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Bull. Korean Math. Soc.

POISSON APPROXIMATION OF INDUCED SUBGRAPH
COUNTS IN AN INHOMOGENEOUS RANDOM

INTERSECTION GRAPH MODEL

Yilun Shang

Abstract. In this paper, we consider a class of inhomogeneous random
intersection graphs by assigning random weight to each vertex and two
vertices are adjacent if they choose some common elements. In the inho-
mogeneous random intersection graph model, vertices with larger weights
are more likely to acquire many elements. We show the Poisson conver-
gence of the number of induced copies of a fixed subgraph as the num-
ber of vertices n and the number of elements m, scaling as m = bβnαc
(α, β > 0), tend to infinity.

1. Introduction

Let n and m be two positive integers. Take V = {v1, · · · , vn} to be a set
of n vertices and W = {w1, · · · , wm} a set of m elements. Let {θi}n

i=1 be a
sequence of independent and identically distributed positive random variables
with distribution F , where F is assumed to have mean 1 if its mean is finite.
Let fn be a function taking values in the interval [0, 1]. A bipartite graph
B(n,m,F, fn) with vertex sets V and W is constructed by joining vi ∈ V and
w ∈ W (denoted vi ∼ w) independently in such way that pi := P(vi ∼ w) =
fn(θi). The inhomogeneous random intersection graph G(n,m,F, fn) on the
vertex set V is obtained by adding an edge between two vertices vi and vj if and
only if they have a common neighbor w ∈ W in B(n,m,F, fn). By introducing
the inhomogeneous weight sequence {θi}, the model preferably generalizes the
binomial random intersection graph [9], where F is a degenerate distribution
centered at 1, and is able to interpret phenomena in real-life networks. An
example is in social networks, where θi can be viewed as a measure of the
social activity of an individual i; a vertex with larger weight is more likely to
join many groups and thereby acquires many social contacts. Various monotone
properties such as degree, independent set, connectivity, and hamiltonicity, of
inhomogeneous random intersection graphs have been investigated; see e.g. [6,
10, 11, 14] and the recent brief review [4]. We mention that the inhomogeneity
is considered solely for V here since the heterogeneous actors (i.e. vertices
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2 Y. SHANG

in V ) are arguably of more interest from the perspective of social network
applications.

Let H be any fixed graph on h ≥ 2 vertices and having at least one edge.
Let X(H) stand for the number of induced copies of H that can be found
in G(n,m,F, fn). Here, we are interested in Poisson approximation of the
distribution of X(H), which has been extensively studied, for example, in the
case of classical Erdős-Rényi random graphs [7], stochastic block model [5], and
binomial random intersection graphs [12, 13]. Our main tool is the Stein-Chen
method which shows the asymptotic distribution of the type of sums of random
variables appearing in varied combinatorial problems [3, 7] in terms of the total
variation distance. The total variation distance between a random variable X
and a Poisson distributed random variable Poi(λ) with mean λ is defined as

dTV (X, Poi(λ)) =
1
2

∞∑
k=0

|P(X = k) − e−λλk/k!|;

see e.g. [8] for more applications. Let aut(H) denote the number of automor-
phisms of H. Since there are exactly N :=

(
n
h

)
h!/aut(H) copies of H in the com-

plete graph Kn of order n, we collect all of them in a set H := {H1, · · · ,HN}
and write X(H) =

∑N
i=1 Xi, where Xi stands for the indicator random variable

of the event that Hi is an induced subgraph in G(n,m,F, fn).
Clearly, the property that X(H) = k is not monotone. To show the approx-

imate Poisson distribution of X(H), we will rely on the powerful concept of
clique cover introduced in [9]. By examining how each copy of H appears in
G(n,m,F, fn) using clique covers, we present a Poisson approximation result
for subgraph counts in Section 2, and the proofs are given in Section 3.

2. Results

To show the approximate Poisson distribution of X(H), we need the follow-
ing powerful concept of clique cover, which helps to quantify the different ways
copies of H can appear in G(n,m,F, fn). A clique cover C of H is a family of
non-empty subsets of vertex set V (H) such that, each induces a clique of H,
and for any edge {v1, v2} ∈ E(H), there exists C ∈ C such that v1, v2 ∈ C.
By definition, the cliques induced by sets from C exactly cover the edges of H,
and each edge is allowed to be covered by more than one sets. We say that C
is proper if |C| ≥ 2 for all C ∈ C. Let C = {C1, C2, · · · , Ct} be a clique cover
of H. We say that a copy H0 of H in G(n,m,F, fn) is induced by the clique
cover C of H0 if there is a set of disjoint non-empty subsets {W1,W2, · · · ,Wt}
of W such that for all 1 ≤ i ≤ t each element of Wi is linked to all vertices
of Ci and no other vertices from V (H0) in B(n,m,F, fn), and each element
w ∈ W\ ∪t

i=1 Wi is linked to at most one vertex from V (H0). Denote by C(H)
the finite set of proper clique covers of H. It is easy to see that if H0 is an
induced copy of H in G(n,m,F, fn), then it is induced by exactly one proper
clique cover from C(H0).
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Given a clique cover C = {C1, C2, · · · , Ct} of H, for S ⊆ V (H) we define the
following two restricted clique covers C[S] = {Ci∩S : |Ci∩S| ≥ 1, i = 1, · · · , t}
and C′[S] = {Ci ∩ S : |Ci ∩ S| ≥ 2, i = 1, · · · , t}. By definition, these restricted
clique covers are multisets since it is possible that Ci ∩ S = Cj ∩ S for i 6= j.
In particular, when S = V (H), we write C and C′ for short, respectively.
Moreover, |C[S]| stands for the number of cliques in C[S] with multiplicity,
while

∑
C[S] :=

∑
|Ci∩S|≥1

1≤i≤t

|Ci ∩ S| denotes the sum of clique sizes in C[S].

Similar notation applies for C′[S].
To obtain interesting structural properties, the number of elements m is

typically taken to be m = bβnαc for some constants α, β > 0; see e.g. [9, 15].
We assume this form for m in what follows. Denote by X(H, C, S) the number
of copies of H[S] induced by C[S]. When F is degenerated and concentrated at
1, it is shown in [9] that, assuming mp2

1 = o(1), E(X(H, C, S)) = Θ(ψ(H, C, S)),
where

ψ(H, C, S)(1)

=min

n|S|m|C[S]|
∏

vi∈C

C∈C[S]

pi, n
|S|m|C′[S]|

∏
vi∈C

C∈C′[S]

pi


=min

β|C[S]|n|S|+α|C[S]|
∏

vi∈C

C∈C[S]

pi, β
|C′[S]|n|S|+α|C′[S]|

∏
vi∈C

C∈C′[S]

pi

 .

Moreover, we define

(2) η2(H, C, S) =

{ |S|+α|C[S]|
P

C[S] , if α < |S|
P

C[S]−|C[S]| or
∑

C[S] = |C[S]|;
|S|+α|C′[S]|

P

C′[S] , otherwise.

It is straightforward to see that E(X(H, C, S)) = Θ(1) when p1 = γn−η2(H,C,S)

for some constant γ > 0 if F is degenerated and concentrated at 1 [13]; while
in general E(X(H, C, S)) = Θp(1) when pi = fn(θi) = γθin

−η2(H,C,S) ∧ 1 for
γ > 0 under the analogous assumption presented in Theorem 1 below. Here
and in what follows, we adopt the standard asymptotic notations O(·), o(·),
Θ(·), etc. and their probabilistic versions Op(·), op(·), Θp(·), etc. defined in
[7]. In particular, an = Op(bn) as n → ∞ if for every ε > 0 there are constants
c and n0 satisfying P(|an| ≤ cbn) > 1− ε for all n ≥ n0; an = op(bn) as n → ∞
if for every ε > 0, P(|an| < εbn) → 1; an = Θp(bn) as n → ∞ if for every ε > 0
there are constants c1, c2 > 0 and n0 satisfying P(c1bn ≤ an ≤ c2bn) > 1 − ε
for all n ≥ n0.

Next, define η1(H, C) = min∅6=S⊆V (H) η2(H, C, S) and η0 = η0(H) =
maxC∈C(H) η1(H, C). A clique cover C ∈ C(H) is said to be strictly α-balanced if
η2(H, C, S) > η2(H, C, V (H)) for all ∅ 6= S ⊂ V (H). Let C0(H) = {C ∈ C(H) :
η1(H, C) = η0}. Following [13], we say H is strictly α-balanced if any C ∈ C0(H)
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is strictly α-balanced. Note that η0, η1, and η2 all depend on α. The strictly
α-balance condition is a non-trivial extension to the strictly balance condition
which concerns the subgraph density in the Erdős-Rényi graph scenario [7].
Theorem 1. Let H be a fixed graph and m = bβnαc for α, β > 0. Suppose
that F has finite mean, pi = γθin

−η0 ∧ 1 for γ > 0, and that for any C ∈ C(H),
m · minC∈C{(maxvi∈V (H)\C pi) · (maxvi∈C pi)} = op(1). If H is strictly α-
balanced, then

dTV (X(H),Poi(λ)) = o(1),
where λ = 1

aut(H)

∑
C∈C0(H) β|C|γ

P

C ∏
vi∈C∈C θi.

Note that when F is a degenerate distribution concentrated on 1 and β = 1,
the inhomogeneous random intersection graph is reduced to the binomial case
considered in [13] and the main result therein can be recovered. The parameter
λ quantifies the limit of the number of copies of H induced by clique covers in
C0(H). In the next section, we will prove the result using Stein’s method and
the notion of dependency graph [7]. Similar techniques have been used in e.g.
[9, 13] for binomial random intersection graph models.

3. Proofs

In the following, we assume that F has finite mean. Hence, θi is finite with
probability 1 and the Markov inequality yields pi = op(1) for 1 ≤ i ≤ n. The
following result shows the asymptotic independence of the numbers of elements.
Lemma 1. Suppose that C = {C1, · · · , Cr} is a clique cover of H. For 1 ≤
j ≤ r, let Mj be the number of elements in W that are connected to all vertices
from Cj and no vertex from V (H)\Cj in G(n,m,F, fn) and let M̃j be a Pois-
son random variable Poi(m

∏
vi∈Cj

pi). If m · min1≤j≤r{(maxvi∈V (H)\Cj
pi) ·

(
∏

vi∈Cj
pi)} = op(1), then

P(∩r
j=1{Mj = aj}) ∼p

r∏
j=1

P(M̃j = aj)

holds uniformly for all aj ≤ A = A(n) satisfying A = o(
√

m) and Ap1 = op(1).

Proof. Given {θi}n
i=1, we define qj =

∏
vi∈Cj

pi

∏
vi∈V (H)\Cj

(1 − pi) for 1 ≤
j ≤ r. Clearly, qj represents the probability that an element w is connected to
all vertices from Cj but no other vertices from V (H) in B(n,m,F, fn). Define
q0 = 1−

∑r
j=1 qj and a0 = m−

∑r
j=1 aj . Note that qj ≤ min1≤j≤r

∏
vi∈Cj

pi =
op(1). For 0 ≤ aj ≤ A (1 ≤ j ≤ r), we obtain

P(∩r
j=1{Mj = aj}) =

(
m

a0, · · · , ar

)
qa0
0

r∏
j=1

q
aj

j =
m!
a0!

qa0
0

r∏
j=1

q
aj

j

aj !

=
m!

(m −
∑r

j=1 aj)!

(
1 −

r∑
j=1

qj

)m−
Pr

j=1 aj r∏
j=1

q
aj

j

aj !
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= m
Pr

j=1 aj · e−(m−
Pr

j=1 aj)
Pr

j=1 qj−O
“

(m−
Pr

j=1 aj)(
Pr

j=1 qj)2
” r∏

j=1

q
aj

j

aj !

= m
Pr

j=1 aj e
O

“

r2A2
m

”

· e−m
Pr

j=1 qj+O
“

r2A minj
Q

vi∈Cj
pi+mr2(minj

Q

vi∈Cj
pi)

2
”

·
r∏

j=1

q
aj

j

aj !

∼ e−m
Pr

j=1 qj

r∏
j=1

maj q
aj

j

aj !

= e
−m

Pr
j=1

h

Q

vi∈Cj
pi+O

“

m minj{(maxvi∈V (H)\Cj
pi)

Q

vi∈Cj
pi}

”i

·
r∏

j=1

(
m

∏
vi∈Cj

pi

)aj

aj !

( ∏
vi∈V (H)\Cj

(1 − pi)
)aj


∼

r∏
j=1

e
−m

Q

vi∈Cj
pi ·

(
m

∏
vi∈Cj

pi

)aj

aj !
· eO

“

hA maxvi∈V (H)\Cj
pi

”

∼
r∏

j=1

e
−m

Q

vi∈Cj
pi ·

(
m

∏
vi∈Cj

pi

)aj

aj !
=

r∏
j=1

P(M̃j = aj),

as n tends to infinity. ¤
Denote by π(H, C) the probability that H is induced by the clique cover

C. Recall that N =
(
n
h

)
h!/aut(H) and H = {H1, · · · ,HN} collects all N

copies of H in the complete graph Kn. Since each copy Hi ∈ H (1 ≤ i ≤
N) can be induced by at most one clique cover in C(Hi), we have EXi =∑

C∈C(Hi)
π(Hi, C) =

∑
C∈C(H) π(H, C). The following lemma gives an asymp-

totic estimate for the probability π(H, C).

Lemma 2. Let C = {C1, · · · , Cr} be a clique cover of H, I1 = {1 ≤ j ≤ r :
|Cj | = 1} and I2 = {1 ≤ j ≤ r : |Cj | ≥ 2}. Assume

m · min
1≤j≤r

{
( max
vi∈V (H)\Cj

pi) · ( max
vi∈Cj

pi)
}

= op(1).

Then

π(H, C) ∼p

∏
vi∈Cj ,j∈I1

(1 − e−mpi)
∏
j∈I2

m
∏

vi∈Cj

pi

 .

Consequently,

π(H, C) = Θp

min

m|C|
∏

vi∈Cj ,Cj∈C
pi,m

|C′|
∏

vi∈Cj ,Cj∈C′

pi


 .
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Proof. Given {θi}n
i=1, let (Cr+1, Cr+2, · · · , Ct) be the subsets of V (H) not in

C of order of at least 2. For 1 ≤ j ≤ r, let Mj be the number of elements
that are connected to all vertices from Cj and no vertex from V (H)\Cj in
G(n,m,F, fn). Since H is induced by C, we have Mj = 0 for j = r + 1, · · · , t.
Clearly, Mj ∼ Bin(m, qj), i.e. Mj has binomial distribution with parame-
ters m and qj , where qj is defined as in Lemma 1. Let M̃j be a Poisson
random variable Poi(m

∏
vi∈Cj

pi). It follows from π(H, C) = P(∩r
j=1{Mj ≥

1} ∩ ∩t
j=r+1{Mj = 0}) and the Chernoff bound [7] that for sufficiently large

c > 0, P(Mj ≥ A) = o(π(H, C)) and P(M̃j ≥ A) = o(π(H, C)), where
A = A(n) = c · max{m maxvi∈Cj pi, lnn}. Therefore,

π(H, C) = P
(
∩r

j=1{Mj ≥ 1} ∩ ∩t
j=r+1{Mj = 0}

)
=

∑
1≤aj≤A,1≤j≤r

P
(
∩r

j=1{Mj = aj} ∩ ∩t
j=r+1{Mj = 0}

)
+o(π(H, C)).

Note that m · min1≤j≤r{(maxvi∈V (H)\Cj
pi) · (

∏
vi∈Cj

pi)} = m

·min1≤j≤r{(maxvi∈V (H)\Cj
pi) · (maxvi∈Cj pi)} = op(1), A = o(

√
m), and A ·

maxvi∈V (H)\Cj
pi = op(1). Since {pi}n

i=1 are i.i.d., we have Ap1 = op(1). It
follows from Lemma 1 and Chebyshev’s inequality that

π(H, C) ∼p

∑
1≤aj≤A,1≤j≤r

r∏
j=1

P(M̃j = aj)
t∏

j=r+1

P(M̃j = 0)

=
r∏

j=1

P(1 ≤ M̃j ≤ A)
t∏

j=r+1

P(M̃j = 0)

∼p

r∏
j=1

P(M̃j ≥ 1)
t∏

j=r+1

P(M̃j = 0)

=
r∏

j=1

(
1 − e

−m
Q

vi∈Cj
pi

) t∏
j=r+1

e
−m

Q

vi∈Cj
pi

∼p

r∏
j=1

(
1 − e

−m
Q

vi∈Cj
pi

)

∼p

∏
vi∈Cj ,j∈I1

(
1 − e−mpi

) ∏
j∈I2

m
∏

vi∈Cj

pi

 ,(3)

as n tends to infinity.
For vi ∈ Cj (j ∈ I1), if mpi ≥ 1 then 1 − e−mpi = Θp(1); if mpi < 1 then

1 − e−mpi = Θp(mpi). Hence, 1 − e−mpi = Θp(min{mpi, 1}). Combining this
with (3) completes the proof. ¤
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Recall the definition (1) and define ω(H, C) = min∅6=S⊂V (H) ψ(H, C, S). The
next result provides another necessary ingredient regarding second moments
for the proof of Theorem 1.

Lemma 3. For any clique cover C = {C1, · · · , Cr} ∈ C(H), suppose that
m · min1≤j≤r {(maxvi∈V (H)\Cj

pi) · (maxvi∈Cj pi)} = op(1). Let G1 and G2

be two subgraphs of Kn with |V (G1) ∩ V (G2)| = ` and G1 ∩ G2 is an induced
subgraph of both G1 and G2. Let Ci be a proper clique cover of Gi for i =
1, 2. Denote by X(Gi, Ci) the indicator random variable of the event that Gi is
induced by Ci in G(n,m,F, fn). Then

ω(G2, C2) = Op

(
n` · EX(G1, C1) · EX(G2, C2)

E(X(G1, C1)X(G2, C2))

)
.

Proof. Let C1 = {C11, · · · , C1r1} and C2 = {C21, · · · , C2r2} be two proper
clique covers of G1 and G2, respectively. We write C1 + C2 for the set of clique
covers on V (G1 ∪ G2) satisfying C[V (G1)] = C1 and C[V (G2)] = C2 for each
C ∈ C1 + C2. It is clear that each clique cover in C1 + C2 is proper. Moreover, if
Gi is induced by Ci on V (Gi) for i = 1, 2, then G1 ∪G2 is induced by a unique
element of C1 + C2 and hence

(4) E(X(G1, C1)X(G2, C2)) =
∑

C∈C1+C2

EX(G1 ∪ G2, C).

For each C ∈ C1 + C2 we define J1 = J1(C) = {1 ≤ j ≤ r1 : ∃C ∈
C such that C = C1j for some 1 ≤ j ≤ r1 but C 6= C2j for any 1 ≤ j ≤ r2},
J2 = J2(C) = {1 ≤ j ≤ r2 : ∃C ∈ C such that C = C2j for some 1 ≤ j ≤
r2 but C 6= C1j for any 1 ≤ j ≤ r1}, and J2 = J3(C) = {(k, l), 1 ≤ k ≤ r1, 1 ≤
l ≤ r2 : ∃C ∈ C such that C = C1k ∪ C2l for some 1 ≤ k ≤ r1 and 1 ≤ l ≤ r2}.
Furthermore, let J4 = {1 ≤ j ≤ r1 : ∃l ∈ {1, · · · , r2} such that (j, l) ∈ J3} and
J5 = {1 ≤ j ≤ r2 : ∃k ∈ {1, · · · , r1} such that (k, j) ∈ J3}, which readily imply
that J1 ∪ J4 = {1, · · · , r1} and J2 ∪ J5 = {1, · · · , r2}. For any C ∈ C1 + C2, it
follows from Lemma 2 that

EX(G1 ∪ G2, C)

∼p

∏
j∈J1

|C1j |>1

m
∏

vi∈C1j

pi

 ∏
vi∈C1j ,j∈J1

|C1j |=1

(
1 − e−mpi

)

·
∏
j∈J2

|C2j |>1

m
∏

vi∈C2j

pi

 ∏
vi∈C2j ,j∈J2

|C2j |=1

(
1 − e−mpi

)

·
∏

(k,l)∈J3
|C1k∪C2l|>1

(
m

∏
vi∈C1k∪C2l

pi

) ∏
vi∈C1k∪C2l,(k,l)∈J3

|C1k∪C2l|=1

(
1 − e−mpi

)
.(5)
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If mpi ≤ 1, then mpi = Θp(1 − e−mpi). By using (5) we obtain

EX(G1 ∪ G2, C)

=Op

 ∏
j∈J1

m
∏

vi∈C1j

pi

 ∏
j∈J2

m
∏

vi∈C2j

pi

 ∏
(k,l)∈J3

(
m

∏
vi∈C1k∪C2l

pi

)
=Op

 ∏
j∈J1

m
∏

vi∈C1j

pi

 ∏
j∈J2

m
∏

vi∈C2j

pi


·

∏
(k,l)∈J3

(
m

∏
vi∈C1k

pi

) (
m

∏
vi∈C2l

pi

)
m

∏
vi∈C1k∩C2l

pi


=Op

 ∏
1≤j≤r1

m
∏

vi∈C1j

pi

 ∏
1≤j≤r2

m
∏

vi∈C2j

pi

 ∏
(k,l)∈J3

1
m

∏
vi∈C1k∩C2l

pi

 .

Noting that V (G1) ∩ V (G2) ∩ C2l = C1k ∩ C2l, we have

∏
(k,l)∈J3

(
m

∏
vi∈C1k∩C2l

pi

)
≥

∏
C∈C2[V (G1)∩V (G2)]

(
m

∏
vi∈C

pi

)
≥ ω(G2, C2)

n`
,

which completes the proof in this case employing Lemma 2.
On the other hand, if mpi > 1, 1 = Θp(1 − e−mpi). It follows from (5) that

EX(G1 ∪ G2, C) =Op

( ∏
j∈J1

|C1j |>1

(
m

∏
vi∈C1j

pi

) ∏
j∈J2

|C2j |>1

(
m

∏
vi∈C2j

pi

)

·
∏

(k,l)∈J3
|C1k∪C2l|>1

(
m

∏
vi∈C1k∪C2l

pi

))
.

When |C1k| = |C2l| = 1, m
∏

vi∈C1k∪C2l
pi = op(1); when |C1k| = 1 and

|C2l| > 1, m
∏

vi∈C1k∪C2l
pi ≤ m

∏
vi∈C2l

pi; when |C1k| > 1 and |C2l| = 1,
m

∏
vi∈C1k∪C2l

pi ≤ m
∏

vi∈C1k
pi; when |C1k| > 1 and |C2l| > 1,

m
∏

vi∈C1k∪C2l
pi = (m

∏
vi∈C1k

pi)(m
∏

vi∈C2l
pi) /(m

∏
vi∈C1k∩C2l

pi). Argu-
ing similarly as above, we derive

EX(G1 ∪ G2, C)

=Op

 ∏
1≤j≤r1
|C1j |>1

m
∏

vi∈C1j

pi

 ∏
1≤j≤r2
|C2j |>1

m
∏

vi∈C2j

pi
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·
∏

(k,l)∈J3
|C1k|>1,|C2l|>1

1
m

∏
vi∈C1k∩C2l

pi


=Op

 ∏
1≤j≤r1
|C1j |>1

m
∏

vi∈C1j

pi

 ∏
1≤j≤r2
|C2j |>1

m
∏

vi∈C2j

pi



·
∏

C∈C′
2[V (G1)∩V (G2)]

1
m

∏
vi∈C pi


=Op

 ∏
1≤j≤r1
|C1j |>1

m
∏

vi∈C1j

pi

 ∏
1≤j≤r2
|C2j |>1

m
∏

vi∈C2j

pi

 · n`

ω(G2, C2)

 ,

which combining with (4) and Lemma 2 proves the lemma. ¤
The dependency graph is an essential concept in applying stein’s method

[3]. A dependency graph D of a family of random variables {Zi}i∈V (D) is a
graph with vertex set V (D) and edge set E(D) such that if A and B are two
disjoint subsets of V (D) with no edges running between them, then the families
{Zi}i∈A and {Zi}i∈B are mutually independent.

Lemma 4. ([7, p.154]) Suppose that Z =
∑

i∈V (D) Zi, where the Zi are
random indicator variables with a dependency graph D. Then, with πi = EZi

and λ = EZ =
∑

i∈V (D) πi (and with summation over ordered pairs (i, j)),

dTV (Z, Poi(λ)) ≤ min{λ−1, 1}

 ∑
i∈V (D)

π2
i +

∑
(i,j)∈E(D)

(πiπj + E(ZiZj))

 .

Proof of Theorem 1. Given {θi}n
i=1, for each 1 ≤ i ≤ N we write X(Hi, C)

for the indicator random variable that the clique cover in C(Hi) corresponding
(via the isomorphism between H and Hi) to C ∈ C(H) induces Hi. Hence, we
decompose X(H) as X(H) =

∑N
i=1 Xi = Y0 + Y1, where

Y0 =
∑N

i=1

∑
C∈C0(H) X(Hi, C) and Y1 =

∑N
i=1

∑
C∈C(H)\C0(H) X(Hi, C).

Capitalizing Lemma 2 and noting the fact that η0(H) = η1(H, C)
= η2(H, C, V (H)) for C ∈ C0(H), we deduce

EY0 ∼ nh

aut(H)

∑
C∈C0(H)

π(H, C) ∼ 1
aut(H)

∑
C∈C0(H)

(
β|C|γ

P

C
∏

vi∈C∈C
θi

)
= λ,

as n tends to infinity. Define φ = φ(H) = minC∈C0(H) ω(H, C). Since H is
strictly α-balanced, for each C ∈ C0(H) and ∅ 6= S ⊂ V (H), ψ(H, C, S) → ∞
as n → ∞. This implies that limn→∞ φ = ∞.
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Next, we define a dependency graph D as in [13] with the vertex set V (D) =
{1, · · · , N} × C0(H) such that {(i, C1), (j, C2)} ∈ E(D) if and only if V (Hi) ∩
V (Hj) 6= ∅. Recall that EX(Hi, C) = π(Hi, C), we obtain from Lemma 4 that

dTV (Y0,Poi(EY0)) ≤ min{(EY0)−1, 1}
( ∑

(i,C)

π2(Hi, C)

+
∑

{(i,C1),(j,C2)}∈E(D)

(
π(Hi, C1)π(Hj , C2) + E(X(Hi, C1)X(Hj , C2))

))
.(6)

We now estimate each term on the righthand side of (6) as follows. By Lemma
2, N = O(nh), and the definition of dependency graph D we obtain∑

(i,C)∈V (D)

π2(Hi, C) = O

( ∑
C∈C0

nhm2|C|
( ∏

vi∈C∈C
pi

)2
)

= O(n−h)

and ∑
{(i,C1),(j,C2)}∈E(D)

π(Hi, C1)π(Hj , C2)

=O

(
n2h−1m2|C|

( ∏
vi∈C∈C1

pi

)( ∏
vi∈C∈C2

pi

))
=O(n−1).

For any two different proper clique covers C1, C2 ∈ C0(Hi), we have
E(X(Hi, C1)X(Hi, C2)) = 0 (1 ≤ i ≤ N). Furthermore, using Lemma 2 and
Lemma 3, we obtain ∑

{(i,C1),(j,C2)}∈E(D)

E(X(Hi, C1)X(Hj , C2))

=
∑

1≤i,j≤N
V (Hi)∩V (Hj)6=∅

∑
C1∈C0(Hi)
C2∈C0(Hj)

E(X(Hi, C1)X(Hj , C2))

=O

 ∑
C1,C2∈C0(H)

nh
h−1∑
`=1

nh−`

φ
π(H, C1)π(H, C2)n`


=O(φ−1) = o(1),

where ` = |V (Hi) ∩ V (Hj)|. Applying the above estimates to (6), we obtain
dTV (Y0,Poi(EY0)) = o(1). Consequently,

dTV (Y0,Poi(λ)) ≤ dTV (Y0,Poi(EY0)) + dTV (Poi(EY0),Poi(λ))
= o(1) + O(|EY0 − λ|) = o(1).(7)

We claim that P(Y1 > 0) = o(1). If it is true, then dTV (X, Poi(λ)) ≤
dTV (X,Y0) + dTV (Y0,Poi(λ)) ≤ P(Y1 > 0) + dTV (Y0,Poi(λ)) = o(1) by (7).
The proof of Theorem 1 is then complete.
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What remains to show is the vanishing probability of the event {Y1 > 0}. In
fact, for C ∈ C(H)\C0(H), there exists some non-empty S ⊆ V (H) satisfying
η2(H, C, S) < η0(H). Let Hi[S] be the induced subgraph of S. We have
P
( ∑N

i=1 X(Hi, C) > 0
)
≤ P

(
∃1 ≤ i ≤ N,X(Hi[S], C[S]) > 0

)
≤ ψ(H, C, S) =

o(1). We arrive at P(Y1 > 0) = o(1) due to the finiteness of the clique covers.
¤
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