Northumbria Research Link

Citation: Sun, Yanan, Mao, Hua, Guo, Quan and Yi, Zhang (2016) Learning a good
representation with unsymmetrical auto-encoder. Neural Computing and Applications, 27
(5). pp. 1361-1367. ISSN 0941-0643

Published by: Springer

URL: http://dx.doi.org/10.1007/s00521-015-1939-3 <http://dx.doi.org/10.1007/s00521-
015-1939-3>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/39680/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is

available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher's website (a subscription
may be required.)

ok Northumbria 5

University
NEWCASTLE w

O]

8 UniversityLibrary

http://nrl.northumbria.ac.uk/policies.html

Learning a good representation with unsymmetrical auto-encoder

Yanan Sun' - Hua Mao' - Quan Guo' - Zhang Yi'

Abstract Auto-encoders play a fundamental role in
unsupervised feature learning and learning initial parame-
ters of deep architectures for supervised tasks. For given
input samples, robust features are used to generate robust
representations from two perspectives: (1) invariant to
small variation of samples and (2) reconstruction by
decoders with minimal error. Traditional auto-encoders
with different regularization terms have symmetrical
numbers of encoder and decoder layers, and sometimes
parameters. We investigate the relation between the num-
ber of layers and propose an unsymmetrical structure, i.e.,
an unsymmetrical auto-encoder (UAE), to learn more
effective features. We present empirical results of feature
learning using the UAE and state-of-the-art auto-encoders
for classification tasks with a range of datasets. We also
analyze the gradient vanishing problem mathematically
and provide suggestions for the appropriate number of
layers to use in UAEs with a logistic activation function. In
our experiments, UAEs demonstrated superior performance
with the same configuration compared to other auto-
encoders.

Keywords Auto-encoder - Neural networks - Feature
learning - Deep learning - Unsupervised learning

DX Zhang Yi
zhangyi@scu.edu.cn

Machine Intelligence Laboratory, College of Computer
Science, Sichuan University, Chengdu 610065, PR China

1 Introduction

Learning high-level representations of signals for related
tasks remains a critical problem in machine learning.
Recently, deep architectures have emerged as important
tools for learning useful representation. Theoretical results
strongly suggest the benefits of deep architectures; however,
the numerous parameters in deep learning architectures
make their practical application difficult. Learning algo-
rithms such as deep belief networks [11], also known as
deep learning, have been proposed to narrow this gap, which
makes deep architectures more practical. In recent years,
deep learning has played a significant role in the field of
machine learning. Deep learning algorithms include pre-
training and fine-tuning procedures. Unsupervised pretrain-
ing trains the network to an acceptable initial starting point.
Then, the entire network is fine-tuned, usually in a super-
vised manner, relative to the initialization point and the
supervised target to obtain optimal parameters for the task.
Combining unsupervised pretraining and supervised fine-
tuning often results in better generalization than only fine-
tuning from a randomly initialized position. In the pre-
training procedure, each layer is organized as an auto-en-
coder [6] that receives patterns from the output of the
previous layer and reconstructs them. During the pretraining
procedure, auto-encoders can be not only trained, respec-
tively, but also combined into a symmetrical deep neural
network that can be trained simultaneously. During the fine-
tuning procedure, encoders are stacked and decoders are
discarded. Then, a supervised layer such as a logistic
regression layer or a softmax regression layer is added. The
parameters for supervised fine-tuning are initialized using
the weights trained in the pretraining procedure.

There are numerous auto-encoder variants. For example,
sparse auto-encoders [12, 18] add a sparse penalty term to

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1939-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1939-3&domain=pdf

1362

the cost function, weight decay auto-encoders add a weight
decay term to the overall cost function, denoising auto-
encoders (DAEs) [25] use corrupted input data to recon-
struct the original data, and contractive auto-encoders
(CAESs) [22] penalize the partial derivation of a represen-
tation with respect to the input data. All of these auto-
encoder variants can improve learning ability and the
networks generalization performance and consequently
enhance the effectiveness of the learned representations.
Using effective representations as input for a supervised
task, such as classification, results in better performance,
e.g., lower misclassification rates. Classification perfor-
mance does not depend directly on the choice of classifier;
classification results would nearly be the same if the
learned representations were sufficient [6, 11]. Therefore,
good quality representation is important.

What are the principles of good representation? On the
one hand, the representation should retain the information
on the input data such that it remains consistent with the
underlying data distribution. The ability to capture the
salient structure of the input data distribution is a funda-
mental and intrinsic principle of basic auto-encoders,
sparse auto-encoders, and auto-encoders that use a weight
decay term. On the other hand, the representation should be
robust to the variance of the input pattern, i.e., the repre-
sentation should ignore small variations in input patterns.
Robustness against input pattern variations is demonstrated
by DAEs and CAEs. Auto-encoders discover more robust
representation as the layers of the network increase [5],
which has also been observed empirically [14].

The auto-encoders mentioned above, i.e., traditional
auto-encoders, have symmetrical structures. In some auto-
encoders, the weights of corresponding layers are set to be
symmetrical. In this paper, we investigate the relation
between the number of encoder and decoder layers and
show that symmetrical structure and parameters are not
necessary for learning good representation. We propose an
unsymmetrical auto-encoder (UAE) for unsupervised fea-
ture learning and pretraining. UAEs have different numbers
of layers of encoders and decoders, and UAEs are not
symmetrical. We have assessed the performance of the
proposed UAE using benchmark datasets. The experi-
mental results show that the performance of UAEs is
superior to that of other auto-encoders.

2 Auto-encoders

An auto-encoder [4] is a neural network used for unsu-
pervised learning [15, 16] of efficient features. A typical
auto-encoder has one input layer, one output layer, and
one hidden layer. The output of the hidden layer can be

used as the representation of the input data. The aim of an
auto-encoder is to learn a set of berter features by map-
ping given data to the representation space. Typically, the
identification or selection of better, i.e., more efficient,
features is performed to reduce dimensionality and
improve discrimination in classification tasks. An auto-
encoder is a special case of a multilayer perceptron where
the output layer is trained to reconstruct the input from the
representation. Mapping from input to representation is
referred to as encoding, and reconstruction from repre-
sentation to the auto-encoder output is referred to as
decoding. More precisely, input data are denoted by
x € R", representation is denoted by y € R™, and its
reconstruction is denoted by £ € R". The auto-encoder is
given as follows:

y = F(x;0°)

i:G(y;Hd), o

where F : R" — R™ is the encoder and G : R" — R" is the
decoder. 0 are the parameters for the encoder, and 0% are
the parameters for the decoder. We denote the parameters
of the auto-encoder as 0 = 6 U 0. The reconstruction x is
a deterministic function of input sample x defined as
follows:

i=GoF(x;0). (2)

Then, the performance of the auto-encoder can be mea-
sured by the reconstruction error. The cost function can be
formulated as follows:

1
J(0;X) :N;L(GoF(x; 0),x). (3)
Here, N is the number of data in a set of samples X. L

denotes a measurement of difference. In most cases, we use
_ 1
—2
By minimizing the cost function, we obtain the optimal
parameters 0 for the auto-encoder.

Traditional auto-encoders use a symmetrical setting as

follows:
F=FoF,o---0Fy
M
G=G10Gyo---0Gy.
M

square Euclidean distance by which L(X,x) % — x||*.

(4)

Here, M is the number of auto-encoders, and F;(x, 0f) and
G; (x, 9?) are neuron layers by which f(wx +b;). 6; =
{wi,b;} C 0 are the parameters for the layer, and f denotes
the activation function. In common cases, especially when
we pretrain a classifier network, the following auto-en-
coders with only one layer are used:

1363

{yzf(wix—&-bﬁ) 5)

£ =f(wix+0bf).

When the activation function is linear and there are fewer
hidden nodes than input units, we can obtain a result that is
similar to that of principal component analysis [1]. The
learned weights are the principle components of the input
space. Using more units in the hidden layer than in the
input layer with a linear activation function leads to a
trivial solution by which the weight is an identical matrix.
Commonly, we consider a case using a sigmoid activation
function f(s) = L= and more hidden units than input
units.

To avoid learning a trivial solution, over-fitting, and
other unfavorable results, researchers have introduced
many useful auto-encoder variants.

2.1 Sparse auto-encoder (AE+Sparse)

Potentially, we can simply learn an identity function if we
use the cost function in 3 to train the network. The repre-
sentations will no longer be determined uniquely by the
input data using more units in the hidden layer than in the
input layer with a nonlinear activation function. Among
such representations, one with the most zero components is
interesting by adding sparsity constraints to the cost Eq. 5.
Sparsity constraints are shown to yield features that are (for
some) more invariant to geometric transformations of
images [9, 20, 21]. Cost function of sparse auto-encoders
has the following form:

JAE+Sparse(9§X) = J(Q,X) + /“S(Y)v (6)

where S(y) measures the sparsity of y and /4 is a hyper-
parameter to balance the penalty.

2.2 Weight decay auto-encoder (AE+WD)

It is shown that if we want to improve the generalization
ability of a neural network, we should consider the balance
between the information in the training examples and the
complexity of the network [3, 23, 24]. A way always used
to decrease the complexity is to limit the growth of the
weights through some type of weight decay [17]. Com-
monly, the cost function of auto-encoders with weight
decay has the following form:

, 1
JAE+WD(9§X) :J(H,X)—F/LZEHW”IZ; (7)
wel
Here, 1 is a hyper-parameter that controls how strongly
large weights are penalized, and || - || is the Frobenius
norm. It is known that weight decay of this form can
improve generalization [10].

2.3 Denoising auto-encoder

A DAE maps a corrupted example back to an uncorrupted
example [26]. It minimizes the reconstruction error
between the output and the uncorrupted example. Thus, the
network can learn a robust representation. Its cost function
has the following form:

1
0;X) ==Y L(GoF(x;0),x).

JDAE()) N)CGZX (G ())7) (8)
Here, x’ denotes corrupted x. In this context, it is assumed
that the input data with high dimension lay in an underlying
low-dimensional manifold. During training, DAEs learn a
stochastic operator p(xl1X) mapping the corrupted X back to
its uncorrupted version. Corrupted examples are more
likely to be outside and distant from the manifold than
uncorrupted examples. The mapping learns from the
examples encompassing corrupted and uncorrupted data to
the manifold by the corrupted examples; thus, it enlarges
the learning territory and increases learning ability.

2.4 Contractive auto-encoder

A CAE [22] uses a training criterion that not only recon-
structs the input data but also encourages the learned rep-
resentation y to be as invariant as possible to the input data
x. The criterion is used to minimize the sum of a recon-
struction error with a Frobenius norm of its Jacobian
matrix, which is the derivation of each hidden unit output
with respect to each input. The cost function of CAEs has
the form:

2
da,

oX

Teas(0:X) = J(0;X) + z‘ (9)

F
When we minimize Jcag, the second term will be very
small; thus, w¢ will tend to zero and w? will tend to infinity
to satisfy the first term. To prevent this trivial solution, we
typically employ a tied weight, i.e., w’ is forced to the

transpose of w®. However, b? and b° are initialized and
trained, respectively.

3 Unsymmetrical auto-encoder

We generalize the concept of auto-encoders and propose
the UAE. The UAE demonstrates the following unsym-
metrical structure:
F:Fl OF20~~~OFM
—_—————
M
G:GloGzo"'Oc;lwr7

M

1364

where the encoder and decoder have different numbers of
layers. Figure 1 illustrates the architecture of a UAE that
differs from conventional auto-encoders.

The proposed UAE is a multilayer neural network with
more than one hidden layer. It contains many encoders
that are used to learn the multiple-level representation,
and many decoders are used to better reconstruct the
input data. Generally, a n-layer UAE, including one out-
put layer and n— 1 hidden layers, with parameters
0={0ie{1,2,3---n}}, where 0' = {w!,b'}, can be
formulated as follows:

4= wiad +bi

a =fi(Z) (1)

a® = x.

Here, x denotes the input data, i denotes layer /;, and a"
denotes the reconstruction of the input data. UAEs try to
minimize the following cost function:

JUAE(G;X) :%ZL(GH,CIO)- (]2)
xeX

Typically, there are two ways to perform pretraining with
auto-encoders. Here, a total of Q auto-encoders are
assumed. The first pretraining method is to train the first
auto-encoder and then use the output of the hidden layer of
the first auto-encoder as the input of the second auto-en-
coder to train the second auto-encoder. This procedure is
then repeated to train Q auto-encoders. This method is
illustrated in Fig. 2. The second method to train auto-en-
coders is to stack all auto-encoders to formulate a 2Q + 1-
layer neural network. The number of units of the first and
last layer equals the dimension of the input data. The
number of units in the second layer equals that of the
2Q + 1-th layer and so on. Then, we train all Q auto-en-
coders. The latter procedure is illustrated in Fig. 3.

The auto-encoders mentioned above (AE+Sparse,
AE+WD, DAE, and CAE) are symmetrical, i.e., the
number of encoders is equal to the number of decoders;
however, with UAEs, the numbers of encoders and deco-
ders are not equal. This is motivated by shadow neural
networks with more units, which have ability comparable
to deep neural networks with fewer units. With the second

Input Layer Hidden Layers Output Layer

Fi

000000000

O
O
O
O
1
—0
O
O
O
O
©

©00000000000000

~
~

L ls s s -2 Il In

Fig. 1 Architecture for unsymmetrical auto-encoder

Q0000 @000000 Q000D
Q000000 (OOOOO}\ ©000O N
~ N N
~ ~ ~
©0000D ‘(OOOOOOO) »Q0000D 000000

the Q-th auto-encoder

the 1st auto-encoder the 2nd auto-encoder the 3rd auto-encoder

Fig. 2 First way to train auto-encoders

©o000O0

©C000000
©co000
%

Fig. 3 Second way to train auto-encoders

training procedure, we reduce the layers between the sec-
ond and Q + 1-th layer to k that is less than Q with more
units in these k layers, which remains the same ability of
encoding and decoding. However, the number of layers is
less than the Q auto-encoders we use. These neural net-
works become UAEs. Due to gradient vanishing, we cannot
use too many layers in UAEs. We assume that the maxi-
mum number of layers is 2P + 1. Using symmetrical auto-
encoders, we use only P auto-encoders. However, if we use
UAEs, we can use k decoders (k > p) and 2P — k encoders
with more units. Such UAEs have the ability of k auto-
encoders. We use k decoders to ensure that we can mini-
mize the reconstruction error. The complexity of the pro-
posed UAEs will be less than that of symmetrical auto-
encoders under the condition of the same variant of auto-
encoder as introduced in Sect. 3. Moreover, we can obtain
improved representation if we use the same number of
layers as symmetrical auto-encoders.

3.1 Explanation of UAE

Why does the proposed UAE learn better representations?
The reason is very intuitive. The UAE has more units in
fewer layers of encoders, which allows it to find more
abstract representations. In addition, it has sufficient
decoders to reconstruct the input patterns. All of the auto-
encoders discussed in Sect. 2 have one hidden layer. With
abstract and robust encoded representation of data, a single
decoder can be used in the same manner as traditional auto-
encoders; thus, the reconstruction is rarely applied. If we
can reconstruct with only a single layer, the representation
would be no more robust. Another important observation is
that if the number of units in one encoder is equal to that of
its corresponding decoder, the number of encoders must be
the same as that of the decoders for rational reconstruction.

The UAE architecture learns robust representation
through more layers of the encoder and demonstrates
greater ability to reconstruct the input data using multiple

1365

decoder layers. This conforms to the principle of good
representation, which benefits from more flexible unsym-
metrical structure. Quantitative and qualitative evidence
will be presented in Sect. 4.

3.2 Number of layers in UAE

It is commonly known that the representation will be better
when the network is sufficiently deep. However, until
recently, practical limitations in learning algorithms, e.g.,
gradient vanishing, have prevented us from building a very
deep auto-encoder.

Suppose the number of units of the input and output
layers is m. The number of units of layer i = 1,2,3,n — 1
is m;. UJ’ denotes the j-th unit in layer i. We select one path
from Uj to Ug’k(k €{1,2,3,n—1}) randomly. The
selected unit flowing through the path in layer i is denoted
as S Wj’k denotes the weight on the connection from unit j
of layer i to unit k of layer i — 1.

We use mean square error. The error signal of Uj

flowing to U:]"k is illustrated in Fig. 4.
o =i"(4) (% - a). (13)
d), denotes the error of unit p in layer n and F™(-) denotes

the derivative of function f"(-).

S =1 (n—l-1
ag” = H W lgimf" (). (14)
1=0

It (Wil N () > a()n " will increase expo-
nentlally with k. In other words, the error increases expo-
nentially when the error signals arrive at unit U~ k. This
leads to oscillating weights and unstable learning.

sn—k
If g"lsnllfnll(znll)’<l agg,’j
exponentially with k. In other words, the error vanishes and
nothing can be learned in the lower layers of this network.
When we use a logistic sigmoid function the maximal
value is 0.25. To avoid oscillation, ,S,, 1| must be

will decrease

SVI
<4. If we use a network that is too deep, the top layers

Input Layer

Hidden Layers

Output Layer

£

000000000

©00000000000000

~

Fig. 4 Error flows in UAE

cannot learn anything important. This is a trade-off
between the values used to initialize the weights and the
depth of the network. Typically, we initialize the weights
between —1 and 1. When the depth is >6, the error will be
approximately 10~*. If we use a small learning rate (e.g.,
<1071), the error would be even less. If the depth is >6
with the initializing weights, it will be not significant. For
further analysis of error flow, see [2, 7, 19].

3.3 Training with UAE

Basic auto-encoders have been used as building blocks for
training deep neural networks [6]. After training a single
auto-encoder, its representation will be used as the input to
the next auto-encoder. We then train this auto-encoder
continually. The trained auto-encoders are stacked, and an
additional supervised layer is added to build a multilayer
neural network. Weights that have been trained in the auto-
encoders are used to initialize this multilayer neural net-
work. Finally, a supervised criterion is employed to opti-
mize the network. This greedy layer-wise procedure has
been shown to yield significantly better local minima than
random initialization of deep neural networks, thereby
achieving better generalization for numerous tasks.

The procedure for training a deep network with the UAE
is similar. We use the output of the encoder as the input of
the next UAE for unsupervised learning. After training
several UAEs, we stack them and add a supervised layer to
fine-tune the whole network to obtain the best parameters
for a particular task.

4 Experiments and results

We performed experiments with the proposed UAE algo-
rithm on the same benchmark classification problems used
in [22]: CIFAR-bw, which is a grayscale version of the
CIFAR-10 image-classification task [13], MNIST, and
MNIST variations. The variations of the MNIST problem
contain rotation, addition background comprising random
pixels, addition background made from patches extracted
from a set of images, and combinations of these variations.
The MNIST variations benchmark also contains a subset
of the original MNIST problem. Each MNIST variation
problem was divided into a training set with 10,000 exam-
ples, a validation set with 2000 examples, and a test set with
50, 000 examples.1 For all datasets, the input was normal-
ized between 0 and 1. All experiments were performed in
MATLAB with a graphics processing unit (GPU)?.

! The MNIST datasets for these problems are available at http://
www.iro.umontreal.ca/ ~ lisa/icml2007.

2 We used two GPU models: NVIDIA GTX750Ti and GTX780.

http://www.iro.umontreal.ca/~lisa/icml2007
http://www.iro.umontreal.ca/~lisa/icml2007

1366

4.1 Visualization for UAE

First, we used the MNIST dataset to train a UAE and
visualized the features that it learned in the hidden layer. In
this experiment, we initialized the UAE with four hidden
layers of size {2000, 1000, 400,200}. We set the encoder
only in the first hidden layer and added a sparsity constraint
to this layer. We also added a weight decay penalty to the
weights of all layers. We optimized the cost function using
L-BFGS to reconstruct the input data to train the UAE.
When the optimization of the cost function reaches con-
vergence, we use the activation maximization method [8]
with the trained weights to look for the input X* that can
maximally activate the units of the output of the first hid-
den layer. Then, we use X* to visualize the learned features
in the first hidden layer. Figure 5 shows the visualization
results of the UAE in the first hidden layer and the visu-
alization of the third layer of the stacked denoising auto-
encoder (SDAE) reported in [8].

On the one hand, these learned features in the first layer
in the UAE and in the third layer in SDAE seem inter-
pretable; however, they are quite complex. A common
understanding arising from investigations of the V1 and V2
areas of the human brain is that features are edges in the
first hidden layer and corners in the second hidden layer.
Some of the units have characteristics that we would
associate with the so-called complex cells. On the other
hand, the UAE learns a robust and better representation.
The features the UAE learned in the first hidden layer are
as good as those learned by SDAE in the third hidden layer.

4.2 Classification performance

We used a sigmoid activation function for both encoder
and decoder, cross-entropy for binary classification, and the
log of softmax for multiclass problems in UAE which was
trained by minimizing the cost function on the training set.
First, we used the auto-encoders to perform unsupervised
learning to extract features layer by layer. Then, the
weights and the biases of the encoder were used to train
supervised learning as the initialization.

In all cases, we used stochastic gradient descent with
mini-batches of size 100 for both unsupervised and
supervised training criterion. Due to the hyper-parameters
in each auto-encoder, we used grid search on the validation
set to select the best model according to its performance
with the lowest reconstruction error on the validation set.
Among all auto-encoders, the range of units in the hidden
layer was [500, 2000], and the range of the constant
learning rate was {0.0001,0.001,0.01,0.1}. In the weight
decay auto-encoder, the range of weight decay was 0 to
107,

In the sparse auto-encoder, we selected the

Fig. 5 Activation maximization applied on MNIST. On the left side
visualization of 16 units from the first hidden layers of a UAE. On the
right side one of the solutions to optimization problem for units in the
third layer of the SDAE

Table 1 We use one auto-encoder for pretraining and then fine-tune
with an additional softmax layer

Model MNIST CIFAR-bw
AE+-Sparse 2.96 54.74
AE+WD 3.94 56.68
DAE 3.49 52.30
CAE 3.44 51.12
UAE 1.73 49.21

The result is classification error on test datasets and best results are
indicated in bold

Table 2 We use three auto-encoders for pretraining and then fine-
tune with an additional softmax layer

Dataset AE+Sparse AE4+WD DAE CAE UAE
basic 5.80 6.12 5.32 6.07 417
rot 18.39 16.85 16.83 16.84 13.03
bg-rand 19.95 18.91 19.13 1955 16.61
bg-img 22.03 30.63 20.65 32.05 17.20
bg-img-rot 5291 56.91 4955 57.80 52.86

The result is classification error on the test datasets and best results
are indicated in bold

expectable sparsity parameter in the range [0.1, 0.5], and
the corresponding range of the weight coefficient was [0.1,
10]. In the DAE, we selected masking noise, and the
fraction v was in the range 0-0.8. In the CAE, the weight
coefficient was in the range of 107! to 107,

For all experiments, we used early stopping based on the
classification error of the model on the validation set. Note
that the maximum epoch was 1000. The best score over the
compared models on the same benchmark was highlighted
with bold font.

The results obtained using one auto-encoder with
MNIST and CIFAR-bw datasets are reported in Table 1. In
these experiments, we trained an auto-encoder with dif-
ferent variants. Then, we constructed a three-layer network
for classification using the parameters obtained by the
trained auto-encoder.

1367

We also trained a deep neural network. In this experi-
ment, we trained and stacked three auto-encoders for each
variant. At the trail of it, we added one supervised layer to
perform fine-tuning. The results are reported in Table 2.

5 Conclusion

UAEs are auto-encoders with different numbers of enco-
ders and decoders. The experimental results quantitatively
and qualitatively demonstrate that the proposed UAE can
learn a comparable or even superior representation for
better classification. From an architectural perspective, the
proposed UAE also contains generic auto-encoders;
namely, symmetrical auto-encoders are a special case of
unsymmetrical auto-encoders. In addition, UAEs use reg-
ularization terms that have always been used in symmet-
rical auto-encoders, such as sparsity constraints, weight
decay, and contractive terms. Relative to better represen-
tation, there is a trade-off between reconstruction and
robustness. Generic auto-encoders are more close to better
reconstruction, although there are several types of explicit
regularization terms that can improve the robustness of the
learned representation. UAEs obtain better reconstruction
using more decoders than encoders. In addition, UAEs
learn robust representation using more units in the encoder
layers.

Acknowledgments This work was supported by the National Sci-
ence Foundation of China under Grant 61432012.

References

1. Baldi P, Hornik K (1989) Neural networks and principal com-
ponent analysis: learning from examples without local minima.
Neural Netw 2(1):53-58

2. Baldi P, Pineda F (1991) Contrastive learning and neural oscil-
lations. Neural Comput 3(4):526-545

3. Baum EB, Haussler D (1989) What size net gives valid gener-
alization? Neural Comput 1(1):151-160

4. Bengio Y (2009) Learning deep architectures for Al. Found
Trends Mach Learn 2(1):1-127

5. Bengio Y (2012) Deep learning of representations for unsuper-
vised and transfer learning. Unsupervised Transf Learn Chall
Mach Learn 7:19

6. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy
layer-wise training of deep networks. Adv Neural Inf Process
Syst 19:153

7. Doya K (1992) Bifurcations in the learning of recurrent neural
networks 3. Learning (RTRL) 3:17

8. Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing
higher-layer features of a deep network. Dept. IRO, Universit de
Montral, Technical Report

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Goodfellow I, Lee H, Le QV, Saxe A, Ng AY (2009) Measuring

invariances in deep networks. In: Bengio Y, Schuurmans D,
Lafferty JD, Williams CKI, Culotta A (eds) Advances in neural
information processing systems 22, Curran Associates, Inc.,
pp 646-654

. Hinton GE (1987) Learning translation invariant recognition in a

massively parallel networks. In: PARLE Parallel Architectures
and Languages Europe, vol 1. Springer, Eindhoven, pp 1-13
Hinton GE, Salakhutdinov RR (2006) Reducing the dimension-
ality of data with neural networks. Science 313(5786):504-507
Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is
the best multi-stage architecture for object recognition? In: IEEE
12th international conference on computer vision, 2009. IEEE,
pp 2146-2153

Krizhevsky A, Hinton G (2009) Learning multiple layers of
features from tiny images. Computer Science Department,
University of Toronto, Tech. Rep

Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional
deep belief networks for scalable unsupervised learning of hier-
archical representations. In: Proceedings of the 26th annual
international conference on machine learning, pp 609-616. ACM
Liou CY, Cheng WC, Liou JW, Liou DR (2014) Autoencoder for
words. Neurocomputing 139:84-96

Liou CY, Huang JC, Yang WC (2008) Modeling word perception
using the Elman network. Neurocomputing 71(16):3150-3157
Moody J, Hanson S, Krogh A, Hertz JA (1995) A simple weight
decay can improve generalization. Adv Neural Inf Process Syst
4:950-957

Olshausen BA, Field DJ (1997) Sparse coding with an over-
complete basis set: a strategy employed by vI1? Vis Res
37(23):3311-3325

Pineda FJ (1988) Dynamics and architecture for neural compu-
tation. J Complex 4(3):216-245

Ranzato MA, Boureau Y-L, Cun YL (2008) Sparse feature
learning for deep belief networks. In: Platt JC, Koller D, Singer
Y, Roweis ST (eds) Advances in neural information processing
systems 20, Curran Associates, Inc., Red Hook, New York,
pp 1185-1192

Ranzato MA, Poultney C, Chopra S, Cun YL (2007) Efficient
learning of sparse representations with an energy-based model.
In: Schoélkopf B, Platt JC, Hoffman T (eds) Advances in neural
information processing systems 19, MIT Press, pp 1137-1144
Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Con-
tractive auto-encoders: Explicit invariance during feature
extraction. In: Proceedings of the 28th international conference
on machine learning (ICML-11), pp 833-840

Schwartz D, Samalam V, Solla SA, Denker J (1990) Exhaustive
learning. Neural Comput 2(3):374-385

Tishby N, Levin E, Solla SA (1989) Consistent inference of
probabilities in layered networks: predictions and generalizations.
In: International joint conference on neural networks, IJCNN,
1989. IEEE, pp 403-409

Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008)
Extracting and composing robust features with denoising
autoencoders. In: Proceedings of the 25th international confer-
ence on machine learning. ACM, pp 1096-1103

Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA
(2010) Stacked denoising autoencoders: learning useful repre-
sentations in a deep network with a local denoising criterion.
J Mach Learn Res 11:3371-3408

	Learning a good representation with unsymmetrical auto-encoder
	Abstract
	Introduction
	Auto-encoders
	Sparse auto-encoder (AE+Sparse)
	Weight decay auto-encoder (AE+WD)
	Denoising auto-encoder
	Contractive auto-encoder

	Unsymmetrical auto-encoder
	Explanation of UAE
	Number of layers in UAE
	Training with UAE

	Experiments and results
	Visualization for UAE
	Classification performance

	Conclusion
	Acknowledgments
	References

