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Abstract 

In this article, for the first time, a coupled nonlinear model incorporating scale influences is 

presented to simultaneously investigate the influences of viscoelasticity and geometrical 

imperfections on the nonlocal coupled mechanics of carbon nanotubes; large deformations, 

stress nonlocality and strain gradients are captured in the model. The Kelvin-Voigt model is also 

applied in order to ascertain the viscoelasticity effects on the mechanics of the initially imperfect 

nanoscale system. The modified coupled equations of motion are then derived via the Hamilton 

principle. A solution approach for the derived coupled equations is finally developed applying a 

decomposition-based procedure in conjunction with a continuation-based scheme. The 

significance of many parameters such as size parameters, initial imperfections, excitation 

parameters and linear and nonlinear damping effects in the nonlinear mechanical response of 

the initially imperfect viscoelastic carbon nanotube is assessed. The present results can be useful 

for nanoscale devices using carbon nanotubes since the viscoelasticity and geometrical 

imperfection are simultaneously included in the proposed model.  

Keywords: Carbon nanotubes; Initial imperfections; Viscoelasticity; Nonlinear response; Scale 

influences 
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1. Introduction 

Micro and nano structures have been widely used in micro/nano devices [1, 2]. Among 

them, carbon nanostructures have been used in a wide range of applications in nanotechnology, 

biotechnology and nanoengineering since they display interesting electrical, mechanical and 

chemical properties. Some important carbon nanostructures are carbon nanotubes (CNTs), 

graphene sheets and buckyballs. To appropriately use these precious nanostructures in different 

applications, especially in nanoengineering, our level of understanding of their mechanical 

properties should be increased. This is due to the fact that the overall performance of a 

nanoelectromechanical system (NEMS) depends greatly on the mechanical behaviour of its 

building blocks such as CNTs.   

Scale-dependent models have been utilised for the investigation of the mechanics of many 

small-scale structures such as microbeams [3-9], microplates [10-13], nanobeams [14-20] and 

nanoplates [21-25]. A particular attention has been paid to the mechanics of CNTs. Although 

CNTs display a viscoelastic response when they are subject to an applied load [26, 27], many size-

dependent theoretical models in the literature have not considered the effects of viscoelasticity. 

As some examples, a few size-dependent models for the mechanical response of elastic CNTs are 

reviewed. Setoodeh et al. [28] obtained an exact solution for the buckling instability of elastic 

CNTs with large deformations by applying a classical nonlocal model. Aydogdu [29] presented a 

size-dependent nonlocal rod theory to ascertain the axial vibration characteristics of nanorods. 

In addition, Malekzadeh and Shojaee [30] proposed a non-classical continuum theory to explore 

the free vibration of non-uniform beams at the nanoscale level. The nonlocal oscillations of mass 

nanosensors employing elastic CNTs with small deformations were also examined by Aydogdu 
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and Filiz [31]. In addition to these interesting papers, a few studies have been carried out on the 

viscoelastic response of CNTs under mechanical stresses. Chang and Lee [32] developed a 

nonlocal model to study the viscoelastic vibration characteristics of carbon nanotubes. In another 

analysis, a linear study was performed by Lei et al. [33] on the damping effect on the vibration 

response of CNTs using a combination of the Kelvin-Voigt model and the Eringen theory. The 

time-dependent deformation of fluid-conveying CNTs taking into account the internal energy loss 

was also explored by Bahaadini and Hosseini [34]. Furthermore, the effect of initial stresses on 

the vibration of viscoelastic beams at nanoscale levels was investigated by Zhang et al. [35]. 

Karlicic et al. [36] also proposed a non-classical model for the dynamic characteristics of a CNT-

based composite viscoelastic system under the action of a magnetic field.  

The use of the classical nonlocal theory of elasticity for nanoscale structures such as CNTs 

is limited to a particular range of lengths since nonlocal effects usually disappear after a certain 

length. To overcome this problem, Lim et al. [37] has recently introduced a modified nonlocal 

elasticity theory by incorporating the strain gradient influences. Using the molecular dynamics, it 

has been indicated that this modified theory is able to better estimate the size-dependent 

mechanics of CNTs compared to the classical nonlocal theory [38]. However, few research papers 

have been reported on the size-dependent deformation of CNTs with consideration of 

viscoelastic effects using this modified nonlocal theory. Some linear models have been merely 

developed for the wave propagation analysis of viscoelastic carbon nanotubes [39-41].   

In addition to the influence of viscoelasticity, the influence of geometrical imperfections 

becomes more and more important when large deformations are taken into consideration since 

these imperfections can change the nonlinear mechanical characteristics of ultrasmall structures.  
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In the current investigation, for the first time, the effects of viscoelasticity as well as 

geometrical imperfections on the mechanics of CNTs with large deformations are analysed via a 

modified nonlocal elasticity model. The consideration of both viscoelasticity and geometrical 

imperfections leads to a more comprehensive scale-dependent model for CNTs. Furthermore, 

the proposed model can be used in a wide range of lengths since the stiffness hardening and 

softening are included. As a viscoelastic theory, the Kelvin-Voigt model is applied in the analysis. 

The coupled nonlinear equations of ultrasmall tubes are presented applying the Hamilton 

principle together with a beam model. A solution approach is developed with the application of 

a decomposition-based procedure in conjunction with a continuation-based method. The 

importance of many parameters such as the size parameter, the initial imperfection, the 

excitation loading as well as the linear and nonlinear damping effects in the size-dependent 

coupled mechanics of the initially imperfect viscoelastic carbon nanotube with large deflections 

is explained.  

 

2. Formulation 

Shown in Fig. 1 is a clamped-clamped single-walled carbon nanotube with an initial 

deformation as a geometric imperfection. The viscoelastic and elastic constants of the CNT are 

denoted by   and E, respectively. Moreover, Poisson’s ratio, the length and the mass density are 

denoted by v, L and  , respectively. w0 denotes the initial deflection of the viscoelastic CNT while 

the axial and transverse time-dependent displacements are described by u and w, respectively. 

A harmonic load in the form of    ( , ) cosq x t t F x  is applied on the imperfect nanoscale 
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system along the transverse direction;   and F are the forcing frequency and amplitude, 

respectively. 

To model the mechanics of nanostructures such as CNTs, scale-dependent continuum mechanics 

can be used [42-47]. For a single-walled CNT with an initial deformation, the axial strain ( xx ) is 

given by 


    

    
    

2 2
0

2

1
.

2
xx

dwu w w w
z

x x x dx x
        (1) 

On the other hand, based on the modified nonlocal elasticity, the total axial stress of the 

imperfect viscoelastic CNT (txx) is expressed as [48-51] 

    l      
 

2 2 2 2
0 ( ) ( )1 1 ,cl cl

xx sg xx el xx vise a t t t       (2) 

where ( )
cl
xx elt  and ( )

cl
xx vist  are respectively the elastic and viscoelastic parts of the classical (local) 

stress; e0, a, lsg and 2  stand for the calibration parameter associated with the nonlocal stress 

[52], the internal characteristic length, the strain gradient parameter and the Laplace operator, 

respectively [53, 54]. Equation (2) is the differential scale-dependent constitutive relation of the 

modified elasticity theory. Recently, integral scale-dependent constitutive relations have also 

been used for nanostructures [55-58]. The elastic and viscoelastic parts of the classical stress are  
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In view of Eqs. (1)-(3), the non-classical stress resultants of the imperfect viscoelastic CNT can be 

formulated as 
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The relations between different non-classical stresses are described by 
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where  ,  ( )ij  and  (1)
( )ij  represent the gradient operator, the axial classical nonlocal stress and 

the axial higher-order nonlocal stress, respectively. The energy variation due to the total elastic 

stress ( elU ) of the imperfect CNT and the work variation due to its total viscoelastic stress 

( )visW  are as follows 
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The kinetic energy variation ( eK ) of the imperfect CNT and the work variation ( qW ) due to 

q(x,t) are also formulated as [59]  

  
    

  
    


0

,
L

e

u u w w
K m dx

t t t t
        (10) 

  0 ( , ) d .
L

qW q x t w x           (11) 

In Eq. (10), m denotes the mass per unit length of the imperfect CNT. The Hamilton principle is 

now used for the derivation of the motion equations of the imperfect viscoelastic tube. This 

principle is generally written as follows  

       
2

1

d 0.
t

e q vis el
t

K W W U t         (12) 

Using Eqs. (8)-(11), one obtains the following motion equations 
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Application of the above equations to Eqs. (4) and (5) gives the following expressions for the non-

classical stress resultants 
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Substituting the obtained stress resultants into Eqs. (13) and (14) and assuming the harmonic 

load as   1 cosq F t , one can obtain 
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3. Solution method 

In this section, a numerical solution procedure is presented for the derived coupled 

equations of motion given by Eqs. (17) and (18). First of all, it is better to rewrite these differential 

equations in the non-dimensional form via the following set of parameters 
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in which   represents the ratio of the CNT length (L) to its gyration radius (Rg). In view of these 

non-dimensional parameters, Eqs. (17) and (18) can be expressed as  
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In Eqs. (20) and (21), asterisk superscripts are neglected for the sake of simplification. As the 

second step, the non-dimensional nonlinear coupled equations are discretised employing the 

following expressions  
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Here (ri,qi) and  ( , )i i  indicate the generalised coordinates and the shape functions of the 

imperfect viscoelastic CNT, respectively. Assuming the initial deflection as  0 0 1( )w A x  and 

applying Eq. (22), a set of coupled discretised equations are obtained, where, a continuation-

based approach is applied so as to the frequency response of the imperfect viscoelastic CNT is 

obtained. 

 

4. Numerical results 

A nonlinear investigation is performed in the following to examine the effect of initial 

deflections on the nonlinear coupled response of viscoelastic CNTs. All results are plotted for the 

case of a zigzag (10,0) single-walled CNT. The scale and geometrical parameters of the imperfect 

viscoelastic nanosystem are as (χnl =0.1, χsg=0.05) and (L=20, h=0.34, d=0.7829) nm, respectively. 
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Here the thickness and the average diameter are, respectively, shown by h and d. For the 

described geometry, the slenderness ratio is as β= 66.2751. The material features of the 

imperfect viscoelastic zigzag CNT are considered as E=1.0 TPa, ν=0.19, η=0.00045 and ρ=2300 

kg/m3 for all the cases.  

Plotted in Fig. 2 is the size-dependent frequency-amplitude responses of the initially 

imperfect viscoelastic CNT for χnl =0.1, χsg=0.05, F1=0.35, A0=0.7, and η=0.00045. The coupled 

resonance behaviour of this nanoscale system is of hardening nonlinearity; two saddle nodes at 

Ω/ω1=1.1554 and Ω/ω1=1.0292 are found. The natural frequency of the initially imperfect 

viscoelastic CNT is ω1= 23.4998. It is worth pointing out that between the two saddle nodes, the 

nonlinear response is unstable while it is stable in other regions.  

The frequency-amplitude responses of the initially imperfect viscoelastic CNT obtained via 

the nonlocal strain gradient and classical continuum theories are indicated in Fig. 3. The 

dimensional parameters of the imperfect viscoelastic nanotube are set to F1=0.35, A0=0.7 and 

η=0.00045. Using the classical continuum theory causes overestimated results for the motion 

amplitudes in both directions (i.e. the axial and transverse ones). In addition, the resonance 

frequency of the modified nonlocal theory is slightly lower than the frequency estimated by the 

classical continuum theory.    

Shown in Fig.4 is the force-amplitude responses of the initially imperfect viscoelastic 

nanotube obtained via the nonlocal strain gradient and classical continuum theories for Ω=25.0, 

A0=0.7, and η=0.00045. The size parameters for the nonlocal strain gradient and classical 

continuum theories are taken as (χnl =0.1, χsg=0.05) and (χnl =0, χsg=0), respectively. Applying the 

classical continuum theory generally yields higher values of q1 and r2. Moreover, ignoring the 
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influence of size parameters causes significantly underestimated results for the value of F1 

related to the saddle node.  

Figure 5 represents the variation of the resonance forcing amplitude versus the resonance 

frequency for initially imperfect viscoelastic CNTs for two damping mechanisms. For the linear 

damping, it is assumed that ζ=0.006 where ζ denotes the modal damping ratio. Moreover, a value 

of η=0.00045 is assumed for the nonlinear damping in this figure. For relatively small values of 

F1, there is not an important difference between the results of the two mechanisms. By contrast, 

for high values of F1, ignoring nonlinear damping effects causes overestimated results for the 

resonance frequencies.   

Plotted in Fig. 6 is the size-dependent frequency-amplitude responses of the initially 

imperfect viscoelastic CNT for a higher imperfection amplitude (A0=1.4). Other CNT parameters 

are set to χnl =0.1, χsg=0.05, F1=0.80, and η=0.00045. This time the coupled resonance behaviour 

of the imperfect viscoelastic zigzag CNT is significantly changed. Four saddle nodes at 

Ω/ω1=0.9419, 0.9142, 1.0566 and 0.9413 are found for the softening-hardening behaviour. In 

this case, the natural frequency of the initially imperfect viscoelastic zigzag CNT is as ω1=28.7136. 

Figure 7 also represents the frequency-amplitude responses of the initially imperfect viscoelastic 

nanosystem obtained via the nonlocal strain gradient (χnl =0.1, χsg=0.05) and classical continuum 

(χnl =0, χsg=0) theories for F1=0.80, A0=1.4, and η=0.00045. It is found that the classical continuum 

theory leads to overestimated results for the motion amplitudes of imperfect viscoelastic zigzag 

CNTs in both directions.   

Figure 8 indicates the force-amplitude responses of the initially imperfect viscoelastic 

nanotube obtained via the nonlocal strain gradient and classical continuum theories; this time a 
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larger imperfection amplitude is chosen A0=1.4. The excitation frequency and the viscoelastic 

coefficient are, respectively, set to Ω=27.5, and η=0.00045. Ignoring the size effect generally 

yields higher values of q1 and r2. Plotted in Fig. 5 is the variation of the resonance forcing 

amplitude versus the resonance frequency for initially imperfect viscoelastic CNTs for two 

damping mechanisms. For the linear damping, it is assumed that ζ=0.0072 while a value of 

η=0.00045 is assumed for the nonlinear damping. For small values of F1, no important difference 

between the results of the two mechanisms is found. Nonetheless, for relatively high values of 

F1, nonlinear damping effects become important. Ignoring them causes highly overestimated 

results for the resonance frequency.   
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5. Concluding remarks 

A nonlocal coupled nonlinear beam model was proposed in this paper in order to extract 

the mechanical response of initially imperfect viscoelastic CNTs. The effect of viscoelasticity was 

modelled using a viscoelastic model. Moreover, the influence of being geometrically imperfect 

was captured by considering an initial deflection along the transverse direction. The coupled 

nonlinear equations of the initially imperfect viscoelastic CNT were derived and solved by 

applying a work/energy law and a Galerkin procedure.  

It was found that the coupled resonance behaviour of viscoelastic CNTs is of hardening 

nonlinearity with two saddle nodes when a relatively small imperfection is imposed. In addition, 

using the classical continuum theory causes overestimated amplitudes of motion along both 

directions. The resonance frequency of the coupled nonlocal model is lower than the frequency 

estimated by the classical model. For relatively small forcing amplitudes, there is not an 

important difference between the results of the linear and nonlinear damping mechanisms. By 

contrast, for high values of this parameter, ignoring nonlinear damping causes overestimated 

resonance frequencies. It was also seen that a change in the initial deflection can alter the 

number of the saddle nodes. Four saddle nodes are found for CNTs when a large enough initial 

deflection is imposed.  
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Fig. 1. An initially imperfect viscoelastic CNT with clamped-clamped edges. 
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(c) 

 

Fig. 2. Frequency-amplitude response of the initially imperfect viscoelastic CNT; (a, b) the maximum of q1 and q3, 

respectively; (c) the minimum of r2; A0=0.7. 
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(a) 

 

(b) 

 

Fig. 3. Comparison of frequency-amplitude responses of the initially imperfect viscoelastic CNT obtained via the 
nonlocal strain gradient (χnl =0.1, χsg=0.05) and classical continuum (χnl =0, χsg=0) theories; (a) the maximum of q1; 

(b) the minimum of r2; A0=0.7. 
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(a) 

 

(b) 

 

Fig. 4. Comparison of force-amplitude responses of the initially imperfect viscoelastic CNT obtained via the 
nonlocal strain gradient (χnl =0.1, χsg=0.05) and classical continuum (χnl =0, χsg=0) theories; (a) the maximum of q1; 

(b) the minimum of r2; A0=0.7. 
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Fig. 5. Resonance forcing amplitude versus the resonance frequency for two damping mechanisms; a circle denotes 

the linear damping mechanism (ζ=0.006) while a square denotes the nonlinear one (η=0.00045); A0=0.7. 
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(c) 

 

Fig. 6. Frequency-amplitude diagrams of the initially imperfect viscoelastic nanotube; (a, b) the maximum of q1 and 
q3, respectively; (c) the minimum of r2; A0=1.4. 
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(a) 

 

(b) 

 

Fig. 7. Comparison of frequency-amplitude responses of the initially imperfect viscoelastic CNT obtained via the 
nonlocal strain gradient and classical continuum theories; (a) the maximum of q1; (b) the minimum of r2; A0=1.4. 
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(a) 

 

(b) 

 

Fig. 8. Comparison of force-amplitude responses of the initially imperfect viscoelastic CNT obtained via the 
nonlocal strain gradient (χnl =0.1, χsg=0.05) and classical continuum (χnl =0, χsg=0) theories; (a) the maximum of q1; 

(b) the minimum of r2; A0=1.4. 
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Fig. 9. Resonance forcing amplitude versus the resonance frequency for two damping mechanisms; a circle denotes 

the linear damping mechanism (ζ=0.006) while a square denotes the nonlinear one (η=0.00045); A0=1.4. 
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