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ABSTRACT  

The dorsolateral prefrontal cortex (DLPFC) is a crucial brain region for inhibitory control, an 

executive function essential for behavioural self-regulation. Recently, inhibitory control has 

been shown to be important for endurance performance. Improvement in inhibitory control 

were found following transcranial direct current stimulation (tDCS) applied over the left 

DLPFC (L-DLPFC). This study examined the effect tDCS on both an inhibitory control and 

endurance performance in a group of healthy individuals. Twelve participants received either 

real tDCS (Real-tDCS) or placebo tDCS (Sham-tDCS) in randomized order. The Anodal 

electrode was placed over the L-DLPFC while the cathodal electrode was placed above Fp2. 

Stimulation lasted 30 min with current intensity set at 2mA. A Stroop test was administered to 

assess inhibitory control. Heart rate (HR), ratings of perceived exertion (RPE), and leg muscle 

pain (PAIN) were monitored during the TTE test, while blood lactate �D�F�F�X�P�X�O�D�W�L�R�Q�����¨�%�>�/�D-]) 

was measured at exhaustion. Stroop task performance was improved after Real-tDCS as 

demonstrated by a lower number of errors for incongruent stimuli (p = 0.012). TTE was 

significantly longer following Real-tDCS compared to Sham-tDCS (p = 0.029, 17 ± 8 vs 15 ± 

8 min), with significantly lower HR (p = 0.002) and RPE (p < 0.001), while no significant 

difference was found for PAIN (p > 0.224). �¨B[La-] was significantly higher at exhaustion in 

Real-tDCS (p = 0.040). Our findings provide preliminary evidence that tDCS with the anode 

over the L-DLPFC can improve both inhibitory control and cycling performance in healthy 

individuals.  

 

Key words: non-invasive brain stimulation, fatigue, perception of effort, cycling, 

enhancement, Stroop task.  

 

HIGHLIGHTS  

Stroop test performance can be improved by targeting the left DLPFC; 

Heart rate during exercise was reduced after targeting the left DLPFC; 

Perception of effort during exercise was reduced by targeting the left DLPFC with tDCS; 

Endurance cycling performance can be improved by targeting the left DLPFC; 
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INTRODUCTION  

The capacity to sustain high-intensity aerobic exercise is important for endurance 

performance. Recent experiments suggest that endurance performance might not solely rely 

on the individual �³�S�K�\�V�L�F�D�O�´�� �F�D�S�D�F�L�W�\ (Hagger et al., 2010). It has been proposed that 

cognitive control, and more precisely the inhibitory control, plays an important role for the 

regulation of strenuous physical tasks (Hagger et al., 2010). Accordingly, the inhibitory 

control would be important to inhibit unpleasant sensations commonly experienced during 

exercise such as muscle pain, dyspnoea or thermal discomfort (Hagger et al., 2010). In other 

words, as exercise progresses, more inhibitory control is necessary to avoid task 

disengagement.  

A common feature of effortful cognitive processes such as inhibitory control, is that 

when exerted over time, they induce a state of mental fatigue (Muraven and Baumeister, 

2000) which has shown to increase perception of effort and have a negative effect on 

endurance performance (Marcora et al., 2009). Recent experiments demonstrated that 

professional cyclists have a higher inhibitory control and are more resistant to mental fatigue 

compared to recreational athletes (Martin et al., 2016), thus providing some evidence on the 

importance of inhibitory control for endurance performance.  

Neuroimaging studies investigating the neural basis of inhibitory control, found a 

significant activation of cortical networks located on the prefrontal cortex (PFC) (Miller and 

Cohen, 2001; Diamond, 2013). Increased activity of the PFC has been observed during 

various cognitive tests involving inhibitory control such as the Stroop task, Go/No-Go task or 

stop-signal task (Diamond, 2013). Notably, when PFC activity was impaired, a reduction in 

performance test requiring inhibitory control was observed (Heatherton and Wagner, 2011; 

Hedgcock et al., 2012). The PFC has been shown to be important for a wide range of other 

high order cognitive functions such as decision making, working memory and problem 

solving (Miller and Cohen, 2001; Diamond, 2013). In addition, the PFC has been proposed to 

play an important role for exercise regulation (Robertson and Marino, 2016). In this regards, 

neuroimaging studies demonstrated an increase in functional connectivity between PFC, and 

primary motor cortex (M1) during submaximal fatiguing exercise (Jiang et al., 2012). 

Transcranial direct current stimulation (tDCS) has been demonstrated to improve a 

wide range of cognitive functions in healthy individuals (Kadosh, 2013; Santarnecchi et al., 

2015). Improvement in cognitive tests involving inhibitory control were found after tDCS 

applied over the left dorsolateral prefrontal cortex (L-DLPFC) (Hsu et al., 2011; Loftus et al., 
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2015). tDCS has also been recently used to enhance physical capacity in healthy individuals 

on different exercise paradigms by providing contrasting results about the ergogenic effect of 

tDCS (Angius et al., 2018b; Machado et al., 2018). To the best of our knowledge, only one 

study investigated the effect of tDCS on the L-DLPFC on cycling exercise performance by 

reporting improvement in performance (Lattari et al., 2017). The mechanisms underlying the 

improvement in performance however are largely unknown as no measurement of 

physiological and/or cognitive response was performed following tDCS.  

In light of this gap in the literature, the primary aims of the present investigation were: 

1) verify the hypothesis that tDCS over the L-DLPFC can improve cognitive task 

performance requiring inhibitory control; 2) verify the hypothesis that tDCS over the L-

DLPFC can improve endurance performance; 3) monitor the cognitive and physiological 

responses following tDCS. We hypothesized that tDCS over the L-DLPFC would improve 

inhibitory control and reduce perception of effort during cycling exercise to exhaustion.  

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

6 
 

EXPERIMENTAL PROCEDURES  

Participants  

Twelve recreationally trained participants (3 women and 9 men) whose mean ± 

standard deviations (SD) of age, height and weight were 23 ± 3 yr, 179 ± 10 cm and 74.9 ± 

16.5 kg, respectively, were recruited. All participants signed an informed consent to take part 

in the study which was performed according to the declaration of Helsinki and approved by 

the local ethics committee. Participants performed a regular aerobic exercise training (3-5 

h/week) and were free of any known cardiorespiratory, psychiatric or neurological disease. 

Experimental design  

Participants visited the laboratory on three different occasions that included one 

familiarisation session and two experimental sessions. Participants were advised to avoid 

strenuous activities, consume alcohol, caffeine and other stimulants or depressant for 48 h 

prior each visit. All visits were performed at the same time of the day in a temperature-

controlled room (20°C, relative humidity between 40-50%) and were interspaced by a 

minimum of 72 h and completed within 14 days. All experimental procedures are illustrated 

in Fig 1C. 

Visit 1. This visit served as familiarisation session. Participants also performed a maximal 

incremental test on a stationary cycle ergometer (Lode, Corival, Groningen, Netherlands) to 

establish their maximal peak power output (Wpeak). The test consisted on a 5 min warm up at 

100 W with a following increase of 30 W/min until volitional exhaustion (defined as a 

cadence below 60 rpm for more than 5 s).  

Visits 2-3. Participants were randomly assigned in a double-blind and counterbalanced 

manner to a placebo tDCS (Sham-tDCS) and to real tDCS (Real-tDCS) using an online 

randomizer (http://www.randomization.com).  

Stroop Task.  

The Stroop task involved a mixed block of 144 trials were the stimulus was either a 

string of asterisks (72 neutral trials), an incongruent colour word (60 trials) and a congruent 

colour word (12 trials). Each stimulus was presented in one of the six colours chosen (blue, 

green, orange, red, purple, or yellow), in the centre of the computer screen with a black 

Journal Pre-proof

http://www.randomization.com/


Jo
ur

na
l P

re
-p

ro
of

7 
 

background colour, in a Courier New font bold style and font size 18. During the task, 

participants were required to press the button of the keyboard corresponding to the presented 

colour as quickly and accurately as possible. On each trial, the stimulus remained on the 

computer screen until the volunteer responded, this was then followed by a response to 

stimulus interval of 1000 ms minus the response time. Ten practice trials were given before 

commencing. The test was administered before tDCS (Baseline), after tDCS (Post-tDCS) and 

after the TTE test (Post-TTE). The same version of this Stroop task has been used in previous 

study (Lowe et al., 2014). The Stroop task was prepared and administered by using E-Prime 

software 2.0.10  (Psychology Software Tools, Inc).  

Psychological assessment 

Mood was assessed by using the Brunel mood scale (BRUMS) (Terry et al., 2003). 

Motivation related to TTE test was measured using the success motivation and intrinsic 

motivation scales (Matthews et al., 2001). The National Aeronautics and Space 

Administration Task Load Index (NASA-TLX), (Hart and Staveland, 1988) was used to 

assess subjective workload related to the TTE test.  

Transcranial direct current stimulation procedure 

Offline tDCS was delivered by a direct current stimulator (TCT Research Limited, 

Hong Kong) with the anodal electrode (7×5 cm) placed in correspondence of F3 location 

according to the 10-20 EEG system, while the cathodal electrode (5x5 cm) was placed on Fp2 

location (see Fig 1A and 1B). This montage has been previously used to target and increase 

the excitability of the L-DLPFC in both healthy and clinical population (Gluck et al., 2015; 

Heinitz et al., 2017; Silva et al., 2017). In the Real-tDCS condition, stimulation lasted 30 min 

at an intensity of 2.0 mA (current density (mA/cm2 of 0.057). These intensity and duration 

have been shown to induce beneficial effects on cognitive function in both healthy and 

clinical population (Martin et al., 2013; McIntire et al., 2014). The electrode placement in the 

Sham-tDCS was identical to Real-tDCS but the stimulation lasted only 30 s. For both 

conditions, the current was ramped up and down in 30 s. In order to ensure good conductance, 

electrodes sponges were soaked with a saline solution (NaCl 9%) and elastic straps were used 

to maintained electrode on the scalp. The electrical resistance was constantly kept within a 

�U�D�Q�J�H�� �E�H�W�Z�H�H�Q�� ���� �W�R�� ���� �N�����tDCS was not administered during cognitive or physical task (see 
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Fig. 1C). During the stimulation participants were asked to seat in a comfortable chair and 

to relax as much as possible. 

 

Time to exhaustion test 

Participants performed a cycling TTE test at 70% of Wpeak to assess endurance 

performance. After 5 min warm up at 100W, the TTE test started and was interrupted at 

volitional exhaustion (defined as a cadence below 60 rpm for more than 5 s).  

Perceptual and physiological parameters during exercise  

Participants reported their leg muscle pain (PAIN) with a 10 points numerical scale 

���2�¶�&�R�Q�Q�R�U���D�Q�G���&�R�R�N�������������� and their perception of effort with a 15-point rating of perceived 

exertion (RPE) scale following the instructions of (Borg, 1998). Participants were 

familiarized with the RPE procedure during the preliminary incremental exercise test. Each 

parameter was taken after 30 s, at the end of each min and immediately after exhaustion. 

Heart rate (HR) was monitored by a HR monitor (Polar RS400; Polar Electro Oy, Kempele, 

Finland). A 10 ml sample of capillary blood was collected from the thumb to determine blood 

lactate concentration (B[La-]). Samples were analysed immediately at the end of each session 

by a lactate analyser (Biosen; EFK Diagnostics, London, UK). Electromyography activity of 

the right vastus lateralis muscle (VL-EMG) was continuously recorded during the TTE test. 

The VL-EMG signal was recorded by surface electrodes (Swaromed, Nessler Medizintechnik, 

Innsbruck, Austria) placed over the muscle belly with the reference electrode placed over the 

patella. Each electrode was positioned according to the SENIAM guidelines (Hermens et al., 

2000). Electrodes position was marked on the skin with a permanent marker to ensure 

reproducibility for electrodes position in the following visit. The EMG signal was acquired at 

sample rate of 2 kHz (gain = 1000) by a commercially available software (Acqknowledge 4.2, 

Biopac Systems Inc., Goleta, USA). 

Data analysis 

During the TTE test, data points were processed �D�V���³�L�Q�G�L�Y�L�G�X�D�O�L�V�H�G���L�V�R-�W�L�P�H�´���W�R���D�O�O�R�Z��

the within-subjects comparison of temporal changes (Angius et al., 2018a).  

The VL-EMG signal was normalized by the maximal VL-EMG obtained during 10 s 

cycling sprint performed prior the TTE test. A period of 3 s during the sprint phase was 
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isolated, averaged and then used for normalisation (Albertus-Kajee et al., 2010). For the VL-

EMG analysis, the recorded signal was digitally filtered with a Butterworth band pass filter 

(10 and 500 Hz). The root mean square (RMS) of the VL-EMG signal was automatically 

obtained with the software. The last 5 bursts were averaged prior each time point respectively 

at 0, 25, 50, 75, 100% and at exhaustion. Before calculate Stroop test parameters a data 

reduction was performed. We excluded RT < 200 and > 1500 ms, since the former is too fast 

to represent a conscious response and the latter was considered as outlier (Brunoni et al., 

2014). The parameters obtained from the Stroop test were: reaction time (RT), number of 

errors (ERRORS) and Stroop Interference (SI). The ERRORS were entered into the analysis 

as raw scores while SI was calculated as the difference between the RT in ms of correct 

incongruent colour words minus the RT in ms of correct asterisk trials (Lowe et al., 2014).  

Statistical analysis. 

Data are reported as means ± SD. The normal distribution was checked by using the 

Shapiro-Wilk test. When assumption of sphericity was violated, the Greenhouse-Geisser 

correction to the degrees of freedom was applied. A fully repeated measures 2x5 ANOVA 

(condition x time) were performed to test the effects of tDCS on RPE, PAIN, HR and VL-

EMG during the TTE test. The effect of condition on TTE time, �¨B[La-], HR, PAIN and VL-

EMG at exhaustion was analysed by paired t-test. Because violation of the normal distribution 

of RPE at exhaustion was violated, a Wilcoxon signed-rank test was performed. ERRORS 

and RT were analyses by using a fully repeated 2x2x3 ANOVA with condition (Real-tDCS - 

Sham-tDCS), type of stimulus (congruent - incongruent) and time (Baseline, Post-tDCS and 

Post-TTE). A fully repeated 2x3 ANOVA (condition x time) was performed for the analysis 

of SI, RT and ERRORS for the asterisks trials and self-reported mood. Motivation and 

NASA-TLX results were assessed by using a paired t-test. When a significant simple main 

effect of condition or time was found, a Holm-Bonferroni follow-up test was performed. 

Pearson correlation was computed to observe the relationships between decreases in 

ERRORS in incongruent word and increase in TTE. Effect size for each statistical test was 

also calculated as partial eta squared (��2p). The statistical significance was set at p < 0.05. 

Statistics analysis was conducted by using SPSS version 23. 

 

  

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

10 
 

RESULTS 

All participants completed both experimental sessions and none of them reported any 

side effects during or after tDCS. The average Wmax measured during the maximal 

incremental cycling test was 277 ± 62 W. 

Effect of tDCS on mood, motivation and subjective workload  

No significant condition x time interaction was found for any of self-reported mood 

subscales (all ps > 0.05). No significant differences between conditions and over time were 

found for Anger (F(1, 11) = 0.082, p = 0.780, ��2p = 0.007 and F(2, 22)= 0.237, p = 0.671, ��2p = 

0.021), Confusion (F(1, 11) = 3.605, p = 0.084, ��2p = 0.247 and F(2, 22) = 2.005, p = 0.177, ��2p = 

0.154), Depression (F(1, 11) = 0.671, p = 0.671, ��2p = 0.017 and F(2, 22) = 1.492, p = 0.250, ��2p 

= 0.119) and Tension (F(1, 11) = 0.244, p = 0.631, ��2p = 0.022 and F(2, 22) = 1.748, p = 0.212, 

��2p = 0.137). A significant increase in fatigue after the TTE test has been found (F(2, 22) = 

14.209, p = 0.001, ��2p = 0.590) without any difference between conditions (F(1, 11) = 0.463, p 

= 0.510, ��2p = 0.040). Vigour significantly decreased after the TTE test (F(2, 22) = 3.851, p = 

0.037, ��2p = 0.289) without any difference between conditions (F(1,11) = 0.516, p = 0.488, ��2p 

= 0.045). Intrinsic motivation and success in the task related to the TTE tests did not differ 

between the two conditions (p = 0.178 and p = 0.905 respectively). Regarding the NASA-

TLX questionnaire, statistics did not show any difference between conditions for Effort (p = 

0.641), Frustration (p = 0.293), Mental demand (p = 0.126), Performance (p = 0.406) and 

Temporal demand (p = 0.410). 

Effect of tDCS on Stroop test  

Statistical analysis found a significant condition x type of stimulus x time interaction 

for ERRORS (F(2, 22) = 3.538, p = 0.047, ��2p = 0.243). Follow-up tests showed a significantly 

a higher number of ERRORS for the incongruent words in both conditions (F(1, 11) = 60.067, p 

= 0.001, ��2p = 0.845). A significant decline in the number of ERRORS at Post-tDCS in the 

Real-tDCS condition was found only for incongruent words (F(1, 11) = 47.021, p = 0.012, ��2p = 

0.810). The number of ERRORS significantly increased at Post-TTE compared to Baseline 

and Post-tDCS in both conditions (F(2, 22) = 47.021, p = 0.001, ��2p = 0.941). Regarding RT, no 

significant condition x type of stimulus x time interaction was found (F(2, 22) = 1.372, p = 

0.274, ��2p = 0.111). There was no significant main effect of condition (F(1, 11) = 0.016, p = 

0.902, ��2p = 0.001), while a significant main effect of type of words (F(1, 11) = 45.409, p = 
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0.001, ��2p = 0.805) and time (F(2, 22) = 8.369, p = 0.002, ��2p = 0.432) was found. Follow-up 

tests showed a significantly higher RT for incongruent colour words (p = 0.001, ��2p = 0.805) 

and at Post-TTE (p = 0.029, ��2p = 0.473) compared to Baseline and Post-tDCS. Regarding SI, 

no significant condition x time interaction (F(2, 22) = 2.507, p = 0.104, ��2p = 0.186), no 

significant main effect of condition (F(1, 11) = 0.723, p = 0.413, ��2p = 0.062) and time (F(2, 22) = 

0.046, p = 0.955, ��2p = 0.004) were found (See Fig 2).  

Statistical analysis did not find a significant condition x time interaction for asterisks 

trials on ERRORS (F(2, 22) = 0.149, p = 0.862, ��2p = 0.013) and RT (F(2, 22) = 1.287, p = 0.296, 

��2p = 0.105). For ERRORS there was no significant main effect of conditions (F(1, 11) = .279, 

p = 0.608, ��2p = 0.025), while a significant main effect of time was found (F(1, 11) = 22.462, p 

= 0.001, ��2p = 0.671). Follow-up test showed a higher number of ERRORS at post-TTE in 

both conditions (F(1, 11) = 14.614, p = 0.001, ��2p = 0.745). Regarding RT, there was no 

significant main effect of conditions (F(1, 11) = 1.392, p = 0.263, ��2p = 0.112), while a 

significant main effect of time was found (F(2, 22) = 11.438, p < 0.001, ��2p = 0.510). Follow-up 

test however showed only an higher RT at post-TTE in both conditions (F(1, 11) = 7.301, p = 

0.006, ��2p = 0.594). 

Effects of tDCS on TTE and physiological and perceptual responses during TTE test.  

TTE test was significantly longer in the Real-tDCS condition compared to Sham-

tDCS (17 ± 8 vs 15 ± 8 min, p = 0.029, ��2p = 0.249). A significant condition x time 

interaction was found for HR (F(4, 44) = 3.761, p < 0.034, ��2p = 0.592) while no significant 

condition x time interaction was found for RPE, PAIN and VL-EMG (all ps > 0.05). A 

significant main effect of time was found for RPE (F(4, 44) = 162.493, p < 0.001, ��2p = 0.937), 

PAIN (F(4, 44) =128.642, p < 0.001, ��2p = 0.921), HR (F(4, 44) = 284.824, p < 0.001, ��2p = 

0.963) and VL-EMG (F(4, 44) = 4.160, p = 0.037, ��2p = 0.274). Statistical analysis revealed 

significant reduction of RPE (F(1, 11) = 20.758, p = 0.001, ��2p = 0.654) and HR (F(1, 11) = 

15.974, p < 0.002, ��2p = 0.592) in the Real-TDCS compared to Sham-tDCS while no 

significant differences between conditions were found for PAIN (F(1, 11) = 1.662, p = 0.224, 

��2p = 0.131) and VL-EMG (F(1, 11) = 0.199, p = 0.664, ��2p = 0.18). �¨B[La-1] at exhaustion 

was significantly higher in the Real-tDCS condition compared to Sham-tDCS (12.03 ± 1.60 

vs 11.04 ± 1.90 mmol·l-1, p = 0.040, ��2p = 0.565) while no significant differences were found 

for RPE (p = 0.564, ��2p = 0.092), PAIN (p =0.887, ��2p = 0.060), HR (p = 0.085, ��2p = 0.181) 
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and VL-EMG (p =0.638, ��2p = 0.285) (Fig 2). There was no correlation between decrease in 

ERRORS in incongruent words and increase in TTE duration (p = 0.519, r -0.159). 
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DISCUSSION 

This study demonstrates that tDCS with the anodal electrode over the L-DLPFC, 

improves Stroop task performance, significantly improves TTE and reduces HR and RPE 

during cycling exercise. As initially hypothesised, this improvement on endurance 

performance occurred in association with a lower perception of effort during exercise. 

 

Effects of tDCS on cycling performance 

Previous studies have investigated the ergogenic effect of tDCS on cycling 

performance by reporting contrasting results (Angius et al., 2018b). Okano and colleagues 

(2015) reported a 4% improvement in the peak power output of a maximal cycling 

incremental test together with a reduction in RPE, HR and change in heart rate variability 

(HRV) following anodal stimulation over the T3. The effect of anodal stimulation over T3 

however are uncertain, as in a following study by Okano and colleagues (2017), no changes in 

HR, RPE and HRV during constant load cycling exercise were found. A lack of effect on 

tDCS over T3 has also been reported during a 20 km cycling time trial in the heat (Barwood 

et al., 2016).  

The study of Vitor-Costa and colleagues (2015) reported improvement in cycling TTE 

test following tDCS with anodal electrodes over both M1 without significant changes in 

physiological (i.e. HR and VL-EMG) with a trend for a reduction in RPE which might explain 

the improvement in performance. Angius and colleagues (Angius et al., 2018a) confirmed the 

improvement in TTE performance with bilateral extracephalic montage with anodal 

electrodes over both M1, with a significant reduction in RPE and an increase in corticospinal 

excitability. Another study however failed to find improvement in TTE duration (Angius et 

al., 2015) is likely be caused by the cephalic montage used (Angius et al., 2016).  

Lattari and colleagues (2017) investigated the effect of tDCS over the L-DLPFC on 

TTE performance at maximal cycling intensity (100% Wmax) by reporting improvement in 

performance. Contrarily to our findings, no changes in RPE between conditions were found 

which is most likely caused by the ceiling effect during high intensity exercise. The exact 

mechanisms for this ergogenic effect are unknown, as no physiological or cognitive responses 

were measured.  

Effects of tDCS on Stroop test, mood, motivation and subjective workload  
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The Stroop task is acknowledged as a well-established test to assess inhibitory control. 

In our study, a significant reduction of number of ERRORS following Real-tDCS was found 

only for the incongruent colour words which is indicative of an improvement in inhibitory 

control and in agreement with previous studies (Jeon and Han, 2012; Loftus et al., 2015). 

Although we cannot provide the exact neurophysiological mechanism, such improvement was 

probably achieved by an increased neuronal excitability of the targeted brain area (Hsu et al., 

2011; Keeser et al., 2011). As expected, the RT was significantly higher for incongruent 

colour words compared to neutral stimuli. In our study, Real-tDCS did not induce 

improvement in RT, a findings which has been previously reported (Loftus et al., 2015). The 

lack of effect on RT might also explain the unchanged SI. Stroop task performance decreased 

after the TTE as demonstrated by the increased RT and number of ERRORS in both 

conditions. This is in agreement with previous findings (Labelle et al., 2013). However, 

opposite effects on Stroop performance were also found (Alves et al., 2012; Tsukamoto et al., 

2016). This is not surprising as cognitive performance may be either enhanced or impaired 

depending on exercise modality and intensity (Brisswalter et al., 2002; Tomporowski, 2003). 

Additionally, a U-shaped relationship between exercise intensity and cognitive function was 

proposed (Brisswalter et al., 2002; Tomporowski, 2003), where low and moderate-intensity 

exercise would improve cognitive function, whereas high-intensity would be detrimental. 

These results suggest a complex relationship between exercise and cognition and therefore 

further experimental studies should be performed.  

In line to what has been reported (Morgan et al., 2014) no changes in self-reported 

motivation were observed following tDCS. However, opposite findings were found by 

Soutschek and colleagues (2018) were tDCS increased willingness to exert physical effort and 

countered the devaluation of reward at different effort levels. It should be acknowledged that 

the changes in TTE and RPE were possibly not exclusively caused by modulation of the L-

DLPFC. Previous investigations proposed that the decision to exert effortful tasks or 

behavioural inhibition are associated with frontal asymmetry (Coan and Allen, 2003). More 

precisely, higher activity of the left frontal area is related to approach motivation, whereas 

higher activity of the right frontal are is related to withdrawal motivation (Coan and Allen, 

2003). Previous studies inducing frontal asymmetry by tDCS were able to support this 

hypothesis (Hortensius et al., 2012; Ohmann et al., 2018; Riva et al., 2015). In light of these 

findings involving a montage similar to the one employed in this study (see Fig.1), it is 

possible that changes in TTE and RPE caused changes in participants' motivation to exert 
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physical effort (Soutschek et al., 2018). As also proposed by the psychobiological model of 

endurance performance based on the Brehm's motivational intensity theory (Brehm and Self, 

1989; Marcora and Staiano, 2010), both an increase in motivation and a decrease in 

perception of effort can improve endurance performance. It should be acknowledged that also 

previous studies failed to find changes in self-reported motivation or mood following tDCS 

(Koenigs et al., 2009; Tadini et al., 2011; Vitor-Costa et al., 2015). A similar conclusion has 

been given in a review by Remue et al., (2016) in healthy individuals. It should be considered 

that all studies differed in terms of tDCS montage, stimulation, targeted area and 

questionnaire, and therefore our results cannot be equally compared with other experiments. 

Further experiments should be performed to elucidate the effect of tDCS on mood, effort and 

motivation related to physical effort. 

Effects of tDCS on perceptual and physiological responses during exercise  

�¨B[La-] at exhaustion was significantly higher in the Real-tDCS compared to Sham-

tDCS which is most probably caused by the longer exercise duration. Interestingly, HR was 

significantly lower in the Real-tDCS compared to Sham-tDCS. To our knowledge, no studies 

reported decrease in HR during constant cycling exercise following tDCS. The PFC is known 

to modulate brain areas involved in the regulation of the cardiovascular autonomic control 

(Thayer et al., 2012). Increase in PFC activity are associated with an augmented 

parasympathetic tone, while, in contrast, a decrease in PFC activity leads to an augmented 

sympathetic tone (Thayer et al., 2012) by therefore inducing variations in HR. Similar 

conclusion were provided in studies involving tDCS were variations in heart rate variability 

were found (Brunoni et al., 2013; Montenegro et al., 2014; Morgan et al., 2014). In addition, a 

recent meta-analysis (Makovac et al., 2017), proposed the PFC as ideal cortical area to induce 

changes in cardiovascular system by means of non-invasive brain stimulation. In light of these 

evidences, the reduction in HR during exercise, can be the result of an augmented 

parasympathetic activity induced by tDCS. It should be considered that we �G�L�G�Q�¶�W�� �P�R�Q�L�W�R�U��

HRV and therefore further research should be performed to explore mechanisms leading to a 

lower HR during exercise following tDCS.  

VL-EMG following tDCS was unchanged. Similarly, previous experiments involving 

cycling TTE (Vitor-Costa et al., 2015) or isometric contractions of upper (Abdelmoula et al., 

2016) and lower limbs (Angius et al., 2016b) did not find any effect of tDCS on EMG activity 

despite improvement in exercise duration.  
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PAIN during exercise was not affected by tDCS. A lack of effect of tDCS on exercise 

induced muscle pain has been previously shown during cycling exercise (Angius et al., 2017) 

and sustained isometric contraction (Angius et al., 2016b). The DLPFC has been proposed to 

play an important role in the affective, cognitive, and attentional aspects of pain (Mylius et 

al., 2012). tDCS studies involving stimulation of the L-DLPFC found a significant reduction 

in cold pain perception (Mariano et al., 2016), increase in thermal pain threshold (Mylius et 

al., 2009) or a decrease of self-unpleasantness when viewing emotionally aversive pictures 

(Boggio et al., 2009). Probably, different methodological aspects as well as the different kinds 

of pain investigated may explain these discrepancies. 

We found a significant lower RPE in the Real-tDCS without any differences at 

exhaustion between conditions. This demonstrates that participants reached the point of 

exhaustion later compared to Sham-tDCS. This finding is in agreement with the 

psychobiological model of endurance performance proposed by Marcora (2009), where in 

highly motivated individuals, task disengagement coincides with the attainment of maximal 

perception of effort.  

High-intensity physical tasks requires inhibitory control to prevent task 

disengagement. This cognitive process is associated with subjective feeling of effort (Shenhav 

et al., 2017) that might contribute to the overall perception of effort during exercise. 

Therefore, we suggest that the reduction of RPE is the results of the improved inhibitory 

control following Real-tDCS. In our scenario, this implies that less cognitive effort was 

required by participants to exert the inhibitory control and consequently avoid task 

disengagement. Our findings are also in accordance with the strength model of self-control 

(Muraven and Baumeister, 2000) where effortful actions of self-control have a limited 

resources. The more inhibitory control is required, more effort is expended and therefore less 

resources would be further available leading to a temporary reduction of the self-control 

capacity and willingness to engage or further continue volitional actions (Muraven and 

Baumeister, 2000). 

Additionally, previous research (Jiang et al., 2012) showed that stronger inputs from 

the PFC to SMA and M1 are necessary to reinforce the descending command to compensate 

for muscle fatigue. In this scenario, tDCS could have facilitated the input of the L-DLPFC 

into these motor areas during exercise, by therefore permitting a longer TTE. Given the 

multiple anatomical connections of the PFC to other cortical and/or subcortical areas (Miller 
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and Cohen, 2001), we cannot exclude that effect of tDCS was limited only to the L-DLPFC. 

For instance, the supplementary motor area (SMA) and the anterior cingular cortex (ACC) 

have been shown to have connections with the PFC (Miller and Cohen, 2001; Zénon et al., 

2015)and have been also addressed as important brain areas for the generation of the 

perception of effort (de Morree et al., 2012; McCloskey, 2011; Williamson et al., 2002). 

Therefore, it is possible that the beneficial effects of tDCS could have been extended to SMA 

and ACC. 

Technical considerations and study limitations 

Our experiment differs with previous studies for some methodological aspects such as 

tDCS montage, stimulation protocol and the task used for cognitive assessment, which can in 

part explain the different outcomes across each study. For instance, opposite effects compared 

to what initially hypothesised have been observed when anodal stimulation lasted more than 

10 min (Monte-Silva et al., 2013) or when the intensity of cathodal stimulation was doubled 

from 1 to 2 mA (Batsikadze et al., 2013). In addition, given the size of the electrode adjacent 

brain areas could have also been affected. Therefore, other cognitive functions also loading on 

the same region were affected (Tremblay et al., 2014). This in turn makes it difficult to 

attribute our findings on a specific mechanism. In addition the PFC has been proposed to 

shown to integrate and supersede multiple input sources of information regarding the task 

performed in order to provide the appropriate response (Robertson and Marino, 2016) as well 

as to play an important role in human volition (Haggard, 2008). The literature investigating 

the role of the PFC and its relationship with other brain areas for exercise regulation is very 

limited. As such, a precise and conclusive explanation for the improvement in performance 

following tDCS cannot be provided.  

Conventional bipolar tDCS montages are well known to induce diffuse current flow 

between electrodes and so potentially affecting other brain areas than the targeted one. In 

regards to our montage, we cannot exclude that the cathodal electrode (over Fp2) could have 

affected the right inferior frontal cortex which is known to implement inhibitory control via a 

wider prefrontal network and therefore potentially inducing frontal asymmetry (Aron et al., 

2014; Ohmann et al., 2018). At present, optimal tDCS montage and stimulation parameters 

involving bipolar electrodes to specifically and reliably target the PFC are yet to be defined 

(Dedoncker et al., 2016; Seibt et al., 2015; Tremblay et al., 2014). A better standardisation of 

these parameters together with more robust protocols to test the effect of tDCS as well as a 
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larger sample size are required to improve study quality before any solid conclusions can be 

drawn. In our opinion, the inclusion of neurophysiological measurements such as 

Electroencephalography (EEG), TMS-EEG or functional magnetic resonance imaging (fMRI) 

is necessary to appropriately interpret our findings.  

 

Conclusion and future perspectives 

Our study provides experimental evidence that anodal tDCS over the L-DLPFC 

improves endurance performance, together with an improved inhibitory control and reduction 

of perception of effort. Our findings confirm the potential ergogenic effect of tDCS on 

physical capacity in healthy individuals and further confirm the important role of the brain, 

and the prefrontal lobe in particular on exercise regulation. Our results however, add further 

contrasting evidences regarding the ergogenic effect of an acute session of tDCS. Further 

empirical studies are required to confirm the beneficial effects of an acute session of tDCS on 

physical performance.   
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