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Highlights 

• Higher accuracy of Alzheimer diagnosis system improves earlier diagnosis chances 

• Physical activity offers substantial resistance to progression of Alzheimer’s disease 

• Ability to classify and log activities can help physicians and Alzheimer’s Patients 

• Machine based activity monitoring offers improved Alzheimer’s patient privacy 
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ABSTRACT 

Machine based analysis and prediction systems are widely used for diagnosis of Alzheimer’s Disease (AD). 
However, lower accuracy of existing techniques and lack of post diagnosis monitoring systems limit the 
scope of such studies. In this paper, a novel machine learning based diagnosis and monitoring of AD-like 
diseases is proposed. The AD-like diseases diagnosis process is accomplished by analysing the magnetic 
resonance imaging (MRI) scans using deep learning and is followed by an activity monitoring framework to 
monitor the subjects’ activities of daily living using body worn inertial sensors. The activity monitoring 
provides an assistive framework in daily life activities and evaluates vulnerability of the patients based on 
the activity level. The AD diagnosis results show up to 82% improvement in comparison to well-known 
existing techniques. Moreover, above 95% accuracy is achieved to classify the activities of daily living 
which is quite encouraging in terms of monitoring the activity profile of the subject. 

Introduction 
Alzheimer’s disease (AD) is one of the most common forms of dementia. About 60% to 80% of people with 
dementia develop AD. According to the report presented by the Alzheimer’s disease international in 2016 
( Wymo, 2010), 47 million people are living with dementia. This number is expected to rise to 65.37 million 
and 115.4 million by year 2030 and year 2050 respectively. Dementia also has a huge economic impact. The 
total estimated worldwide cost of dementia as of present is US$818 billion ( Wymo, 2010). A huge majority 
of people with dementia have not received a diagnosis, and so are unable to access care and treatment. 
Even when dementia is diagnosed, the care provided is too often fragmented, uncoordinated, and 
unresponsive to the needs of people living with dementia.  

Dementia is a neurological disorder and can be classified in several types. It is a degenerative brain disease 
which affects problem solving abilities, memory, language, physical activities and cause other cognitive 
disorders that affect the basic activities of daily life (ADLs). As the disease progresses, it damages that brain 
neurons which are responsible for carrying out basic daily life activities. The resulting problems of AD-like 
diseases are: confusion, disorientation, poor judgement, impaired communication and eventually difficulties 
in walking, swallowing and speaking (Association, 2017). In early stages of AD, memory loss is a common 
phenomenon. However, In the later stages of AD, patient cannot even perform necessary daily life activities 
and become totally dependent on others. In Table 1, the stages of AD are presented in detail. The table also 
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represents the survival rate of alzheimer’s patients over time and how physical activities affect this survival 
rate. The patients are divided in three categories: No Physical activity (NPA), Moderate Physical Activity 
(MPA), High Physical Activity (HPA) (Scarmeas et al., 2011). The findings suggest that by incorporating 
physical activity can significantly prolong the survival of alzheimer’s patients (Beckett, Ardern, & Rotondi, 
2015; Debove, Bru, Couderc, Noé, & Paillard, 2017; Scarmeas et al., 2011).   

   
(a) (b) (c) 

Fig. 1: MR Image Planes (a) Axial (b) Sagittal (c) Coronal  
There are no specific remedies or cure of AD-like diseases (Prince, Albanese, Guerchet, & Prina, 2014), 
however, early diagnosis can help in improving patient’s quality of living. The most suitable method for 
diagnosis of AD-like diseases uses Magnetic Resonance Imaging (MRI) (Chaves, Ramírez, Gorriz, & Initiative, 
2013; Martínez-Murcia et al., 2012; Ramaniharan, Manoharan, & Swaminathan, 2016). In MRI, strong radio 
waves and magnetic field are used for generation of images of body organs.  The different types of tissues 
such as white matter (WM) and grey matter (GM) are highlighted with different contrasts. As such, MRI can 
be employed to diagnose and study the diseases, which affect the GM and WM differently. Three different 
planes Axial, Sagittal and Coronal are generated from MRI as shown in Fig. 1 (taken from the Open Access 
Series of Imaging Studies (OASIS)) (Marcus, Fotenos, Csernansky, Morris, & Buckner, 2010). These planes are 
perpendicular to each other and are analysed using classical and deep machine learning techniques to 
diagnose AD-like diseases.  

Once a patient reaches stage-2 of AD, the brain tissue shrinking, nerve cells death and tissue loss in brain 
affects different cognitive abilities, resulting in functional impairment. These changes in the brain are hard to 
track and therefore, cannot be used as a metric for evaluating stages of functional impairment in the 
patients and level of support they need to resume their daily life. Since functional impairment is one of the 
core symptoms of AD progression, it can be used to accurately evaluate needs for assistance. The most 
accurate measure of functional impairments is the decline in ADLs over the course of time (Leger et al., 
2017). Monitoring ADLs of alzheimer’s patients not only provide the measure of brain tissue degradation, it 
also helps to delay disease progression, thus slowing down the tissue degeneration process. A report by 
World Health Organization (WHO, 2015) on enhancing physical activity suggests that promoting physical 
activity in daily life improves mental health by overcoming depression, stress reaction and anxiety. 
Consequently, it can possibly reduce or delay the effects of AD and other types of dementia. Physical 
activities also improve cerebral perfusion (blood flow to the brain regions), reduce neuronal loss (loss of 
neurons) and preserve brain volume in the regions susceptible to AD-like diseases (Stephen, Hongisto, 
Solomon, & Lönnroos, 2017). 

In this paper, novel research is carried out to not only improve the diagnosis accuracy of AD-like diseases but 
to also interlink ADLs with the AD-like diseases to prolong brain functionality, reduce brain tissue 
degradation and accurately measure the functional impairment in alzheimer’s patients over the course of 
time. In particular, the proposed work offers framework to identify/diagnose ADLs and AD-like diseases 
using both classical and deep learning techniques. The MRI based diagnosis of AD is achieved through 
transfer learning where modified AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) is proposed. To further 
improve the accuracy of the proposed system most informative MRI slices are identified and used for 
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training and diagnosis. To classify ADLs, a Support Vector Machine (SVM) based classifier is used to 
accurately identify the ADLs. A detailed discussion on the datasets used, system model and performance 
analysis is presented in Section III and IV. Main contributions of the proposed work are as follows 

 To the best of our knowledge, this is the first work to consider both diagnosis of alzheimer’s and 
extended monitoring without the involvement of direct human intervention. 

 The proposed diagnosis of AD-like diseases is talented by deep learning framework which has higher 
accuracy in comparison to state of the art.  

 Machine based analysis of ADLs is proposed which monitors the daily life activities of alzheimer’s 

patient with high accuracy and provide additional assistance 

 An automated machine-based monitoring system is introduced to facilitate human intervention. 
Recommendations and Guidelines are also provided for framework development to ensure 
alzheimer’s patients’ independence (where possible) and technology-based assistance. 

Table 1 Overview of Alzheimer's Disease and Impact of Physical Activity 

Stages  Condition Symptoms Disease 
detection using 
memory tests 

Average 
duration 

 
 
 
            
 

Time 
in 

Years 

Survival Rate 
(Norm.) 

NPA  MP
A  

HPA 
  

 
 
E 

Stage-1 No 
Impairment 

1. No detectable Symptoms  
2. No memory loss 

Unlikely to be 
detected 

Several 
Years 

1 1 1 1 

Stage-2 Very Mild 1. Slight memory problems  Unlikely to be - 2 0.95 0.98 0.98 
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Related Work 
In the last decade, many researches (ER, Varma, & Paul, 2017; J. Zhang, Gao, Munsell, & Shen, 2016) have 
been conducted to diagnose AD using classical machine learning techniques such as Principal Component 
Analysis (PCA), SVM. Some of the renowned works are listed as follows. In (ER Varma, & Paul., 2017), the 
Gray-Level Co-occurrence Matrix (GLCM) was used as a feature and SVM based classification was 
implemented. In this work, Contrast Limited Adaptive Histogram Equalization (CLAHE) was performed to pre-
process the raw imagery before extracting the features. An optimized method for AD diagnosis was 
proposed (Zhang et al., 2016) and three steps were performed: landmark definition, landmark detection and 
classification between AD and healthy control (HC). In landmark definition (local morphological features such 
as histograms, oriented energies and local minima in the p-values map) statistical differences between AD 
and healthy control (HC) were used to differentiate between the two. Suitable training dataset was also 
identified in landmark definition step. In landmark detection, A pre-trained landmark detection model was 
proposed to effectively identify AD landmarks in each test dataset. Finally, an SVM classifier, trained on a 
landmark-based morphological features, was used to differentiate between HC and AD images. In (Zhang & 
Wang, 2015), a Displacement Field (DF) was estimated between a normal brain and an alzheimer’s patient’s 
brain. For evaluation purposes, DF was used as features, reduced by PCA, and finally classified by three 
different variants of SVM. In (Zhang et al., 2015), the feature eigen brain was generated from PCA, which 
was fed into the SVM to classify HC and AD.  

Recently, the deep learning methods have shown significant performance improvements over classical 
method in AD diagnosis. Unlike the classical machine learning algorithms where handcrafted features are 
extracted from the dataset, deep learning techniques extract optimized features from the dataset. The 
feature set is then fed to neural network for improved accuracy. It is also noted that recently developed 
deep learning methods have performed much better than classical methods in many research problems. 
Some of these are listed as follows. 

A 
R 
L 
Y 

Decline 2. losing things detected 

Stage-3 Mild 
Decline 

1. Difficulty in planning and 
organizing  

2. Forgetting names of new 
acquaintances  

3. Difficulty in finding right word 
during conversations 

Physicians might 
detect impaired 
cognitive 
functions 

Up to 7 
Years 3 0.90 0.94 

 
0.96 
 

4 0.85 0.92 0.94 

 
 
M 
I 
D 
D 
L 
E 

Stage-4 Moderate 
Decline 

1. Difficulty with simple 
arithmetic 

2. Forgetting details of their life 
history 

3. Inability to manage finance and 
pay bills 

Physicians will 
detect moderate 
impaired 
cognitive 
functions 

2 Years 
5 0.78 0.89 

0.91 
 

6 0.68 0.82 0.88 

Stage-5 Moderately 
Severe 
Decline 

1. Significant confusion 
2. Inability to recall simple details 

about themselves 
3. Difficulty dressing 

appropriately 

Symptoms are 
obvious and 
easily spotted 

1.5 Years 
7 0.50 0.72 

0.79 
 
 

8 0.33 0.60 0.68 

 
 
 
 
 
L 
A 
T 
E 

Stage-6 Severe 
Decline 

1. Unawareness of environment 
and surroundings 

2. Loss of Bladder control 
3. Inability to remember personal 

details 
4. Inability to recognize faces 

except close ones 

- 2.5 Years 
 
 
 
 

9 0.23 0.46 
 
 

0.55 

Stage-7 Very 
Severe 
Decline 

1. May loose ability to swallow 
2. Can’t perform any activities of 

daily life 

- Patients 
rarely 
reach this 
stage 

10 0.09 0.28 0.37 
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In (Gupta, Ayhan, & Maida, 2013), the initial weights were determined by training the sparse auto-encoder.  
These weights were used for convolution neural network (CNN) to classify AD and HC. This method was 
further improved in (Payan & Montana, 2015) by applying 3D convolution instead of 2D convolution. In (Liu 
et al., 2014), stack autoencoder was used to generate features from the MRI and softmax regression layer 
was proposed for classification.  

Along with the diagnosis of AD, identification of means to slow down brain tissue degradation and 
monitoring patient’s activities also play an important role in defining accurate level of assistance, needed by 
the patient. There are several studies (Garuffi et al., 2013; Morris et al., 2017; Panza et al., 2018) which 
monitored the effect of exercises on AD population and how AD affects ADLs. For instance, in (Garuffi et al., 
2013), authors  investigated the effect of activities on AD population and found that resistive training 
improves the balance, lower limb strength and flexibility in AD population. However, most of these studies 
utilize the assessment tools which are questionnaire based and/or self-reported by the patient/observer, 
which biases (over/under estimates) the actual amount of physical activity performed (Cleland et al., 2014). 

As an alternate, microelectromechanical systems (MEMS) technology based inertial measurement units 
(IMUs) can be helpful in designing personal health care systems and assistive technologies to measure the 
level of activities performed. The recent advancements in such devices (miniaturization, light weight, low 
cost, long-battery life and fast-processing capabilities) have also made the transition much more easier and 
effective (Troiano, McClain, Brychta, & Chen, 2014).  Recently, many systems have been developed to 
objectively classify the ADLs (Awais et al., 2016; Ayachi et al., 2016; Ordóñez & Roggen, 2016). However, 
majority of the existing studies focus on the healthy population whereas a very few systems can be found 
which utilize alzheimer’s disease based population (Gago et al., 2014; Hsu et al., 2014; Wang, Chung, Hsu, Pai, 
& Lin, 2013). The limited few inertial sensors based developed systems, used for AD patients show the 
potential of objectively quantifying the movement patterns. However, all these systems only explored the 
walking activity and none of them explored the other commonly performed ADLs: sitting, standings, walking, 
lying, ascending stairs and descending stairs. These ADLs are quite relevant for the AD population as they can 
provide not only the everyday patterns of the active and sedentary activity periods but also can offer insight 
on certain interventions/medications by caregivers and clinical staff. It is worth mentioning that the existing 
state of the art methods for detecting AD only focuses on diagnosis stage and post diagnosis stage in often 
ignored. However, it is quite relevant to monitor the ADLs of the patients diagnosed with the early stages of 
AD as with effective feedback on ADLs can slow down the degenerative process of the brain tissues and help 
improve the patients’ routine life with improved functional independence. This is evident in (Arcoverde et al., 
2008; Larson et al., 2006) that by incorporating healthier lifestyle and improved physical activities can leave 
positive impact on AD patients. 

Proposed System Model 
In this section, the proposed system model for diagnosis of AD-like diseases and classification of ADLs is 
presented. At first, system for the diagnosis of AD-like diseases is proposed. To offer extended monitoring of 
the patient’s condition (with the passage of time) and to evaluate impact of alzheimer’s on one’s daily life, a 
framework for classifying ADLs is proposed. The proposed ADLs classifier categorizes daily life activities and 
can be used to analyze brain tissue degradation for alzheimer’s patients based on ADLs. The use of wearable 
sensors to evaluate ADLs provides insight into the level of support needed by the patient. It also offers 
means to track the activity cycle of the patients to prolong the healthy living and to resist the mental 
degradation.  
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Fig. 2: Modified AlexNet Architecture 

1.1 AD classification 
As discussed earlier, deep learning methods perform better than classical techniques. However, the 

performance of deep learning methods depends on the availability of large datasets. In medical problems, 

the presence of large dataset is a big challenge.  Data annotation by the trained physicians is expansive 

and due to ethical and security reasons cross institution use is also limited. This gives rise to of overfitting 

and underfitting of the classifier. The problem can be handled by using the transfer learning techniques 

and data augmentation method.  

The deep learning models developed for AD classification only use one layer of CNN (Gupta, Ayhan, & 

Maida, 2013; Payan & Montana, 2015; Liu et al. 2014) which limit their capabilities of extracting complex 

patterns from MRI images. Therefore, the current work proposes a modified architecture of AlexNet 

(Krizhevsky et al., 2012) (winner of ImageNet large-scale visual recognition challenges (ILSVRC) 2012, by 

achieving 15.3% top-5 error rate) is used as a pertained model which was originally trained for object 

recognition and only parameters of fully connected layer (FC) are retrained for AD-like diseases 

classification. It has eight layers for learning. Five of these layers are used for convolution with sub 

pooling layers and three as fully connected layers. Output of fully connected layers is fed into the softmax 

for a distribution against binary classes (AD vs HC). The first convolutional layer uses 96 kernels of size 

11113 with 4-pixel stride and filters the 2272273 input images. The output of this layer is fed into 

the second convolutional layer, which filters this output using 256 kernels of size 5548. The third 

convolutional layer, connected to output of second convolutional layer, uses 384 kernels of size 33256. 

The fourth and fifth convolutional layer use 384 and 256 kernels respectively. There are 4096 neurons in 

each of fully connected layers. For model training, the stochastic gradient descent is used, while equal 

learning rate is used for all layers. In the proposed method, the output from the AlexNet classifier is 

modified to two categories (AD vs HC) for binary classification. The data augmentation method proposed 

in paper uses twenty central slices of the coronal plane instead of only one slice due to the high 

information content present in the central slices. It was observed that using highly informative images for 

training purposes improved system robustness.  

We used the AlexNet model that takes a 2-d image as an input whereas our brain MRI data is 3-d. Data 

permutation is used in which multiple slices (Central 20 slices) are extracted from MRI brain data to 

increase training samples. As discussed earlier, the central slices have more tissue portion than the 

boarder slices. Since the tissues are biomarker of AD, central slices help the system to classify AD-like 

diseases accurately. The slices at the border have more portion of the bones and skulls and prove less 

informative rather misleading for AD-like diseases classification system. Therefore, the central 20 slices 

are used for the training purposes. 
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(A) (B) 

Fig. 3: Difference between (A) Healthy brain and (B) an AD brain. (i) Cerebral cortex (ii) Ventricle, 
and (iii) Hippocampus 

 

Table 2. Demographics of Dataset 

Name Class # of Subject 
Sex 

Age (Mean) 
# of MRI 

scans M F 

OASIS 
AD 100 41 59 76.76 100 

HC 316 119 197 45.09 316 

ADNI 
AD 200 103 97 76.05 530 

HC 232 113 119 76.18 877 

 

Slice # Subject 1 Subject 2 Subject 3 

1 

   

30 

   

87 

   

88 
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Performance of the proposed method is tested using two widely used datasets, OASIS and alzheimer's 
disease neuroimaging initiative (ADNI) (Jack et al., 2008). Since several existing works used either OASIS or 
ADNI, selection of these datasets allows fair comparison of the proposed work with the existing techniques. 
The OASIS (Marcus et al., 2010) MRI dataset is divided in two categories: longitudinal and cross-sectional. 
The longitudinal dataset provides information on growth of AD over time whereas the cross-sectional 
dataset offers single MRI scans of subjects. The cross-sectional dataset is used for classification where a total 
of 416 subjects of ages 18 to 96 are provided in this dataset. ADNI has a total of 843 MRI scans with 1.5T 
scanner intensity field. In ADNI dataset, multiple scans of each subject are provided over a period of time. In 
OASIS and ADNI datasets, MRI scans are labelled as AD and Healthy controls (HC) as reported in Table 2. 

As discussed earlier, three planes are generated in MRI and slice direction can be chosen from axial, sagittal, 
or coronal. It was observed that the coronal gives much clearer view and provides with more information. In 
Fig. 3, coronal slice is presented which gives three of the most important tissues within single slice, not 
found in single slice of axial or sagittal. As marked in Fig. 3, These tissues (cerebral cortex, the ventricle, and 
the hippocampus) are indicative of AD. While using axial or sagittal slice instead of coronal one may need to 
record two or more slices to cover these tissues. Therefore, coronal direction is used for analysis. 
Furthermore, in the coronal slices, it was observed that the central slices had more tissue portion than the 
ones on boarder slices. Since the tissues are indicative of AD, central slices help the system to diagnose AD 
accurately. The slices at the border slices have more portion of the skull and bones and prove less 
informative rather misleading for AD classification system. Therefore, twenty central slices are used to for 
the training purposes. In Fig. 4, slices of the coronal direction are presented. It can also be observed in Fig. 4, 
that the central slices (slice 87, 88, 89) provide much more information than earlier or later slices. Whereas, 
the block diagram of the proposed system used for AD diagnosis is presented in Fig. 5. 

89 

   

120 

   

150 

   

Fig. 4: MRI Scans of Different Subjects at Different Slices 
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Fig. 5: System Model 

The performance of the proposed AD classification system is discussed in detail in Section IV, Results and 
Discussion.  

1.2 ADLs classification 
The patients diagnosed with AD-like diseases need continuous monitoring and occasionally require 
assistance in performing ADLs. The condition becomes much worse in the later stages of alzheimer’s and 
patients become more dependent on the assistance of healthcare workers. To keep track of ADLs and to 
minimize the human intervention as well as ensuring patient’s privacy and assist overloaded hospitals and 
healthcare workers in reducing running costs and effectively using resources, machine-based tracking 
systems can play an important role. The proposed work, along with the diagnosis of alzheimer’s also 
proposes a sensor-based framework to recognize and record daily life activities using wireless sensor 
networks and cloud based classification system to assist medical staff in defining appropriate requirements 
of the patient. The ADLs classification system not only provides machine-based recognition and record of 
important daily life activities but also offer appropriate assistance to the patients in performing their daily 
life work and achieving their daily goals. This can prolong healthy living and help in reducing the brain tissue 
degradation speed. It also gives more accurate feedback for the trained physicians to accurately diagnose 
the needs of the patient and level of assistance needed.   

1.2.1 Development of Physical Activity Classification System 
The proposed patient monitoring architecture for the classification of ADLs and general care of the patient is 
presented in Fig. 6. The figure also presents sensory data communications and cloud-based classification and 
analysis of ADLs. 
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Fig. 6: Proposed Physical Activity Classification System 

The body-worn IMU sensors records the acceleration and angular velocity data of various ADLs (sitting, 
standing, walking, lying etc.) and transmits wirelessly to local data accumulation unit. In case of any 
anomalies, the data is made instantly available to the emergency services, medical staff and care givers. 
Over time, the accumulated sensors’ data is periodically uploaded to cloud server for onward processing and 
classification of ADLs. The proposed system generates medical files, activity logs and nursing care plan for 
long term and effective management of care services devised for the patient. Patient’s sensory data and 
activity profile and medical records generated by cloud-based machine learning and classification system can 
be made available to the medical practitioners and caregiver to take further actions. The proposed system 
also suggests use of smart assistive technologies to communicate with emergency services in case, there 
arises an urgent need for assistance.  

1.2.2 Dataset and Materials 
In this study, two datasets that use inertial sensors have been analyzed for performance evaluation of the 
proposed work. The details of the two datasets are as follows.  

1.2.2.1 Smartphone Based Single Sensor Dataset 
This dataset is composed of a total of six ADLs i.e. sitting, standing, walking, lying, ascending stairs and 
descending stairs. These ADLs were performed by 30 subjects, ranging from 19 to 49 years of age. The 
subjects were wearing a smartphone at the waist level and followed a structured protocol to perform the 
aforementioned ADLs. The dataset contains the 3D acceleration signal data (from accelerometers) and the 
3D angular velocity data (from gyroscope). The sampling frequency of the smartphone sensor was 50 Hz. The 
salient features of smartphone based single sensor dataset are presented in Table 3. Further details about 
this publicly available dataset can be found in (Anguita, Ghio, Oneto, Parra, & Reyes-Ortiz, 2013). 

Table 3: Description of the Datasets Analyzed for Physical Activity Classification 

Author Sampling 
Frequency 

 

Sensor 
Location 

Experiment Setting 
(Population) 

Recorded Signals Activities Analyzed 

Anguita (Anguita 
et al., 2013) 

50 Hz Waist-
mounted 
Smartphone 

Semi-naturalistic 
conditions (30 
subjects)  
(19 to 48 years) 

3D Acceleraiton 
Signal,   
3D Angular 
Velcovity 

Standing, sitting, 
lying, walking, 
walking upstairs, 
walking downstairs. 

Leutheuser  
(Leutheuser, et 

al., 2013) 

204.8 Hz Wrist, hip, 
chest, ankle 

Laboratory setting 
(23 young adults) (27 
± 7 years) 

3D Acceleraiton 
Signal, 3D Angular 
Velcovity 

Walking, sitting, lying, 
standing, stairs up, 
stairs down 

 

1.2.2.2 Multi-Sensor Based Dataset 
The multi-sensor dataset was developed by utilizing four inertial sensors placed at chest, right hip, right wrist 
and ankle. A total of nineteen subjects (26 ± 8 years) participated in the experiment. Shimmer based wireless 
sensor motes were used for data collection. The sensors collected the 3D acceleration signal data and the 3D 
angular velocity signal data, sampled at 204.80 Hz.  Further details of the dataset can be found in 
(Leutheuser et al., 2013). This dataset also analyzed sitting, standing, walking, lying, ascending stairs and 
descending stairs. Demographics of this dataset are presented in Table 3.  

The ground truth information for both datasets is maintained through visual inspection of the observer at 
the time of data collection, which is quite essential to compute the performance of the system.  

1.2.3  Date processing and analyzed features from Smartphone and Multi-Sensor Dataset 
A total of 76 features were analyzed from the acceleration and velocity signals ranging from statistical and 
frequency-based descriptors to biomechanical features. The features computation was performed using the 
sliding window approach on the time series data. The fixed-length of the sliding window was 2.5 sec with an 
overlap of 50%. Detailed information on type and number of features computed is presented in Table 4. The 
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same feature-set was computed (Table 4) for both datasets (smartphone, multi-sensor) with only difference 
that the smartphone contains one sensor while multi-sensor dataset contains four sensors, resulting four 
times more features than smartphone. 

Table 4: Feature Computed from Accelerometer and Gyroscope Signal  

Feature 
Acceleration Signal Angular Velocity Signal No. of 

features Ax Ay Az AMV Gx Gv Gz GMV 

Mean × × × × × × × × 8 

Variance × × × × × × × × 8 

Skewness × × × × × × × × 8 

Kurtosis × × × × × × × × 8 

Energy × × × × × × × × 8 

Entropy × × × × × × × × 8 

Spectral centroid × × × × × × × × 8 

Spectral bandwidth × × × × × × × × 8 

Correlation across axis × × ×  × × ×  6 

Signal magnitude area × × ×  × × ×  2 

Gravitational 
component 

× × ×      3 

Tilt Angle ×         1 

Total Features  76 

Ax, Ay and Az are the thee axis of acceleration signal, Gx, Gy and Gz are the three axis of 
Acceleration signal, AMV and GMV are the magnitude signals of the acceleration and velocity 

signal, respectively. The sign “×” shows the computed feature. 

 

The expressions to compute the features listed in Table 4 (other than the simple statistical features) are 
described in Equations (1-7). 

The magnitude vector is calculated from the three axis of acceleration signal and angular velocity as follows,  

    √  
    

    
                                                                   (1) 

The time domain energy of the signal is presented as, 

                     
 

 
∑       ) 

  
   )      (2) 

here N is the total number samples across a fixed window length. 

The tilt angle is calculated using the vertical gravitational component of the acceleration signal (Awais, Chiari, 
Ihlen, Helbostad, & Palmerini, 2018). The gravitational components are obtained by low-pass filtering the 
acceleration signal. The mathematical notation for tilt angle is given by 

                                    )      (3) 

The normalized information entropy is calculated using the FFT components of the time series signal and is 
presented in equation (4). 

        ∑     )           )
 
   )     (4) 

here    is the frequency component of the time domain signal and     ) is the probability of the   (Su, Tong, 
& Ji, 2014). 

 The spectral centroid and the bandwidth (Leutheuser et al., 2013) are computed using the Equation (5) and 
(6) respectively. 
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here    ) is the energy of the spectral component at the frequency  . 

The Signal Magnitude Area (Lu et al., 2017), is computed as follows. 

    
 

 
∑       )       )       ) ) 

      (7) 

It is important to note that all of the above-mentioned features (from Equation 2-7) are computed for the 
acceleration signal, angular velocity signal and the magnitude vector signal except the tilt angle which is 
computed only for the vertical gravitational component of acceleration. 

Therefore, a total of 76 feature were computed from the smartphone dataset and a total of 304 features 
were computed from the multi sensors dataset since it contained four sensors (4x76=304). 

1.2.4 Feature Selection 
It is very important to analyze the computed features and to select only those features which contribute 
towards the classification accuracy of ADLs. Absence of feature selection approach, prior to machine 
learning algorithm, increases computational burden of the system which is crucial in designing the real time 
systems. Moreover, feature redundancy can also lead to performance degradation of the system. In this 
study, a correlation-based feature selection (CFS) has been implemented (Zhao et al., 2016). CFS falls under 
filter-based feature selection approaches and are suitable for feature subset selection without specifying a 
classifier during the feature selection process. On the contrary, wrapper-based methods involve a specific 
classifier to select the subset of features, which are only helpful for the specified classifier. Selecting feature 
subset independent of classifier is important in the scenarios, where the aim is to compare the performance 
of multiple classifiers using the same feature subset and to provide a generalized subset of features without 
any dependency on the classifier type. 

The CFS selects the features that are highly correlated to the class and uncorrelated with each other. Thus, it 
evaluates the inter-correlation between the features as well as the relevance of the features in terms of 
predicting the classes.  

1.2.5    Classification and Cross Validation 
The activity classification is accomplished using the SVM classifier (polynomial kernel, complexity=1) with 10-
fold cross validation procedure. The feature selection process is applied on each fold and then the 
performance is computed using the reduced feature-set as well as using the original set without feature 
selection. The classification algorithms are implemented in MATLAB using the Weka data mining software 
(Witten, Frank, Hall, & Pal, 2016).  

1.3 Performance Metrices used for AD and ADLs classification 
Same performance metrics were used to maintain the consistently among the results of AD and ADLs 
classification. The performance measures analysed this study were: accuracy, sensitivity, specificity, 
precision and F-measure as reported in equations (8-12). 
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whereas TP, FP, TN, FN are representing true Positive, false positive, true negative and false negative, 
respectively. These terms provide number of test cases correctly and incorrectly classified.   

Results and Discussion 
This section presents the results of the proposed AD classification scheme. The accuracy of these results 

along with the comparison to the state of the art is also presented. The performance of proposed ADLs 

classification system is also presented. In addition, the impact of physical activity on mortality rate of 

diagnosed alzheimer’s patients is plotted. Further details on classification accuracy of proposed works is 

presented as follows. 

1.4 System Performance of AD-like diseases classification 
The performance of the proposed AD-Like diseases classification system is evaluated using two publicly 
renowned datasets, OASIS (Marcus et al., 2010) and ADNI (Jack et al., 2008). An Nvidia GTX 1080TI based 
GPU was used to perform the experiments. The optimal parameters were determined by stochastic gradient 
descent with momentum (SGDM) algorithm with momentum value of 0.9. The mini batch size of 128, initial 
learning rate of value     , and split ratio for training and test data is set to 0.8 in the experiment.  

In each plane of OASIS dataset, the number of images for training and testing the classifier are 6656 and 
1664 respectively. Similarly, for each plane in ADNI dataset, the number of images for training and testing 
the classifier is 34912 and 8728 respectively. 

Table 5 presents different evaluation metrics of the model when all three planes generated from OASIS 
dataset are individually used as input. The standard deviations are also reported for each plane in Table 5. It 
can be seen that the coronal plane has better accuracy performance as compared to other planes because 
all three tissues indicative of AD are visible in the coronal plane. Table 5 also shows the performance of the 
AD classification system on the ADNI dataset with a notable accuracy of 98.74%.     

Table 5: Performance of AD Classification on OASIS and ADNI Database 

Dataset  Plane Accuracy  
(%) 

Sensitivity 
(%) 

Precision (%) Specificity 
(%) 

F-measure 
(%) 

OASIS Axial 93.51±1.09 88±1.51 98.76±0.62 98.15±0.72 93.07±0.88 

OASIS Sagittal 94.13±1.24 99.70±0.22 97.86±1.34 93.61±2.02 98.77±0.38 

OASIS Coronal 95.93±1.12 92.75±2.45 96.94±0.82 92.51±1.62 94.70±1.23 

ADNI Coronal 98.74±0.29 98.50±0.45 98.81±0.37 98.21±0.87 98.65±0.41 

 

Table 6: Comparison with Other Methods on OASIS Dataset 

Method Model  Accuracy 

ER (ER et al., 2017) SVM 77.1 

Zhang (Zhang & Wang, 
2015) 

SVM 88.27 
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 Zhang (Zhang, Dong, 
Phillips, Wang, 2015) 

SVM 92.36 

Proposed method CNN 95.93 

Table 7: Comparison with Other Methods on ADNI Dataset 

Method Model  Accuracy 

Zhang (Zhang et al., 2016) SVM 83.1 

Gupta (Gupta et al., 2013) Auto encoder + CNN 93.8 

Payan (Payan & Montana, 2015) 3D-CNN 95.39 

Liu (Liu et al., 2014) Auto encoder + softmax 87.36 

Proposed method CNN 98.74 

In comparison to other state-of-the-art techniques, the proposed scheme outperforms in both OASIS and 
ADNI dataset. As represented in Table 6, the proposed scheme outperforms other notable works using OASIS 
dataset. Using the OASIS dataset, the proposed scheme, offers an overall improvement of 18%, 7% and 5% in 
comparison to Varma (ER et al., 2017; J. Zhang et al., 2016), Zhang (Zhang & Wang, 2015), and Zhang (Zhang, 
Dong, Phillips, Wang, 2015) respectively.  

Similar performance improvement was also observed while using ADNI dataset. As presented in Table 7, 
using the ADNI dataset, the proposed scheme offers 15%, 11%, 5% and 3% improvement in comparison to 
Zhang (Zhang et al., 2016), Liu (Liu et al., 2014), Gupta (Gupta et al., 2013), and Payan (Payan & Montana, 
2015) respectively. 

The improved accuracy offered by the proposed scheme, as evidenced in evaluation using both ADNI and 
OASIS datasets, offers added authenticity compared to other AD-like diseases diagnosis schemes. In addition 
to the accurate diagnosis of AD, physical activities are another important aspect in keeping the diagnosed 
patients healthier for longer time and prolonging their life (Beckett, Ardern, & Rotondi, 2015; Debove, Bru, 
Couderc, Noé, & Paillard, 2017; Scarmeas et al., 2011). Therefore, an ADLs classification system is proposed 
to automate the monitoring of ADLs of the diagnosed patients. This work offers a novel contribution to 
knowledgebase and facilitates automated activity analysis and logging. Additional details on results and 
performance analysis of ADLs classification system are presented in Section 4.2. 

1.5 System Performance of ADLs classification 
One of the aims of this study is to transform the inertial sensor based physical activity systems from healthy 

population to a challenging AD based population to objectively quantify the ADLs accurately. To facilitate the 

medical staff, an activity profile of each subject is created, which can help in activity planning, future 

recommendations and prediction of progression in alzheimer’s patients. Performance evaluation of ADLs 

classification system is performed using two separate datasets, further details of which can be found in 

upcoming passages. 

1.5.1 Performance Analysis of Smartphone Based Physical Activity Classification System 
In smartphone based physical activity classification system, the performance is computed for the original 
feature set (without feature selection) and with the subset selected by the feature selection approach. Use 
of original feature set revealed very encouraging results with an overall accuracy of 98.1%. This shows that 
the proposed method can accurately classify the ADLs with very high accuracy.  The accuracy obtained using 
the reduced feature set was 97.0%, which is slightly lower (1.1%) than the original feature set. A significant 
reduction in the feature set was observed when using CFS, where CFS selected 25 features (average selected 
features across all folds) out of 76 features.  Use of CFS resulted in 67% reduction in features overhead at the 
cost of 1.1% of system accuracy. Depending on requirements, a trade-off can be established between 
feature set reduction and overall accuracy. However, use of CFS becomes a necessity when real time system 
is implemented as the reduction in feature set notably reduces computational burden. The confusion matrix 
of the system for reduced feature set is presented in Table 8. The average and standard deviation of all 
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performance metrics obtained from smartphones-based activity recognition are reported in Table 9.  It is 
quite evident from these measures that proposed system was able to accurately classify between various 
ADLs with very high performance (above 95%). 

Table 8. Confusion Matrix of Smartphone based System with Reduced Feature set  

Classified as    Stand Sit Lie Walk Stairs Down Stairs Up 

Stand 1837 69 0 0 0 0 

Sit 87 1690 0 0 0 0 

Lie 0 0 1944 0 0 0 

Walk 0 0 0 1681 16 25 

Stairs Down 0 0 0 12 1356 38 

Stairs Up 0 0 0 39 20 1485 

 

Table 9. Overall Performance of Physical Activity Classification System on Smartphone and Multi-sensor 
Dataset 

Dataset Accuracy (%) Sensitivity (%) Precision (%) Specificity (%) F-measure (%) 

Smartphone 99±0.57 96.95±1.69 97±1.64 96.41±0.36 96.97±1.62 

Multi-sensor 99.60±0.32 98.41±1.32 98.29±1.70 99.71±0.33 98.32±1.48 

 

1.5.2 Performance Analysis of the Multi-Sensor Based Physical Activity Classification System 
The performance analysis of multi-sensor based physical activity classification system resulted in very high 
system performance as well, where 98.2% accuracy was achieved using original feature set. Similarly, the 
system performed substantially well on the reduced feature set with F-measure of 98.3%. The feature 
selection has not only reduced the number of features by 81% (from 304 to 55) but it also improved the 
performance as well. The improvement is primarily attributed to the removal of features which negatively 
contributed to the accuracy and thus removing them resulted in improved outcome. The confusion matrix 
obtained using the reduced feature set is presented in Table 10.  

Table 10. Confusion Matrix of the Multi-sensor based System with Reduced Feature set  

Classified as    Stand Sit Lie Walk Stairs Down Stairs Up 

Stand 896 1 0 5 0 2 

Sit 1 896 8 0 0 0 

Lie 1 1 910 0 0 0 

Walk 3 0 0 4050 18 18 

Stairs Down 0 0 0 13 509 3 

Stairs Up 0 0 0 18 4 616 

 

The proposed system is recognizing ADLs with very high accuracy, where each performance measure is 
above 95%. Class-wise F-measure of each classified ADL is presented in Fig. 7. The rationale for using F-
measure is to represent performance of each class in an unbiased way (see Fig. 7), since accuracy can be 
influenced by large number of true negatives and provides biased measure for uneven/imbalanced datasets 
(where certain classes are underrepresented as compared to others). Thus, a more balanced and reliable 
metric in the form of F-measure is computed for each class to provide a balance between precision and 
recall as well as to provide unbiased performance measure for imbalanced classes. The proposed physical 
activity classification system performed significant well on both datasets: smartphone based dataset and 
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multi sensors based dataset. The performance of all six classes is above 95% for both datasets. These results 
are quite significant and encouraging to use the proposed system to monitor the ADLs of AD patients. For 
instance, a single sensor-based system is feasible when the intentions are to utilize the system in outdoor 
environment, where wear-ability and battery life are major concerns and slight degradation in performance 
is acceptable. On the other hand, multi sensor-based system are highly effective when the patients are being 
monitored in clinical environments, and high performance is desired for each of the ADLs. 

 
Fig. 7: Performance Analysis of Smartphone vs Multi-sensors based Activity Classification System 
for each Single Analyzed ADL  

 

The comparison between the performances of the proposed system with the existing methods (including the 
models used) is presented in Table 11. The standard deviation of the proposed system in also presented. It is 
quite evident from the results that the proposed method outperforms the existing systems in using both 
smartphone-based and multi sensors based dataset. A performance improvement of up to 6.3% is witnessed 
in smartphone based dataset whereas 8.7% improvement is witnessed in multi sensors dataset, when 
compared to the existing methods. These findings encourage use the wearable sensor based activity 
classification for AD patients to monitor their routine ADLs. 

Table 11.  Performance Comparison of Smartphone and Multi-sensor Dataset with Other Methods 

Smartphone Dataset Multi-Sensors dataset 

Author Model used Accuracy (%) Author Model used Accuracy (%) 

Ronao (Ronao & 
Cho, 2014) 

Hidden Markov 
Model 

91.8 (Leutheuser et al., 
2013) 

Hierarchical 
Classification 

89.6 

Anguita (Anguita 
et al., 2013) 

SVM 96.0 (Zdravevski et al., 
2017) 

SVM, Random 
Forest 

93.4 

Proposed method SVM 98.1± 1.4 Proposed method SVM 98.3± 1.9 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The results show that the inertial sensors based physical activity classification system can accurately monitor 
the activity performed. The strength of the proposed system is wear-ability and portability which is a key 
factor for long term monitoring of patients with AD-like diseases. Proposed work can provide feedback to 
the healthcare practitioners and caregivers about the nature and proportions of activities performed not 
only for shorter duration but also for longer duration i.e. weeks and months. The activity profile can provide 
a better idea of patient’s functional independence, mobility patterns and responses to certain interventions 
that can be in the forms of medications, exercises, therapies. In this way, the proposed system can assist 
medical staff in ensuring prolonged healthy living for the patients diagnosed with AD-like diseases. It also 
reduces the management effort of the medical staff and healthcare workers. 

Patients diagnosed with alzheimer’s disease are encouraged to maintain healthy living, so much so that their 
survivability is reported to depend on level of physical activity. In Fig. 8, the patients diagnosed with 
alzheimer’s are categorized with respect to physical activity with no, moderate and high physical activity 
level (NPA, MPA, HPA). As presented in the figure, alzheimer’s patients with NPA have a relatively very low 
survival rate (i.e. 0.09 %), compared to the patients with HPA (Beckett, Ardern, & Rotondi, 2015; Debove, 
Bru, Couderc, Noé, & Paillard, 2017; Scarmeas et al., 2011). Alzheimer’s patients with HPA are expected to 
have over 4 times higher survival rate compared to patients with NPA. Due the high correlation between 
alzheimer’s and physical activity, which is evident from the works of (Beckett, Ardern, & Rotondi, 2015; 
Debove, Bru, Couderc, Noé, & Paillard, 2017; Scarmeas et al., 2011), the proposed work offers a framework 
to not only assist in diagnosis of alzheimer’s but also to support medical staff with automated recording of 
physical activities. 

 

 

Fig. 8: Survival Rate of Alzheimer's patients Depending on Level of Physical Activity 

The normal perception is that performing vigorous and intensive activity (running, jumping, cycling) 
improves the functional independence and strength. However, such activities are not suitable for the 
population suffering from neurodegenerative disease such as AD. This is because such population is unable 
to perform intense physical activities and their mobility patterns becomes limited. In these conditions, one 
can monitor the less intensive activities (sitting, standing, walking, lying, ascending stairs, descending stairs 
etc.), as these can play a significant role in letting the individuals as well as medical experts aware of the 
physical activities carried out on daily basis. It also maintains a certain level of functional independence 
while performing daily life activities.  Hence, the proposed system can play a vital role in determining and 
improving the quality of life in population with AD-like diseases. 
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Conclusion 
Accurate diagnosis of alzheimer’s and post diagnosis healthy living are key to defeating alzheimer’s. 

Referring to high volume of AD patients and huge economic impact of nearly US $1 trillion, the importance 

of investigation can easily be established. To improve the diagnosis accuracy and to assist over stressed 

medical experts, this paper proposed a machine-based analysis of the AD-like diseases which offered 

improved diagnosis accuracy in comparison to state of the art. To further assist the alzheimer’s patients and 

caretakers, a post-diagnosis monitoring system was proposed to log the daily life activities of the patients, 

thus, enabling future systems to develop suggestions and activities plan for the patients to extend the 

healthy living and minimize human assistance for AD patients. In the proposed system, for both diagnosis 

and post-diagnosis ADL monitoring systems, relatively higher accuracy is achieved. Furthermore, this paper 

correlates the importance of high accuracy AD diagnosis with physical activities and how these activities can 

be logged without human intervention with high accuracy. The work presented in this paper serves as a base 

for quantitative analysis of AD-like diseases and how well it can be controlled with certain volume of physical 

activities. 

In the future, this work can further be extended to give quantitative correlation between AD-like diseases 

and their progression as a function of physical activities and how much the progression of AD-like diseases 

can be delayed by incorporating certain amount of activities in life of alzheimer’s patients. 
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