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Abstract Characterising the behaviour of solutions in nonlinear delay-differential

equations can be mathematically challenging due to their nonlinear structure

and non-local nature. Their appearance in many applied fields is in great part

due to their ability to model dynamics with non-instantaneous effects, which

could not be described by the associated non-delayed counterpart. In particu-

lar, it is well known that delays can trigger an oscillatory behaviour and can, in

several cases, bring evidence for mechanisms underlying periodic rhythmicity,

especially in biological systems.

In this paper, we study a two-delay polynomial model of the ultradian

oscillations in glucose-insulin regulation, at the organ and tissue level. Partic-

ular attention is given to its periodic solutions, arising from a Hopf bifurcation
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which is induced by an external glucose stimulus and the joint contributions

of delays in pancreatic insulin release and hepatic glycogenesis.

The effect of each physiological subsystem on the amplitude and period

of the oscillations is exhibited by performing a perturbative analysis of its

periodic solutions. It is shown that assuming the commensurateness of delays

enables the Hopf bifurcation curve to be characterised by studying roots of

linear combinations of Chebyshev polynomials. The resulting expressions pro-

vide a novel tool for studying the interplay between physiological functions

and delays in producing an oscillatory regime, as well as relevant information

for glycemic control strategies.

Keywords Delay differential equations, Periodic solutions, Perturbation

method, Glucose regulation, Diabetes.

1 Introduction

Homoeostasis refers to the body’s ability to maintain certain variables within

a narrow range and is a result of the negative feedback loops which occur

within the body [6,29]. These loops keep the parameters involved at, or close

to, a healthy value, or steady state [29]. The steady state may be stable, lead-

ing to constant levels over time, or unstable, leading to sustained oscillations

[29]. Examples of homoeostatic processes include: the regulation of temper-

ature; blood pressure; glucose concentration; percentage of water within the

cells; and calcium levels. While many biological systems can be modelled with

ordinary differential equations (ODEs), delays can so often prove crucial in

realistically replicating core aspects of these systems [29]. Indeed, a lot of

work has gone into determining the role of these delayed recurrent loops in

physiology [2], especially in hormonal systems [32,33]. For example, in the

case of modelling the glucose-insulin regulatory system, an ODE system with
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subsystems replicating delay can replicate the ultradian rhythms that occur

naturally in the system without the need for postulating an internal pulsatile

insulin pacemaker [22,28].

This paper focuses on the ultradian rhythms that occur within the glucose-

insulin system. As discussed in [25], insulin resistance has been observed to

gradually dampen the oscillations, culminating in a loss of synchronisation be-

tween glucose and insulin. While insulin resistance may be present in patients

without diabetes, it is generally associated with patients with type 2 diabetes

(T2DM), and so we take the accurate tuning of the ultradian oscillations to

be a sign of healthy regulation [17]. We then propose the following question:

What is the effect of diabetic parameters on the amplitude and period

of the ultradian rhythms?

To answer this question, we introduce a perturbative scheme for the peri-

odic solutions of a two-compartment delay differential equation (DDE) model

of the ultradian rhythms in the glucose-insulin regulatory system based on the

Poincaré-Lindstedt (P-L) method. The model is a polynomial expansion of the

system presented in [17], which was originally created in Sturis et al. [28]. A

large number of authors developed and studied this model to characterise its

local and global stability properties and characterise its periodic solutions [1,

11,12,18,19,23,24,34]. As far as we are aware, this is the first time that the

P-L method has been applied to a model of glucose and insulin regulation. It

has been applied to other biological systems before such as in [31], where it

was used to predict the amplitude and frequency for a two-compartment DDE

model of gene expression with one delay. Similarly, in [4], the frequency of a

two compartment DDE model for describing two couple Hopfield neurons was

calculated. To the best of our knowledge, in all cases where this technique has

been applied to dynamical systems with n components and multiple delays
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τi’s, the characteristic equation defining the eigenmodes λ’s is an exponential

polynomial of the form

cnλ
n + cn−1λ

n−1 + . . .+ c0 + e−λ
∑

i τi = 0, ci ∈ R, τi ∈ R+, λ ∈ C, (1)

in which the polynomial part is typically Hurwitz stable. Thus, for these sys-

tems, delays interact in a linear manner to give rise to a supercritical Hopf

bifurcation at a point in the space of delays which can be obtained, along with

the characteristic frequency, by using imaginary root crossing methods [10,

21].

The system studied in this paper, which is presented in Section 2, contains

two delays, τ1 and τ2, and poses the additional challenge that the characteristic

equation involves two exponentials. Although crossing curves can be described

in this situation using geometric arguments [15], we show that characteristic

frequencies can be obtained by studying the zeroes of linear combinations of

Chebyshev polynomials of the first type. This is achieved by assuming the

commensurateness of delays, that is τ2 = κτ1, where κ ∈ Z+ is a coupling pa-

rameter. This assumption does not lead to additional restrictions and allows

us to define a group of lines in the space of delays along which the perturba-

tive scheme can be defined. Furthermore, it enables the study of solutions for

physiologically relevant ranges of the model parameters.

In summary, the paper aims to provide a way of quantifying the contri-

bution of model parameters to the amplitude and period of the ultradian

rhythms in the glucose-insulin regulatory system. An analysis of the effect of

each physiological feature on the limit cycles, with a particular focus on insulin

resistance, is then described. The work is divided as follows. After presenting

the model in Section 2, local stability properties and conditions for the bound-
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edness of trajectories are detailed in Section 3. In Section 4, the P-L method

is applied in order to obtain approximate formulas for the amplitude and pe-

riod of the oscillations. Section 5 is dedicated to the study of the influence of

model parameters on the oscillations. Finally, physiological implications are

explored, along with concluding outlooks.

2 Model

The model under consideration follows the framework given in Figure 1, and

is a two-compartment first-order polynomial DDE system given by

Ġ(t) = a0 − a1G(t)− a2G(t)I(t)− a3I(t− τ2)p,

İ(t) = b1G(t− τ1)n − b2I(t), n ∈ 2Z, p ∈ Z+,

(2)

where G(t) is the plasma glucose concentration (in mg), and I(t) is the plasma

insulin concentration (in mU). By noting that, within the plasma, the volume

of glucose space is around 100dl while that of insulin distribution is approxi-

mately 3l [28], G(t) and I(t) are converted to concentrations (mg/dl and mU/l,

respectively), for the purpose of all Figures. All parameters are assumed to be

non-zero, and have units as defined in Table 1. The coefficients a1 and a2 de-

scribe the insulin independent and dependent glucose utilisations respectively.

The parameter a0 = Gin + C includes two contributions, namely Gin which

corresponds to a constant glucose infusion, and the constant C which par-

tially represents the hepatic glucose production. Indeed, following the work of

[18,24,28], we note that hepatic glucose production can be represented by a

rational function of the type

Hepatic ≈ K0

K1 + I(t− τ2)p
≈ C − a3I(t− τ2)p,
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Fig. 1: Flow diagram for model (2).

where τ2 corresponds to the time taken for hepatic glucose to have an effect on

the glucose levels in minutes. In the insulin balance equation, b1 is the insulin

production capability of the individual, and b2 is the insulin degradation rate.

While the insulin secretion term appears to be unbounded, we note that it is

usually modelled using a sigmoidal function [18,24,28],

Pancreatic ≈ G(t− τ1)n

G(t− τ1)n +K2
≈ G(t− τ1)n

Kn
2

= b1G(t− τ1)n,

where τ1 is the time taken for insulin to be released and have an effect on

the glucose levels. Hence, the secretion function is a local approximation of

a bounded function. Thus, although the polynomial form of the system con-

trasts with previous models in which the hepatic and pancreatic secretions

are represented by bounded sigmoidal functions [1,18,24], it is appropriate for
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studying dynamics in the neighbourhood of the limit cycle. To further aid in

the study of the model dynamics, we shall later take the delay τ2 to be com-

mensurate with τ1. It is worth noting that the convergence speed to this limit

cycle may be altered through this approximation. Boundedness and positivity

of trajectories can also be affected through the polynomial approximation, as

investigated in Section 3.2.1.

Table 1: Units for the parameters in model (2).

Parameter Units
a0 mg min−1

a1 min−1

a2 mU−1 min−1

a3 mg mU−p min−1

b1 mU mg−n min−1

b2 min−1

τ1 min
τ2 min

3 Local stability analysis

The presence of Hopf bifurcations in model (2) strongly depends on the val-

ues of delays. We divide our analysis into two parts. Firstly, we investigate

conditions for the one-delay model (with a3 = 0) to undergo a Hopf bifurca-

tion. Secondly, the bifurcation curve in the two-delay model is investigated by

assuming commensurateness of delays.

3.1 Constant hepatic glucose production

Here, we look to find conditions on parameter values in the polynomial model

(2) with a3 = 0 ensuring the presence of oscillations in an appropriate range.
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Equivalently, this amounts to investigating the second-order approximation of

(2) when p > 2. In this case, only the constant term from hepatic production

remains, namely

Ġ(t) = Gin − a1G(t)− a2G(t)I(t) + C,

İ(t) = b1G(t− τ)n − b2I(t), τ = τ1.

(3)

Although τ2 does not appear in the resulting system, the minimal model (3)

captures the role of the delay τ1 in producing an oscillatory regime. Inciden-

tally, it was observed numerically that the contribution of τ1 to the amplitude

and period of the oscillations is more prominent than that of τ2 [24]. Further-

more, the positivity and boundedness of trajectories for system (3) is easily

demonstrated following the arguments formulated in [1,27].

3.1.1 Value of parameters

Given an oscillatory solution, the inverse problem of choosing parameters in

model (3) can be addressed in the following way. We note that the system’s

steady state (Ḡ,Ī) satisfies the equations

Ī =
b1Ḡ

n

b2
, a2b1

(
Ḡ
)n+1

+ (a1b2) Ḡ− a0b2 = 0. (4)

By Descartes’ rule of signs, (4) has exactly one positive root for Ḡ, and so one

can always find a positive (Ḡ, Ī). Here we assume that the target basal levels

can be identified with the steady state of the system.

1. It has been shown that the insulin clearance is proportional to the plasma

insulin concentration [20,30]. Numerical fitting procedures have rendered

values for b2 in the range (0.03, 0.3) [8]. As in [17,18,24], we shall choose

an initial value of b2 = 0.06 for most numerical computations with the

reduced model. The value of b1 is then obtained as b1 = b2ĪḠ
−n.
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2. The system must be in an oscillatory state. Therefore, the delay τ ∈ R+

must be larger than the critical value τ0 such that the characteristic equa-

tion

(λ+ b2)(λ+ a1 + a2Ī) + na2b2Īe
−λτ0 = 0, λ ∈ C, (5)

possesses a set of conjugate purely imaginary root λ = ±iω0. This require-

ment implies that the critical pair (ω0, τ0) satisfies the system

na2b2Ī cos (ω0τ0) = ω2
0−b2(a1 +a2Ī), na2b2Ī sin (ω0τ0) = (b2 +a1a2Ī)ω0.

(6)

This in turns implies that ω0 satisfies a quartic equation

ω4
0 + ω2

0

(
(a1 + a2Ī)2 + b22

)
+ b22

((
a1 + a2Ī

)2 − (na2Ī
)2)

= 0. (7)

Requiring that equation (7) possesses a positive root for ω0 gives explicit

conditions on the coefficients for the existence of a Hopf bifurcation. Since

the middle term in (7) is always positive, one must have n > a1
a2Ī

+1 > 1, in

order to have a bifurcation. Consequently, the periodic perturbation scheme

presented in Section 4.1 shall focus on the case n = 2, which implies that

a1 < a2Ī. The value of τ0 is then obtained from (6) as

τ0 =
1

ω0

(
arccos

(
ω2

0 − b2(a1 + a2Ī)

2a2b1Ḡ2

)
+ 2Kπ

)
, (8)

where K ∈ Z+ is the smallest integer such that (8) defines a positive value.

Larger values of K give successive τ0 values for which stability switches

may occur in the linear system. However, for the nonlinear system (3), it

is numerically observed that oscillations are present whenever τ ≥ τ0.

3. The constant a0 := Gin+C is then obtained from the steady state equation,

a0 = a1Ḡ + a2ḠĪ. The parameters a1 and a2 must be chosen such that

oscillations are present for a physiologically relevant value of the critical
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delay τ0. For different values of b2, one can numerically compute the range

of achievable values for τ0 using equation (8) (see Figure 9 in [5]).

This approach provides a model able to replicate the nonlinear oscillations

within an appropriate physiological range (Figure 2).

Fig. 2: Oscillations described by the minimal model (3) using the following

parameter values: a0 = 1300, a1 = 2.03 × 10−4, a2 = 0.0017, b1 = 6.01 ×

10−8, b2 = 0.06, τ = 20.

3.2 Extension to two delays

We now consider the problem of studying periodic solutions in the two-delay

system (2). In the first instance, we investigate the question of boundedness

and positivity of trajectories of the system. In the second, the characterisation

of periodic solutions in the two-dimensional space of delays is achieved by

assuming the commensurateness of delays, i.e. τ2 = κτ1, with κ ∈ Z+.
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3.2.1 Positivity and boundedness

Here we look for conditions for the positivity and boundedness of solutions in

the polynomial initial value problem

Ġ = a0 − a1G− a2GI − a3I(t− τ2)p, İ = b1G(t− τ1)n − b2I,

G(t) = ϕ(t), I(t) = φ(t), t ∈ [−max (τ1, τ2), 0],

(9)

where φ, ϕ are continuous strictly positive functions on [−max (τ1, τ2), 0], p ∈

Z+ and n is a strictly positive even integer, which is the typical case in insulin

secretion modelling studies (e.g. [30,35]).

As mentioned previously, positivity and boundedness of solutions for model

(9) when a3 = 0 can been established using the same techniques as in [1,27].

Here, the additional non-positive and possibly nonlinear term when a3 6= 0

can lead to unbounded trajectories and to the development of singularities in

finite time. Nonetheless, the positivity of I(t) can be easily established.

Proposition 1 For all solutions of (9) and ∀t > 0, we have that I(t) > 0.

Furthermore, ∀t > τ2, the following inequality can be established

I(t) ≥ e−b2τ2I(t− τ2).

Proof Indeed, from the second equation in (9), we have

I(t) = e−b2t
[
b1

∫ t

0

G(s− τ1)neb2sds+ I(0)

]
, (10)
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which implies the positivity of I(t) since n is assumed to be a positive even

integer. Equation (10) also leads to

I(t− τ2) = e−b2(t−τ2)

[
b1

∫ t−τ2

0

G(s− τ1)neb2sds+ I(0)

]
≤ eb2τ2e−b2t

[
b1

∫ t

0

G(s− τ1)neb2sds+ I(0)

]
= eb2τ2I(t). (11)

Due to the biological nature of the problem, unbounded solutions are not

in the scope for applications and therefore we shall focus on parameter values

not leading to such solutions. The following holds true.

Proposition 2 If G(t) is strictly positive ∀t > 0, then G(t) and I(t) are

bounded from above.

Proof Let G(t) be positive for all times t > 0. Then, since I(t) > 0, we have

that Ġ ≤ a0−a1G, and therefore G(t) ≤ G+ = min
{
G(0), a0a1

}
<∞. In turn,

we obtain that İ ≤ b1Gn+ − b2I, giving I(t) ≤ I+ = min
{
I(0),

b1G
n
+

b2

}
<∞.

The converse can be established in the following case.

Corollary 1 Let I(t) be bounded from above, 0 ≤ I(t) ≤ I+ < ∞, with

a0 > a3I
p
+. Then G(t) is positive and bounded for all t > 0 if G(0) > 0.

Proof From the first equation in system (12), it can be easily seen that

G(t) = e−
∫ t
0

(a1+a2I(s)) ds

(
G(0) +

∫ t

0

(a0 − a3I(s− τ2)p)e
∫ s
0

(a1+a2I(u)) du ds

)
,

Hence G(t) is strictly positive for all t if a0 > a3I
p
+ and G(0) > 0, and is

therefore bounded by Proposition 2.

It is noteworthy to highlight that depending on the values taken for n and

p, some solutions may become unbounded in finite time. A subclass of such

blow-up solutions is represented by trajectories possessing poles for which the
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location depends on initial conditions. Such singularities, called movable poles,

can be detected in the delay-free system using a local analysis of the Painlevé

type (see e.g.[9,13,14]). As shown in Appendix A, the values n = p = 2 may

lead to this kind of singular solution. Consequently, the periodic perturbation

scheme presented in Section 4.2 shall focus on the case n = 2, p = 1 to avoid

unbounded solutions.

3.3 Periodic solutions in system with commensurate delays

We now consider the problem of characterising periodic solutions in system

(2) where delays are assumed to be commensurate, i.e. τ2 = κτ1, with κ ∈ Z+.

A straightforward generalisation can be made for the case when the delays are

rationally related. This assumption allows to perform a perturbative analysis

of the periodic solutions along the line τ2 = κτ1, given that the point (τ1, κτ1)

remains sufficiently close to the curve of Hopf bifurcations in the delay space

(τ1, τ2). Geometrically, this approach provides a discrete set of critical points,

corresponding to the intersection between lines and the threshold curve (Figure

3). We show that these crossing points can be described by studying the zeros

of linear combinations of Chebyshev polynomials of the first kind.

In its most general form, model (2) with commensurate delays becomes

Ġ = a0 − a1G− a2GI − a3I(t− κτ)p, İ = b1G(t− τ)n − b2y. (12)

Any equilibrium (Ḡ, Ī) of (12) obeys the equations

a2b1b
p
2Ḡ

1+n + a3b
p
1b2Ḡ

np + a1b
1+p
2 Ḡ− a0b

1+p
2 = 0, Ī =

b1
b2
Ḡn, (13)
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Fig. 3: Threshold curve in the delay space with sections τ2 = κτ1, κ ∈ Z+

defining the fan of expansion lines.

which always possesses a unique strictly positive root since ai, bi > 0 and

n, p ∈ Z+. The linearisation about this steady state (Ḡ, Ī) reads as ẋ

ẏ

 =

−(a1 + a2Ī) −a2Ḡ

0 −b2


x

y

+

 0 0

nb1Ḡ
n−1 0


xτ

yτ


+

 0 −a3pĪ
p−1

0 0


xκτ

yκτ

 , (14)

where xτ = x(t − τ), xκτ = x(t − κτ) and similarly for y. The characteristic

equation of (14) is a quasi-polynomial of the form

λ2 +A1λ+A2 +A3e
−λτ +A4e

−(κ+1)λτ = 0, λ ∈ C, κ ∈ Z+, (15)

whereA1 = a1+a2Ī+b2, A2 = b2(a1+a2Ī), A3 = na2b1Ḡ
n, A4 = na3b1pḠ

n−1Īp−1.

Since A1, A2, A3, A4 > 0, equation (15) is Hurwitz stable for τ = 0 and we now

look for conditions on κ and τ ensuring that it undergoes a Hopf bifurcation.
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Hence, setting λ = iω0, ω0 > 0 leads to the system

ω2
0 = A2 +A3 cos(ω0τ) +A4 cos((1 + κ)ω0τ), (16)

A1ω0 = A3 sin(ω0τ) +A4 sin((1 + κ)ω0τ). (17)

Eliminating polynomial occurrences of ω0, one is led to the following trigono-

metric equation

A2
1(A2 +A3 cos (ω0τ) +A4 cos((1 + κ)ω0τ))

= (A3 sin(ω0τ) +A4 sin((1 + κ)ω0τ))2. (18)

Setting z = cos (ω0τ), i.e. ω0τ = arccos z, then cos (nω0τ) = Tn(z), sin (nω0τ) =
√

1− z2Un−1(z), where Tn and Un−1 are Chebyshev polynomials of the first

and second kinds, respectively. Equation (18) implies that z satisfies the fol-

lowing polynomial equation

A2
1(A2 +A3z +A4T1+κ(z)) = (1− z2)(A3 +A4Uκ(z))2. (19)

Further using the following well-known identities, for n ≥ m,

(1− z2)Un−1(z) = zTn(z)− Tn+1(z),

2(1− z2)Un−1(z)Um−1(z) = Tn−m(z)− Tn+m(z),

we obtain that (19) can be rewritten as a linear combination of Chebyshev

polynomials of the first type

A2
4T2κ+2(z) + 2A3A4Tκ+2(z) + 2A2

1A4Tκ+1(z)− 2A3A4Tκ(z)

+A2
3T2(z) + 2A2

1A3T1(z) + 2A2
1A2 − (A2

3 +A2
4) = 0. (20)
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For a given κ ∈ Z+, any real root of (20) with |z| < 1 which gives a non-zero

solution for ω0 through equations (16) and (17), which can be rewritten in

terms of z as

ω2
0 = A2 +A3z +A4T1+κ(z), (21)

A1ω0 =
√

1− z2(A3 +A4Uκ(z)), (22)

leads to a non-constant periodic solution.

Example 1 Let us consider, for illustration, the special case A1 = . . . = A4 =

κ = 1. Equation (20) reduces to

2(1 + 2z)(2z3 + z2 − z − 1) = 0.

It is easily seen that the root z = −1/2 is the unique value leading to a null

frequency (ω0 = 0), since U1(z) is linear. The presence of an additional root in

the interval (−1, 1) can be assessed using, for instance, Sturm sequences (see,

e.g., [3]). For the polynomial 2z3 + z2 − z − 1, the Sturm chain H(z) is given

by

H(z) =

{
2z3 + z2 − z − 1, 6z2 + 2z − 1,

7z

9
+

17

18
,−31

98

}
,

and evaluating at the end points of the interval gives

#sign changes(H(−1))−#sign changes(H(1)) = 1.

The corresponding unique positive root z0 leads to following explicit expres-

sions for the critical pair (ω0, τ0)

ω0 =
1

3
(2 + σ− + σ+)

√
1− 1

36
(σ− + σ+ − 1)

2 ≈ 1.485, (23)

τ0 =
1

ω0

[
cos−1

(
1

6
(σ− + σ+ − 1)

)
+ 2mπ

]
≈ 0.399 +

2mπ

ω0
, (24)
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where m = Z+ and σ± =
3
√

44± 3
√

177.

4 Hopf-bifurcation formulae

We now turn to the main objective of this work, namely the analysis of the

variation of amplitude and frequency in the nonlinear model with respect to

the model parameters. This is achieved through the perturbation of periodic

solutions in the linear model in a neighbourhood of the critical manifold. This

technique is usually referred to as the P-L expansion, and was extended to

differential equations with explicit delay in [7] and applied to a limited number

of delayed models to highlight the contribution of parameters to the amplitude

of oscillations [4,7,26,31].

We first consider the case when hepatic glucose production is assumed to

be constant (see model (25)), in which case the small bifurcation parameter

ε > 0 represents the distance from the critical τ0. Secondly, we extend our

considerations to the two delay case by assuming that the second delay is a

constant multiple of the first one, thus defining a fan of expansion lines in the

space of delays (see model (39)). Throughout this section, it is assumed that

the frequency ω0 of the periodic solution of the linearised system does not

satisfy an equation of order lower than the characteristic equation.

4.1 Constant hepatic glucose production

Recall from Section 3.1 that the simplified model with a constant hepatic

glucose production term, with n = 2, is given by

Ġ(t) = Gin − a1G(t)− a2G(t)I(t) + C,

İ(t) = b1G(t− τ)2 − b2I(t), τ = τ1.

(25)
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Defining X(t) = X = G(t) − Ḡ, Y (t) = Y = I(t) − Ī as deviations from

the positive equilibrium, substituting into (25) and eliminating Y allows us to

write the following nonlinear second-order DDE for X

(
Ḡ+X

)
Ẍ − Ẋ2 +

(
a0 + b2(Ḡ+X)

)
Ẋ

+
(
Ḡ+X

) ((
a1 + a2Ī

)
b2X + a2b1

(
Ḡ+X

)
Xτ

(
2Ḡ+Xτ

))
= 0. (26)

We now introduce the bifurcation parameter ε, which is defined as the distance

from the critical delay τ0 as ε =
√
τ − τ0. The variables are scaled as

X(t) = εu(s), s = Ω (ε) t, (27)

where s corresponds to a new time variable ensuring that u(s) has a period of

2π. Here, Ω is also assumed to have an ε-expansion

Ω = ω0 + εω1 + ε2ω2 + ε3ω3 + ..., (28)

where ω0 is the frequency associated to the critical value τ0. Finally, we expand

the delayed term uτ

u(s−Ωτ) = u(s− τ0ω0)− τ0ω1εu̇(s− τ0ω0) (29)

+ ε2
(

1

2
τ2
0ω

2
1ü(s− τ0ω0)− u̇(s− τ0ω0)(ω0 + τ0ω2)

)
+O(ε3),

along with u and its derivatives

u(s) = u0(s) + εu1(s) + ε2u2(s) + ... (30)



Perturbation of periodic solutions 19

Substituting into (26) and collecting terms (up to and including O(ε2)) gives

ω2
0ü0 + u̇0ω0(a2Ī + a1 + b2) + b2u0(a2Ī + a1) + 2a2b1Ḡ

2u0τ = 0, (31)

ω2
0ü1 + u̇1ω0(a2Ī + a1 + b2) + b2u1(a2Ī + a1) + 2a2b1Ḡ

2u1τ

+ Ḡ−1(u0(4a2b1Ḡ
2u0τ + ω0(b2u̇0 + ω0ü0)− 2a2b1Ḡ

3ω1τ0u̇0τ ) + a2b1Ḡ
2u2

0τ

+ a2ḠĪω1u̇0 + a1Ḡω1u̇0 + b2Ḡω1u̇0 + 2Ḡω1ω0ü0 − ω2
0u̇

2
0

+ b2u
2
0(a2Ī + a1)) = 0, (32)

ω2
0ü2 + u̇2ω0(a2Ī + a1 + b2) + b2u2(a2Ī + a1) + 2a2b1Ḡ

2u2τ

+ Ḡ−1(a2b1Ḡ
3ω2

1τ
2
0 ü0τ − 2a2b1Ḡ

3ω2τ0u̇0τ − 2a2b1Ḡ
3ω1τ0u̇1τ

− 2a2b1Ḡ
3ω0u̇0τ + u0(4a2b1Ḡ

2u1τ − 4a2b1Ḡ
2ω1τ0u̇0τ + 2a2b1Ḡu

2
0τ

+ 2b2u1(a2Ī + a1) + b2ω1u̇0 + b2u̇1ω0 + 2ω1ω0ü0 + ω2
0ü1)

+ 2a2b1Ḡ
2u0τ (u1τ − ω1τ0u̇0τ + 2u1) + 2a2b1Ḡu

2
0u0τ + a2ḠĪω2u̇0

+ a2ḠĪω1u̇1 + a1Ḡω2u̇0 + a1Ḡω1u̇1 + b2Ḡω2u̇0 + b2Ḡω1u̇1 + b2u1u̇0ω0

+ 2Ḡω2ω0ü0 + 2Ḡω1ω0ü1 + Ḡω2
1ü0 − 2ω1u̇

2
0ω0 + u1ω

2
0ü0 − 2u̇0u̇1ω

2
0) = 0,

(33)

with uiτ = ui(s− τ0ω0). Without loss of generality, the seed solution is chosen

as u0(s) = A0 cos(s) where, following (27), A0 is related to the amplitude of

X (denoted by Ā) by Ā = A0ε. Choosing

u1(s) = A1 sin(s) +B1 cos(s) + C1 sin(2s) +D1 cos(2s) + E1 (34)

and substituting into (32) and comparing coefficients of the cos(s) and sin(s)

terms shows that: (1) A1, B1 are arbitrary (2) ω1 = 0. From comparison of

the cos(2s) and sin(2s) coefficients, it can be shown that

C1 =
A2

0F

G
, D1 =

A2
0H

K
, E1 =

A2
0(2a1b2 − a2(2b1Ḡ

2 − 2b2Ī))

4Ḡ(a2(2b1Ḡ2 + b2Ī) + a1b2)
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where F , G, H and K are some functions of a1, a2, b1, b2, Ḡ, Ī, ω0. Due to their

length, they are not reproduced here. By substituting

u2(s) =A2 sin(s) +B2 cos(s) + C2 sin(2s) +D2 cos(2s)

+ E2 sin(3s) + F2 cos(3s) +G2 (35)

along with lower-order terms into (33), and comparing the coefficients of the

cos(s) and sin(s) terms, the dominant term for the amplitude, Ā, of the limit

cycle is expressible as

Ā2 =
8Ḡ2ρ

(
2a2b1Ḡ

3 + a0b2
) (
a2

0 + Ḡ2
(
b22 + 2ρ

))
p1∑7

m=0(p2,m + τ0p3,m)am0
ε2, (36)

while the dominant term of the amplitude of the insulin oscillations, B̄, and

the second-order term for frequency correction, ω2, are given by

B̄ =
Ā

a2Ḡ

√
ρ+

a2
0

Ḡ2
, ω2 =

−√ρ
∑7
m=0 p3,ma

m
0∑7

m=0(p2,m + τ0p3,m)am0
. (37)
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Here, we introduced the following definitions

ρ =ω2
0 ,

p1 = 4a2b1Ḡ
3
(
b32
(
a3

0 + 3a0Ḡ
2ρ
)

+ 3a0b2ρ
(
a2

0 + 3Ḡ2ρ
)
− 4Ḡ3ρ3

)
+ b2ρ

(
a2

0 + Ḡ2ρ
)2

+ 4a2
2b

2
1Ḡ

6b4ρ
(
a2

0 + 4Ḡ2ρ
)
,

p2,0 = 16a2b1b2Ḡ
9ρ2
(
8a2

2b
2
1Ḡ

4b4ρ − 2a2b1Ḡ
2
(
5b22ρ+ b42 + 12ρ2

)
+ ρb2ρ

)
,

p2,1 = 2Ḡ6ρ(64a3
2b

3
1Ḡ

6(2b22 + 3ρ)b4ρ − 4a2
2b

2
1Ḡ

4ρ(59b22ρ− 5b42 + 92ρ2)

+ a2b1Ḡ
2ρ(59b22ρ

2 + 12b42ρ+ 7b62 + 22ρ3)− 2b22ρ
2b2ρ),

p2,2 = b2Ḡ
5ρ(320a3

2b
3
1Ḡ

6b4ρ + 4a2
2b

2
1Ḡ

4(97b22ρ+ 31b42 + 6ρ2)

+ 2a2b1Ḡ
2ρ(b42 + 39ρ2)− ρ(3b22 + 2ρ)b2ρ),

p2,3 = Ḡ4(16a3
2b

3
1Ḡ

6(3b22 + 2ρ)b4ρ + 4a2
2b

2
1Ḡ

4ρ(85b22ρ+ 43b42 − 38ρ2)

+ 2a2b1Ḡ
2ρ(28b22ρ

2 − 59b42ρ− 7b62 + 44ρ3)− 11b22ρ
2b2ρ),

p2,4 = 2b2Ḡ
3(24a3

2b
3
1Ḡ

6b4ρ + 2a2
2b

2
1Ḡ

4(21b22ρ+ 9b42 + 16ρ2)

− a2b1b
2
2Ḡ

2ρ(7b22 + 59ρ)− ρ(3b22 + 2ρ)b2ρ),

p2,5 = 2Ḡ2(6a2
2b

2
1Ḡ

4(5b22ρ+ 3b42 − 6ρ2)− 5b22ρb
2
ρ

+ a2b1Ḡ
2ρ(11b22ρ− 15b42 + 22ρ2)),

p2,6 = − b2Ḡ(6a2b1Ḡ
2ρ(5b22 + ρ) + (3b22 + 2ρ)b2ρ),

p2,7 = − 3b22b
2
ρ,

p3,0 = 16a2b1Ḡ
9ρ2bρ(8a

2
2b

2
1Ḡ

4b4ρ − 12a2b1Ḡ
2ρ2 + ρb2ρ),

p3,1 = − 4b2Ḡ
6ρ2bρ(2a

2
2b

2
1Ḡ

4(ρ− 5b22)− 24a2b1Ḡ
2ρ2 + ρb2ρ),

p3,2 = 2a2b1Ḡ
7ρbρ(160a2

2b
2
1Ḡ

4b4ρ − 156a2b1Ḡ
2ρ2 + ρ(−28b22ρ+ b42 + 31ρ2)),

p3,3 = b2Ḡ
4ρbρ(4a

2
2b

2
1Ḡ

4(43b22 + 85ρ) + 132a2b1Ḡ
2ρ2 − 11ρb2ρ),

p3,4 = 2a2b1Ḡ
5bρ(24a2

2b
2
1Ḡ

4b4ρ + ρ(36a2b1Ḡ
2ρ− 59b22ρ− 7b42 + 38ρ2)),

p3,5 = 2b2Ḡ
2bρ(6a

2
2b

2
1Ḡ

4(3b22 + 5ρ) + 18a2b1Ḡ
2ρ2 − 5ρb2ρ),

p3,6 = 30a2b1Ḡ
3ρ(ρ− b22)bρ,

p3,7 = − 3b2b
3
ρ,
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with bρ = b22 + ρ and b4ρ = b22 + 4ρ. The period of the limit cycle, T , is given

by

T =
2π

ω0 + ε2ω2
. (38)

Simulations making use of expressions (36), (37), and (38) are presented in

Section 5.1.

4.2 Linear hepatic glucose production

We now turn to study the effect of a non-constant hepatic glucose production,

and hence a second delay, on the limit cycles (see model (12)). As described

earlier, the P-L method has been used in a limited number of studies to in-

vestigate the effect of model parameters on the amplitude of the resulting

oscillatory solutions. For example, in [4] a coupled first-order DDE model de-

scribing a two-neuron system with delay was explored. While the system had

two separate delays, these were combined giving a characteristic equation of

the form

λ2 +A1λ+A2 +A3e
−λτ = 0, τ = τ1 + τ2,

with A1, A2 constant and A3 a function of the model parameters. In contrast,

the characteristic equation of model (9), given by (15), contains a second

exponential term which leads to additional challenges in finding points of bi-

furcation, as discussed in Section 3.3. For conciseness and in order to avoid the

blow-up of solutions in finite time, we assume that p = 1 although the tech-

nique can be applied to higher orders under some restrictions (see Appendix
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A). The resulting equations are thus given by

Ġ(t) = a0 − a1G(t)− a2G(t)I(t)− a3I(t− κτ), (39)

İ(t) = b1G(t− τ)2 − b2I(t), (40)

where the dimensionless parameter κ is used to represent the commensurate-

ness of the time delays. In line with the calculation in the previous section, we

introduce X = G(t)− Ḡ, Y = I(t)− Ī. Let (ω0, τ0) be a critical pair obtained

using the algorithm described in Section 3.3. Then by setting ε =
√
τ − τ0, we

can scale the variables X and Y as X(t) = εu(s), Y (t) = εv(s), where s is the

scaled time variable as defined in (27). The expansions for v(s) and v(s−κΩτ)

are given by

v(s− κΩτ) =v(s− κτ0ω0)− κτ0ω1εv̇(s− κτ0ω0) (41)

+
1

2
κε2(τ0(κτ0ω

2
1 v̈(s− κτ0ω0)− 2ω2v̇(s− κτ0ω0))

− 2ω0v̇(s− κτ0ω0)) +O(ε3),

v(s) =v0(s) + εv1(s) + ε2u2(s) + ... (42)

Substituting into (39) and collecting terms (up to and including O(ε3)) gives

dum
ds

= − (a1 + a2Ī)

ω0
um −

a2Ḡ

ω0
vm −

a3

ω0
vmτ + gm, (43)

dvm
ds

= − b2
ω0
vm +

2b1Ḡ

ω0
umτ + hm, (44)

with m = 0, 1, 2, umτ = um(s − τ0ω0), vmτ = vm(s − κτ0ω0) and where

the inhomogeneous terms gm and hm are related to the solutions of previous



24 Adam Bridgewater et al.

orders. Here we have g0 = 0, h0 = 0, and

g1 =− a2u0v0 + a3kω1τ0 ˙v0τ − ω1u̇0, (45)

h1 =b1u0τ
2 − 2b1Ḡω1τ0 ˙u0τ − ω1v̇0, (46)

g2 =− a2u1v0 − a2u0v1 −
1

2
a3k

2ω2
1τ

2
0 ¨v0τ + a3κω1τ0 ˙v1τ + a3κω0 ˙v0τ

+ a3κω2τ0 ˙v0τ − a3v2τ + ω1u̇1 − ω2u̇0, (47)

h2 =2b1u0τ (u1τ − ω1τ0 ˙u0τ )− 2b1Ḡω1τ0 ˙u1τ − 2b1Ḡω0 ˙u0τ − 2b1Ḡω2τ0 ˙u0τ

+ b1Ḡω
2
1τ

2
0 ü0τ − ω1v̇1 − ω2v̇0. (48)

By imposing the initial conditions u0(0) = C0, v0(0) = C0R1 on the solutions

of (43) and (44), with m = 0 we find that

u0(s) = C0 cos(s), v0(s) = C0R1 cos(s) + C0R2 sin(s),

where

R1 =
1

Q
(−ω0(a1 + a2Ī − b2) + a1b2 − 2a2b1Ḡ

2 sin(τ0ω0) + 2a2b1Ḡ
2 cos(τ0ω0)

+ a2b2Ī + 2a3b1Ḡ sin((κ− 1)τ0ω0) + 2a3b1Ḡ cos((κ+ 1)τ0ω0)− ω2
0),

R2 =
1

Q
(ω0(a1 + a2Ī + b2) + a1b2 − 2a2b1Ḡ

2 sin(τ0ω0) + 2a2b1Ḡ
2 cos(τ0ω0)

+ a2b2Ī − 2a3b1Ḡ sin((κ+ 1)τ0ω0) + 2a3b1Ḡ cos((κ− 1)τ0ω0) + ω2
0),

Q = 2(ω0(a2Ḡ+ a3 cos(κτ0ω0)) + a3b2 sin(κτ0ω0)).

We note that C0 is related to the amplitude of X(t) (denoted by C̄) by C̄ =

C0ε, and that the amplitude of Y (t) (denoted by D̄) is given by

D̄ = C̄
√
R2

1 +R2
2. (49)
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As we necessitate that the solutions um and vm are periodic in s with period

2π, we must find conditions such that the inhomogeneities do not contain

secular terms. Hence, we proceed as in [4] and expand um, vm, gm and hm as

Fourier series to getum(s)

vm(s)

 =

∞∑
k=0


a(m)

1,k

a
(m)
2,k

 cos(ks) +

b(m)
1,k

b
(m)
2,k

 sin(ks)

 , (50)

gm(s)

hm(s)

 =

∞∑
k=0


α(m)

1,k

α
(m)
2,k

 cos(ks) +

β(m)
1,k

β
(m)
2,k

 sin(ks)

 . (51)

Substituting (50) and (51) into (43) and (44), it can be seen that the coef-

ficients, α
(m)
j,1 , β

(m)
j,1 (with j = 1, 2), in the inhomogeneities gm and hm must

satisfy the following conditions

−a2α
(m)
2,1 Ḡ+ α

(m)
1,1 b2 − α

(m)
2,1 a3 cos(τ0ω0) + a3β

(m)
2,1 sin(τ0ω0) + β

(m)
1,1 ω0 = 0,

(52)

−α(m)
1,1 ω0 − a2β

(m)
2,1 Ḡ+ b2β

(m)
1,1 − α

(m)
2,1 a3 sin(τ0ω0)− a3β

(m)
2,1 cos(τ0ω0) = 0.

(53)

The system for k = 1 leads to equations of the form

C0ω1Z1(a1, a2, a3, b1, b2, κ, Ḡ, Ī, ω0, τ0) = 0, (54)

C0ω1Z2(a1, a2, a3, b1, b2, κ, Ḡ, Ī, ω0, τ0) = 0, (55)

where Z1, Z2 are functions of a1, a2, a3, b1, b2, κ, Ḡ, Ī, ω0, τ0. If C0 = 0, then we

obtain the trivial solution. Additionally, it can be seen that Z1 and Z2 do not

vanish modulo the characteristic curve. Therefore, following our assumption

that ω0 does not satisfy any polynomial equation of lower order, this implies

that ω1 = 0. For further details of the derivation of these conditions, the
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reader is referred to Appendix B. Substituting these conditions into (43) and

(44) leads to the following expressions

u1(s) = a
(1)
1,0 + a

(1)
1,1 cos(s) + b

(1)
1,1 sin(s) + C2

0h1 cos(2s) + C2
0h2 sin(2s), (56)

v1(s) = a
(1)
2,0 + a

(1)
2,1 cos(s) + b

(1)
2,1 sin(s) + C2

0h3 cos(2s) + C2
0h4 sin(2s), (57)

where h1, h2, h3 and h4 are functions of a1, a2, a3, b1, b2, κ, Ḡ, Ī, ω0, τ0. Expres-

sions for α
(2)
1,1, β

(2)
1,1 , α

(2)
1,2 and β

(2)
1,2 can then be obtained. Finally, using conditions

(52), (53) and solving the resulting system of equations, it can be shown that

the dominant term for the amplitude, C̄, the second-order term for frequency

correction, ω2, and the period, T , can be expressed as

C̄2 =
W1

V1
ε2, ω2 =

W2

V2
, T =

2πV2

ω0V2 +W2ε2
, (58)

where W1, W2, V1 and V2 are functions of a1, a2, a3, b1, b2, Ḡ, Ī, κ, ω0 and

τ0. Given their length, the expressions are not reproduced here but are used

in simulations in Section 5.2.

5 Parameter analysis

The closed form expressions for the limit cycles presented in this paper allow

for the effect of changes in each of the model parameters on the amplitude

and period to be more easily studied. In this section, we first study the ef-

fect of changes in a2 (insulin resistance), b1 (insulin secretion) and b2 (insulin

degradation) on the important characteristics of the waveforms for the con-

stant hepatic production model solutions. Secondly, we investigate how the

amplitude and period of the solutions of model (39) vary with respect to the

delay coupling parameter κ.
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5.1 Constant hepatic glucose production

In this section, the closed form expressions for the amplitude and period of

the solutions to model (3), as given by (36), (37) and (38), will be analysed

using two different Parameter Sets, which are given in Table 2. The values used

in Parameter Set 1 are based off the values used in [18,24,28] and represent

a patient under a constant glucose infusion, while Parameter Set 2 looks to

replicate the values that may be observed in a patient under a larger constant

glucose infusion.

Table 2: Parameter Sets 1 and 2 which are used in numerical simulations

throughout Section 5.1.

Parameter Set 1 Parameter Set 2 Units
a0 1300 1800 mg min−1

a1 2.02982× 10−4 2.02982× 10−4 min−1

b1 6.01344× 10−8 9.01344× 10−8 mU mg−2 min−1

b2 0.06 0.064 min−1

τ 20 20 min

5.1.1 On the influence of insulin sensitivity

To begin, we analysed the relationship between the insulin sensitivity param-

eter a2 and the closed form expressions for the amplitude and period of model

(3). It can be seen from Figure 4 that the amplitude of X(t), as given by

(36), varies between 4 and 15 for Parameter Set 1, and 1 and 38 mg/dl for

Parameter Set 2. Additionally, the amplitude of Y (t) from (37) is observed to

be approximately between either 1 and 5, or 1 and 29 mU/l. These values are

within a physiologically acceptable range. Furthermore, in Figure 5 we note

that the values of the period, as defined by (38), vary between 74.5 and 76

minutes for Parameter Set 1, and 76 and 78 minutes for Parameter Set 2, and



28 Adam Bridgewater et al.

hence are also within an acceptable range. It can be seen in Figure 6 that

Fig. 4: Amplitudes of the oscillations, Ā and B̄, as a function of a2 using

Parameter Set 1 (left) and Parameter Set 2 (right).

Fig. 5: Period of the oscillations, as given by (38), as a function of a2 using

Parameter Set 1 (left) and Parameter Set 2 (right).

increasing a2 has little effect on the oscillations, while decreasing a2 has a

more profound effect. For example, for Parameter Set 1 a 20% increase in a2

from 0.0017 increases the amplitude by 15%. However, a 20% decrease in a2

reduces the amplitude by almost 80%. Similarly for Parameter Set 2, a 20%

increase in a2 from 0.0004 increases the amplitude by less than 5% while a

20% decrease in a2 reduces the amplitude by approximately 30%.
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Fig. 6: Percentage change of the closed form expressions of the amplitude (blue)

and period (black) of Y (t), which are given by (37) and (38) respectively, vs.

the percentage change in a2 for Parameter Set 1 (left) and Parameter Set 2

(right). The initial value used for a2 was: 0.0017 (left); and 0.0004 (right).

5.1.2 Insulin secretion capacity b1 and insulin degradation b2 vs. Ā and B̄

Next, we looked at the relationship between the insulin secretion capacity b1

and the closed form expression of the amplitude of X(t) defined by (36). As

shown in Figure 7a, the amplitude variation with respect to b1 is between 0

and 19, regardless of the value of a2 used. However, a2 does have an effect on

the decline of amplitude observed with an increased b1. Indeed as a2 increases,

the observed value of b1 such that the amplitude begins to decrease, decreases.

This effect is also observed in Figure 7b.

Figures 7c and 7d show the effect of b2 on the amplitude of X(t) and Y (t)

respectively for Parameter Set 1. It is observed from both that the oscillations

are lost when b2 drops below ≈ 0.059 regardless of the value of a2. Indeed,

when looking at the amplitude as a function of b2, a2 has very little effect

on Ā and only a small effect on B̄ for Parameter Set 1. However, as seen in

Figures 7e and 7f, this is not true for Parameter Set 2, where a2 has a more

profound effect on both the amplitude of X(t) and Y (t). Irrespective of this, it
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is observed for both Parameter Sets that an increase in b2 leads to an increase

in the amplitude of the oscillations. While the size of the oscillations of Y (t) in

Figures 7d and 7f are plausible for all values of b2, the size of the oscillations

in Figures 7c and 7e become too large with b2. Indeed, eventually the value of

Ḡ − Ā drops below 70 mg/dl in both cases. Physiologically, this would mean

the onset of hypoglycaemia. The ranges 0.06 < b2 < 0.062 for Parameter Set

1, and 0.064 < b2 < 0.075 for Parameter Set 2 ensure that glucose levels are

kept within a realistic physiological range.

5.2 Non-constant hepatic glucose production

We now move on to investigate the effect of the two delays on the closed form

expressions for the amplitude and period of model (39). In particular, we focus

on the relationship between the amplitudes of X(t) and Y (t), given by (58) and

(49) respectively, and the commensurate delay parameter κ. Using Parameter

Set 1 with a2 = 0.0017, it can be seen in Figure 8 that when a3 is small, κ has

a negligible effect on the amplitude. Additionally, when a3 < O(10−2) changes

in a3 also have a negligible effect on the amplitudes. However, when a3 = 0.1

it is observed that the amplitude of both X(t) and Y (t) vary with κ in an

oscillatory manner.

Table 3: Parameter Set 3.

Value Units
a0 285 mg min−1

a1 2.02982× 10−4 min−1

a2 0.00009 mU−1 min−1

a3 1.415 mg mU−1 min−1

b1 9.3× 10−8 mU mg−2 min−1

b2 0.06 min−1

τ 16 min
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(a) Amplitude of X(t) vs. b1
for Parameter Set 1.

(b) Amplitude ofX(t) vs. b1 for Parameter
Set 2.

(c) Amplitude of X(t) vs. b2
for Parameter Set 1.

(d) Amplitude of Y (t) vs. b2 for Parameter
Set 1.

(e) Amplitude of X(t) vs. b2
for Parameter Set 2.

(f) Amplitude of Y (t) vs. b2 for Parameter
Set 2.

Fig. 7: Amplitude of X(t), as given by (36), and Y (t), as given by (37), vs. b1

and b2 for Parameter Sets 1 and 2.

To further investigate how the closed form expressions for the amplitude and

period vary with κ, we now look into the variation using the parameter values

given in Table 3. From Figure 9 we can see that κ has a large influence on

both the amplitude and period for Parameter Set 3. Increasing κ from 1 to 7,
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Fig. 8: Amplitude of X(t) (left) and Y (t) (right), as defined by (58) and (49)

respectively, as a function of κ for Parameter Set 1 with a2 = 0.0017.

the amplitude increases by ≈ 700% and the period by ≈ 500%. However, it

must be noted that for κ > 1 the values of the amplitude and period are not

in a physiological range. This is most likely due to the size of ε2. Indeed, when

κ = 7 we note that ε2 = 9.49476 compared with 0.2806 when κ = 1. Therefore,

instead of setting τ = 16 we shall instead choose τ such that ε2 = 0.16. The

results can be seen in Figure 10. Here we observe that the amplitude remains

in a physiological range for 1 ≤ κ ≤ 7, and that the period of the oscillations

is within an acceptable physiological range for insulin levels. We also note

that there is very little variation in the amplitude when κ increases. This

implies more accurate values of the two delays can be chosen without losing

the physiological accuracy of the oscillations.

6 Discussion

In this contribution we have analysed two DDE polynomial models of the

glucose-insulin regulatory system, one with a constant hepatic glucose pro-

duction and one with a linear hepatic production containing a commensurate

delay, to investigate the effect of various diabetic parameters on the ultradian

oscillations. Indeed, by performing a P-L perturbation method we have been

able to obtain analytical expressions that are based on the model parameters
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Fig. 9: Amplitude of X(t) (left) and Y (t) (right), as defined by (58) and (49)

respectively, vs. κ for Parameter Set 3.

Fig. 10: Amplitude of X(t) (left) and Y (t) (right), as given by (58) and (49)

respectively, vs. κ for fixed ε. All other parameters are as defined in Table (3).

for the linearised amplitude and period of the two models.

From a mathematical point of view, the accuracy of these expressions is of a

high degree. Indeed, from Figure 11 we can see that the closed form expression

for the amplitude of X(t) given by (36) is almost an exact match for the ampli-

tude obtained through numerical simulations. Furthermore, Figure 12 shows

that the first-order solutions for G(t) and I(t) of (3) obtained using the P-L

technique are a good approximation to the solutions calculated using a classi-

cal Runge-Kutta method. Increasing the accuracy by taking into account the

second and third-order terms computed in Section 4 leads to an approximate

solution that is indistinguishable from the one obtained numerically.
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From a physiological perspective, it is important to note while the values

of the amplitude of X(t) in Figure 4 are within a physiologically acceptable

range, the decrease in amplitude in the presence of mild insulin resistance is

most notably seen experimentally in insulin levels, while the amplitude in glu-

cose oscillations has been observed to remain almost constant [25]. Therefore,

the expressions derived in this paper could theoretically be used to obtain es-

timates for insulin sensitivity through the matching of clinical insulin data to

the two models.

Finally, we note that strategies aiming to restore glucose-insulin oscillations

could make use of the fact the amplitude and frequency of oscillations show

very little variation in the vicinity of the Hopf threshold curve in the space of

delays. These theoretical findings could therefore have an impact on optimal

glycemic control.
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A Fine-time blow-up solutions

The introduction of an additional nonlinear term in model 9, namely

Ġ = a0 − a1G− a2GI − a3I(t− τ2)p, İ = b1G(t− τ1)n − b2I, (59)

when a3 6= 0 and p > 1, can give rise to new dominant behaviour which may lead to

singularities in the trajectories. In particular, the presence of poles induces a blow-up of at

least one of the phase variables in finite time. Sufficient conditions for the existence of poles

for which the location depends on initial conditions can be obtained by performing a local

singularity analysis on each dominant nonlinear truncation of the system. Here, we restrict

ourselves to system (59) without delays, for which this type of analysis is well established

and commonly known as Painlevé analysis[9,13,14,16].
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Fig. 11: Comparison of two methods for calculating the amplitude of X(t) from

model (3) using Parameter Set 1. The blue line represents the P-L approxima-

tion given by (36) and the black dots represent the numerical approximations

obtained using a Runge - Kutta method.

Fig. 12: Comparison of the limit cycles corresponding to the linear approxi-

mation given by (36), (37) and (38), and the numerical solution of system (3).

Parameter values are as defined in Parameter Set 1, with a2 = 0.002.
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Two nonlinear truncations of (59) can be distinguished as

A. Ġ ∼ −a2GI B. Ġ ∼ −a3Ip, p > 1,

İ ∼ b1Gn İ ∼ b1Gn

Looking for dominant terms of the form

G(t) ∼ α1(t− t0)q1 , I(t) ∼ α2(t− t0)q2 , (60)

one is led to the following solution for each truncation

A. G(t) ∼ 21/n
(
−1

na2b1

)1/n

(t− t0)−2/n, (61)

I(t) ∼
2

a2n
(t− t0)−1, (62)

B. G(t) ∼
(

(−1)pa3b
p
1(n+ 1)−p(np− 1)p+1

p+ 1

) 1
1−np

(t− t0)
1+p
1−np , (63)

I(t) ∼
(
−
b1an3 (p+ 1)−n(np− 1)n+1

n+ 1

)
1

1−np (t− t0)
1+n
1−np . (64)

The following conclusions can be drawn.

Truncation A. Since all parameters are assumed to be strictly positive, we see that when n is

even, equations (61),(62) does not lead to an expression with real coefficients. Therefore,

no open set of initial conditions leads to a movable pole [13,14].

Truncation B. In order to have a pole when p > 1, the quantities z1 = 1+p
np−1

and z2 = 1+n
np−1

need to be positive integers, which can only happen when n = p = 2. Indeed, since n is

assumed to be even and p > 1, the quantity np − 1 is larger than 1. Hence, for z1 and

z2 to be positive integers, one needs to have the inequalities

1 + n ≥ np− 1, 1 + p ≥ np− 1,

which can be rewritten as

p ≤
2

n
+ 1 ≤ 2, n ≤

2

p
+ 1 ≤ 2,

thus leading to n = p = 2.

Under these conditions, it is easily seen that the coefficients defined by equations (63),

(64) are real. Further looking for additional powers in the expansion allowing for the
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presence of arbitrary constants (so-called resonances),

G(t) ∼ α1(t− t0)q1 (1 + δ1(t− t0)r), I(t) ∼ α2(t− t0)q2 (1 + δ2(t− t0)r),

we obtain the following values for r,

r0 = −1, r1 =
(1 + p)(1 + n)

np− 1
= 3,

where r0 = −1 corresponds to the arbitrariness of t0. The coefficient r1 being a positive

integer by construction, it provides the order at which an additional arbitrary constant

may appear, which is necessary to satisfy the initial value problem.

Thus, it is shown that Truncation B (with n = p = 2) may possess finite-time blow-up

solutions. Of course, these considerations do not exclude the potential presence of other

types of singularities for other values of n, p.

B Justification of equations 52 and 53

Here we show how conditions (52), (53) are obtained. First, we note that from (16) and (17)

it can be seen that

cos((κ+ 1)ω0τ0) =
−a5(a1 + a2Ī)− 2a2a4Ḡ2 cos(τ0ω0) + ω2

0

2a3a4Ḡ
, (65)

sin((κ+ 1)ω0τ0) =
ω0(a1 + a2Ī + a5)− 2a2a4Ḡ2 sin(τ0ω0)

2a3a4Ḡ
. (66)

Through the substitution of the Fourier series decompositions (given by (50) and (51)) into

(43), (44) and comparing the coefficients of cos(κs) and sin(κs), we obtain that

a3a
(m)
2,k cos (kκω0τ0) + a1a

(m)
1,k + a2Ḡa

(m)
2,k + a2Īa

(m)
1,k − a3b

(m)
2,k sin (kκω0τ0)

+ kω0b
(m)
1,k − α

(m)
1,k = 0, (67)

a3a
(m)
2,k sin (kκω0τ0) + a3b

(m)
2,k cos (kκω0τ0) + a1b

(m)
1,k + a2Ḡb

(m)
2,k + a2Īb

(m)
1,k

− kω0a
(m)
1,k − β

(m)
1,k = 0, (68)

a5a
(m)
2,k − 2a4Ḡa

(m)
1,k cos (kω0τ0) + 2a4Ḡb

(m)
1,k sin (kω0τ0) + kω0b

(m)
2,k − α

(m)
2,k = 0, (69)

a5b
(m)
2,k − 2a4Ḡa

(m)
1,k sin (kω0τ0)− kω0a

(m)
2,k − 2a4Ḡb

(m)
1,k cos (kω0τ0)− β(m)

2,k = 0, (70)
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which can then be solved for a
(m)
1,k , a

(m)
2,k , b

(m)
1,k and b

(m)
2,k , with any inhomogeneity, when

k > 1. The solution of (67) - (70) (for k > 1) is

a
(m)
1,k =

1

D
{−a1a3b2α(m)

2,k cos(kκτ0ω0) + a1a3b2β
(m)
2,k sin(kκτ0ω0)

− 2a2a3b1Ḡ
2α

(m)
2,k cos(k(κ− 2)τ0ω0)

+ 2a2a3b1Ḡ
2β

(m)
2,k sin(k(κ− 1)τ0ω0) + kω0(a3b2α

(m)
2,k sin(kκτ0ω0)

− 2a3b1Ḡα
(m)
1,k sin(k(κ+ 1)τ0ω0) + 2a3b1Ḡβ

(m)
1,k cos(k(κ+ 1)τ0ω0)

+ a3β
(m)
2,k (a2Ī + a1 + b2) cos(kκτ0ω0)− 2a2b1Ḡ

2α
(m)
1,k sin(kτ0ω0)

+ 2a2b1Ḡ
2β

(m)
1,k cos(kτ0ω0) + a2Ḡβ

(m)
2,k (a2Ī + a1 + b2)

+ a1a3α
(m)
2,k sin(kκτ0ω0) + kω0(a1α

(m)
1,k + a3α

(m)
2,k cos(kκτ0ω0)

− a3β(m)
2,k sin(kκτ0ω0) + a2Ḡα

(m)
2,k + a2Īα

(m)
1,k − kω0β

(m)
1,k )

+ a2a3Īα
(m)
2,k sin(kκτ0ω0)− b22β

(m)
1,k )

+ 2a3b1Ḡ cos(k(κ+ 1)τ0ω0)(b2α
(m)
1,k − a2Ḡα

(m)
2,k )

+ 2a3b1Ḡ sin(k(κ+ 1)τ0ω0)(b2β
(m)
1,k − a2Ḡβ

(m)
2,k )

− a2a3b2Īα(m)
2,k cos(kkτ0ω0) + a2a3b2Īβ

(m)
2,k sin(kκτ0ω0)

− 2a22b1Ḡ
3β

(m)
2,k sin(kτ0ω0) + 2a2b1b2Ḡ

2β
(m)
1,k sin(kτ0ω0)

− 2b1Ḡ cos(kτ0ω0)(a23α
(m)
2,k + a2Ḡ(a2Ḡα

(m)
2,k − b2α

(m)
1,k ))

− 2a23b1Ḡβ
(m)
2,k sin(kτ0ω0) + b2(a2Ī + a1)(b2α

(m)
1,k − a2Ḡα

(m)
2,k )},
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b
(m)
1,k =

1

D
{a1a3b2αm

2,k sin(kκτ0ω0) + a1a3b2β
m
2,k cos(kκτ0ω0)

+ 2a2a3b1Ḡ
2αm

2,k sin(k(κ− 1)τ0ω0) + 2a2a3b1Ḡ
2βm

2,k cos(k(κ− 1)τ0ω0)

− kω0(a3b2β
m
2,k sin(kκτ0ω0)− 2a3b1Ḡα

m
1,k cos(k(κ+ 1)τ0ω0)

− 2a3b1Ḡβ
m
1,k sin(k(κ+ 1)τ0ω0)− a3αm

2,k(a2Ī + a1 + b2) cos(kκτ0ω0)

− 2a2b1Ḡ
2αm

1,k cos(kτ0ω0)− 2a2b1Ḡ
2βm

1,k sin(kτ0ω0)

− a2Ḡαm
2,k(a2Ī + a1 + b2) + a1a3β

m
2,k sin(kκτ0ω0)

+ kω0(a1β
m
1,k + kω0α

m
1,k + a3α

m
2,k sin(kκτ0ω0) + a3β

m
2,k cos(kκτ0ω0)

+ a2Ḡβ
m
2,k + a2Īβ

m
1,k) + a2a3Īβ

m
2,k sin(kκτ0ω0) + b22α

m
1,k)

+ 2a3b1Ḡ sin(k(κ+ 1)τ0ω0)(b2α
m
1,k − a2Ḡα

m
2,k)

+ 2a3b1Ḡ cos(k(κ+ 1)τ0ω0)(a2Ḡβ
m
2,k − b2β

m
1,k)

+ a2a3b2Īα
m
2,k sin(kκτ0ω0) + a2a3b2Īβ

m
2,k cos(kκτ0ω0)

− 2a22b1Ḡ
3αm

2,k sin(kτ0ω0) + 2a2b1b2Ḡ
2αm

1,k sin(kτ0ω0)

− 2a23b1Ḡα
m
2,k sin(kτ0ω0)

+ 2b1Ḡ cos(kτ0ω0)(a23β
m
2,k + a2Ḡ(a2Ḡβ

m
2,k − b2β

m
1,k))

+ b2(a2Ī + a1)(a2Ḡβ
m
2,k − b2β

m
1,k)},

a
(m)
2,k =

1

D
{2b1Ḡ(−a1b2βm

1,k sin(kτ0ω0) + 2a3b1Ḡα
m
1,k cos(kκτ0ω0)

+ 2a3b1Ḡβ
m
1,k sin(kκτ0ω0) + (a2Ī + a1) cos(kτ0ω0)(a2Ḡα

m
2,k + b2α

m
1,k)

− a2b2Īβm
1,k sin(kτ0ω0) + a3(a2Ī + a1)αm

2,k cos(k(κ+ 1)τ0ω0)

+ a3(a2Ī + a1)βm
2,k sin(k(κ+ 1)τ0ω0) + a1a2Ḡβ

m
2,k sin(kτ0ω0)

+ a22ḠĪβ
m
2,k sin(kτ0ω0))

− kω0(2b1Ḡ(sin(kτ0ω0)(αm
1,k(a2Ī + a1 + b2) + a2Ḡα

m
2,k)

+ cos(kτ0ω0)(βm
1,k(a2Ī + a1 + b2)− a2Ḡβm

2,k)

+ a3α
m
2,k sin(k(κ+ 1)τ0ω0)− a3βm

2,k cos(k(κ+ 1)τ0ω0))

+ (a2Ī + a1)2βm
2,k + kω0(−b2αm

2,k + kω0β
m
2,k + 2b1Ḡα

m
1,k cos(kτ0ω0)

− 2b1Ḡβ
m
1,k sin(kτ0ω0))) + 4a2b

2
1Ḡ

3αm
1,k + b2(a2Ī + a1)2αm

2,k},
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b
(m)
2,k =

1

D
{2b1Ḡ(a1b2α

m
1,k sin(kτ0ω0)− 2a3b1Ḡα

m
1,k sin(kκτ0ω0)

+ 2a3b1Ḡβ
m
1,k cos(kκτ0ω0) + (a2Ī + a1) cos(kτ0ω0)(a2Ḡβ

m
2,k + b2β

m
1,k)

+ a2b2Īα
m
1,k sin(kτ0ω0)− a3(a2Ī + a1)αm

2,k sin(k(κ+ 1)τ0ω0)

+ a3(a2Ī + a1)βm
2,k cos(k(κ+ 1)τ0ω0)− a1a2Ḡαm

2,k sin(kτ0ω0)

− a22ḠĪαm
2,k sin(kτ0ω0))

+ kω0(−2b1Ḡ(− cos(kτ0ω0)(αm
1,k(a2Ī + a1 + b2)− a2Ḡαm

2,k)

+ sin(kτ0ω0)(βm
1,k(a2Ī + a1 + b2) + a2Ḡβ

m
2,k)

+ a3α
m
2,k cos(k(κ+ 1)τ0ω0) + a3β

m
2,k sin(k(κ+ 1)τ0ω0))

+ (a2Ī + a1)2αm
2,k + kω0(kω0α

m
2,k + b2β

m
2,k − 2b1Ḡ(αm

1,k sin(kτ0ω0)

+ βm
1,k cos(kτ0ω0)))) + 4a2b

2
1Ḡ

3βm
1,k + b2(a2Ī + a1)2βm

2,k},

where

D = kω0(−4b1Ḡ(a2Ī + a1 + b2)(a3 sin(k(κ+ 1)τ0ω0) + a2Ḡ sin(kτ0ω0))

+ kω0(−4b1Ḡ(a3 cos(k(κ+ 1)τ0ω0) + a2Ḡ cos(kτ0ω0))

+ (a2Ī + a1)2 + b22) + k3ω3
0) + 4b1Ḡ(a2Ḡ(2a3b1Ḡ cos(kκτ0ω0)

+ b2(a2Ī + a1) cos(kτ0ω0)) + a3b2(a2Ī + a1) cos(k(κ+ 1)τ0ω0))

+ 4b21Ḡ
2(a22Ḡ

2 + a23) + b22(a2Ī + a1)2. (71)

Note that when k = 1, D = 0, and therefore we must re-examine (67) - (70) for k = 1. By

taking (ω0 (67) + (a2Ḡ+a3 cos (κτ0ω0)) (70)) − (b2 (68) − (a3 sin (κτ0ω0)) (69)) we obtain

(52). Similarly, by taking (b2 (67) − (a2Ḡ+a3 cos (κτ0ω0)) (69)) + (ω0 (68) + (a3 sin (κτ0ω0)

(70)) we obtain (53). When k = 1, the coefficients of the inhomogeneities g1 and h1

are

α
(1)
1,1 =

κC0τ0ω1v1

v5ω0
, β

(1)
1,1 =

C0ω1(κτ0v2 − 2v1)

v5ω0
,

α
(1)
2,1 =

C0ω1v3

v5
, β

(1)
2,1 =

C0ω1v4

v5
,
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where

v1 = a3ω0(a2Ī + a1 − b2) sin(κτ0ω0)− a3(b2(a2Ī + a1) + ω2
0) cos(κτ0ω0)

+ Ḡ(−2b1(a3 − a2Ḡ)(a2Ḡ+ a3) cos(τ0ω0) + a2b2(a2Ī + a1)− a2ω2
0),

v2 = − a3(b2(a2Ī + a1) + ω2
0) sin(κτ0ω0)− a3ω0(a2Ī + a1 − b2) cos(κτ0ω0)

+ 2b1Ḡ(a22Ḡ
2 − a23) sin(τ0ω0)− a2Ḡω0(a2Ī + a1 + b2),

v3 = 2b1Ḡ(a3 cos((κ− 1)τ0ω0) + 2τ0v1 sin(τ0ω0)) + a2(2b1Ḡ
2 cos(τ0ω0) + b2Ī)

+ a1b2 + ω2
0 ,

v4 = 2b1Ḡ(−a3 sin((κ− 1)τ0ω0) + a2Ḡ sin(τ0ω0)− 2τ0v1 cos(τ0ω0))

+ ω0(a2Ī + a1 − b2),

v5 = 2(a3b2 sin(κτ0ω0) + ω0(a3 cos(κτ0ω0) + a2Ḡ)).

Hence, using these coefficients and (52), (53), one obtains equations of the form

(54),(55).
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