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Abstract

This work proposes to describe a turbulent flow using a set of mesoscale

elements, that is fluid elements of small, but finite, size the properties of

which are representative of larger region surrounding them. Consideration

of the fluid elements of finite dimensions allows one to formulate a small

scale mixing model with an explicit dependency on the molecular transport

coefficients. The dimensions of a mesoscale element are determined from

an evolution equation accounting for the molecular diffusion and the strain

rate induced by small-scale turbulence while its position is determined by

convection by large-scale velocity components. In addition to consideration

of the fluid elements of a finite size, the second key new concept is the notion

of radius of influence over which such an element contributes to the statistics

of the flow; this radius grows with time. It is shown that the proposed

method satisfies the mass conservation and normalisation of the probability

density functions of scalar quantities. The proposed method is illustrated

with simulations of thermal mixing layer in grid turbulence.
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1. Introduction

Common Lagrangian methods of description of a turbulent flow, see e.g.

Pope [1], consider an ensemble of infinitesimally small fluid particles with

Lagrangian marker typically taken as the the pair (x0, t0) of the position x0

at some initial time t0. These particles travel within a continuous medium,

often called fluid phase, and separate sets of equations governing the velocity,

enthalpy or temperature, and other properties are formulated for these point

particles and the continuous phase [1, 2]. The equations for the latter are Eu-

lerian formulations of conservation laws in terms of partial differential equa-

tions written for fixed spatial locations. Application of such approach to a

turbulent flow necessarily leads to unclosed terms in the governing equations

for both Lagrangian particles and Eulerian continuum and the assumption

that the Lagrangian particles are of zero size makes it impossible to include

the action of molecular transport of mass or energy or momentum into the

equations describing evolution of their properties. Owing to their zero size,

the Lagrangian particles have zero mass and this causes difficulty in satisfy-

ing simultaneously normalisation of the probability density functions (pdf’s)

and conservation of mass [2].

Very commonly, the Lagrangian methods are applied to turbulent react-

ing flows where the average rate of a chemical reaction is found from aver-

aging over the ensemble of the Lagrangian point particles, see e.g. Rowinski

and Pope [3]. Crucial for this application, which is the main motivation

for development of the present method, is the small-scale mixing model, i.e.
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description of the mixing at the molecular level with the rate strongly in-

creased by turbulence and a very large body of research has been devoted to

this topic, see e.g. Dopazo [4] or Dopazo et al. [5] for a recent review. Yet,

rather paradoxically, to the best of the author’s knowledge, no small-scale

mixing model has so far been formulated with an explicit account of the mag-

nitude of the molecular transport coefficients while there is a large amount

of evidence of importance of these coefficients [6, 7]. This work attempts

development of a method which does bring into explicit consideration the

coefficients of the molecular transport invoking consideration of Lagrangian

elements of finite dimensions.

2. Mesoscale element method formulation

2.1. Basic principles

The mesoscale element (m.e.) is a moving parcel of the fluid with a fixed

mass me which represents properties and influence of a much larger mass

of fluid surrounding it. In that, the mesoscale method proposed here is a

coarse-grained description of turbulence in Lagrangian frame. Dimensions of

a mesoscale element are finite and, as discussed below, chosen opportunisti-

cally in the inertial interval of turbulence, in the range much smaller than

characteristic flow dimension comparable with integral length scale of turbu-

lence lt. The idea behind the notion of small mesoscale element representing

a larger flow region is that even though the latter may be composed of a large

number of these small fluid elements it may be represented with only one or

a few m.e. having a certain radius of influence going beyond their size. In

this manner, the turbulent fluctuations of flow velocity and medium prop-

3



xm xm

nx

nx

nx

z z
z

xk xk
xk

xm

Figure 1: Illustration of temporal evolution of a set of mesoscale elements in the proximity

of a fixed location z for three times t1 < t2 < t3 shown from the left to right. The dotted

lines show isochronals of the presence probability; the solid lines show a possible trajectory

of one marked fluid particle the ensemble of which is represented by an m.e.

erties at a point are represented by the intermittency of those represented

regions each bringing in its own values of properties and this intermittency is

expressed as some weighted sum over the mesoscale elements. Consistently

with this idea, a mesoscale element has only a probability of presence at a

point but no deterministic position, contrary to other Lagrangian methods

where infinitely small particles do have a deterministic position. However, an

m.e. is described with single values of velocity and other properties, in which

the small-scale fluctuations at scales of m.e. size or smaller are averaged out;

these single values are found from evolution equations. In other words, Eule-

rian statistics of any fluctuating variable is found from Lagrangian statistics

of mesoscale elements positions, see figure 1.

One, but not the only, possible way of introducing mesoscale elements in

the flow domain would be to consider that an m.e. enters the flow as a flow

4



parcel representing the time average of inlet flow at a given point or a spatial

average of fluid initially, at time t0, located in the vicinity of a given point if

there is no inlet. Regardless of the specific initialisation, let the flow domain

V contain an ensemble of Ne mesoscale elements.

Each mesoscale element is attributed a set of time-dependent properties,

and even though sensu stricto a finite size flow domain must have a distri-

bution of properties, properties of an m.e. are taken as single deterministic

values following some evolution equations. For example, instead of consider-

ing a temperature pdf within the domain represented by one m.e., this m.e.

is associated with one certain value of temperature changing with time be-

cause of molecular transfer of heat or heat release from chemical reactions.

Each mesoscale element is associated with a location which is the geomet-

rical centre of its region of influence which may be also thought of as the

“position” of this m.e. The position of the i-th m.e. is denoted as xi(t), its

temperature as Ti(t) etc. The element age ti is the time counted since the

moment t0i when the i-th m.e. enters the flow domain.

The essential property of an m.e. is its influence on the other locations

within the flow domain V : the influence of the i-th m.e. at the point z is

given by the time-dependent function pi(z, t) such that
∫ t+dt/2

t−dt/2
pi(z, t

′)dt′ is

the duration, within the interval dt around t, when the point z is occupied by

the fluid represented by the i-th m.e. In other words, pi(z, t) is the indicator

function for the fluid represented by the i-th m.e. at the point z at the

moment t. Assuming that the interval dt is sufficiently long to average over
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it, this means that the average ḡ(z, t) of a quantity g may be found as:

ḡ(z, t) =

∑Ne

k gk(t) pk(z, t)∑Ne

j pj(z, t)
(1)

and, in particular, the pdf of values taken by a function g at point z at

moment t may be found as:

P (ĝ, z, t) =

∑Ne

k δ(ĝ − gk(t)) pk(z, t)∑Ne

j pj(z, t)
(2)

where δ(x) is Dirac’s delta function and ĝ is a particular value taken by

the scalar function g(z, t). The need for the normalising factor
∑Ne

j pj(z, t)

in the denominator comes from the fact that, for a particular application,

a coarse m.e. ensemble may not necessarily cover every point of the flow

domain providing
∑Ne

j pj(z) = 1 and in such a case the normalised influence

function:

p̃i(z, t) =
pi(z, t)∑Ne

k pk(z, t)
ḡ(z, t) =

Ne∑
k

gk(t) p̃k(z, t) (3)

is the fraction of the interval dt during which the fluid properties at z are the

same as of the i-th m.e. The need for normalisation may also arise when the

influence areas of different m.e. overlap in such a way that Eq. 2 produces

pdf’s with the norm greater than one. The time dependency of pk(z, t) is

dropped in what follows to simplify the notation.

If the size of the flow region represented by the i-th m.e. is very small

and the turbulence is statistically homogeneous with zero average velocity,

then xi(t) = x0
i = const and pi(z) is exactly the pdf of the position of

a point particle at the moment t if its initial position is x0
i ; this pdf is

considered in the analysis of the so-called single-particle diffusion [8, 9]. Even
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though an m.e. has a finite size, it shall be assumed here that pi(z) has the

functional form similar to the position pdf of the single particle diffusion with

the difference that the probability of the spread of the m.e. is taken around

the variable xi(t) rather than a fixed origin:

pi(z) ≡ pi (z;xi(t), σi(t)) = (2π)−3/2σ−3
i (t) exp

(
−(z − xi(t))

2

2σ2
i (t)

)
(4)

where the width of the distribution σi(t) has the meaning of the radius of

influence of the i-th m.e. Equation 4 is consistent with the assumption of the

locally isotropic turbulence as it depends on only the distance |z−xi(t)| and

scalar σi(t); it is straightforward to generalise equation 4 for the non-isotropic

turbulence by introducing second-order tensor σi but this derivation is not

pursued here.

Attributing a radius of influence σi(t) to mesoscale element brings into the

method a clear separation of scales in that velocity field at the scales smaller

than σi(t) affects its growth while the scales larger than σi(t) displace the

m.e. as a whole:

ẋi(t) = ui(t) (5)

Herebeneath, the dot means the time derivative of m.e. properties. Growth

of the radius of influence σ̇i(t) is determined by the growing dispersion of the

m.e. relative to moving xi(t) and is equivalent to the problem of the relative

diffusion of a cloud of contaminant [9, 10, 11]. When σi is within the inertial

interval, a simple expression follows from the Kolmogorov’s hypothesis:

σ̇i(t) = ∆u (σi) = Cσ (ε(xi, t)σi)
1/3 = Cσu

′
(
σi

lt

)1/3

(6)

where ε(xi, t) is the local value of the turbulence dissipation rate, u′ is the

root-mean-square (rms) velocity fluctuation, lt is the integral length scale
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of turbulence, and Cσ is a universal constant though its exact value is still

subject of large uncertainty. Even though equation 6 is written for inertial

interval, it coincides with the classical Richardson law of turbulent diffusion

experimentally shown to be valid even for very large scales [9] with the con-

stant Cσ being half the value of the constant in Richardson law. For the

latter, the recent recommendation [12] is 0.5, hence Cσ = 0.25. When σi

increases to the value comparable with the integral length scale lt, its growth

is governed by the simple turbulent diffusion law:

σ̇i(t) = Cσu
′
(
σi

lt

)−1

(7)

It may be seen that Eqs. 6 and 7 yield the same growth rate when σ ≈

lt and it should be straightforward to devise a simple expression for the

power exponential of the σi

lt
ratio producing a coninuous derivative of the

rate of growth for all values of the σ but this is not pursued here: while the

notion of the region of influence is cetral in the proposed approach, specific

expressions for its extent are not so long as they are compatible with the

other assumptions in the theory of homogeneous and isotropic turbulence.

2.2. Eulerian balance equations corresponding to m.e. method

The rate of change of the average transported scalar quantity ḡ(z, t) at a

fixed location z is expressed, using equation 3, as:

∂tḡ(z, t) = ∂t
∑

i gi(t) p̃i(z, t) =
∑

i [ġi p̃i + gi(t) ∂tp̃i] =∑
i ġi p̃i +

∑
i gi(t)

∑
k [σ̇k∂σk

p̃i + ẋk · ∇xk
p̃i] (8)

where the first, second and the third terms describe the effects caused by

the processes at the molecular scale, e.g. chemical reactions or molecular
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diffusion, and the turbulent convection at the scales inferior and superior

to σ, respectively. Using equations from Appendix A.1 and A.3, the above

equation may be transformed to a more conventional form:

∂tḡ(z, t) +∇z · u(z, t)g(z, t) = Sg +D (9)

where the convective flux from the large-scale velocity components ug, the

source term Sg and the turbulent small-scale diffusion D are:

u(z, t)g(z, t) =
∑

i giẋip̃i

Sg =
∑

i ġi p̃i

D =
∑

i gi
∑

k σ̇k∂σk
p̃i

(10)

It is worth noting that the usual turbulent diffusion term u′g′, i.e. correlation

between fluctuations of velocity u and the transported quantity g, is split

here between two parts. Further, in contrast to the common expression of

the turbulent diffusion in terms of the local flow properties [9], equation 9 is

non-local and, for constant turbulence, equation 6 results in σk ∼ t3/2, which

means that the effective turbulent diffusivity increases with time.

When all mesoscale elements have the same value of the property g,

equation 9 reduces to ∇z · u = 0; this means that it conserves the mass

in incompressible flows where all m.e. have the same density. More general

demonstration of mass conservation in the proposed method is demonstrated

in the Appendix.

2.3. Mesoscale element dimensions

In order to take the molecular diffusion into account, the dimensions of

a mesoscale element should be representative of those of a diffusive layer
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formed when a parcel of fluid of a certain composition is brought by the

large-scale flow into contact with surrounding with different composition. It

is well established, e.g. [13, 14, 15], that turbulent mixing occurs in a large

number of layers in which the scalar gradient has one large and two small

components and m.e. thickness ζ(t) is taken as the extent in the direction of

the largest scalar gradient component while its length or width ξ(t) is taken

as the extent in either of other two dimensions. Essentially, the mesoscale

element is taken initially as a cube, ξ(0) = ζ(0), which is then deformed into

a small bent and twisted square patch, one side of which is aligned with the

largest component of the scalar gradient and the square sides are normal to

it. Conveniently, the initial dimensions are taken in the inertial interval, thus

a mesoscale element is a fluid parcel of a constant mass: me = Cmρ0λ
3 where

ρ is the fluid density, λ = lt ·Re
−1/2
t is the Taylor scale of turbulence and Cm

is a size-determining constant. Ret is the turbulent Reynolds number based

on the integral length scale. Then for any moment of time t:

ξ(t) =

(
me

ρ(t) ζ(t)

)1/2

(11)

regardless of the shape of m.e. Both experiments, [13, 15] and DNS, e.g.[16],

indicate that the m.e. thickness ζ(t) scales with but (much) larger than the

Kolmogorov scale, while its length ξ(t) is much larger than the thickness,

going up to sizes comparable with the integral length scale; this explains the

particular choice of m.e. dimensions made above.

Evolution of m.e. thickness ζ(t) is, in principle, determined by four pro-

cesses: growth caused by molecular diffusion, decrease or increase from com-

pressive or extensive hydrodynamic strain rate, respectively, in ζ direction,

and decrease caused by the the strain rate in ξ direction, and the folding of
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m.e. There is a clear separation of scales on which these phenomena act, and

therefore, at least as a good first approximation, their effects are additive.

Folding acts on scales larger than the integral longitudinal length scale [17],

much larger than m.e. dimensions, hence its effects may be neglected. Thus:

dζ(t)

dt
= udiff + ustrain (12)

Acting on its own, in absence of turbulence, molecular diffusion increases

the thickness of the diffusive layer arising when two unequal concentrations

are brought into contact by the large-scale motion. The speed of thickness

increase caused by diffusion may be found assuming that the scalar profile

on the m.e. boundary is given by the solution of the diffusion equation for

the initial conditions given by the step function. Consider an arbitrary scalar

field Y (z, t) with the values normalised between zero and one. The thickness

of the diffusive layer is the distance between two arbitrary Y values at the

leading Y → 0 and trailing, Y → 1, edge of the diffusive layer. To the

constant factor Ad of the order of unity, the rate of thickness growth caused

by molecular diffusion may then be found by differentiating the solution of

the diffusion equation at a constant Y value:

udiff = Ad

(
D
t

)1/2

(13)

where D is the molecular diffusivity coefficient.

Two components of the hydrodynamic strain field affect the shape of

meso-scale element and need consideration: compressive strain rate acting

along the ζ direction and normal to it tangential strain rate acting along

either of the two ξ directions. These two components of the strain rate are
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not independent because of the mass conservation:

1

ζ
· dζ
dt

+
2

ξ
· dξ
dt

+
1

ρ
· dρ
dt

= 0 (14)

and from this:

ustrain = −ζ

(
2

ξ
· dξ
dt

+
1

ρ
· dρ
dt

)
(15)

In homogeneous and isotropic turbulence the scalar gradient tends to align

with compressive rather than extensive strain, e.g. see [14] and the discussion

and references therein, thus it is sufficient to consider extensive normal strain

along ξ direction.

This strain rate is determined by ∆u (ξ): the average difference of veloci-

ties at the separation ξ, or the square root of the velocity structure function

of the second order, [9]. The separation, i.e. the distance between the two

points defining the strain rate is taken as ξ, the larger of the two m.e. di-

mensions. Because, by construction, the m.e. dimensions correspond to the

inertial range of turbulence scales, the Kolmogorov self-similarity hypothesis

applies:

∆u (ξ) = (εξ)1/3 · f̃
(
ξ

lt

)
= u′ ·

(
ξ

lt

)1/3

f̃

(
ξ

lt

)
(16)

where ε ∼ u′3/lt is the turbulent kinetic energy dissipation, and f̃(z) is

a non-dimensional function universal for all locally isotropic, homogeneous

turbulent flows where Ret >> 1; this function is related to the longitudi-

nal velocity correlation function f(z), z here is the distance between the

two points at which the correlation is considered non-dimensionalised by the

integral length scale lt. While little information is available for f̃(z), the rela-

tionship between f and f̃ may be found considering two extreme separations:
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z → 0 and z → 1. In the former case f → 1, while f̃ → 0 as the velocity dif-

ference should vanish at zero separation. In the latter case, f → 0 while the

average velocity difference should tend to the root-means-square velocity u′,

hence f̃ → 1. f(z) is the ratio of second moments of velocity, while ∆u is the

first order moment, thus one should expect that f̃ ∼ f 1/2 The simplest pos-

sible relationship satisfying these constraints would be f̃(z) =
(
1− f 1/2(z)

)
.

Using Eqs. 11, 14, one may obtain, to within a factor A2 of order of unity:

ustrain = −A2ζ

[
2u′

l
1/3
t ξ2/3

·
(
1− f 1/2(

ξ

lt
)

)
+

1

ρ
· dρ
dt

]
(17)

This equation should be supplemented with an expression for the longitudi-

nal velocity correlation function f(z); owing to lack of commonly accepted

expression suitable for various types of turbulent flows, the following approx-

imation of the measurements of [18] is adopted here:

f(z) = J0

(z
b

)
· exp

(
− z

a

)
(18)

where J0 is the Bessel function of zeroth order. For any value of constant a,∫∞
0

f(z)dz = lt if b = a · (a2− 1)−1/2. Values of a = 2, b = 2/
√
3, may be rec-

ommended as giving a very good approximation for separations λ ∼ z ≤ lt,

see e.g. measurements [18]. It is worth noticing that for separations compa-

rable with or smaller than η, i.e. limit of z ≈ 0, Eq. 18 requires a ≈ 1. In the

atmospheric turbulence research an alternative expression for the correlation

function f(z) due to Frenkiel [19] f(z) = eaz cos bz is used widely, however,

Eq. 18 gives significantly more accurate approximation of the measured f(z).

It should be finally mentioned that neither Frenkiel expression nor Eq. 18

are accurate at very small separations where the correlation function may
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be approximated as f(z) = 1− Re−t 1z
2; however, this approximation, while

accurate at z ≈ 0, is of very poor accuracy at the scales z ∼ λ or larger

which are of interest here. At the present there does not seem to exist an

expression for f(z) providing a uniform accuracy over the entire range of

turbulence scales.

Finally, the evolution equation for a diffusive layer thickness may be writ-

ten as:

dζ

dt
= A1

(
D
t

)1/2

− A2ζ

[
2u′

l
1/3
t ξ2/3

·
(
1− f 1/2

(
ξ

lt

))
+

1

ρ
· dρ
dt

]
(19)

where A1 and A2 are model constants and f is expressed from Eq. 18. For the

inhomogeneous turbulence, the turbulence local properties in Eq. 19 are local

and so are the density ρ and the diffusivity D. It is worth noticing that Eq. 19

does not possess a stationary solution owing to the explicit dependency of

the first term on the m.e. age t.

3. Equations of evolution of mesoscale element properties

Mesoscale element has fixed mass by construction, thus, in addition to

relationships formulated in Section 2, it requires for a complete description

of its other properties evolution equations for velocity, two intensive thermo-

dynamic variables and variables describing its chemical composition, e.g. set

of mass fractions of species. It has finite dimensions, therefore in principle it

requires and additional equation for the angular momentum, as is done in the

so-called “asymmetric” or “rational” hydrodynamics, see e.g. [20, 21, 22] and

references therein, however, this is left out of consideration in the present for-

mulation. Unlike the usual formulation of Lagrangian methods, see e.g. [23],
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where the evolution equations are formulated as partial differential equations

involving the initial positions of Lagrangian particles, the evolution equations

are formulated here as ordinary differential equations involving m.e. pairwise

interactions.

3.1. Meso-element momentum: pressure field

Each act of interaction between two mesoscale elements as derived below

conserves momentum. Acceleration of i−th m.e. may thus be written as:

u̇i =
∑
j

u̇ij (20)

where uij is the acceleration caused by its interaction with the j−th m.e.

In addition to externally imposed bulk forces, there are two physical

agents by which one fluid element affects momentum of other fluid elements:

pressure and viscosity, u̇ij = u̇p
ij + u̇v

ij; the net acceleration of the element is

then obtained as a sum of all pairwise interactions. The superscripts p and

v refer to the contributions to the total acceleration caused by the pressure

field, and viscous forces, respectively. The pressure interaction is considered

first; viscous exchange of momentum happening at the contact of two m.e. is

considered in the next section. The derivations here concerns only subsonic

flows, where the pressure increase arising at one point in flow will induce

spherical waves travelling much faster that any fluid parcel. The pressure Π

in the front of such spherical wave is inversely proportional to the distance

to the point from its centre.

Consider two m.e. the presence pdf of which pi(z, t) and pj(z, t) are

centred at xi and xj; the exchange of momentum by pressure waves between

them is much faster than their motion, thus their positions may be taken
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frozen at xi and xj. The net pressure force between these m.e. will be

Fp = (Πj − Πi)Seff
xi−xj

(xi−xj)
where Seff is the cross-sectional area of the m.e.

orthogonal to xi − xj. This force will accelerate of the column of the liquid

between and including the two m.e. the mass of which may be taken as

ρi+ρj
2

Seff |xi − xj|. By the Second Law of Newton the pressure part of

acceleration of either m.e. is

u̇p
ij = u̇p

ji =
2(Πj − Πi)

ρi + ρj

xi − xj

(xi − xj)2
(21)

3.2. Change of m.e. properties caused by molecular transport

Unlike the above equation, Eq. 21, which describes the rapid momentum

change and where the m.e. position may be taken as frozen at the point of the

maximum probability of presence, determination of the viscous momentum

exchange requires analysis of statistics of m.e. encounters. This is because

the molecular transport of momentum, mass and energy acts on scales much

smaller than any flow scales, therefore, it may only change of m.e. properties

upon a very close contact between two m.e.

The act of interaction between m.e. of which the presence pdf pi(z, t)

and pj(z, t) are centred at xi and xj may happen at any position z within

the flow owing to unbounded support of the presence pdf, Eq. 4. Contact,

and interaction, between i− th and j-th m.e. at z shall happen if both m.e.

are within the distance smaller than the largest dimension of one of them,

max(ξi, ξj) and, assuming that their motion is uncorrelated, the probability

density of the contact at z is the product of the probability density of the

i-th element and the probability that j-th m.e. is within the sphere of ξi

diameter of z. The latter is expressed with the help of the theorem of the

mean as π/6 max3(ξi, ξj) pj(z, t).
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On the other hand, for a small time interval dt the presence pdf pi may

be interpreted as fraction of dt spent at infinitesimally small vicinity dz of

z. Therefore, the total time of interaction pijdt during this time interval

between i − th and j-th m.e. is found taking into account that they move

and may interact at any point as:

pij(t)dt =
πmax3(ξi, ξj)

6
·
∫
V

pi(z, t)pj(z, t)dz (22)

Substituting in the above Eq. 4 and performing integration, one obtains:

pij(t)dt =
max3(ξi, ξj)

12 (2π)1/2

(
1

σ2
i

+
1

σ2
j

) 3
2

exp

(
− (xi − xj)

2

2
(
σ2
i + σ2

j

)) (23)

Regardless of where m.e. contact and interaction occur, the rate of molec-

ular transfer between two m.e. stays the same as it is determined by the

magnitude of small-scale gradients independent, as a first approximation, of

the convection by the large-scale velocity field.

A contact interaction of two m.e. will induce one component of the viscous

force in direction normal to the contact surface taken here as plane and two

tangential components orthogonal to that direction. If to denote bm,m =

1 . . . 3 the set of the basis vectors of the fixed coordinate system used in Eqs. 5,

10 then the unit vector τn normal to the contact plane in this basis may be

written as τn = (sinϕ cos θ, sinϕ sin θ, cosϕ) and two other vectors forming

with it an orthonormal set are: τt1 = (− cosϕ cos θ,− cosϕ sin θ, sinϕ) τt2 =

τn × τt1 = (sin θ,− cos θ, 0) where ϕ ∈ [0, π], θ ∈ [0, 2π] are random angles.

In isotropic turbulence the normal τn will be uniformly distributed over a

sphere, hence the distribution of the angles will be pϕ(ϕ̂) = 1
2
sin ϕ̂

pθ(θ̂) = 1
2π

(24)
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The viscous force Fij arising at the contact i-th and j-th m.e. is linearly

proportional to the area Sc of contact between the m.e. and inversely propor-

tional to the m.e. dimension dc normal to the plane of contact. The velocity

difference inducing the force comes from the difference of the mass velocities

uj − ui and, in case of a variable density medium, e.g. gas flow with heat

exchange, isotropic dilatation velocities δuρij = uρj − uρi = δuρij

∑
m bm:

uρi = −
(

me

36πρi

)1/3
ρ̇i
ρi

∑
m

bm (25)

The dilatation velocity difference will also add a term proportional to the

bulk viscosity to the normal force component Fnij = Fij · τn. The viscous

force components may thus be written as:

Fnij =
Sc

dc

[
µij (uj − ui + uρij) · τn +

(
ηij −

2

3
µij

)
uρij · τn

]
Ft1ij =

Sc

dc
[µij (uj − ui + uρij) · τt1 ]

Ft2ij =
Sc

dc
[µij (uj − ui + uρij) · τt2 ] (26)

where µij and ηij are dynamic and bulk viscosity, respectively, at the contact.

The m-th component of the i-th m.e. acceleration induced by the viscous

interaction with j-th m.e. will be determined by the force averaged over the

random contact orientation angles ϕ, θ:

u̇v
mij = −u̇v

mji =
1

me

⟨Fij · bm⟩ϕθ =
1

me

⟨Fnijτn · bm + Ft1ij · τt1 · bm + Ft2ij · τt2 · bm⟩ϕθ
(27)

where the angular brackets denote the averaging using the density functions

Eq. 24. Substituting Eq. 26 into Eq. 27, one may see that the averaging

requires finding pairs ⟨(bl · τp) (bm · τp)⟩ϕθ which, after some trivial calcula-
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tions, may be found as:⟨
(b1 · τn)2

⟩
ϕθ

= 1
3

⟨
(b2 · τn)2

⟩
ϕθ

= 1
3

⟨
(b3 · τn)2

⟩
ϕθ

= 1
3⟨

(b1 · τt1)
2⟩

ϕθ
= 1

6

⟨
(b2 · τt1)

2⟩
ϕθ

= 1
6

⟨
(b3 · τt1)

2⟩
ϕθ

= 2
3⟨

(b1 · τt2)
2⟩

ϕθ
= 1

2

⟨
(b2 · τt2)

2⟩
ϕθ

= 1
2

⟨
(b3 · τt2)

2⟩
ϕθ

= 0

(28)

and ⟨(bl · τx) (bm · τx)⟩ϕθ = 0 if l ̸= m. Substituting Eq. 28 into Eqs. 27,26,

and taking into account the Eq. 23 for the probability of the contact inter-

action, one obtains:

u̇v
mij =

Sc pij(t)

dcme

[
µij (umj − umi + δuρij) +

1

3

(
ηij −

2µij

3

)
δuρij

]
(29)

This expression further needs specification of Sc, dc, and the viscosities at the

contact. The contact area Sc is a random quantity which depends on how

irregular is the shape of m.e. in contact and their orientation in space. The

m.e. dimensions ξ and ζ are orthogonal, so a very simple approach would be

to assume that the contact area is proportional to ξ2 if the unity vectors in

ζ direction are aligned, ζi · ζj = 1, and ξζ if those vectors are orthogonal,

ζi · ζj = 0. There are no reasons to assume non-zero correlation between ζi,

ζj and τn, thus the m.e. orientation is random, the average of ζi · ζj is zero,

and therefore, the contact area should be proportional to Sc ∼ ξζ and, by the

same argument, the distance dc normal to the contact is then proportional to

ξi + ξj. Because the viscous flux of momentum goes across the two elements

the viscosity of which may be different, e.g. because of their different tem-

perature or composition, the products Scµij and Scηij have the meaning of

effective conductivities of momentum, therefore, the net conductivity at the

contact with the different values of viscosity µiξiζi and µjξjζj, should, to a

factor of order of unity, be Scµij = ((µiξiζi)
−1 + (µjξjζj)

−1)
−1

and, similarly,
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Scηij = ((ηiξiζi)
−1 + (ηjξjζj)

−1)
−1
. Finally, using Eqs. 21,29, and taking into

account Eq. 11, one may obtain for the m-th component of the total m.e.

acceleration, Eq. 20:

u̇mi = 1
ρi

∑
j ̸=i

[
Πj−Πi

(xi−xj)
2 (xmi − xmj)

+
ξjζjpij

(ξj+ξi)ξi

[
µiµj(umj−umi+δuρij)

µiξiζi+µjξjζj
+

ωiωjδuρij

ωiξiζi+ωjξjζj

]]
(30)

where ω = η − 2µ
3

is the second viscosity. Potential of external forces, if

present, may be included into Π, e.g. as hydrostatic pressure.

The pressure required in Eq 30 may be found, e.g. using an equation for

the energy of i−th m.e including effects of composition change, e.g.:

Ei = me

(
ei +

Πi

ρi
+

u2
i

2
+
∑
s

µsnsi

)
(31)

where ei is the specific internal energy, Π = Πth
i + Πh

i is the static pressure,

including hydrostatic pressure Πh
i , the thermodynamic pressure Πth

i = 0 for

incompressible fluid, µs is the molar Gibbs energy of s−th species and nsi is

the number of moles of s−th species per unit mass of fluid. Differentiation of

Eq 31 under different constraints and adding terms accounting for interaction

with surrounding, e.g. heat transfer, gives rise to various “energy conserva-

tion” equations. The latter may become evolution equations for one of the

thermodynamic variables of m.e. if and only if the thermodynamic process

followed by fluid elements is known; for example, for a commonly encoun-

tered case of an adiabatic flow of compressible gas with chemical reactions,

one may obtain:
1 + γ − γ2

γ

Π̇i

ρi
+ ui · u̇i = 0 (32)
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Figure 2: Profiles of the mean scalar vs. self-similar variable η across the mixing layer for

the dimensionless distance downstream shown in the legend. Symbols show measurements

of [24]. The thick lines show the profiles obtained with the mesoscale elements method,

the thin lines - with equation 34.

where γ is the adiabatic index, i.e. the ratio of specific heats at constant

pressure and volume processes. Equation 32 would also describe incompress-

ible fluid if to put γ = 1 reflecting the fact that its specific volume does not

depend on pressure.

3.3. Meso-element properties: mass diffusion

Mass diffusion is described similarly to the viscous exchange of momentum

considered above. Let g denote a specific quantity, e.g. mass fraction of a

chemical compound or enthalpy, then its total amount in i-th m.e. is megi(t)

and let Dg be the molecular diffusivity of g which may take different values

21



-0.4 -0.2 0 0.2 0.4
 η

0

0.05

0.1

0.15

0.2

0.25

 (
 g

’ 2
  )

 1
/2

Experiments, x = 30, 35, 45, 52

x = 29.2

x = 35.0

x = 43.7

x = 52.4

Figure 3: Profiles of the scalar root-mean-square value vs. self-similar variable η across

the mixing layer for the dimensionless distance downstream shown in the legend. Symbols

show measurements of [24]. The lines show the profiles obtained with the mesoscale

elements method.
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in different m.e. because of differences in the elements temperature and

composition.

Similarly to the viscous flux of momentum, the rate of the molecular

transfer of g between i-th and j-th m.e. must be linearly proportional to

the area Sc of contact between them, and, as a first approximation, Dg, the

molecular diffusivity of g and the difference gi − gj; it should be inversely

proportional to the m.e. dimension normal to the plane of contact taken

above as ξi+ ξj. For a multi-component mixture, determination of molecular

flux of g necessitates consideration of a number of binary diffusion coefficients

Ern and Giovangigli [25] but such analysis has not yet been conducted for a

turbulent flow, so a single molecular transport coefficient is associated with

each variable. It is worth noticing however that the proposed mesoscale

formalism may be easily extended to include more complex expressions for

the molecular transfer.

From the simplest expression for the amount of quantity exchanged be-

tween two m.e. ∆g per unit time:

∆g = Dg × (Contact Area)× ρigi − ρjgj
(distance normal to contact )

one can see that the product of diffusivity and contact area acts as a certain

coefficient of conductivity and it may be different for the two m.e. Because

the diffusive flux goes across the two elements with the different values of

diffusive conductivities Dgiξiζi and Dgjξjζj, the net conductivity should be

((Dgiξiζi)
−1 + (Dgjξjζj)

−1)
−1
.

As

∆g =
d

dt
(meg) =

d

dt
(ρξ2ζg)
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the molecular transfer contribution to ġi in as a sum of pairwise interactions

with the entire m.e. set as:

ġi = −
∑
j

Dgi Dgjξjζj
Dgiξiζi +Dgjξjζj

ρigi − ρjgj
ρiξi(ξi + ξj)

pij (33)

where pij is given by equation 23. It is easy to see that equation 33 conserves

the total amount of g in the flow:

d

dt

(∑
i

ρiξ
2
i ζigi

)
= 0

Adding source terms, e.g. due to chemistry, to Eq. 33 provides an evolution

equation for ġi for any m.e.

4. Illustration of the method: mixing layer

A simulation of a simple turbulent thermal mixing layer has been under-

taken as an illustration of the mesoscale elements, this type of flow is com-

monly used for investigation of turbulent mixing, see e.g. [26, 27]. The simu-

lations correspond to the configuration where the temperature field evolution

was measured [24] in freely decaying grid turbulence. In the experiments

the thermal mixing layer was initiated by heating half of the turbulence-

generating grid rods spaced at distance M = 4 cm. For the simulations, the

following parameters were adopted: the flow mean velocity U = 7.56m/sec,

rms velocity of u′ = 0.375m/sec and integral length scale lt = 0.58 cm across

a domain the size of which y1 varied from 8 to 64 lt. The molecular scalar

diffusion was taken as D = 0.2cm2/sec, Ret = 109.o To reflect the initial non-

uniformity of heating, the m.e. scalar values for the heated side, y ≥ y0.5,

were given the initial values sampled from uncorrelated Gaussian distribution
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Figure 4: Profiles of the scalar skewness vs. self-similar variable η across the mixing

layer for the dimensionless distance downstream shown in the legend. Symbols show

measurements of [24]. The lines show the profiles obtained with the mesoscale elements

method.
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Figure 5: Profiles of the scalar kurtosis vs. self-similar variable η across the mixing layer for

the dimensionless distance downstream shown in the legend. Symbols show measurements

of [24]. The lines show the profiles obtained with the mesoscale elements method.
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dimensionless distance downstream shown in the legend. Symbols show measurements of

[24]. The lines show the profiles obtained with the mesoscale elements method.
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Figure 7: The probability density function of the scalar at positions η = −0.01 for the

dimensionless distance downstream shown in the legend. Symbols show measurements of

[24]. The lines show the profiles obtained with the mesoscale elements method.

28



0 0.25 0.5 0.75 1 1.25
g

0

0.5

1

1.5

2

2.5

P
(g

)

measurements

x=32.1

x=52.4

Figure 8: The probability density function of the scalar at positions η = 0.04 for the

dimensionless distance downstream shown in the legend. Symbols show measurements of

[24]. The lines show the profiles obtained with the mesoscale elements method.
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with the unity mean and the rms value of 0.2; they were initialised as zero

value on the cold side y <0.5. Thus, the initial mean scalar profile was taken

as a step: g(t = 0, y) = Θ(y−y0.5) where Θ is the Heaviside function and y0.5

is half of the computational domain size. Herebeneath x and y stand for the

physical distance downstream and across the boundary layer, respectively.

The downstream distance in the mixing layer was translated to the time t in

the above equations simply as x = Ut.

The set of equations 6, 7, 19, 11, 33 were integrated with respect to time

with a second-order explicit Runge-Kutta scheme for number of m.e. placed

across the mixing layer; this number varied from 512 to 8192. For all ele-

ments, the initial values were taken as σ(t = 0) = lt, ξ(t = 0) = ζ(t = 0) =

λ = ltRe
−1/2
t . The model was implemented in FORTRAN-90 code employ-

ing OpenMP parallelisation; GNU FORTRAN was used with intermediate

optimisation level. The simulation times on HP Z440 workstation with Intel

Xeon E5-1660 with 3.2GHz frequency using 15 out of its 16 cores were under

one minute for 512 m.e. and just under 45 minutes for 8192 m.e. No trun-

cation of the influence integrals, Eqs. 4 and 23, to neighbouring mesoscale

elements, was attempted, even though it may potentially lead to significant

reduction in calculation time.

In addition to the proposed m.e. method, the average scalar values were

also calculated with a simple diffusion equation with a constant eddy diffu-

sivity:

∂tḡ(y, t) = u′lt∂
2
yyḡ(y, t) (34)

supplemented with the boundary conditions ∂yḡ(y = 0, t) = ∂yḡ(y = y1, t) =

0. This equation is ubiquitous in turbulence modelling and it often describes
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well simple self-similar flows. Figure 2 shows the calculated profiles of the

mean scalar in comparison with the measurements of [24]. The profiles are

given versus the self-similarity variable η = ȳx̄−1/2 where the distances are

non-dimensionalised by the grid spacing x̄ = x/M , ȳ = y/M . The measure-

ments clearly show that the mixing layer achieves self-similar state and this

behaviour is captured well be the mesoscale elements model, which however

does initially show a slower large-scale diffusion caused by the non-steady

growing effective diffusivity resulting from Eq. 6.

From inspection of Fig. 3 which shows the scalar root-mean-square value,

g′ = (g − ḡ)2
1/2

, one may see that the heated part of the flow studied [24]

away from the mixing layer experience decay of the scalar variance similarly

to the decay of velocity fluctuations behind the grid. No attempt is made

here to capture this decay in the present work: while it is perfectly feasible

within the frame of the m.e. method, this would require knowledge of the

temperature probability density functions immediately after the heated rods.

This explain the discrepancy seen in Fig. 3 for η ≥ 0.15 where the predicted g′

is considerably lower than the measured values. Velocity pdf’s were measured

very closely to the grid in [28] and they show rather complicated transitions

from locations immediately past the rods and in between the rods but no

information is available for the temperature pdf’s in this region. At the

same time, the proposed method captures quite well the generation of the

scalar variance in the region of the non-zero average scalar derivatives and

subsequent reduction of variance due to the action of molecular transfer; this

behaviour is described by the present model qualitatively and quantitatively

correctly.
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Higher order moments, such as skewness S = (g − ḡ)3g′−3 and kurtosis

K = (g − ḡ)4g′−4 are sensitive to the shape of the probability distribution

and, owing to this, their prediction presents a stringent test for turbulence

modelling [26, 27]. Figures 4 and 5 show the calculated profiles of the skew-

ness and kurtosis across the mixing layer in comparison with the measure-

ments of [24]. One may see that within the mixing layer, that the model

captures well the observed convergence of these moments to a self-similar

state and on the heated side away from the mixing layer, while the magni-

tude of these moments is over-predicted on the mixing layer boundary on the

heated side. It is interesting to notice that this discrepancy is also shared by

the direct numerical simulations of [26]. Considerably higher than the ob-

served values of the kurtosis together with larger negative values for skewness

mean that the model over-predicts both the frequency and the magnitude of

the cold air excursions on the “hot” side, y ≥ 0, of the mixing layer while

an excellent agreement on the “cold” side means that the predictions of the

excursions of the heated air are accurate. This means that the velocity pdf

deviates from Gaussian distributions on the “hot” side; m.e. simulations of

joint velocity-scalar probability distribution should capture this but are left

for the subsequent work.

Figures 6, 7, 8 show the evolution of the scalar probability density func-

tion P (g) across the mixing layer. The first comment is that, while the shape

of the predicted scalar pdf compares well with the measurements across the

layer the simulations show low probability at the layer mid-position, in a very

narrow region, and this is an artefact of the simulations dependent on the

number of elements. The magnitude of this non-physical drop of P (g) near
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g ≈ 0.5 is larger for smaller number of m.e. and is progressively decreased

where larger number, i.e. higher spatial resolution is used. Another effect of

smaller m.e. number across the mixing layer is increased unevenness of the

scalar pdf on the “hot” side, g ≥ 0.5 seen in Figs. 6, 7, 8. Yet, despite these

two shortcomings, one may see that the scalar pdf’s are predicted in a very

good agreement across the entire mixing layer thus lending support to the

model formulation presented here. In particular, there is a good agreement

in the probability tails, i.e. large deviations from the mean; one may also see

that the over-prediction of kurtosis and skewness on the “hot” side seen in

Figs. 4 and 5 is caused by a relatively small difference between predicted and

measured scalar pdf near g ≈ 1. It is perhaps worth noticing that derivation

of transport equations for a third or fourth order moment in Eulerian frame-

work would involve fourth or fifth order correlations, respectively, of which

little is known, and to the author’s best knowledge this has not even been

attempted. The pdf shape shown in Figs. 6, 7, 8 is sensitive to the magni-

tude of the molecular diffusivity; suffice to say that for the black-and-white

mixing, Dg = 0, the pdf is strictly bimodal, g′2 = ḡ(1− ḡ) while S and K are

infinite: the simulations (results not shown here) reproduce this to accuracy

proportional to the square of the deployed number of m.e, e.g. S ≈ N2 etc.

A natural further assessment of the proposed mesoscale elements method

will be its application to chemically reacting flows, in particular for frequently

encountered cases where the chemical reactions occur in thin fronts and where

there is a very strong dependency on the molecular transport coefficients.
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5. Conclusions

This work puts forward a new approach to description of a turbulent flow

introducing Lagrangian elements of finite mass which are contribute to flow

statistics over a certain region of influence. These elements, named mesoscale

elements, or m.e., undergo deformation by fluctuating strain field, and this

deformation determines the rate of molecular transport between them. These

are central points of this new approach. It may be viewed as Lagrangian

equivalent of the so-called “Large-Eddy Simulations” gaining prominence in

Eulerian fluid dynamics.

This work formulates expressions, either algebraic or differential, for the

new quantities associated with these mesoscale elements. In particular, the

probability of the m.e. presence at a point is presumed as a Gaussian distri-

bution, the parameters of which obey simple ordinary differential equations,

Eqs. 4, 5, 6. The molecular transport is expressed as effect of pairwise m.e.

interactions and it is shown that these interactions satisfy the relevant con-

servation laws. The derivations in the present work are made for the m.e.

dimensions of which lay in the inertial interval of the turbulence scales and

make consistent use of Kolmogorov’s theory of homogeneous and isotropic

turbulence. The proposed approach achieves quite clear separation of scales

between the molecular transport, i.e. pairwise interactions, at the microscale,

and large-scale turbulent diffusion encapsulated in Eqs. 4, 6 and convection

by the average velocity field. It is perhaps worth stating, that the mesoscale

approach is quite general in the sense that any of the proposed equations for

the m.e. properties may be refined, improved or otherwise altered within the

same framework; clearly any such modification must be consistent with the
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central ideas of an element of finite mass exerting non-local influence on the

turbulent flow statistics.

This first application of the mesoscale elements method to a simple mix-

ing layer produced qualitatively correct results in good agreement with the

measurements; this concerns not only the mean and root-mean square scalar

values, but also the probability distributions and higher order moments. The

subsequent work should address the viability of the method for the reacting

flows, in particular for frequently encountered cases where the chemical re-

actions occur in thin fronts where the strong dependency on the molecular

transport will allow a better assessment of requirements for the numerical

resolution, number of elements required for a given level of accuracy and

other details of the method implementation.
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Appendix A.

As the m.e influence function pi depends only on the difference |z −

xi(t)|, ∇xk
pk = −∇zpk. For the normalised m.e. “presence” pdf p̃i given by

equation 3, one may write:

∂σk
p̃i = − p̃i

∂σkpk∑
k pk

∇xk
p̃i = − p̃i

∇xk
pk∑

k pk
k ̸= i

∂σi
p̃i = (1− p̃i)

∂σipi∑
k pk

∇xi
p̃i = (1− p̃i)

∇xi
pi∑

k pk

∇zp̃i =
1∑
k pk

(
∇zpi − p̃i

∑
k ∇zpk∑
k pk

)
(A.1)
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Using these relationships, further two useful identities may easily be shown:∑
i

(∑
k

σ̇k∂σk
p̃i

)
= 0

∑
i

(∑
k

ẋk∇xk
p̃i

)
= 0 (A.2)

These two expressions may be in particular be used to demonstrate that

m.e. equations satisfy mass conservation in incompressible case regardless of

specific expressions for σ̇k and ẋk.

Derivation of the Eulerian balance equations require expression of the

derivatives of the averaged quantities in terms of the m.e. sums, e.g:

∇zḡ(z, t) = ∇z

(∑
i

gi(t)p̃i

)
=
∑
i

gi∇zp̃i (A.3)

It is obvious that in the m.e. method the averaging and spatial differentia-

tion are commutative, but differentiation with respect to time automatically

includes advection terms.

The final remark concerns often required integration of an average flow

property over the entire flow domain, e.g. the volume integral of the density

giving the total mass of the fluid is often used to verify the mass conservation.

Consider a fixed Eulerian grid, i.e. a set of fixed points zl, l = 1 . . . Np such

that the union of small volume elements dVl centred on them covers the

entire flow domain. Then any integral over the flow domain Vf may be

approximated as the finite sum:∫
vf

dzf(g(z, t) =

Np∑
l

dVlf(g(zl, t)

On the other hand f(g(zl, t) =
∑

i gi(t)p̃i (zl, t). Thus:∫
vf

dzf(g(z, t) =

Np∑
l

dVl

∑
i

gi(t)p̃i (zl, t) =
∑
i

gi(t)

Np∑
l

dVlp̃i (zl, t) =
∑
i

gi(t)
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as the sum over the grid is simply the total probability of the presence of

i-th m.e. somewhere in the flow and it is unity by virtue of Eq. 3.
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