cho-
sen convolution window size which is di�cult to determine. Re-
current neural networks (RNNs) are also adopted for this problem
as they can employ contextual information of input sequence and
learn the variable-width dependencies in the protein chain [11] .
However, the gradient problem still limits the application of these
RNN-based approaches [18] .

In this paper, we proposed a deep recurrent network, called
the Secondary Structure Recurrent Encoder…Decoder Networks
(SSREDNs) for the challenge of both Q3 and Q8 prediction.
SSREDNs employ the encoder…decoder architecture [19] , a typi-
cal deep architecture to model the sequence-structure relationship.
This architecture allows its encoder part to encode a given pro-
tein sequence into a representation layer and the its decoder part
decodes this learned representation into new feature space. Com-
pared with classical deep architectures, it enhances the model•s
learning and representation abilities [19] . Second, different with
[17] which use a deep convolutional networks, we use a new-typed
recurrent structure, called gated recurrent units (GRUs) [20] in
our networks to model the mutual interaction relationship among
residues. It overcomes the gradient problem and can better learn
both the adjacent and long-range interactions among residues
without the problem of choosing the size of the convolution win-
dow. The proposed networks can model both the complex non-
linear sequence-structure mapping between input protein features
and SS, and the mutual interaction relationship among residues. In
particular, a stack auto-encoder (SAE) architecture [21] is also con-
tained in the encoder part of our networks to automatically learn
compact and representative features for input. It•s especially help-
ful for proteins as we lack the necessary intuition or knowledge for
hand-crafting features involving multiple amino acids [22] . A series
of techniques are also adopted to re“ne the performance of the
networks, such as the dropout technique [23] and the optimized
algorithm named Adam [24] .

For the evaluation purpose, the proposed method is applied to
the benchmark dataset CB513 and CullPDB for both Q3 and Q8 pre-
diction. First, SSREDNs outperforms the best Q8 predictor [17] , es-
pecially on some SS types which are di�cult to predict. Further-
more, it also outperforms most of the public available methods for
both Q3 and Q8 prediction.

The paper is organized as follows. Section 2 gives an outline
of the deep learning architectures and techniques used in this
work. In Section 3 , the proposed networks model and its learn-
ing algorithm are introduced. Experimental details are elucidated
in Section 4 . Finally, the conclusions and future work are drawn in
Section 5 .

2. Preliminary

In this section, a brief introduction of DNNs and the SAE are
presented. In addition, the GRUs used to deal with the long-term
interactions between residues are also described.

2.1. Deep neural networks (DNNs)

DNNs are arti“cial neural networks with multiple hidden lay-
ers between the input and output layers. In DNNs, the deep-seated
ayers enable the extraction of more abstract features from lower
ayers. Although DNNs are typically designed with feed-forward
ayers, recently researchers have successfully developed DNNs with
ecurrent structures for applications such as natural language pro-
essing [25] . As shown in Fig. 1 (a), deep feed-forward networks
an represent complex data in a multi-layer network structure.
ith su�cient layers of learning neurons, it can map unorganized

ow-level features to a high-level data manifold, which is more
uitable for a “nal classi“cation or regression task.

Recurrent units has connections between neural units to form
 directed cycle, which allows them to exhibit dynamic tempo-
al behavior of arbitrary sequential inputs, as shown in Fig. 1 (b).
eep networks with recurrent structure, also called deep recurrent
eural networks (DRNNs) have already been successfully used for
omplex sequential data analysis, such as speech recognition, im-
ge semantic understanding and online handwritten recognition.
ith the extra capability of capturing the spatial/temporal depen-

encies within sequences, DRNNs are more di�cult to train due to
he vanishing-gradient and over-“tting problems [18] .

.2. Stack auto-encoder (SAE)

The classical auto-encoder (AE) [26] is a three-layer neural net-
ork (as shown in Fig. 2 (a)): an encoder layer maps input to a rep-

esentation layer and a decoder layer reconstructs the input from
he representation layer. The “rst two layers are regarded as an en-
oder, while the later two layers are regarded as a decoder. Given
nput x and let y denote the state of neurons in the representation
ayer, an AE•s feed-forward process can be formalized as follows:

 = � (W h x + b h) , (1)

 = g
�
W T h y + b o

�
, (2)

here � x is the reconstruct output, and W h , b h , W
T
h and b o respec-

ively denote the weight matrix of the encoder, bias vector of the

117

Fig. 2. (a) A typical with three-layer AE. The input x and output � x have the same
shape. After trained, the weights of both encoder and decoder are “xed. The en-
coder part can be stacked to an SAE then. (b) A four-layer Stack AE. It is pre-trained
layer-by-layer as thr ee stack AEs. The representation learned at the previous AE is
used as input for learning the next AE•s representation.

h

o

t

J

w

o

[

(

l

n

d

f

o

p

t

v

a

l

2

2

s

f

h

w

o

w

u

w

a

b

p

d

b

2

t

Fig. 3. (a) Classical recurrent unit. (b) Gated recurrent Unit.

w

i

t

(
o

a

h

H

u

i

o

a

z

z

�

T

h

w

c

e

r

�

W

i

t

t

o

idden layer, weight matrix of the decoder and bias vector for the
utput layer. As the reconstruction error is minimized in a well
rained AE, the cost function J AE can be de“ned as:

 AE = L (x, � x) , (3)

here L (·) is the function measuring the difference between the
riginal inputs and the reconstructed ones.

AE can be trained by the standard back-propagation algorithm
27] . AEs can be further stacked to create an stacked auto-encoder
SAE) [21] (as shown in Fig. 2 (b)). In a SAE, the representation
earned at the previous level is used as input for learning the
ext level•s representation, which yields a better representation for
eeper networks. It can automatically discover and extract useful

eatures or representations in a layer-wise procedure. The training
f SAE follows the recently proposed pre-training and “ne-tuning
aradigm. Automatically learning feature is important for the pro-

ein SS prediction as prior knowledge for hand-crafting features in-
olving multiple amino acids is barely available. Therefore, SAE is
dopted in SSREDNs to pre-train the feed-forward layers that fol-

ow the input layer to learn better features automatically.

.3. Gated recurrent units (GRUs)

.3.1. Classical recurrent unit

Recurrent units have connections towards themselves. A clas-
ical recurrent unit is shown in Fig. 3 (a), its update procedure is
ormalized as in Eq. 4 :

 t = g (W h · [x t , h t Š1]) , (4)

here x t is the input at time t, h t and h t Š1 is the hidden state
f the recurrent unit at time t and t Š 1 , respectively. W h is the
eights matrix. The bias is omit here.

As the nonlinear active function g (·) will act on the recurrent
nit repeatedly over time, it is di�cult to train a recurrent net-
orks. The gradient tends to either vanish (most of the time) or
pproach in“nity during the training process. This makes gradient-
ased optimization method di�cult, and it becomes even more
roblematic because the effect of long-term dependencies is hid-
en (being exponentially smaller with respect to sequence length)
y the effect of short-term dependencies [20] .

.3.2. Gated recurrent unit

As classical recurrent units have the gradient problems when
raining, a new-typed recurrent unit called GRU is used in our
ork. GRU was proposed to solve the gradient problem in train-
ng recurrent networks by allowing each recurrent unit to capture
he dependencies of different time scales in an adaptive manner
see Fig. 3 (b)). Unlike the classical recurrent unit, the activation h t

f the GRU at time t is a linear interpolation between the previous
ctivation h t Š1 and the candidate activation � h t :

 t = z t � h t + (1 Š z t) h t Š1 . (5)

ere, z t denotes the update gate of GRU. It decides how much the
nit updates its activation or content. This allows the error to eas-

ly back-propagate through the unit without vanishing too quickly
r blowing up as a result of passing through multiple time steps,
nd thus reducing the di�culty of training the recurrent networks.
 t is computed as follow:

 t = � (W z · [x t , h t Š1]) , (6)

(x) =
1

1 + e Šx . (7)

he candidate activation � h t is computed as [20] :

� t = tan h (W · [x t , r t � h t Š1]) , (8)

hich is similar to the traditional recurrent unit except for the in-
lusion of the r t � h t Š1 term; r t is a set of reset gates and � is an
lement-wise multiplication. r t is computed as follows:

 t = � (W r · [x t , h t Š1]) , (9)

(x) =
1

1 + e Šx . (10)

e use x t to denote the sequential input at time t . With GRUs, it
s easy for each unit to remember the existence of a speci“c fea-
ure in the input stream over a long series of time steps. Any fea-
ure that is decided to be important by the update gate will not be
verwritten.

118

Fig. 4. The proposed secondary structure recurrent encoder…decoder networks.

t

p

a

e

g

l

(

3

r

t

d

m

s

n

l

3

t

c

i

i

o

r

w

l

d
3. The proposed model and algorithm

As the major part of this article, the proposed secondary struc-
ture recurrent encoder…decoder networks (SSREDNs) will be pre-
sented in this section. Its architecture and the algorithm for learn-
ing parameters from data will be discussed in detail. We use a bi-
directional GRU structure here to deal with the spatial interaction
information in protein chain. Adam algorithm is used to learn the
network weights from data.

3.1. Secondary structure recurrent encoder…decoder networks

(SSREDNs)

As shown in Fig. 4 , secondary structure recurrent encoder…
decoder networks (SSREDNs) is essentially a deep recurrent net-
work with feed-forward layers and recurrent architectures. It is
consisted of an encoder part, a decoder part and a representation
layer. Both the encoder and decoder part contain feed-forward lay-
ers, recurrent layers and special training mechanisms. The encoder
part learns a good representation for the input protein feature se-
quence that re”ects both immediate and long-term amino acid de-
pendencies, and the decoder part uses the representation for the
“nal SS prediction which also takes consideration into the spatial
dependency. GRUs are used in the encoder and decoder to learn
the amino acid interaction information within the protein chain.

3.1.1. Encoder part

In the encoder part, a SAE is “rst used to pre-train the “rst
few layers of the networks for better feature extraction. This SAE
is train by a unsupervised layer-wise strategy. Then, weights from
he trained SAE are used to initialize these layers. By using this
re-training strategy, the networks can get more e�cient features
utomatically at the beginning of the training process. Through the
ncoder part, it allows the encoding of the input sequence into a
ood representation at the representation layer. Bidirectional GRU

ayers are used here to capture the context-dependent relationship
interaction among residues) here.

.1.2. Decoder part

The decoder part decodes the learned representation of the rep-
esentation layer into the structure space for SS prediction. Bidirec-
ional GRU recurrent layers are also used to learn additional global
ependence information for the “nal prediction. We use a soft-
ax layer as the “nal layer to output the probability of the eight

econdary structural states. Finally, the recurrent encoder…decoder
etwork is trained by a supervised way using the back-propagation

earning algorithm.

.1.3. Training

As shown in Fig. 4 , when training we use the amino acid fea-
ures as input to the network„residue by residue along the protein
hain„and the encoder generates a stable representation contain-
ng the contextual information of the input sequence. We normal-
ze the activation level of the representation layer through an extra
utput layer. Next, the decoder predicts the Q8 state for the cur-
ent input residue using the representation from the encoder. As
e use recurrent structures to model the sequence-structure re-

ationship, the window size problem of the convolutional method
oes not exist. At each time step, the network receives one residue

119

Fig. 5. Bidirectional GRU Layer.

f

s

3

d

p

G

i

e

”

t

t

i

p

v
d

p

l

p

v

t

o

l

r

w

o

s

t

i

g

d

t

i

r

3

b

b

o

w

Algorithm 1 B-GRU learning Algorithm.

Require:

Input Data :

X = { x 1 , x 2 , . . . , x N } : Sequence input X with length N
Ensure:

Feed forward:

for t = 1 to N do

a
prorsad
t = GRU(x t)

a prorsad = { a
prorsad
1 , a

prorsad
2 , . . . , a

prorsad
N }

end for

for t = N to 1 do

a re v erse
t = GRU(x N+1 Št)

a re v erse = { a re v erse
N , . . . , a re v erse

2 , a re v erse
1 }

end for

for all t � (1 , 2 , .., N) do

a t = concat
�

a
prorsad
t , a re v erse

N+1 Št

�

a = { a 1 , a 2 , . . . , a N }
end for

Back propogation:

for all t � (1 , 2 , .., N) do

Backward pass for output layer, storing the back error � at
each timestep

end for

for t = N to 1 do

BPTT for reverse GRU layer, using the stored � from output

layer

end for

for t = 1 to N do

BPTT for prorsad GRU layer, using the stored � from output

layer

end for

c

t

o

b

p

p

c

t

f

o

s

t

o

p

t

a

p

l

d

w

t

p

l

L

L

rom the protein chain as input and then outputs its secondary
tructural state.

.2. Bidirectional GRU

As the protein sequence contains both forward and reverse or-
er dependency information between adjacent positions on the
rotein chain, we used bidirectional recurrent layers [28] with
RUs in the networks. A bidirectional-GRU (B-GRU) layer is shown

n Fig. 5 . The B-GRU layer contains two reversed parallel GRU lay-
rs which are not connected to each other. Sequential information
ows through the two layers in reversed order as time progresses.

Consider a sequence of protein data of length N with
he networks• input denoted as X = (x 1 , x 2 , . . . , x N) . Each x i , i �
(1 , 2 , . . . , N) is a feature vector that contains the feature informa-
ion of the acids at position i . The learning algorithm for the B-GRU
s shown in Algorithm 1 :

The “rst GRU layer (forward GRU layer) will accept the in-
ut from x 1 to x N at each time step. The second GRU layer (re-
ersed GRU layer) will start at x N and accept the input from x N
own to x 1 ; i.e., in the backward time direction. In this way, when
rocessing a sequence input X = (x 1 , x 2 , . . . , x N) , the prorsad GRU

ayer will capture the information a
prorsad
t at any time step t , t �

(1 , 2 , . . . , N) , which contains the dependence relationship of the
revious t positions, while the reverse GRU layer captures the re-
ersed information a re v erse

N+1 Št , which contains the dependence rela-
ionship of the t previous positions in reverse direction. Therefore,
nce the B-GRU layer is trained, the forward and backward GRU

ayers• outputs a t , t � (1 , 2 , . . . , N) may include the full dependence
elationships for its input sequence at any position t . Both the for-
ard and backward GRU layers• outputs will pass upward to the
utput layer of the B-GRU to form a better representation for the
ubsequent layers. Furthermore, in the back-propagation process,
he forward and backward GRU layers are processed in decreas-
ng and increasing time order, respectively, by using the BPTT al-
orithm [29] .

Compared with a generic recurrent layer, the B-GRU can better
eal with both the spatial dependencies in protein sequence and

he gradient problems that normally occur during network train-
ng, which are usually the biggest challenge for training classical
ecurrent networks.

.3. Training

The network was trained with Adam, the stochastic gradient-
ased optimization method proposed by Kingma [24] . It com-
ine the advantages of two recently popular optimization meth-
ds: AdaGrad [30] , the adaptive gradient algorithm, and RMSProp,
hich is similar but introduces an additional decay term. Adam
omputes individual adaptive learning rates for different parame-
ers of the networks from estimates of “rst and second moments
f the gradients. It has been shown that Adam performs equal to or
etter than some other optimization methods, regardless of hyper-
arameter setting.

In SSREDNs, the learning of the representation layer is very im-
ortant for the “nal performance, because it connects both the en-
oder and the decoder. As we known, the outputs of SS predic-
ion must be a continuous structural states that adjacent residues
orm the uniform structure in space, eg. the SS state H may consist
f several acids. So a better activation of the representation layer
hould be that different input features may have similar represen-
ation at the hidden representation layer if they have the same
utput label at the end during the training process. For this pur-
ose, a additional output layer is added followed the representa-

ion layer with Mean Square Error cost function to constrain its
ctivation level. It will force different input feature to obtain ap-
roximate activations at representation layer if they have the same

abel. So there are actually two output layers in the training proce-
ure, the gradients ”ow from both output layers. One updates the
hole networks but the other one just re”ects the encoder. After

he weights of the networks is trained we only use the “nal out-
ut layer (red part in Fig. 6). The cost functions of the two output

ayers are as follows:

 1 (x, �) =
1

m

m �

i = 1

n �

j= 1

�
x

j
i Š y

j
i

� 2
, (11)

 2 (x, �) = Š
1

m

m �

i = 1

n �

j= 1

(y
j
i log (P (x

j
i)) + (1 Š y

j
i)(1 Š log (P (x

j
i)))) ,

(12)

120

Fig. 6. Multi-output training. A additional output layer with Mean Square Error
(MSE) cost is added followed the representation layer during the training process.
It help to adjust the activity of the representation layer for the “nal prediction. It
also help to speed up the training process to some extent.

s

,

s

f

w

a

6

s

i

p

t

w

b

S

w

D

I

d

(

s

t

a

o

i

p

a

t

[

n

s

4

4

5

c

p

c

l

n

o

a

t

i

t

l

t

a

s

t

w

p

(

i

t

r

i

t

t

i

A

T

b

where � is the parameter set, and x
j
i , y

j
i denote the j-th element of

the i-th sample of the input set x and the target set y , respectively.
We use the Adam algorithm [24] to optimize the SSREDN

in training process. Moreover, the “nal cost function L (x, �) of
SSREDNs is a sum of cost at the two output layers. � denotes the
whole parameter set of the networks and we use � to balance the
contribution of the two output layers.

L (x, �) = L 1 (x, �) + � L 2 (x, �) (13)

4. Experiments

In order to evaluate the performance of proposed SSREDNs
a series of experiments are performed on open datasets CullPDB
[31] and CB513 [10] . Detailed data description is “rst provided in
Section 4.1 . In Section 4.2 , the model training setup is presented.
First, variations of network architectures of different layers were
tested to re“ne the model•s performance. Among them, we select
the one with best performance for later comparison with other ex-
isting approaches. We also have evaluated the in”uence of the pre-
train strategy using the SAE on the “nal prediction performance.
The performance analysis is presented in Section 4.3 . It shows that
our method smoothly converges with fewer training epochs and
improves almost all of the 8 statas•s sensitivity and precision ac-
curacy on the CullPDB testing set compared with [17] which may
be the best 8-state predictor. Our method is also compared with
some public methods (SSpro [32] , RaptorX [10] , PSIPRED [8]) on
both CullPDB and CB513 dataset. It outperforms the others on both
Q3 and Q8 accuracies.

4.1. Features and dataset

The major purpose of predict the SS types for each amino acid
of a given protein sequence. We solve both the Q8 and Q3 predic-
tion problems in this paper. We evaluated the proposed SSREDN
or both Q3 and Q8 on two datasets CullPDB [31] and CB513 [10] ,
hich are also used by other related investigations [10] . CullPDB,
 large non-homologous dataset (identity less than 30%), contains
128 protein amino acid sequences labeled with Q8 secondary
tructure, and has been randomly divided into training (5600), val-
dation (248), and testing (280) sets. A separate evaluation is also
erformed on CB513 dataset, which contains 513 proteins, while
raining on CullPDB dataset further “ltered to remove sequences
ith more than 25% identity with the CB513 dataset.

Protein sequence pro“les with evolutionary information have
ecome a breakthrough for SS prediction. Thus, Position Speci“c
coring Matrix (PSSM) features have been used here, which are
idely used features that can be extracted from protein pro“les by
e“ne Secondary Structure of Proteins (DSSP) and Position Speci“c

terated Basic Local Alignment Search Tool (PSI-BLAST). In [17] , the
ata used for training contained features and labels in 56 channels
22 for PSSM, 22 for amino acid sequence, 2 for terminals, 2 for
olvent accessibility labels, 8 for secondary structure labels). The
raining data include 700 amino acids. It•s considered to provides
 good balance between e�ciency and coverage as the majority
f protein chains are shorter than 700 amino acids. When train-

ng and testing, shorter sequences (less than 700 amino acids) are
added with 0.

Thorough our experiments, only PSSM features (22) and amino
cid sequence features (22) were used here for the 8-state predc-

ion. We also further removed the •Noseq• channel as a convention
17] . So the input pro“les in our experiment consist of 50 chan-
els (21 for PSSM, 21 for the amino acid sequence, 8 for secondary
tructure labels).

.2. Training setup

.2.1. Networks setup

In the encoder and decoder framework, the ReLU layers with
0…300 units are used as feed-forward layers. GRU layers always
ontains 10 0…30 0 gated recurrent units. In the B-GRU layer, out-
ut from the bidirectional forward and backward layers are con-
atenated into a single vector to be used as input in the following
ayers.

Weights of the SAE were initialized in a greedy layer-wise man-
er, which map the layers• inputs back to themselves. Next, the
ther weights in each layer are sampled uniformly between Š0.05
nd 0.05 and biases are initialized at 0. The initial hidden states of

he GRU layers (� h , h) are all set to 0 and updated during the train-
ng procedure. We use 50% dropout at the B-GRU and GRU layers
o avoid the over-“tting problem.

A ReLU activation function [33] is used for all the feed-forward
ayers other than the output layer. When training, a softmax activa-
ion function is used on the “nal classi“cation layer and a sigmoid
ctivation function is used on the middle extra output layer, as
hown in Fig. 6 . The learning rate for the SAE stage is 0.05. When
raining the whole encoder…decoder network, the Adam algorithm,
hich only requires “rst-order gradients and little memory, is ap-
lied to control the parameter updates with the default settings
 � = 0 . 001 , � 1 = 0 . 9 , � 2 = 0 . 999 , 	 = 1 e Š 8). Here, � is the learn-
ng rate, � 1 , � 2 are parameters for exponential moving averages of
he gradient and the squared gradient, respectively, 	 is a small pa-
ameter used to avoid singularities associated with a zero denom-
nator. We just set � to 1 for an equivalent contribution between
he two output layers in Eq. (13) .

All parameters were trained globally by Adam algorithm with
he “nal cost function in Eq. (13) . The maximum number of train-
ng epochs is 100 and the batch size is 40 in our experiment.
ll the training procedures are implemented by Python based on
heano and Keras libraries. The training procedure was executed
ased on Nvidia Tesla K40 GPUs.

121

Table 1
Prediction accuracies is given for SSREDNs with different architectures.

Model Q8 Accuracy (%) Segment overlap score

3SAE,1BGRU,2FNN,1GRU 71 .84 77 .17
5SAE,1BGRU,2FNN,1GRU 70 .51 76 .70
3SAE,2BGRU,2FNN,2BGRU 72 .51 77 .95
3SAE,2BGRU,1GRU,2FNN,1BGRU 72 .36 77 .64
3SAE,2BGRU,2FNN,1BGRU 73 .14 78 .20

Table 2
Comparison of the performance with and without pre-train using SAE.

Model (3SAE,2BGRU,2FNN,1BGRU) Q8 Accuracy Segment overlap score

Without pre-train 72 .13 77 .12
Pre-train using SAE 73 .14 78 .20

4

a

a

c

t

p

G

d

t

p

s

4

b

l

l

R

l

}

C

4

T

a

f

f

t

t

T

f

C

t

I

s

4

4

v

2

t

p

f

p

t

f

G

S

Table 3
Performance of individual secondary structure state on CullPDB
testing set.

Sec. Sensitivity Precision Frequency Description

H 94 .11 /93.5 86 .96 /82.8 35 .8/35.4 � -helix
E 84 .52 /82.3 78 .07 /74.8 24 .1/21.8 � -helix
L 64 .01 /63.3 58 .24 /54.1 21 .3/18.6 loop
T 53 .97 /50.6 57 .96 /54.8 10 .1/11.1 � Š turn
S 28 .29 /15.9 49 .13 /42.3 5 .0/7.9 bend
G 35 .99 /13.3 40 .4 8/ 4 9.6 3 .4/4.1 3 10 Š helix
B 7 .4 /0.1 45 .63/ 50 0 .2/1.1 � Š brige
I … /„ … /00- 0 / 0 � Š helix

Fig. 7. Model performance during the training process on CullPDB dataset. (a) The
curve converges to a stable state within 20 epoches on CullPDB training dataset. (b)
The whole performance curve of SSREDNs within 100 training epochs.

[

s

t

O

a

a

f

�

i

w

4

T

v
.2.2. Architecture analysis

We tried a set of various network architectures to “nd a suit-
ble model for protein SS prediction problem. Their performances
re shown in Table 1 . The segment of overlap (SOV) score, which
an be interpreted as SS segment-based accuracy, is also used here
o evaluate the performance of different network architecture. Em-
irically, we found that a 3-layer SAE is a suitable choice. The B-
RU layers always get better results than the standard GRU layers
uring the training process. It veri“es that the bidirectional struc-

ure can better capture the interaction relations of residues in the
rotein chain both in the encoder part and the decoder part. Be-
ides, the recurrent layer will also affect the training results (row
 vs 5 in Table 1). The optimal structure (in row 5) was found to
e: {300-256-128 Stacked Auto-encoder } … {256 Bidirectional GRU

ayers(0.5 dropout) } � 2 … {256-128 ReLU layers } … {64 ReLU Rep
ayer } … {128 Bidirectional GRU layer (0.5 dropout) } … {256-128
eLU layers} … {8 sigmoid layer}. Furthermore, a {8 sigmoid layer}

ayer with MSE cost function was added on the {64 ReLU Rep layer
. It obtained 73.14% Q8 accuracy and 78.20% SOV scores on the
ullPDB testing (272) set.

.2.3. Stack auto-encoder
Feature learning is a very important process for SS prediction.

he discovery of good features may bene“t the prediction process
nd improve the prediction accuracy. A SAE architecture is used

ollowed the input layer in our model to extract better features
rom the input protein features automatically. After pre-training,
he SAE part learned robust representation from the input fea-
ures. It will also be “ne-tuned when training the whole networks.
o con“rm if this pre-train strategy using SAE is really helpful
or improving the prediction accuracy, we trained a model on the
ullPDB training set with and without the pre-train strategy and

est it on the CullPDB testing set. The result is shown in Table 2 .
t improves the “nal Q8 accuracy from 72.13% to 73.14% and SOV
core from 77.12% to 78.20%.

.3. Performance

.3.1. Performance on testing set
The prediction sensitivities, precisions and frequencies for indi-

idual secondary structure states of the CullPDB testing set with
72 sequences are shown in Table 3 . Compared with [17] , for
he four major states, H, E, L and T, our SSREDNs method im-
roves the prediction sensitivity and precision. The improvement

or the prediction of state T, i.e., the � Š turn prediction which de-
ends on the long-range inter-residue interactions, indicates that

he SSREDNs model can learn the long-range structure features
rom the input protein chain sequence. Predictions for the states
, S and B are di�cult because of their less frequencies, and the
SREDNs also makes better predictions for them compared with
17] on prediction sensitivities. The lower prediction precisions for
tates G and B are accounted for by their relative rarity in the
raining set compared with our test set (3.1 vs 4.1, 0.2 vs 1.1).
n the other hand, SSREDNs is essentially a data-driven model,
nd it can learn the complex interdependencies of residues from
 mass of training sequences. The SSREDNs has some limitation
or predicting the rarity state G, B and I (3 10 Š helix, � Š brige and

Š helix) due to their few frequencies (only around 5% in total)
n the train sequences. These states will also be a focus of future
ork.

.3.2. Convergence
Fig. 7 (a) shows the training accuracy for the CullPDB dataset.

he SSREDNs show a powerful learning ability that always con-
erges within 20 training epochs to a prediction accuracy rate of

122

Table 4
Q8 accuracy on CullPDB and CB513.

Model Q8 Accuracy

CB513 CullPDB

GSN [17] 66 .4 72 .1
The optimal SSREDNs 68 .2 73 .1

Table 5
Q8 and Q3 accuracy on datasets CB513 and CullPDB.

Method Q8 Q3

CB513 CullPDB CB513 CullPDB

SSpro 63 .5 66 .6 78 .5 79 .5
RaptorX-SS8 64 .9 69 .7 78 .3 81 .2
PSIPRED … … 79 .2 82 .5
Ours 68 .2 73 .1 82 .9 84 .2

A

C

S

f

R

[

[

[

[
about 72%, equal to the best result in [17] , which requires 300
epochs. In Fig. 7 (b), it shows that SSREDNs will smoothly converges
to its optimal result on validation set within about 70 training
epochs, and this optimal model is used for the testing set in our
experiments.

4.3.3. Comparasion with other methods

As shown in Table 4 , we compared the Q8 accuracy of our
method with the deep generative stochastic network (GSN) method
in [17] , which may be the best 8-state predictor. For this valida-
tion, we trained a model in which the CullPDB dataset was “l-
tered to remove sequences having homology with CB513 sequences
(more than 25% identity). We also just consider the PSSM features
and amino acid sequence features in the testing. With the optimal
model, we achieve a Q8 accuracy of 68.2% on CB513 and 73.1% on
CullPDB, which outperforms the best result of GSN model.

With the same network architecture and parameters set, we
also compare our method with the following public available pro-
grams: PSIPRED for 3-states SS prediction; SSpro, RaptorX for both
8-states and 3-states SS prediction on the datasets of CB513 and
CullPDB. The SSpro package is used without template(i.e., not using
a solved structure in PDB as template). All the programs are run-
ning with their parameters set according to their respective papers.
As listed in Table 5 , our method outperforms the others, including
the popular PSIPRED on Q3 prediction, SSpro and RaptorX on both
Q3 and Q8 prediction. In terms of both Q3 and Q8 accuracy on
CullPDB and CB513, we obtains 84.2%, 82.9%, 73.1% and 66.4%, re-
spectively.

5. Conclusion and future work

In this article, we proposed a deep recurrent encoder…decoder
network and employed it to predict the secondary structure of
residues in amino acid sequences. The combination of encoder…
decoder architecture and GRUs is well suited to model both
the sequence-structure relationship between input protein fea-
tures and SS, and the mutual interactions among residues. It also
achieves better performance on both Q3 and Q8 accuracy. For fur-
ther development of the learning ability of SSREDNs, however, a
method must be developed for determining the architecture and
parameters of the networks, such as layer type, layer size, optimal
method and initialization. This is also a challenge for deep learning
and machine learning in general. To further improve the learning
ability of the present model, multi-task prediction may be an av-
enue worth pursuing, such as the prediction of both the secondary
structure and the solvent accessible surface area.
cknowledgment

This work was supported by the National Science Foundation of
hina (Grant nos. 61432012 and 6140230 6).

upplementary material

Supplementary material associated with this article can be
ound, in the online version, at 10.1016/j.knosys.2016.11.015 .

eferences

[1] X. Luo , Z. Ming , Z. You , S. Li , Y. Xia , H. Leung , Improving network topolo-
gy-based protein interactome mapping via collaborative “ltering, Knowl.-Based
Syst. 90 (2015) 23…32 .

[2] X. Lei , Y. Ding , H. Fujita , A. Zhang , Identi“cation of dynamic protein com-
plexes based on fruit ”y optimization algorithm, Knowl.-Based Syst. 105 (2016)
270…277 .

[3] J. Cheng , A.N. Tegge , P. Baldi , Machine learning methods for protein structure
prediction, IEEE Rev. Biomed. Eng. 1 (2008) 41…49 .

[4] J.K. Myers , T.G. Oas , Preorganized secondary structure as an im portant deter-
minant of fast protein folding, Nat. Struct. Biol. 8 (6) (2001) 552…558 .

[5] Z. Yang , I-Tasser server for protein 3d structure prediction, BMC Bioinform. 9
(3) (2008) 297…315 .

[6] Z. Aydin , Y. Altunbasak , M. Borodovsky , Protein secondary structure prediction
for a single-sequence using hidden semi-markov models, BMC Bioinform. 7 (1)
(2006) 178 .

[7] X.D. Sun , R.B. Huang , Prediction of protein structural classes using support vec-
tor machines, Amino Acids, 30 (4) (2006) 469…475 .

[8] D.T. Jones , Protein secondary structure prediction based on position-speci“c
scoring matrices, J. Mol. Biol. 292 (2) (1999) 195…202 .

[9] G. Pollastri , D. Przybylski , B. Rost , P. Baldi , Improving the prediction of protein
secondary structure in three and eight classes using recurrent neural networks
and pro“les, Proteins: Struct. Funct. Bioinform. 47 (2) (2002) 228…235 .

[10] Z. Wang , F. Zhao , J. Peng , J. Xu , Protein 8-class secondary structure prediction
using conditional neural “elds, Proteomics, 11 (19) (2011) 3786…3792 .

[11] S. Babaei , A. Geranmayeh , S.A. Seyyedsalehi , Protein secondary structure pre-
diction using modular reciprocal bidirectional recurrent neural networks, Com-
put. Methods Programs Biomed. 100 (3) (2010) 237…247 .

[12] R. Salakhutdinov , G. Hinton , Deep Boltzmann machines, J. Mach. Learn. Res. 5
(2) (2009) 1967…2006 .

[13] Y. Bengio , G. Mesnil , Y. Dauphin , S. Rifai , Better mixing via deep representa-
tions, in: Proceedings of International Conference on Machine Learning (ICML),
2012, pp. 552…560 .

[14] G.E. Hinton , R.R. Salakhutdinov , Reducing the dimensionality of data with neu-
ral networks, Science, 313 (5786) (2006) 504…507 .

[15] M. Spencer , J. Eickholt , J. Cheng , A deep learning network approach to ab initio
protein secondary structure prediction, IEEE/ACM Trans. Comput. Biol. Bioin-
form. 12 (1) (2015) 103…112 .

[16] R. Heffernan, K. Paliwal, J. Lyons, A. Dehzangi, A. Sharma, J. Wang, A. Sattar,
Y. Yang, Y. Zhou, Improving prediction of secondary structure, local backbone
angles, and solvent accessible surface area of proteins by iterative deep learn-
ing, Sci. Rep. 5 (11476) (2015), doi: 10.1038/srep11476 .

[17] J. Zhou , O.G. Troyanskaya , Deep supervised and convolutional generative
stochastic network for protein secondary structure prediction, in: Proceedings
of International Conference on Machine Learning (ICML), 2014, pp. 745…753 .

[18] R. Pascanu , T. Mikolov , Y. Bengio , On the di�culty of tr aining recurrent neu-
ral networks, in: Proceedings of International Conference on Machine Learning
(ICML), 2013, pp. 1310…1318 .

[19] K. Cho, B.V. Merrienboer, D. Bahdanau, Y. Bengio, On the properties of neural
machine translation: encoder-decoder approaches, arXiv preprint, arXiv:1409.
1259 (2014).

20] J. Chung, C. Gulcehre, K.H. Cho, Y. Bengio, Empirical evaluation of gated recur-
rent neural networks on sequence modeling, arXiv preprint, arXiv:1412.3555
(2014).

[21] P. Vincent , H. Larochelle , I. Lajoie , Y. Bengio , P.A. Manzagol , Stacked denoising
autoencoders: learning useful representations in a deep network with a local
denoising criterion, J. Mach. Learn. Res. 11 (6) (2010) 3371…3408 .

[22] C.D. Huang , S.F. Liang , C.T. Lin , R.C. Wu , Machine learning with automatic fea-
ture selection for multi-class protein fold classi“cation, J. Inform. Eng. 21 (4)
(2005) 711…720 .

23] G.E. Dahl , T.N. Sainath , G.E. Hinton , Improving deep neural networks for lvcsr
using recti“ed linear units and dropout, in: Proceedings of IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013,
pp. 8609…8613 .

[24] D. Kingma , J. Ba , Adam: a method for stochastic optimization, in: Proceed-
ings of International Conference on Learning Representations (ICLR), 2015,
pp. 254…269 .

25] M. Hermans , B. Schrauwen , Training and analysing deep recurrent neural net-
works, in: Proceedings of Advances in Neural Information Processing Systems
(NIPS), 2013, pp. 190…198 .

26] Q. You , Y.J. Zhang , A new training principle for stacked denoising autoen-
coders, in: Proceedings of International Conference on Image and Graphics,
2013, pp. 384…389 .

123

[

[

[

[

[
[27] R. Hecht-Nielsen , Theory of the backpropagation neural network, Neural Netw.
1 (1) (1988) 65…93 .

28] M. Schuster , K.K. Paliwal , Bidirectional recurrent neural networks, IEEE Trans.
Signal Process. 45 (11) (1997) 2673…2681 .

29] P.J. Werbos , Backpropagation through time: what it does and how to do it,
Proc. IEEE, 78 (10) (1990) 1550…1560 .

30] J. Duchi , E. Hazan , Y. Singer , Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (7) (2011) 257…269 .
[31] W. Guoli , R.L. Dunbr ack Jr , Pisces: a protein sequence culling server, Bioinfor-
matics, 19 (12) (2003) 1589…1591 .

32] C.N. Magnan , P. Baldi , Sspro/accpro 5: almost perfect prediction of protein
secondary structure and relative solvent accessibility using pro“les, machine
learning and structural similarity, Bioinformatics, 30 (18) (2014) 2592…2597 .

33] X. Glorot , A. Bordes , Y. Bengio , Deep sparse recti“er neural networks, in: Pro-
ceedings of International Conference on Arti“cial Intelligence and Statistics
(AISTATS), 2011, pp. 315…323 .

	Protein secondary structure prediction by using deep learning method
	1 Introduction

