NaCa₄V₅O₁₇: A low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications

Changzhi Yin, Chunchun Li, Guangjie Yang, Liang Fang, Yonghai Yuan, Longlong Shu, Jibran Khaliq

PII: S0955-2219(19)30639-9
DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.09.029
Reference: JECS 12739
To appear in: Journal of the European Ceramic Society

Received Date: 5 July 2019
Revised Date: 12 September 2019
Accepted Date: 15 September 2019

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.
NaCa$_4$V$_5$O$_{17}$: A low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications

Changzhi Yin2, Chunchun Li1,2,*, Guangjie Yang1, Liang Fang2, Yonghai Yuan3, Longlong Shu4 and Jibran Khaliq**

1College of Information Science and Engineering, Guilin University of Technology, Guilin, 541004, China

2Guangxi universities key laboratory of non-ferrous metal oxide electronic functional materials and devices, College of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China

3Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology, Guilin, 541004, China;

4School of Materials Science and Engineering, Nanchang University, Nanchang 330031, People’s Republic of China

5Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University at Newcastle, NE1 8ST, UK

Abstract:

Phase formation, crystal structure and dielectric properties of NaCa$_4$V$_5$O$_{17}$ ceramics fabricated via a solid state reaction route at relatively low temperatures (780-860 °C) were investigated. NaCa$_4$V$_5$O$_{17}$ crystallizes in a triclinic structure. Dielectric properties were measured based on the Hakki-Coleman post resonator method at microwave frequency. Specially, a specimen sintered at 840 °C demonstrated balanced dielectric properties with a permittivity $\varepsilon_r = 9.72$, a quality factor $Q\times f = 51,000$ GHz, and a temperature coefficient of resonance frequency $\tau_f = -84$ ppm/°C. NaCa$_4$V$_5$O$_{17}$ ceramics showed excellent chemical compatibility with Ag metal electrodes. Besides, the thermal stability of resonance frequency was effectively
adjusted through formation of composite ceramics between NaCa$_4$V$_5$O$_{17}$ and TiO$_2$ and a near-zero $\eta \sim 1.3$ ppm/$^\circ$C accompanied with $\varepsilon = 14.9$ and $Q\times f = 19,600$ GHz was achieved when 50% mol TiO$_2$ was added. All the merits render NaCa$_4$V$_5$O$_{17}$ a potential candidate for multilayer electronic devices.

Keywords: Ceramics; Dielectric properties; LTCC; NaCa$_4$V$_5$O$_{17}$

1. **Introduction**

Nowadays, electronic devices have witnessed a constant decrease in the geometrical dimensions of the devices, or in other words, they are being miniaturized. For wireless communication systems, such as a mobile phone, a substantial reduction in sizes (devices or electronic components) have been experienced. The ever-accelerated requirements for miniaturization exert an increasing demand for material exploitation and device design. One direction for device miniaturization is the utilization of high-permittivity (ε) materials because the size of the dielectric resonator is inversely proportional to the permittivity [1, 2]. Nevertheless, the dielectric loss, necessary for noise reduction and controlling the cross-talks, inversely correlates to the dielectric permittivity, which makes the high-ε materials practically unfavorable in the high-frequency fields. Moreover, high-ε materials generally possess a relatively high temperature coefficient of permittivity that is disadvantageous for the thermal stability of devices.

In addition to exploring high-ε materials for miniaturization and integration, current research interest has been directed to low-temperature co-fired ceramics (LTCC) technology to integrate a versatile mix of passive components such as
antennas, filter, resonators, and capacitors within a monolithic bulk module [3-6]. Thus, to achieve co-firing with inner metal electrodes (e.g. Ag), low sintering temperatures (< 961 °C, which is the melting point of Ag) should be satisfied along with chemical compatibility between ceramic matrix and electrodes [7-10].

Generally, the addition of low-melting-point glasses and/or sintering aids proved to be a valid method to develop LTCC systems [11]. However, lowering the sintering temperatures is usually coupled with the deterioration in dielectric properties, especially the quality factor. Within the past two decades, ceramics with intrinsically low densification temperatures have been widely researched, enriching the material systems for LTCC technology. Up till now, a great deal of low-firing ceramics has been reported [12-14]. Those materials with low-melting-point constituents, such as B_2O_3 (450 °C), V_2O_5 (690 °C), TeO_2 (733 °C), MoO_3 (795 °C), Bi_2O_3 (817 °C), tend to have low sintering temperatures [5, 15-19]. That is because of the mass transfer due to a liquid phase transition. This proves that for state of the art microwave dielectric materials having intrinsically low sintering temperatures and excellent dielectric performances, it is necessary to focus on the materials consisting of low-melting-point constituents.

Recently, an alkaline earth metal vanadate with an alkali ($\text{NaCa}_4\text{V}_5\text{O}_{17}$) was synthesized and characterized for its crystal structure, spectrum properties, and thermal behavior [20]. $\text{NaCa}_4\text{V}_5\text{O}_{17}$ has a triclinic structure, with 3D frameworks of corner-shared VO$_4$ tetrahedra that enclose cavities occupied by Na$^+$ and Ca$^{2+}$ cations. The single-phase NaCa$_4$V$_5$O$_{17}$ could be obtained after firing it at 600 °C which makes
NaCa$_4$V$_5$O$_{17}$ an excellent candidate for microwave dielectric application having low-temperature firing.

In this work, NaCa$_4$V$_5$O$_{17}$ ceramics were prepared via the conventional solid-state reaction route. The microstructure, sintering behaviors and their effects on dielectric properties were studied in details together with the chemical compatibility of NaCa$_4$V$_5$O$_{17}$ with silver.

2. Experimental

2.1 Sample preparation

NaCa$_4$V$_5$O$_{17}$ ceramics were prepared via a conventional solid-state method using stoichiometric starting materials: CaCO$_3$, Na$_2$CO$_3$ (> 99.95%, Guo-Yao Co., Ltd Shanghai, China) and NH$_4$VO$_3$ (> 99.9%, Guo-Yao Co., Ltd Shanghai, China). The stoichiometrically weighted powders were mixed through ball-milling in alcohol medium for 6 h. After drying at 120 °C, the resultant powders were calcined at 650 °C for 6 h in air, followed by a second ball milling for 6 h. Green disks were obtained by pressing powder into cylinders (10 mm in diameter and 6 mm in thickness) under a pressure of 80 MPa with polyvinyl alcohol (PVA, 10 vol.%) as binder. NaCa$_4$V$_5$O$_{17}$ pellets were sintered at 780-860 °C for 6 h to optimize the sintering behavior. To suppress evaporation of volatile elements, such as sodium and vanadium, NaCa$_4$V$_5$O$_{17}$ ceramics were buried in sacrificial powders of the same composition.

2.2 Characterization

The phase purity and crystal structure were analyzed using X-ray diffraction (CuKα1, 1.54059 Å, Model X’Pert PRO, PANalytical, Almelo, Holland). The bulk
density was determined by the Archimedes’ principle. The surface morphologies of
the polished and thermal etched surfaces were observed by scanning electron
microscope (FE-SEM, Model S4800, Hitachi, Japan) fitted with an Energy Dispersive
Spectroscopy (EDS). The precise composition of the sintered samples was determined
using X-Ray Fluorescence Spectrometer (ZSX Primus II, Japan). High-resolution
transmission electron microscopy (HRTEM) and the corresponding selected area
electron diffraction (SAED) were performed with a JEM-2100 F at an accelerating
voltage of 200 kV. The relative permittivity (ε_r) and quality factor ($Q\times f$) were
measured via the Hakki-Coleman dielectric resonator method with TE011 mode using
a network analyzer (Model N5230A, Agilent Co., Paló Alto, America) and the
temperature coefficient of resonant frequency (τ_f) was obtained by recording the
temperature shifts of the resonance frequency in the temperature range from 25-85 °C
using a temperature chamber (Delta 9039, Delta Design, San Diego, CA) and the
values were calculated as follows:

$$\tau_f (\text{ppm/} ^\circ \text{C}) = \frac{f_2-f_1}{f_1(T_2-T_1)} \times 10^6 \quad (1)$$

where, f_1 and f_2 represent resonant frequencies at temperatures T_1 (25 °C) and T_2 (85
°C), respectively.

3. Results and discussion
Figure 1 X-ray diffraction profiles recorded on the calcined powders at various temperatures from 500 to 800 °C

Figure 1 shows the XRD profiles of the powders calcined at various temperatures (ranging from 500 to 800 °C). For the sample fired at 500 °C, three main phases indexed as CaCO$_3$ (No. 083-0578), CaV$_2$O$_6$ (No. 023-0137), and NaV$_3$O$_8$ (No. 028-1171) were detected. This indicates that at low processing temperatures, the primary chemical reactions is decomposition of raw materials to initiate a chemical reaction forming intermediate phases, which was confirmed from thermal analysis and shown in Supplementary Figure 1. With increasing calcination temperature, NaCa$_4$V$_5$O$_{17}$ phase began to appear at 550 °C, and eventually became a main phase at 650 °C which kept stable up to 800 °C. Rietveld refinement was performed to determine the crystal structure and to confirm the phase purity based on the powder XRD data collected on the cracked ceramics (sintered at 800 °C).
Figure 2 Rietveld refinement on the powder XRD data collected on the cracked ceramics (sintered at 800 °C) using Fullprof software; the schematic crystal structure of NaCa$_4$V$_5$O$_{17}$ is shown in the inset with grey polyhedra for VO$_4$

A structural model with a space group of $P-1$ was established based on the previous work [20]. The calculated XRD pattern matched well with the observed pattern and shown in Figure 2. The comparison gives a relatively low difference profiles and acceptable reliability factors of the profile $R_p = 11.51\%$, and the weighted profile $R_{wp} = 9.39\%$, which verifies the refinement reliability and phase purity of the sample. The lattice parameters were refined as $a = 6.9368$ Å, $b = 6.9523$ Å, $c = 15.4928$ Å, $\alpha = 84.5550^\circ$, $\beta = 87.2871^\circ$, and $\gamma = 86.8512^\circ$. The refined atomic positions are summarized in Supplementary Table 1. A high resolution transmission electron microscopy (HRTEM) image and the corresponding selected area electron diffraction (SAED) pattern acquired along the crystallographic [100] direction (Supplementary Figure 2) further confirmed the triclinic crystal structure. The crystal
structure of NaCa₄V₅O₁₇ is shown in the inset of Fig. 2, which features a 3D network of corner-shared VO₄ tetrahedra with Na and Ca occupying the interstitial sites having seven-coordination and/or six-coordination with oxygen.

Figure 3 (a) Density of the sintered NaCa₄V₅O₁₇ ceramics at various temperatures from 780 to 860 °C with an increment of 20 °C; (b) SEM image of NaCa₄V₅O₁₇ ceramic sintered at 840 °C

X-Ray Fluorescence Spectrometer (XRF) was employed to precisely determine the chemical constitution of NaCa₄V₅O₁₇ as oxygen loss in oxides frequently occurs and is represented by the Kröger–Vink notation:

\[\text{O}_0 \rightleftharpoons \frac{1}{2}\text{O}_2 + \text{V}_0 + 2\text{e}' \]

Inevitably, high-temperature firing would induce evaporation of volatile elements, (such as sodium in the present work) and sodium loss accelerates oxygen deficiency to maintain electrical neutrality. The ionization of oxygen vacancies produces the conducting electrons, which would weakly bond with positively charged defects, resulting in another dielectric polarization. XRF analysis revealed mole ratio for Na:Ca:V = 0.227:1:1.123, which deviated from the stoichiometric ratio (0.25:1:1.125), especially for Na source.
The variation in bulk density and relative density as a function of sintering temperature is presented in Figure 3a. When powder was sintered at 780 °C, the sample had a relatively low bulk density of 2.9 g/cm³ (~ 92% of relative density), which increased to a maximum density of 3.03 g/cm³ (~ 95.3% of relative density) at 840 °C. Further increase in temperature to 860 °C, however, led to a decline in bulk density to a value of 3.0 g/cm³. The increment in density is believed to be due to the grain growth which squeezes out pores as can be seen in Figure 3b which shows the SEM image of sample sintered at 840 °C. On the other hand, heterogeneous grain growth with increasing sintering temperature is responsible for the decrease in density and the microstructure showing grain growth is given in Supplementary Figure 3 and Supplementary Figure 4.

Figure 4 presents the variation in microwave dielectric properties as a function of sintering temperature. The relative permittivity increased with increasing sintering temperature and reached a saturated value of 9.72 for the sample sintered at 840 °C. Since, density also exhibited the same trend as permittivity, suggests that the density predominated the relative permittivity of NaCa₅V₅O₁₇. It is safe to conclude that the relatively small permittivity of air (εᵣ ~ 1) trapped in the pores also contributed to the permittivity values. In order to remove the effect of porosity, Bosman and Having’s equation [21] was used which is presented in Eq. 2:

\[\varepsilon_{corr} = \varepsilon (1 + 1.5p) \]

(2)

where \(p \) is the fractional porosity and \(\varepsilon_{corr} \) is the corrected value. As expected, the calculated \(\varepsilon_{corr} \) values were higher (6-10%) than the measured values and presented in
Additionally, the theoretical permittivity estimated via the Clausius-Mossotti equation was 8.45, which is also different from the measured value ($\Delta > 10\%$) [22, 23]. According to Shannon’s report, the lower theoretical permittivity (8.45) of NaCa$_4$V$_5$O$_{17}$ indicates that there is another contribution to dielectric polarization that relates to ionic or electronic conductivity or stems from the structural distortion with rattling or compressed cations [22].

Figure 4 microwe dielectric properties (ε_r, Qxf, and τ) of NaCa$_4$V$_5$O$_{17}$ ceramics sintered at various temperatures from 780 to 860 $^\circ$C.

Figure 4b shows the quality factor (Qxf) of NaCa$_4$V$_5$O$_{17}$ ceramics sintered at various temperatures. For samples sintered at 780 $^\circ$C, they showed a quality factor
$(Q\times f)$ of 42,000 GHz, which remarkably improved to 51,000 GHz as the sintering temperature rose to 840 °C. Upon further increasing the temperature to 860 °C, the $Q\times f$ value slightly decreased to 45,000 GHz. A series of factors including intrinsic (such as anharmonic lattice vibration) and extrinsic (related to structural imperfection, e.g. point defects, line defects, and plane defects) have been reported to influence the dielectric losses [24-26]. Considering the similar variation trend between quality factor and density versus the sintering temperature, it is rationally determined that density contributes primarily to the dielectric loss.

As shown in Figure 4c, the temperature coefficient of resonance frequency fluctuated between -87 to -80 ppm/°C for sample sintered between 780 to 860 °C. The weak dependence of τ_f on sintering temperature can originate from the fact that no second phase of structural transformation took place over the same temperature range.

Table 1 summarizes the sintering temperatures and microwave dielectric properties of some previously researched vanadates with ultra-low sintering temperatures. All the listed vanadates have relatively low sintering temperatures (< 960 °C), rendering their possible utilization in LTCC technology. In comparison, this work possesses low relative permittivity, comparable to $\text{Mg}_3(\text{VO}_4)_2$, which is beneficial for high-speed data propagation. The quality factor of $\text{NaCa}_4\text{V}_5\text{O}_{17}$ is much higher than those of BiVO_4 and $\text{LiMVO}_6\ (M = \text{Mo and W})$, which guarantees its high frequency selectivity. However, the low-firing vanadates usually exhibit non-zero τ_f values (either positive or negative), which needs further compensation mechanisms to tune.

Table 1 Microwave dielectric properties of some low-firing vanadates.
<table>
<thead>
<tr>
<th>phase</th>
<th>S.T (°C)</th>
<th>ε_r</th>
<th>$Q\times f$ (GHz)</th>
<th>τ_f (ppm/°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiVO$_4$</td>
<td>925</td>
<td>68</td>
<td>8,000</td>
<td>-243</td>
<td>[27]</td>
</tr>
<tr>
<td>Mg$_3$(VO$_4$)$_2$</td>
<td>950</td>
<td>9.1</td>
<td>64,142</td>
<td>-93.2</td>
<td>[28]</td>
</tr>
<tr>
<td>BiCaVO$_5$</td>
<td>820</td>
<td>15.7</td>
<td>55,000</td>
<td>-71</td>
<td>[29]</td>
</tr>
<tr>
<td>BiMgVO$_5$</td>
<td>820</td>
<td>18.55</td>
<td>86,860</td>
<td>-65</td>
<td>[29]</td>
</tr>
<tr>
<td>Ca$_5$Co$_4$(VO$_4$)$_6$</td>
<td>875</td>
<td>10.1</td>
<td>95,200</td>
<td>-63</td>
<td>[30]</td>
</tr>
<tr>
<td>LiMoVO$_6$</td>
<td>640</td>
<td>13.3</td>
<td>12,460</td>
<td>+101.0</td>
<td>[31]</td>
</tr>
<tr>
<td>LiWVO$_6$</td>
<td>700</td>
<td>11.5</td>
<td>13,260</td>
<td>163.8</td>
<td>[31]</td>
</tr>
<tr>
<td>NaCa$_4$V5O${17}$</td>
<td>840</td>
<td>9.72</td>
<td>51,000</td>
<td>-84</td>
<td>This work</td>
</tr>
</tbody>
</table>

Figure 5 (a) XRD patterns and (b) SEM micrograph of 0.5NaCa$_4$V$_5$O$_{17}$ + 0.5TiO$_2$ composite ceramic sintered at 840 °C (EDS analysis of TiO$_2$ is shown in the inset of Figure 5b)

Table 2 Sintering temperature (S.T.) and microwave dielectric properties of (1-x)NaCa$_4$V$_5$O$_{17}$-xTiO$_2$ composite ceramics

<table>
<thead>
<tr>
<th>x value</th>
<th>S.T.</th>
<th>ε_r</th>
<th>ε_{cal}</th>
<th>$Q\times f$ (GHz)</th>
<th>τ_f (ppm/°C)</th>
<th>$\tau_{f\text{cal}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>840</td>
<td>9.72</td>
<td>9.72</td>
<td>51,000</td>
<td>-84.3</td>
<td>-84.3</td>
</tr>
<tr>
<td>0.1</td>
<td>820</td>
<td>10.5</td>
<td>9.9</td>
<td>45,700</td>
<td>-69.5</td>
<td>-68.9</td>
</tr>
</tbody>
</table>
Unfortunately, the large negative τ_f value makes NaCa$_4$V$_5$O$_{17}$ ceramics impractical, especially in extreme conditions with large temperature variations. Thus, to achieve temperature stability of resonance frequency against temperature, TiO$_2$ with a positive τ_f value (\approx+465 ppm/$^\circ$C) was chosen as a compensator to form ceramic-ceramic composite [32]. XRD and SEM analysis, given in Figure 5, confirmed no chemical reaction between TiO$_2$ and NaCa$_4$V$_5$O$_{17}$, which was characterized by distinguishing diffraction peaks and grains with distinct sizes. EDS analysis verified the small grains belong to TiO$_2$. As listed in Table 2, TiO$_2$ addition significantly changed the dielectric properties of the original NaCa$_4$V$_5$O$_{17}$. More specifically, the τ_f value was shifted from negative to positive value and a near-zero value of +3.5 ppm/$^\circ$C was achieved with 50 mol% TiO$_2$ addition. A composite ceramic with 50 mol% TiO$_2$ exhibited balanced dielectric properties with $\varepsilon_r = 13.7$, $Q\times f = 22,500$ GHz and $\tau_f = +3.5$ ppm/$^\circ$C.

Figure 6 (a) XRD and (b) SEM micrograph of NaCa$_4$V$_5$O$_{17}$ cofired with silver.
electrode at 840 °C (EDS analysis of Ag is shown in the inset of Figure 6b).

In consideration of the relatively low sintering temperature (840 °C) and excellent microwave dielectric properties, NaCa$_4$V$_5$O$_{17}$ can be potentially applicable in low-temperature co-fired ceramics (LTCC) technology, which requires the dielectric materials to be chemically compatible with the electrode materials (silver or aluminum). In order to validate this, NaCa$_4$V$_5$O$_{17}$ cofired with the silver electrode at 840 °C for 30 min and characterized with XRD and SEM for a potential reaction between NaCa$_4$V$_5$O$_{17}$ and silver. Figure 6 shows the XRD and SEM micrograph of NaCa$_4$V$_5$O$_{17}$ cofired with the silver electrode. XRD profiles exhibited the diffraction peaks of NaCa$_4$V$_5$O$_{17}$ and silver (as marked by solid circles in Figure 6a) separately confirming no reaction took place between them. On top of that, distinct grains with different sizes and element contrasts were observed in SEM images. EDS revealed the bright smaller grains in the main ceramic matrix to be silver which further confirms a lack of reaction between silver and NaCa$_4$V$_5$O$_{17}$. All these results validate the potential application of NaCa$_4$V$_5$O$_{17}$ in LTCC technology.

4. Conclusions

NaCa$_4$V$_5$O$_{17}$ ceramics were prepared by solid state reaction at relatively low temperatures (780-860 °C). Thermal analysis and X-ray diffraction patterns confirmed the formation of NaCa$_4$V$_5$O$_{17}$ at 650 °C. Rietveld refinement verified the phase purity of NaCa$_4$V$_5$O$_{17}$ with a triclinic structure $P\bar{1}$. SEM images show that dense ceramics with homogenous microstructure were developed. Combined dielectric properties were achieved in the sample sintered at 840 °C with $\varepsilon = 9.72$, $Q\times f = 51,000$ GHz, and
\(\tau = -84 \text{ ppm/}^\circ\text{C} \). Chemical compatibility with Ag of NaCa_4V_5O_{17} ceramics was also determined based on XRD analysis. Besides, several composite ceramics in the \((1-x)\text{NaCa}_4\text{V}_5\text{O}_{17}-x\text{TiO}_2\) system were synthesized with an attempt to adjust the thermal stability of NaCa_4V_5O_{17}. Effectively, a near-zero \(\tau \sim +3.5 \text{ ppm/}^\circ\text{C} \) was accessible in the composite with 50\% mol TiO_2 accompanied with \(\varepsilon = 13.7 \) and \(Q\times f = 22,500 \text{ GHz} \). The intrinsic low sintering temperature, low permittivity along with chemical compatibility with Ag renders the possible application of NaCa_4V_5O_{17} in multilayer electronic devices.

Acknowledgments

Chunchun Li gratefully acknowledges the financial support from Natural Science Foundation of China (No. 51502047), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region (No. 2018GXNSFAA281253).
Reference

