The role of hedgerows in soil functioning within agricultural landscapes

Holden, J., Grayson, R.P., Berdeni, D., Bird, S., Chapman, P.J., Edmondson, J.L., Firbank, L.G., Helgason, T., Hodson, M.E., Hunt, S.F.P., Jones, D.T., Lappage, M.G., Marshall-Harries, E., Nelson, M., Prendergast-Miller, Miranda, Shaw, H., Wade, R.N. and Leake, J.R. (2019) The role of hedgerows in soil functioning within agricultural landscapes. Agriculture, Ecosystems & Environment, 273. pp. 1-12. ISSN 0167-8809

Full text not available from this repository. (Request a copy)
Official URL: https://doi.org/10.1016/j.agee.2018.11.027

Abstract

Intensification of agriculture has led to major losses of hedgerows and field margins worldwide. Soil sample extraction, in situ time series of soil moisture, temperature and soil water quality analyses, annual earthworm sampling and arbuscular mycorrhizal (AM) fungi sampling enabled comparison of soil functions between typical hedgerows, grass field margins, pasture and arable (mainly winter wheat) fields in a temperate, lowland setting. Mean bulk density (upper 50 cm), surface compaction and soil moisture content were significantly lower while organic matter content and porewater dissolved organic carbon concentrations were significantly greater in hedgerow soils, than margins or fields. Mean nitrate and phosphate concentrations were three and ten times larger, respectively, in soil solutions under hedgerows than arable fields while ammonium concentrations were least in arable fields. Saturated hydraulic conductivity was significantly greater under hedgerows (median = 102 mm hr−1) where it took an average of one hour longer for soils to reach maximum moisture content following rainfall, than adjacent arable (median = 3 mm hr−1) or pasture fields and margins (median = 27 mm hr−1). Hedgerow soils had a greater proportion of flow through micropores and less macropore flow than other soils. The pasture and margin soils had the largest proportion of macropore flow (>85%) and more (and larger) anecic earthworm species, such as Lumbricus terrestris which produce vertical burrows. Earthworm density, biomass and diversity were greater in pasture and margin soils, followed by hedgerow soils, and tended to be lowest in arable soils. For both total and AM fungi, hedgerow soils hosted a distinct and heterogeneous soil community, margin and pasture communities were diverse but clustered together, and arable communities formed a distinct cluster, with low inter-sample variation and significantly lowest AM fungal richness. The findings demonstrate that soils under hedgerows, which should be conserved, can provide important functions on farmland including storing organic carbon, promoting infiltration and storing runoff, increasing earthworm diversity and hosting distinct AM communities.

Item Type: Article
Uncontrolled Keywords: Permeability, Macropores, Earthworms, Porewater, Arbuscular mycorrhizal fungi, Organic matter, Compaction
Subjects: C100 Biology
C500 Microbiology
C700 Molecular Biology, Biophysics and Biochemistry
Department: Faculties > Engineering and Environment > Geography and Environmental Sciences
Depositing User: Elena Carlaw
Date Deposited: 03 Sep 2019 11:21
Last Modified: 10 Oct 2019 15:45
URI: http://nrl.northumbria.ac.uk/id/eprint/40490

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics