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Abstract 

 A Kelvin-Voigt based constitutive equation is implemented in Hamilton’s framework in 

order to derive the coupled in-plane/transverse equations governing the motion of a 

microplate with geometric imperfections, while considering geometric nonlinearities. The 

Kirchhoff plate theory and the modified couple stress-based theory (MCST) are utilized to 

obtain the strain and kinetic energies of the imperfect microsystem. Then, the Kelvin–Voigt 

energy dissipation scheme is employed to derive expressions for the work of the viscous 

components of the classical and non-classical stress tensors. Frequency-response diagrams are 

plotted to investigate the nonlinear resonant oscillations of the imperfect viscoelastic 

microsystem in the presence of geometric imperfections. Numerical simulations revealed that 

the concurrent presence of geometric imperfections and the nonlinear amplitude-dependent 

damping mechanism alters the bifurcational behaviour of the viscoelastic microsystem 

substantially. It is shown that at oscillations of large amplitude, the nonlinear damping 

contributions become significant.  
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1. Introduction 

 Microresonators, microactuators, microswitches and biosensors are only a few 

examples of microelectromechanical systems (MEMS) where the core elements are 

microbeams and/or microplates [1-10]. Experimental investigations revealed that these 

microstructures display size-dependent behaviours associated with a small size, which can 

dramatically alter the resulting dynamics [11-13]. Many higher-order continuum models, such 

as the modified couple stress theory (MCST) [14-16], have been developed and applied to 

improve our understanding of the static and dynamical behaviour of these microsystems. 

Viscosity plays an important role in the mechanical behaviour of different systems; there are 

two conditions that make these effect dominant, namely the material itself is highly viscous 

such as polycarbonate and rubbers (which exhibit time-dependent stress-strain correlation) or 

when the operation temperature is relatively high [17]. In both the cases, a more general 

theory such as viscoelasticity is required to describe the mechanical properties of the materials. 

Additionally, it is shown that microdevices such as microresonators exhibit nonlinear damping 

[18] which results in a nonlinear amplitude-dependent damping response; this cannot be 

predicted, but through use of a nonlinear viscoelastic model. 

In reality, microstructures, when manufactured, may not be perfectly flat due to 

improper processes; however, in some applications, they are made with initial curvature 

intentionally. Therefore, an extensive coupled nonlinear size-dependent model accounting for 
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the viscoelasticity of the material as well as initial imperfections is required to explore the 

effects of nonlinear amplitude-dependent damping and the imperfection amplitude on the 

vibrational response of microplates. 

Compared to microscale and nanoscale structures with applications in small-scale 

devices such as nano-oscillators [19], the buckling, bending and vibration of macroscale 

structures have been extensively investigated in the literature. For instance, Zhang et al. [20] 

examined the nonlinear dynamic response of cylindrical shells made of functionally graded (FG) 

material via a shear deformation shell theory. Hao et al. [21] performed a thorough nonlinear 

analysis on the oscillations of cantilever FG plates using a perturbation method as well as a 

third-order theory of plates. Zhang et al. [22] also analysed the chaotic response of orthotropic 

plates made of FG material employing a plate model with shear deformations. In addition, Hao 

et al. [23] studied the large-amplitude vibration, bifurcation and chaotic behaviour of FG plates 

utilising Reddy's plate theory. Mahmoodi et al. [24] developed an analytical procedure to 

analyse the large-amplitude vibration of viscoelastic beams by employing a technique of 

multiple scales 

The vibration, stability and deformation of microscale and nanoscale structures have 

also been studied via developing scale-dependent formulations. Lei et al. [25] explored the 

vibration of viscoelastic nanobeams using the Kelvin–Voigt model and a nonlocal model. In 

another investigation, Namvar et al. [26] conducted both experiments and theoretical analysis 

on the vibration response of U-shape microscopes using a couple stress model. Rahmani et al. 

[27] examined the vibration of curved nanobeams made of FG material incorporating couple 
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stress effects. In another study performed by Sourki and Hosseini [28], the effects of couple 

stress, nonlocal and surface energy were analysed on the vibrations of weakened beams at 

nanoscales. Zarepour and Hosseini [29] also presented a semi analytical approach for the large-

amplitude vibrations of nanobeams subject to electro-thermo-mechanical loading.  

To the authors’ best of knowledge, no existing investigation in the literature has 

addressed the size-dependent forced nonlinear dynamics of initially imperfect viscoelastic 

microplates taking into account the coupled in-plane and transverse motions. The relevant 

literature on the elastic models of microplates is reviewed in the following. Linear and nonlinear 

studies are the two classes of studies in this context. Starting with the review of the first 

category (i.e. linear studies), Hashemi and Samaei [30] conducted a linear buckling analysis on 

nono/microplates under in-plane external loads employing the Mindlin nonlocal plate theory. 

Jomehzadeh et al. [31] employed MCST to obtain a linear model for the out-of-plane motion of 

a microplate and performed a vibration analysis. Further examinations were conducted by 

Wang et al. [32], who made use of a linear model, based on the Kirchhoff theory together with 

the strain gradient elasticity theory, to examine the size-dependent characteristics of 

microplates. In another study, Roque et al. [33] investigated the static behaviour of a shear 

deformable microplate using MSCT. Nabian et al. [34] conducted a stability analysis on the 

forced vibration response of a functionally graded (FG) micro-scale plate under electrostatic 

and hydrostatic loads. Ashoori et al. [35] utilised the modified strain-gradient theory to obtain 

the linear equation for the transverse motion of a microplate. The linear buckling behaviour of 

a sheet made of orthotropic graphene was studied by Farajpour et al. [36] using the nonlocal 

Eringen theory. Li et al. [37] made use of MCST to analyse the static response of a bi-layered 
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Kirchhoff microplate with simply supported boundary conditions. In contrast to the first 

category, i.e. the linear models, only a few studies in the literature were concerned with 

geometric nonlinearities in the mechanics of microplates. For instance, the equations governing 

the motion of a microplate were derived by Asghari [38] based on MCST. In another study, Thai 

and Choi [39] derived a model of FG Mindlin and Kirchhoff plates using MSCT.  

 As mentioned above, all the studies in the literature investigated the linear or nonlinear 

vibrations/bending of perfectly flat microplates on the basis of elastic models. The aim of this 

paper is to explore the forced nonlinear oscillations of an imperfect viscoelastic microplate by 

means of MCST; this is for the first time. The imperfect viscoelastic microplate is modelled 

employing the Kirchhoff plate theory considering the von Kármán nonlinearities as well as 

MCST for the small-size effects. A general distribution of imperfection is considered in the 

transverse component of the displacement field. The Kelvin–Voigt viscoelastic scheme is 

utilised to derive the expressions for the nonlinear damping in the presence of geometric 

nonlinearities. All the transverse and in-plane terms in inertia and displacement are retained in 

both modelling and simulations; extensive numerical simulations are performed to examine the 

effect of the presence of geometric imperfections, the contribution of the amplitude-

dependent nonlinear damping terms, and the significance of considering the small size of the 

microplate on the nonlinear dynamics. 
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2. Continuous model development 

An imperfect viscoelastic microplate of thickness h, dimensions a and b, Young’s and 

shear moduli E and   , respectively, Poisson’s ratio , and mass density  ,  is depicted in Fig. 1. 

A distributed harmonic force, 1 cos( )F t , is exerted on the microplate in the positive z 

direction[40]; F1 is the excitation amplitude per unit area in N/m2, t is time, and   denotes the 

excitation frequency in rad/s. The microplate is fully clamped at all edges; the motion is 

described in a Cartesian coordinate system. The microplate mid-plane displacements in the z, x, 

and y directions are shown by w= w(x,y,t), u= u(x,y,t), and v= v(x,y,t), respectively. According to 

the Kirchhoff plate theory [40, 41], the displacement field (u) components for an arbitrary point 

positioned at a general distance z from the mid-surface, in the presence of initial geometric 

imperfections, are formulated as  

1

2

3 0

,

u z w x u

u z w y v

u w w

      
   

       
      

 (1) 

where w0=w0(x,y) denotes the initial geometric imperfection.  

 

2.1 Microsystem energies and the work of external load and Kelvin-Voigt damping 

The potential strain energy of the microplate occupying volume   is formulated utilising the 

MCST [42], which in variational form is given by 

    d ,  


       m     (2) 
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where  ,  ,  , and m denote respectively the strain, stress, symmetric rotation gradient, and 

deviatoric part of the symmetric couple-stress tensors.  

The symmetric rotation gradient tensor can be formulated as a function of the rotation vector 

 ; the expressions for   and   are given by [43] 

  T1 1
, .

2 2
    u      (3) 

Hence, the components of   (assuming zero initial stress condition) can be obtained as 

 

 

2 2

2 2 2 2 2 2

2 2 2 2

, , , ,0

1 1 1
, , , ,

2 2 2

xx yy zz

xy xz yz

w w

x y x y

w w v u v u

y x x x y x y y

  

  

  
  

    

            
         

              

  (4) 

The nonzero components of the strain tensor for a geometrically imperfect microplate, 

accounting for von-Kármán nonlinear strains, are given by 

2
0

2

2
0

2

2
0 0

1
,

2

1
,

2

1
2 .

2

xx

yy

xy

ww w u w
z

x x x x x

ww w v w
z

y y y y y

w ww w w w u v w
z

y x x y y x y x x y







        
       

        

       
       

        

         
       

           

  (5) 

Based on the Kelvin–Voigt viscoelastic damping mechanism, the stress in the system consists of 

an elastic part as well as a viscous part. To differentiate between the two parts, subscripts “e” 
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and “vis” denote the elastic and viscous components of   and m. Under plane-stress condition, 

the non-zero elastic and viscous components of   can be written as         

 
 

      ( ) ( ) ( ) 2
, , , , 1 ,

1
xx e yy e xy e yy xx xx yy xy

E
        


   


             (6) 

 
 

      ( ) ( ) ( ) 2
, , , , 1 ,

1
xx vis yy vis xy vis yy xx xx yy xy

E

t
         




   


  (7) 

in which η stands for the material viscosity coefficient. 

Based on MCST, the elastic and viscous components of m can be written as         

 
2

( )

1
,

1
jk e jkm E 





l             (8) 

 
2

( )

1
,

1
jk vis jkm E

t
 






 
l              (9) 

where  l denotes the characteristic length-scale of the material. 

Introducing the following stress-resultants 

   

   

2

2

2

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, , , , d ,

, , , , d ,

h

h

h

h

x e y e xy e xx e yy e xy e

x e y e xy e xx e yy e xy e

N N N z

M M M z z

  

  













  (10)

   
2

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , d ,

h

h

x e y e xy e xz e yz e xx e yy e xy e xz e yz eNC NC NC NC NC m m m m m z


    (11) 

the variation of the potential strain energy of the system can be written as 
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 

2
0

( ) ( ) 2

0 0

2
0

( ) ( ) 2

0 0
( )

2

( )2

a b

x e x e

y e y e

xy e

xy e

w w
N u w M w

x x x x x

w w
N v w M w

y y y y y

w ww w
N v u w w

x y y y x x x y

M w
x y

   

  

   



       
      

      

     
     

      

          
        

          


 

 

 

   
2 2 2 2

( ) ( ) ( ) 2 2

2 2 2 2
( )( )

2 2
d d ,

2 2

x e y e xy e

yz exz e

NC w NC w NC w w
x y x y y x

NCNC
u v u v y x

x y x y x y

   

   

    
   

      

      
       

        

   (12) 

The virtual work of the internal Kelvin-Voigt dissipation model can be formulated as 

2
0

( ) ( ) 2

0 0

2 2
0

( ) ( ) ( )2

0 0
( )

2

a b

vis x vis x vis

y vis y vis xy vis

xy vis

w w
W N u w M w

x x x x x

w w
N v w M w M w

y y y y y x y

w ww w
N u v w

y x y y x x x

   

   

  

       
       

      

      
      

        

       
      

       

 

   
2 2 2 2

( ) ( ) ( ) 2 2

2 2 2 2
( )( )

2 2
d d ,

2 2

x vis y vis xy vis

yz visxz vis

w
y

NC w NC w NC w w
x y x y y x

NCNC
v u v u y x

x x y x y y



   

   

 
  

 

    
    

      

      
       

        

   (13) 

in which 

   

   

2

2

2

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, , , , d ,

, , , , d ,

h

h

h

h

x vis y vis xy vis xx vis yy vis xy vis

x vis y vis xy vis xx vis yy vis xy vis

N N N z

M M M z z

  

  













  (14) 
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   
2

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , d .

h

h

x vis y vis xy vis xz vis yz vis xx vis yy vis xy vis xz vis yz visNC NC NC NC NC m m m m m z


    (15) 

The variation of the kinetic energy of the imperfect viscoelastic microplate is formulated as 

2

2
0 0

d d d ,

h

h

a b
w v u

T w v u z x y
t t t t t t

    


            
        

           
     (16) 

The virtual work of the external distributed dynamic load is expressed as 

 1

0 0

cos( ) d d .
a b

extW w F t y x        (17) 

2.2 Equations of motion 

Using Hamilton’s energy principle, the three viscoelastically coupled nonlinear partial 

differential equations of motion can be derived as 

2

2

1
0,

2

xy yzx xz
N NCN NCu

h
t y x y y x


    

     
      

 (18) 

2

2

1
0,

2

xy y yz xz
N N NC NCv

h
t x y x y x


    

     
      

                      (19) 
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0 0

1

2

cos( ) 0,

xy yx
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y xy

xy y xy x

M Mw w Mw w w
h N N

t x x x y y x x y y
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N N

y y y x x

NC NC NC NC
F t

x x y y y x





          
                            

       
      
       

      
        
        

 (20) 
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in which 

        

        
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x y xy x e x vis y e y vis xy e xy vis

x y xy x e x vis y e y vis xy e xy vis

N N N N N N N N N

M M M M M M M M M

   

   
  (21) 

       

   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , , , ,

, .

x y xy xz yz x e x vis y e y vis xy e xy vis

xz e xz vis yz e yz vis

NC NC NC NC NC NC NC NC NC NC NC

NC NC NC NC

   

 
  (22) 

Substituting the resultant expressions of Eqs. (21) and (22) in Eqs. (18)-(20) gives the 

viscoelastically coupled nonlinear equations for the motion for the imperfect viscoelastic 

microplate in the in-plane and out-of-plane (transverse) directions as 

 

2
0 0

2

22
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2
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1
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1 1
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1 2 2
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x t x x x x y y y y

Eh

 


 


            
        

              

                 
                                       


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      
    

        

      
      

         

l

 (23) 
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                  
                                      
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      
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l

       (24) 
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 (25) 

 

2.3 Discretisation 

The partial differential equations (PDEs) of motion given in Eqs. (23)-(25) are discretised into a 

set of ordinary differential equations (ODEs) of dimension N employing a two-dimensional 

Galerkin scheme. The following series expansions are utilised to approximate the displacements 

of the imperfect viscoelastic microplate 
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M N
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M N

i j
i j

M N

i j
i j

x y
w x y t w t

a b

i x j y
u x y t u t

a b

i x j y
v x y t v t

a b

 

 

 

 

 

   
     

   

   
    

   

   
    

   







           (26) 

where i and 
j denote the trial functions for the transverse motion of the microplate which 

satisfy the fully clamped boundary conditions; 
, ( )i jw t , 

, ( )i jv t and 
, ( )i ju t , 

 
denote the unknown 

time-dependent generalised coordinates. The assumed trial functions satisfy the following 

boundary conditions for a fully clamped microplate 

      

      

0, 0, at , 0,

0, 0, at , 0.

v u w w x x a

v u w w y y b
           (27) 

The formulation for i  is given by 

cosh cos sinh sini i i i
i i

x x x xx

a a a a a

   

         

              
          

           (28) 

with    cosh cos sinh sini i i i i        and i  being the ith root of the frequency 

equation for a doubly clamped beam.  

Substitution of the displacements defined in Eq. (26) into Eqs. (23)-(25) and application of the 

Galerkin scheme results in a set of discretised equations consisting of N nonlinear second-order 

ordinary differential equations (ODEs). The resultant set of ordinary differential equations can 

be written as  
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   

 

 

 
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0 0
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, sin sin 0,

, sin sin 0,

, 0,

b a

x

b a

y

b a

z i j

i x j y
x y dxdy

a b

i x j y
x y dxdy

a b

x y
x y dxdy

a b

 (29) 

where x , y
 and z  are respectively the left-hand side of Eqs. (23), (24) and (25) in which Eq. 

(26) is implemented. Through application of a change of variables, this set is transformed into a 

new set consisting of nonlinear first-order ODEs of dimension 2N. The resultant set of equations 

is solved with the aid of a continuation scheme together with time-integration as well as 

eigenvalue method for linear parts; the natural frequencies and the resonant response of the 

imperfect viscoelastic microsystem are obtained. To ensure reliable results, 32 generalised 

coordinates are retained in the discretised model, i.e. a model with 32 degrees of freedom is 

considered. The unknown time-dependent generalised coordinates considered in this study are: 

u2,1, u4,1, u2,3, u6,1, u4,3, u2,5, u8,1, u6,3, u4,5, u2,7, u10,1, v1,2, v1,4, v3,2, v1,6, v3,4, v5,2, v1,8, v3,6, v5,4, v7,2, 

v1,10, w1,1, w1,3, w3,1, w1,5, w5,1,w3,3, w3,5, w5,3, w1,7, and w7,1. 

 

3. Numerical results 

In this section, the bifurcation behaviour of the imperfect viscoelastic microplate is 

examined for a microplate with the dimensions of h=3 µm, a=500 µm, and b=500 µm; the 

material properties of the microplate are: E =69 GPa,  =2700 kg/m3, and  =0.33. The 
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fundamental transverse mode with the amplitude of A0 is selected for the imperfection 

function. The following dimensionless quantities are introduced for this section 

 
  * *

4
* *1

1 1,

** 0

1

0

1 ,1

, , , ,

, , ,

,
,

,

,
,

, d

x y
x y

h h a b

F a t
f t

w u vA
A w u

Dh

v


    

 

   

     

 (29) 

where 
 2

31

12 1
D Eh


 and 4a h D  ; the asterisk notation is dropped in the following for 

brevity. Additionally, The characteristic length-scale of the aluminium is obtained as l=1.0653 

µm (for the thickness of h=3 µm) utilising the experimental data reported in Ref. [44] as well as 

the analytical formula suggested in Ref. [45]. 

The frequency-response diagram of an imperfect viscoelastic microplate is depicted in Fig. 2 

with A0=0.3, ηs=0.0004, and f1=90.0; the dimensionless linear natural frequency of the 

imperfect viscoelastic microplate in the (1,1) mode is obtained as ω1,1 =51.3751. Subfigure (a) 

shows the maximum amplitude of the dimensionless transverse displacement (wmax) at x=0.5 

and y=0.5; accordingly, the maximum amplitude of the dimensionless in-plane displacement 

(umax) for x=0.66 and y=0.5 is shown in subfigure (b) – the v motion is the same as the u one, 

since the in-plane dimensions of the microplate are the same. As seen in this figure, the 

maximum amplitude of the in-plane motion is much smaller than that of the transverse motion. 

The figure shows that the peak of the resonant response is inclined toward the higher 

excitation frequency region, highlighting a hardening-type nonlinear behaviour. Moreover, as 

seen in both the subfigures, the response is heavily damped and the curves at the peak 

amplitudes are not sharp. Furthermore, for low excitation frequencies, the amplitude of the 
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response increases along the stable solution (indicated by a solid line). At a sufficiently high 

excitation frequency (i.e. at point A with Ω/ω1,1= 1.0724), the response of the imperfect 

viscoelastic microplate jumps to a lower amplitude, abruptly. This jump phenomenon is arising 

from the existence of a saddle-node bifurcation in which the stable response turns to an 

unstable one. A similar scenario appears as the frequency of the excitation load decreases; the 

viscoelastic microsystem exhibits the second jump at point B where Ω/ω1,1= 1.0204, indicating 

the existence of the second saddle-node bifurcation. 

Figure 3 highlights the effect of the imperfection amplitude on the frequency-response 

curves of the imperfect viscoelastic microplate. In this figure, different values of the 

imperfection amplitude (A0) is selected while the rest of the parameters are kept fixed 

(ηs=0.0004 and f1=90.0). It can be observed in the figure that by increasing the imperfection 

amplitude, the nonlinear behaviour of the viscoelastic microsystem alters both qualitatively and 

quantitatively. The imperfect viscoelastic microplate undergoes four saddle-node bifurcations 

when A0=0.4 giving rise to additional jumps in the response of the microsystem. Moreover, the 

maximum amplitude of the transverse motion is larger for the smaller values of the 

imperfection amplitude (i.e. A0=0.2); however, the maximum amplitude of the longitudinal 

motion is not affected much by the amplitude of the imperfection. It should be noted that the 

general behaviour of the imperfect viscoelastic microplate tends to be softening/hardening 

from pure hardening when A0 is increased. Moreover, a large value for A0 results in a shift of 

the curve to the right. 
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Figure 4 highlights the importance of the nonlinear amplitude-dependent damping 

originating from the viscoelastic model by comparing the resonant response of the viscoelastic 

model with that of an elastic one. Note that by setting the Kelvin-Voigt viscosity coefficient η 

equal to zero, the viscoelastic model of the microplate reduces to the elastic model; a linear 

viscous damping term is then added to the governing equations – a modal damping ratio of ζ= 

0.0102 is utilised in the numerical simulations. The frequency-response curves are plotted for 

an imperfect microplate with A0=0.3, subjected to different values of the forcing amplitude. In 

order to obtain similar predictions based on the two models, a dimensionless damping 

coefficient of ζ =0.0102 is considered for the linear viscous damping; ηs is set to 0.0004 for the 

imperfect viscoelastic microplate. As seen in the figure, for the small value of the excitation 

amplitude (i.e.  f1=10), both models end up showing an identical nonlinear behaviour. As the 

forcing amplitude is set to larger values, the elastic model (which possesses a linear viscous 

damping mechanism) predicts larger maximum amplitudes of motion in both the transverse 

and in-plane directions compared to the nonlinear viscoelastic model. In fact, the effect of the 

nonlinear damping term becomes more dominant for larger external forces. The discrepancy 

becomes more noticeable for f1=80, where the peak amplitudes deviate from each other 

substantially. This highlights the impact of the research reported in this paper. 

In order to better highlight the contribution of the amplitude-dependent nonlinear 

damping terms in the viscoelastic model, Fig. 5 is plotted which shows the forcing amplitude 

versus the nonlinear excitation frequency of the peak resonant amplitudes of the imperfect 

viscoelastic microplate with A0=0.3. As already mentioned, the gap between the two models is 

negligible for small oscillation amplitudes (i.e. f1<25); for larger values of the forcing amplitude, 
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however, the elastic model with linear viscous damping gives larger values for the nonlinear 

resonance frequencies compared to those predicted by the viscoelastic nonlinear model. 

Similar numerical simulations are conducted on the same imperfect viscoelastic 

microplate and the results are plotted in Figs. 6 and 7; the only difference of the system of Figs. 

6 and 7 to that of Figs. 4 and 5 is that the amplitude of imperfection is increased to A0=0.4. 

Figure 6 shows the difference between the frequency-response curves of the elastic model with 

the linear viscous damping and the viscoelastic model with nonlinear damping mechanism; the 

results show the same trend as discussed earlier. Interestingly, for larger values of the 

excitation amplitude (i.e. f1=60), a complex response with additional peaks is observed for the 

case of elastic model with linear viscous term (compare with Fig. 4, where there are no extra 

peaks). These extra peaks correspond to internal resonances [46] between the modes of 

vibration due to the presence of fairly large amplitude of the geometric imperfection. Indeed, 

increasing the amplitude of the imperfection results in a shift in the dimensionless linear 

natural frequency of the imperfect viscoelastic microplate and leads the microsystem to 

undergo an internal resonance. The amplitude of the extra peaks and the presence of the 

additional branches in the solution are more noticeable for f1=100. However, these additional 

peaks diminish for the case of the viscoelastic model where the nonlinear amplitude-dependent 

damping term is involved.  

Figure 8 highlights the differences in the predicted response of an imperfect viscoelastic 

microplate modelled on the basis of the classical continuum theory and MCST frameworks; for 

both the models, A0=0.3, ηs=0.0004, and f1=90.0 are selected. It should be noted that the MCST 
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reduces to the classical continuum theory when the length-scale parameter is equal to zero. As 

seen in this figure, taking into account the size-dependent behaviour of the microsystem in the 

model can alter the response dramatically. More specifically, the fundamental natural 

frequency of the imperfect viscoelastic microplate is obtained as ω1,1 = 51.3751 based on MCST 

while it is predicted as ω1,1 = 44.5010 based on the classical continuum theory. Consequently, 

the classical continuum theory predicts the nonlinear resonance frequency at lower excitation 

frequencies compared to that of MCST. Moreover, the maximum amplitude of the motions 

(both transverse and longitudinal) are slightly smaller for the case of the classical continuum 

theory; this is contradictory to the initial expectation that since the length-scale parameter 

stiffens the system the vibration amplitude should be smaller, however, when both the 

nonlinear viscoelasticity and small-size effects are present together, the peak oscillation 

amplitude based on MCST is larger than that based on the classical continuum. 

Figure 9 shows a parametric analysis on the effect of the length-scale on the nonlinear 

resonant response of the imperfect viscoelastic microplate. As seen in the figure, as a result of 

increased value of length-scale, the nonlinear resonance region occurs at larger excitation 

frequencies, which is an indication of increased linear natural frequency as well. Furthermore, it 

is observed that the maximum transverse displacement increases due to increased length-scale 

parameter. Figure 9 also reveals that at larger values of the length-scale parameter, the 

microsystem displays a weaker nonlinear behaviour. 
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4. Conclusions 

A viscoelastically coupled nonlinear model for an imperfect microplate has been 

developed in this paper. The Kirchhoff plate theory together with MCST accounting for size-

dependent behaviour of the microsystem and the Kelvin–Voigt model accounting for the 

nonlinear amplitude-dependent damping of the microsystem were employed. The nonlinear 

partial differential equations of motion were obtained using Hamilton’s framework and 

discretised with the aid of the Galerkin scheme. The resonant response of the imperfect 

viscoelastic microsystem was examined through extensive numerical simulations via plotting 

the frequency-response curves utilising a continuation scheme together with time-integration. 

The simulation results highlighted that:  

 The general behaviour of the viscoelastic imperfect microplate is a hardening-

type response with two or more saddle-node bifurcations. 

 At relatively small forcing amplitudes, both elastic model with linear damping as 

well as the viscoelastic model predict very similar response. 

 At sufficiently large forcing amplitudes, the contribution of the nonlinear 

amplitude-dependent damping terms becomes more dominant.  

 Increasing the amplitude of the imperfection gives rise to a change in the general 

behaviour of the imperfect viscoelastic microplate. 

 Increasing the length-scale parameter results in increased transverse amplitude 

of oscillation and weakened nonlinear behaviour as well as increased resonant 

frequency of oscillation.   
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Figure 1: Schematic of an imperfect microscale plate. 
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(a) 

 
(b) 

 
Figure 2: Frequency-amplitude plots of the initially imperfect viscoelastic microplate: (a) the maximum transverse displacement 
at microplate centre (x=0.5 and y=0.5); (b) the maximum longitudinal displacement (x=0.66 and y=0.5); A0=0.3, f1=90.0, and 
ηs=0.0004. Solid line: stable solution; dashed line: unstable solution. 

 

/
1,1

w
m

ax

0.92 1 1.08
0

0.4

0.8

1.2

A

B

/
1,1

u
m

ax

0.92 1 1.08
0

0.002

0.004

A

B



29 
 

(a) 

 
(b) 

 
Figure 3: Frequency-amplitude plots of the viscoelastic microplate for different imperfection amplitudes: (a) the maximum 
transverse displacement at microplate centre (x=0.5 and y=0.5); (b) the maximum longitudinal displacement (x=0.66 and y=0.5); 
f1=90.0 and ηs=0.0004.  
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(a) 

 
 
(b) 

 
 
Figure 4: Frequency-amplitude plots of the linear viscous damping (ζ= 0.0102) and viscoelastic nonlinear damping (ηs=0.0004) 
models of the imperfect microsystem for different forcing amplitudes: (a) the maximum transverse displacement at microplate 
centre (x=0.5 and y=0.5); (b) the maximum longitudinal displacement (x=0.66 and y=0.5); A0=0.3.  
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Figure 5: Excitation frequency at nonlinear resonance versus the amplitude of the dynamic load for linear viscous damping (ζ= 
0.0102) and viscoelastic nonlinear damping (ηs=0.0004) models of the imperfect microsystem; A0=0.3. 
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(a) 

 
 
(b) 

 
 

 
Figure 6: Frequency-amplitude plots of the linear viscous damping (ζ= 0.0102) and viscoelastic nonlinear damping (ηs=0.0004) 
models of the imperfect microsystem for different forcing amplitudes: (a) the maximum transverse displacement at microplate 
centre (x=0.5 and y=0.5); (b) the maximum longitudinal displacement (x=0.66 and y=0.5); A0=0.4. 
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Figure 7: Excitation frequency at nonlinear resonance versus the amplitude of the dynamic load for linear viscous damping (ζ= 
0.0102) and viscoelastic nonlinear damping (ηs=0.0004) models of the imperfect microsystem; A0=0.4. 
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(a) 

 
(b) 

 
Figure 8: Frequency-amplitude plots of the viscoelastic microplate for modified couple stress theory (ω1,1 =51.3751) and 
classical continuum mechanics (ω1,1 =44.5010): (a) the maximum transverse displacement at microplate centre (x=0.5 and 
y=0.5); (b) the maximum longitudinal displacement (x=0.66 and y=0.5);  A0=0.3, f1=90.0, and ηs=0.0004. 
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(a) 

 
(b) 

 
Figure 9: Small scale effects on the frequency-amplitude plots of the viscoelastic microplate: (a) the maximum transverse 
displacement at microplate centre (x=0.5 and y=0.5); (b) the maximum longitudinal displacement (x=0.66 and y=0.5); A0=0.3, 
f1=90.0, and ηs=0.0004. 
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