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For the purpose of stable performance in energy storage systems, a new hollow 

nanostructure of sea-sponge-C/SiC@SiC/C (SCS/SiC@SiC/C) has been successfully 

fabricated by the SCS/SiC nanospheres coated with SiC/C shells through an in situ 

reduction process. Based on SCSs and the carbon shells, the stable hollow structures 

of SCS/SiC@SiC/C can contain large proportion of active SiC layers, which are 

adhered to both SCSs and the inner surfaces of carbon shells. Such nanostructured 

anode enables an excellent cycling stability with a capacity of 612 mAh g-1 at a 

current density of 0.5 A/g after 1,800 cycles, achieving an excellent stable Li+-storage 

capability. 

1. Introduction

The ever-growing requirements for portable electronic devices have accelerated 

the development of lithium-ion batteries (LIBs) [1]. However, the mostly used anode 

material for the LIBs, e.g., graphite has a limited practical capacity of 372 mAh/g. 

Although some materials (e.g., Si) with large theoretical specific capacity were 

explored for the high energy density, there are still some problems including large 

volumetric expansion and low electrical conductivity [2-4]. To solve some of these 

problems, carbon is frequently introduced to fabricate a composite structure to 

achieve an improved cycling stability and excellent rate performance [5-10]. Silicon 

carbide (SiC), was previously considered as an inactive material, and only served to 

improve the structural stability [11]. However, several recent studies have reported the 
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possibilities of the electrochemically lithiated SiC, which could be used as the 

electrode material for the LIBs. The chemical reactions of Li and SiC was detected 

when Li was deposited onto the SiC surface pre-coated by graphene [12]. The growth 

of graphene on SiC can increase the Li+-storage capacity of SiC up to a value which is 

the double value of the graphite [13]. A bowl-like SiC nanostructure with ultra-thin 

SiC nanoshells encapsulated in hollow graphitic carbon spheres as the LIB anodes 

displayed unexpectedly high electrochemical performance [14]. 

However, low electrical conductivity and Li+ diffusion are still critical issues for 

the SiC anode materials. Herein, we have proposed hollow nanospheres of sea-

sponge-C/SiC@SiC/C (SCS/SiC@SiC/C) for the excellent Li+-storage capability. 

Such the new design has the following advantages: (1) the stable nanostructure 

contains numerous inner interconnected-channels, not only can withstand large 

stresses caused by the volume changes of SiC, but also is beneficial for infiltration of 

the electrolyte and Li+ diffusion; (2) besides improve the conductivity, the SCSs also 

contribute the growth of an intimately contacted SiC layer on surface, meanwhile the 

diffusion passway of Li+ is greatly shortened; (3) owing to the lower volume 

expansion compare to Si, SiC could avoid the drawback of volume 

expansion/contraction in repeated cycling, pulverization and loss of electronic contact. 

Furthermore, the stable SiC can work as a scaffold to withstand the stresses induced 

from volume changes for the formation of a stable SEI, which may contribute to 

superior cycling stability; (4) the cycling performance of the SCS/SiC@SiC/C 
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composite can be effectively improved compare to those of the SCS/SiC nanospheres, 

because the SiC/C shells can contribute to the increase of capacity and help to prevent 

the side reactions during charge/discharge processes. 

In this work, the hollow nanostructure of SCS/SiC@SiC/C was successfully 

synthesized through an in situ reduction process [15]. It can exhibit excellent cycling 

stability when used as the anode material in LIBs. The results show that the capacity 

keeps increasing after initial 60 cycles, and reach a value of 612 mAh/g after 1,800 

cycles at 0.5 A/g. Its exceptionally long cycle stability is due to the formation of 

stable structures of interconnected SCS/SiC mesoporous spheres coated with SiC/C.

2. Experimental

2.1. Preparation of SCS/SiC@SiC/C composites  

Based on previously reported work of SCSs synthesis [16,17], the SCS/SiO2 

spheres were prepared using a modified Stöber’s method [18]. Typically, the SCS (30 

mg) was dispersed in ethanol solution and ultrasonicated for 15 min. 

Cetyltrimethylammonium bromide（CTAB）solution (1.0 mL, 10 mM) was added in 

the above solution under stirring. Then tetraethoxysilane (TEOS, 1.0 mL) and 

aqueous ammonia solution (1.0 mL) were sequentially added and continuously stirred 

for 1.0 h. The product was collected by centrifugation and washed with water and 

ethanol. Then the prepared SCS/SiO2 (80 mg) was dissolved into ethanol with CTAB 

solution (1.0 mL, 10 mmol/L), and stirred for 20 min. Then aqueous ammonia (0.3 
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mL) and 50 mg resorcinol were added into the above solution to stir 30 min, 

formaldehyde solution (0.1 mL) was added to kept for 2.0 h. The products were 

collected by centrifugation, washed by water and ethanol. The as-prepared powders 

were then transferred into a tubular furnace and heated at 800 °C under Ar for 2.0 h. 

The obtained SCS/SiO2 or SCS/SiO2@C samples were mixed with Mg powder in a 

molar ratio of 1:2, and then heated to 800 °C with a heating rate of 20 °C/min in a tube 

furnace under Ar for 2 h. The resultant products were then carefully dispersed in a 0.5 

M HCl solution under stirring for 2 h and dispersed in 1% HF aqueous solution for 30 

min to remove the byproducts and impurities. The final object products of SCS/SiC 

and SCS/SiC@SiC/C were washed with the deionized water for three times and dried 

at 70 °C in a vacuum oven for 24 h.

2.2. Characterizations

Morphologies and structures of the samples were characterized using a field 

emission scanning electron microscope (FE-SEM, JEOL, S-4800), a high resolution 

transmission electron microscope (HR-TEM, JEOL, JEM-2100EX) with selective 

area electron diffraction (SAED), X-ray diffraction (XRD, Bruker, D8 Advance) with 

Cu Kα radiation (λ = 0.154056 nm). Elemental mapping was carried out on energy 

disperse X-ray spectroscopy (EDS, Oxford, TN-5400). The molecular structure was 

characterized by Fourier transform infrared spectroscopy (FT-IR, Thermo, NEXUS), 

Raman spectra (Renishaw, inVia). The chemical bond information was analyzed by 

X-ray photoelectron spectroscope (XPS, Perkin Elmer, PHI-5000C ESCA) with Mg 
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Kα radiation. Binding energy of the elements was calibrated using the containment 

carbon (C 1s =284.6 eV) and analyzed using the XPS Peak 41. Weight loss was 

measured on thermo gravimetric analyzer (TGA, Netzsch, STA409PC). The specific 

surface area was investigated by adsorption isotherm of nitrogen (Micrometrics, 

ASAP2020), using the Brunauer-Emmett-Teller (BET) method.

2.3. Electrochemical measurements  

Electrochemical measurements were performed using CR2016 coin-type cells 

assembled in an argon-filled glove box. To prepare the working electrodes, active 

materials were mixed with conductive carbon black and polyvinylidene fluoride 

(PVDF) binder (dissolved in N-methyl pyrrolidone) with a mass ratio of 7:2:1, the 

resulting slurry was uniformly casted onto a copper foil and dried overnight in a 

vacuum oven at 100 °C. Subsequently, the coated copper foil was punched into wafers 

with a diameter of 15 mm. The mass loading of the electrode was 1.5 ± 0.1 mg/cm2. 

Then the coin cells were assembled with active materials as the anode, metallic 

lithium foil as the cathode, and glass fiber as separator. The electrolyte was a solution 

of LiPF6 dissolved in mixed solvent of ethylene carbonate (EC) and dimethyl 

carbonate (DMC) (1:1 by volume). Galvanostatic electrochemical experiments were 

conducted using a multichannel battery test system (LAND CT2000A) at 25 °C. 

Cyclic voltammetry (CV, 0.1 mV/s) and electrochemical impedance spectroscopy 

(EIS, 100 kHz−0.01 Hz, 10 mV) measurements were conducted using an 

electrochemical workstation (Princeton Applied Research Versa STAT4). The 
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specific capacities of all the samples were calculated based on the total mass of active 

materials.

3. Results and discussion

Fig. 1a presents a schematic illustration of fabrication processes of the 

SCS/SiC@SiC/C nanocomposite based on SCSs (Fig. S1a online). Firstly, 

SCS/SiO2 (Fig. S1b online) was prepared by evenly dispersing a layer of SiO2 

onto SCSs. Then, SCS/SiO2 was encapsulated in a carbon layer to form 

SCS/SiO2@C (Fig. S1c online) by coating a layer of resorcinol-formaldehyde 

shell which was transformed to carbon in the carbonization process at 800 °C 

for 3 h. With the assistance of Mg (which has a boiling point of = ~650 °C) 

during the magnesiothermic reduction reaction, the layer of SiO2 in SCS/SiO2 

reacted with SCS to produce SiC, while SiO2 could react with both the inner 

SCS and the carbon shell in SCS/SiO2@C. According to the following 

reactions [19]: 

SiO2+2Mg→Si +2MgO (1)      

SiO2+2Mg+C→SiC +2MgO (2)

The kinetics behind magnesiothermic reduction process were previously 

investigated for the production of both Si [20] and SiC [21-23] as anode of 

LIBs. It is believed that the SiO2 is reduced to Mg2Si which is then served as 

the intermediates and will form SiC when the Mg2Si encounters carbon through 

a solid state diffusion [24]. Larger contact area between SiO2 and C, higher 
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heating rate and higher reaction temperature are favorable for the formation of 

SiC. The mechanism is shown in the inset of Fig. 1b. During the reduction 

process, all the parameters were carefully controlled to facilitate the formation 

of cubic SiC while to avoid the formation of Si. These parameters include: a 

high molar ratio of Mg:SCS/SiO2@C of 2:1, a fast heating rate of 20 °C/min, a 

higher reaction temperature of 800 °C. Finally, a mixture of SCS/SiC or 

SCS/SiC@SiC/C, magnesium oxide and residual silica were obtained. 

Magnesium oxide and the remaining silica were completely washed away by 

the HCl and HF diluted aqueous solutions.

Fig. 1. (Color online) (a) The fabrication scheme of SCS/SiC@SiC/C nanospheres. (b) SiC 
formed by magnesiothermic reduction. (c) 2D cross-section view of the lithiation and 
delithiation process. (d)–(l) SEM, TEM, HRTEM images with inset crystal lattice spacing, 
SAED, XRD, EDS, Elemental mapping images of SCS/SiC spheres. (m)–(o) SEM and 
TEM images of SCS/SiC@SiC/C spheres.

From the SEM and TEM images of SCS/SiC in Fig. 1d−f, the layer of SiC 

is well-distributed on the surface of SCSs and has a good contact among each 

other. Such a structure has a lot of inner spaces to allow the volume changes of 

active material for lithiation/delithiation processes. The in-situ growth of the 

SiC layer ensures its good contact with SCSs, and enable SCS/SiC to perfectly 

remain in the sea-sponge-shapes (Fig. S1d online). The XRD pattern of the 

SCS/SiC shows several diffraction peaks at 2θ=35.6o, 60.0o, 71.8o, which are 

identified as those from the cubic(β)-SiC phase (JCPDS No. 29-1129) (Fig. 1i 
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(top)). The formation of crystalline SiC layer can be proved by the HR-TEM 

image and the corresponding SAED patterns. The lattice constant obtained 

from the HR-TEM image is 0.25 nm, which is the same with the (111) lattice 

face of a cubic SiC (Fig. 1g), and confirmed by the SAED pattern (Fig. 1h). 

EDS analysis (Fig. 1i (bottom)) reveals that the sample is composed of only 

silicon and carbon. It should be noted that there isn’t any Mg (or magnesium 

oxide) signal detected, indicating the by-products of MgO formed in the 

magnesiothemic reduction process was successfully removed. Fig. 1j−l shows 

the comprehensive mapping image for C and Si elements overlapped with 

corresponding SEM image of SCS/SiC sample. The individual mappings of Si 

and C indicate the uniform distribution of SiC on the SCSs. Fig. 1m−o shows 

the SEM and TEM images of the SCS/SiC@SiC/C nanocomposite, which have 

an ordered inner hollow spherical structure with diameters ranging from 0.8 to 

2.2 μm. Both of them retain the morphology of the SCSs without apparent 

changes even after the magnesiothermic reduction process and treatment with 

HCl and HF solutions. Such nanostructures can increase the chance of forming 

the electrochemically active SiC layer through increasing the contact areas with 

C to ensure a good electronic conductivity, which could enable the long-cycle 

stability for the Li+-storage capability.

The successful etching of remained SiO2 was also proved by checking the 

FT-IR spectra of SCS/SiC@SiC/C before and after the HF treatment. In the FT-
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IR spectra (Fig. 2a), two vibration peaks at 475 and 1,111 cm−1 assigned to Si-O 

bonds disappear after the remaining SiO2 was removed [25]. Raman spectra 

shown in Fig. 2b, illustrate that the D band (electron decoherence in optics and 

transport phenomena in sp2 carbons) and G band (E2g mode of carbon) were 

observed at 1,322 and 1594 cm−1, respectively. The two more peaks at 780 and 

940 cm−1 could be assigned to the transverse optical and longitudinal optical of 

SiC [26], indicating that SCS/SiC and SCS/SiC@SiC/C inherit the highly 

ordered backbone of the SCS and the ratio of ID/IG is increased due to the 

formation of more defects on the carbon layer. Fig. 2c shows the TG analysis. 

It’s surprisingly to notice that, unlike SCS/SiC, the weight losses of 

SCS/SiC@SiC/C, i.e., the burning of carbon, can be divided into two stages, 

suggesting that there are two different types of carbon materials in the 

materials, e.g., the inner carbon backbone and the exterior carbon shell. Results 

show that the free carbon content is 26.6wt% for SCS/SiC and 39.3wt% for 

SCS/SiC@SiC/C. So both the samples are composites consisting of crystalline 

SiC and carbon with the mass ratio of SiC is 73.4wt% in SCS/SiC and 60.9 

wt% in SCS/SiC@SiC/C, respectively. XPS spectra (Fig. 2d) presents several 

peaks observed at around 95.5, 151.9, 285.2, 530.0 eV, which can be assigned 

to Si 2p, Si 2s, C 1s and O 1s, respectively. The survey spectra of 

SCS/SiC@SiC/C is similar to that of SCS/SiC due to same composition except 

that the C 1s peak in former is much higher than that of the later, indicating the 
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formation of C shell. The detailed C 1s peak of SCS/SiC and SCS/SiC@SiC/C 

are displayed in Fig. 2e, f. The C 1s spectrum of SCS/SiC@SiC/C (Fig. 2f) can 

be fitted into several peaks which can be ascribed to C=O, carbide bonds from 

SiC and the different components of carbon bonds, respectively.

Fig. 2. (Color online) FT-IR spectra (a), Raman spectra (b), TG analysis (c), XPS full 
spctra (d), detail analysis of C 1s for SCS/SiC (e) and SCS/SiC@SiC/C (f).

The electrochemical performances were evaluated and shown in Fig. 3. 

The CVs of SCS/SiC (Fig. 3a) and SCS/SiC@SiC/C (Fig. 3d) anodes for the 

initial 3 cycles with the potentials ranging from 0.05 to 3V versus Li/Li+, which 

display similar profiles of the lithiation and delithiation processes of SiC. 

Specifically, there are two humps that are appeared at around 1.0 and 0.7 V in 

the first reduction process but then disappeared in the next two cycles. This 

indicates the irreversible reaction as a result of the formation of SEI layer [27]. 

On the other hand, in the anodic side, the two peaks at about 0.15 and 0.2 V are 

attributed to the partly reversible delithiation process of SiC [28]. Meanwhile, 

Fig. 3b and e show the galvanostatic charge/discharge profiles with different 

cycles at 0.5 A/g for SCS/SiC and SCS/SiC@SiC/C, respectively. There are a 

couple of slopes instead of the large plateaus of voltage during the first 

discharge process, which is different from those profiles of silicon but 

consistent with the previous reports that the fully lithiation of SiC produces 

LixSiC instead of LixSi. The cross-section view of the lithiation process for 
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SCS/SiC and SCS/SiC@SiC/C are depicted in Fig. 1c. The impedance values 

and Nyquist plots of the electrodes are shown in Fig. 3c and f, respectively. The 

semi-circles that correspond to the charge transfer resistances suggest that the 

impedance of the SCS/SiC@SiC/C is effectively decreased compared to that of 

the SCS/SiC due to the carbon shell. On the other hand, the repeated cycling 

can result in an improved conductivity for both of the electrode materials which 

suggests a better charge transport after a long-term cycling, and this is 

consistent with the increasing in capacity that was observed in Fig. 3g. Fig. 3g 

illustrates the long-term cycling stability of SCS/SiC and SCS/SiC@SiC/C 

composites at 0.5A/g under the voltage window of 0.01−2.5 V. The cycling 

performance of the SCSs is also shown in the same figure for comparisons. The 

SCS/SiC achieved an initial discharge capacity of 1,046.7 mAh/g. Then the 

capacity was declined until 60 cycles when a minimum value of 352 mAh/g 

was retained, and after that, the discharge capacity was increased steadily and 

gained a relatively high capacity of 662 mAh/g after 950 cycles. Fig. S2a 

(online) presents the cycling behavior of SCS/SiC. The continuously increased 

capacity is due to the activation process of SiC and the enlarged surface areas 

caused by microstructural changes during the lithiation/delithiation, which 

offering more attachment sites and shortened transmission paths for Li+. The 

initial discharge and charge capacities of SCS/SiC@SiC/C are 929.8 and 288.5 

mAh/g (Fig. 3g), respectively, which are slightly lower than those of the 
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SCS/SiC. It can be explained from the higher weight percentage of C in the 

SCS/SiC@SiC/C sample compared to that in the SCS/SiC, and such amorphous 

C exhibits less electrochemical activity than SiC. The Coulombic efficiency in 

the first-cycle was relatively low because the irreversible formation of SEI 

generated at the carbon layer surface, which consumes more lithium. The 

profile of cycling performance for SCS/SiC@SiC/C, although resembling that 

for SCS/SiC, suffers from fast decay in the first 60 cycles. However, it shows a 

continuously increasing tendency up to almost 2,000 cycles with a capacity 

value reaching 612 mAh/g. Table S1 clearly demonstrates that the performance 

of SCS/SiC@SiC/C is more stable than those of the reported materials 

[22,23,27-29]. The structure of SCS/SiC@SiC/C can be well maintained after 

the long-term cycling (Fig. S2b online). These results suggested the exceptional 

structural durability and therefore excellent cycling stability of the 

SCS/SiC@SiC/C. The rate capabilities were evaluated at various current 

densities from 0.2 to 2 A/g and shown in Fig. 3h. Both the SCS/SiC and 

SCS/SiC@SiC/C nanocomposites can deliver stable capacities and then change 

to a higher capacity when the current density was reverted to 0.2 A/g, 

suggesting excellent rating performance and structural stability. It is also 

worthwhile to note that when the current density is increased to 1 and 2 A/g, 

the SCS/SiC@SiC/C delivered almost the same capacity compared to that of 

the SCS/SiC. However, the capacity of SCS/SiC@SiC/C is lower than those of 
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SCS/SiC at 0.2 and 0.5 A/g. When the current density was switched back to 0.2 

A/g at the 45st cycle again, the SCS/SiC could deliver a capacity of 480 mAh/g 

which is even higher than that achieved in the previous cycles. It might be that 

the high rate lithiation-induced reconstruction process is favorable for a stable 

SEI layer formation [30]. All the above results demonstrate that the as-obtained 

hollow nanostructure of SCS/SiC@SiC/C can achieve a good stability for 

nanostructures and long term cyclability for the LIBs applications.

Fig. 3. (Color online) (a), (d) Cyclic voltammograms at a scan rate of 0.1 mV/s. (b), (e) 
Discharge-charge potential profiles at 0.5 A/g. (c), (f) Nyquist curves. (g) Cycling performances. 
(h) The rate performances.

4. Conclusions

In conclusion, the in-situ magnesiothermic reduction process was carried out to 

synthesize the new hollow nanostructures of SCS/SiC@SiC/C. The unique 

architectural advantages combine the conductive SCSs and the mechanically stable 

hollow structures, the SCS/SiC@SiC/C anode material could enable excellent double 

stability for rate and cycling in LIBs, suggesting its great potential for electrochemical 

energy storage and conversion applications.
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Graphical Abstract

A new hollow nanostructure of sea-sponge-C/SiC@SiC/C has been successfully 

fabricated by the sea-sponge-C/SiC nanospheres are coated with SiC/C shells through 

an in situ reduction process, and show an excellent and stable Li+ storage capability.
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