Does creatine supplementation affect renal function in patients with peripheral artery disease? A randomized, double blind, placebo-controlled, clinical trial

Wagner Jorge Ribeiro Domingues, Raphael Mendes Ritti-Dias, Gabriel Grizzo Cucato, Nelson Wolosker, Antonio Eduardo Zerati, Pedro Puech-Leão, Pollyana Mayara Nuhhes, Andre Alberto Moliterno, Ademar Avelar

PII: S0890-5096(19)30734-4
DOI: https://doi.org/10.1016/j.avsg.2019.07.008
Reference: AVSG 4597

Received Date: 20 February 2019
Revised Date: 12 June 2019
Accepted Date: 11 July 2019

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Elsevier Inc. All rights reserved.
Original article

Does creatine supplementation affect renal function in patients with peripheral artery disease? A randomized, double blind, placebo-controlled, clinical trial.

Authors: Wagner Jorge Ribeiro Dominguesa, Raphael Mendes Ritti-Diasb, Gabriel Grizzo Cucatoc, Nelson Woloskerc, Antonio Eduardo Zeratid, Pedro Puech-Leãoe, Pollyana Mayara Nunhesf, Andre Alberto Moliternof, Ademar Avelarf.

Affiliations: Federal University of Amazonas, Brazila, Nove de Julho University, São Paulo, Brazilb, Hospital Israelita Albert Einstein, Sao Paulo Brazilc, Cancer Institute of Sao Paulo, Sao Paulo, Brazild, Sao Paulo University, Sao Paulo, Brazile, State University of Maringa, Maringa, Brazilf.

Corresponding author:

Wagner Jorge Ribeiro Domingues, PhD

Federal University of Amazonas, Institute of Social Sciences, Education and Animal Science, Parintins Macurany road, 1805, Parintins, Amazonas, 69152-240, Brazil.

Phone: +55 92 35331884

E-mail: wagnerfef@gmail.com
ABSTRACT

Background: Case studies and reviews have shown that creatine supplementation can affect kidney function.

Objective: The objective of this study was to verify the effects of eight weeks of creatine supplementation on renal function (creatinine clearance – primary outcome) in patients with symptomatic peripheral arterial disease.

Methods: Twenty-nine patients, of both genders, were randomized (1:1) in a double-blind manner for administration of Placebo (PLA, n=15) or creatine monohydrate (Cr, n = 14). The supplementation protocol consisted of 20g/day for one week divided into four equal doses (loading phase), followed by single daily doses of 5g in the subsequent seven weeks (maintenance phase). Before and after the supplementation period, markers of renal function, serum creatinine, creatinine excretion rate, and creatinine clearance were evaluated. The Generalized Estimation Equation Model was used for comparison between groups. The level of significance was P <0.05.

Results: No significant differences were found between groups before and after the intervention for serum creatinine (Cr - pre 1.00 ± 0.15 ml/dl vs. post 1.07 ± 0.16 ml/dl; PLA pre 1.30 ± 0.53 ml/dl vs. post 1.36 ± 0.47 ml/dl, p = 0.590), creatinine excretion rate (Cr - pre 81.73 ± 43.80 mg/dl vs. post 102.92 ± 59.57 mg/dl; PLA pre 74.37 ± 38.90 mg/dl vs. post 86.22 ± 39.94 mg/dl, p = 0.560), or creatinine clearance (Cr pre 108 ± 59 ml.min\(^{-1}\).1.73 m\(^{-2}\) vs. post 117 ± 52 ml.min\(^{-1}\).1.73 m\(^{-2}\); PLA pre 88 ± 49 ml.min\(^{-1}\).1.73 m\(^{-2}\) vs. post 82 ± 47 ml.min\(^{-1}\).1.73 m\(^{-2}\), p = 0.366).

Conclusions: Eight weeks of creatine supplementation is safe and does not compromise the renal function of patients with peripheral arterial disease.
Key words: Peripheral arterial disease; dietary supplements; safety; renal insufficiency.
Peripheral arterial disease (PAD) affects more than 200 million individuals worldwide. In Brazil, PAD affects 10.5% of individuals over 18 years of age and is higher in the age group above 50 years. Patients with symptomatic PAD present a high prevalence of chronic kidney disease, which has been associated with increased hospitalization and a high mortality risk. The main recommendation for reducing these impacts is to carry out walking. These patients present reduced capacity and barriers to the practice of physical activity. Therefore, one of the primary therapeutic targets in these patients is improvement in walking capacity.

Creatine (Cr) and phosphocreatine are naturally bioenergetic compounds, essential for adenosine triphosphate homeostasis. Previous studies have shown that Cr supplementation improved neuromuscular performance in patients with chronic diseases, including McArdle's disease, amyotrophic lateral sclerosis, and heart failure.

Despite these positive effects, concerns have been raised regarding the potential adverse effects of Cr supplementation on renal function, given that some case reports describe impairments in renal function after Cr supplementation. For example, Kuehl et al. reported impairment in renal function after regular Cr supplementation for 3 months, which was reverted one month after discontinuation of the supplementation. Pritchard and Kalra reported deterioration in renal function after two months of Cr supplementation in a 25-year-old man with a previous history of renal dysfunction.

Studies have reported the potential effects of creatine supplementation on functional capacity, mainly in improving walking capacity, and increasing the supply of muscle oxygen and microcirculation. However, patients with PAD
present impaired renal function19. Therefore, although a potential therapeutic effect might occur in PAD patients, as suggested by a review study20, it is necessary to understand the effects on the renal function of these patients, who usually present comorbidities. In fact, investigating the safety of this supplement will contribute to future studies related to improvement in functional capacity in PAD patients. Our hypothesis was that creatine supplementation would not affect renal function. Thus, in the present study we report the effects of eight weeks of oral Cr supplementation on renal function (creatinine clearance) in symptomatic PAD patients.

METHOD

Experimental design

An 8-week double-blind, placebo-controlled study was conducted from December 2016 to October 2017 in São Paulo, Brazil (registered at clinicaltrials.gov as NCT02993874). This manuscript is reported according to the CONSORT guidelines21. The present study is part of a clinical trial aimed primarily at exploring the effects of creatine supplementation on functional capacity (in particular walking capacity) in patients with arterial disease and symptoms of intermittent claudication.

Patients were randomly assigned to the experiment, in a 1:1 ratio, in blocks of 4-6 considering sex and total walking distance, to receive either Placebo (PLA; n= 15) or Creatine monohydrate (Cr; n= 14) supplementation according to a computer-generated treatment sequence in a double-blind design. The primary outcome was creatinine clearance. Secondary outcomes were serum creatinine and creatinine excretion rate. The control variable was plasma creatine. Participants were assessed at baseline (pre) and after eight weeks (post).
Participant recruitment and screening

Patients were recruited from a specialized vascular center. The sample consisted of 29 patients of both sexes (aged 43-84 years) diagnosed with PAD and symptoms of intermittent claudication. The inclusion criteria were: presence of intermittent claudication symptoms during the six-minute walking test, ankle brachial index <0.90 in one or both lower limbs, and absence of chronic renal insufficiency (creatinine clearance <30ml/min). Exclusion criteria were: musculoskeletal disorders that could prevent participation and adverse effects caused by supplementation (i.e., gastric discomfort or diarrhea). This study was approved by the Ethics Committee of the Hospital Israelita Albert Einstein, Brazil (process 62601416.7.0000.0071). All patients gave informed consent prior to participation.

Creatine supplementation protocol and blinding procedure

Patients received plain packages containing placebo (PLA) (dextrose) (Probiotica, Sao Paulo, Brazil) or creatine monohydrate (Cr) supplementation (Creapure, AlzChem Trostberg GmbH, Germany), 20g/day for one week divided into four equal doses (loading phase), followed by single daily doses of 5g for the next seven weeks (maintenance phase). During the loading phase, supplements were presented in four packages and patients were instructed to ingest the supplement packages at breakfast, lunch, dinner, and before bed time. During the maintenance phase, patients consumed the supplement as a single dose with their lunch. The supplement packages were coded so that neither the investigators nor the participants were aware of the contents until completion of the analyses. Quality control and the purity of creatine were guaranteed by the manufacturer. The supplements were
provided by a staff member of our research team who did not participate in the data acquisition, analyses, or interpretation (figure 1).

INSERT FIGURE 1 HERE

Preliminary assessment

Clinical characteristics were obtained during a vascular consultation. Body mass (kg) and stature (m) were measured (Welmy, São Paulo, Brazil) and the body mass index was calculated. The ankle brachial index was calculated by the quotient between ankle systolic and brachial systolic blood pressure. Arm blood pressure was measured using the auscultation technique, while ankle blood pressure (in the dorsalis pedis artery or posterior tibial artery) was measured with a Doppler ultrasound (Martec DV600, Ribeirão Preto, Brazil). An aneroid sphygmomanometer was employed in both measurements, as previously described\(^5\). A trained experienced assessor performed all measurements.

Renal function

The markers of renal function, serum creatinine, creatinine excretion rate, and creatinine clearance were analyzed through blood samples collected from the antecubital vein and stored in 10 ml tubes (BD Vacutainer\(^\circledR\)) containing separator clot (Z Serum separator clot). Urine was collected during a 24-hour period, neglecting the first collection. For measurement of urinary volume, beakers of 500 to 1000 ml were used. Blood and urinary creatinine levels were determined by the Jaffé method without deproteinization\(^{22}\). A blind assessor in a specialized laboratory performed all evaluations. All patients were in a fasted state.
Plasma creatine

Adherence to the supplementation was determined in a sub-sample of nine patients through plasma creatine levels, using High Performance Liquid Chromatography (HPLC) (FL SPD-20A Shimadzu®, Kyoto, Japan), as previously described23.

Dietary intake

Food intake was assessed by means of a 24-hour food recall performed before and after the intervention period. Protein intake was analyzed by the software (Nutripad 2.0, Brazil). Participants were instructed to maintain their eating habits throughout the study. The water intake was \textit{ad libitum}.

Statistical analysis

Based on a previous study24, with an effect size of 0.50, $\alpha = 0.05$, and power of 80%, the sample size for detecting a significant interaction was 26 patients (13 per group)(\textit{GPower} software 3.19). Normality of the data was analyzed by the Shapiro-Wilk test. The comparison between the general characteristics of the sample was performed using the t-test for independent samples or Mann-Whitney U test, depending on data distribution. The categorical data were compared by the Chi-square test. Comparisons between groups at baseline were tested by the Mann-Whitney U test. The Generalized Estimation Equation Model was used to compare adherence, dietary intake, and markers of renal function between groups. All analyzes were
performed using SPSS (Statistical Package for Social Sciences), version 21. Statistical significance was defined as P<0.05.

RESULTS

Initially, 160 patients were interviewed for eligibility in this study; of these 118 did not meet the inclusion criteria, 5 refused to participate, and 5 were not included for other reasons such as: difficulty in communication (two subjects), difficulty in traveling because they lived far away (one patient), being involved in another study (two patients). Thirty-two patients started the study, with 17 being allocated in the PLA group and 15 in the Cr group. During the intervention period, three patients were excluded for the following reasons: withdrawal after preliminary examinations due to personal problems (n = 1), gastric discomfort (n = 1), and pleural effusion (n = 1). Twenty-nine patients completed the study (PLA n= 15 and Cr n=14)(figure 2).

No significant statistical differences were identified in the general characteristics of study participants (Table I).

Patients taking Cr presented higher plasma creatine levels than the placebo group (PLA - pre 30.4 (12.2 – 48.6) µmol/l vs. post 48.9 (18.5 – 79.2) µmol/l; Cr – pre 39.3 (11.0 – 67.7) µmol/l vs. post136.0 (93.6 – 178.4) µmol/l; P= 0.042) (figure 3). In addition, both groups demonstrated similar amounts of protein intake before and after the intervention period (PLA - pre 49.7 (32.6 – 66.9) g vs. post 61.1 (43.4 – 78.9) g; Cr – pre 59.2 (39.2 – 79.3) g vs. post 52.6 (38.9 –66.2) g; P= 0.133)
Figure 4 presents the results of Cr on the general markers of renal function. No significant differences were found between groups for serum creatinine (PLA – pre 1.25 (0.98 – 1.52) mg/dl vs. post 1.29 (1.04 – 1.54) mg/dl; Cr – pre 1.02 (0.89 – 1.16) mg/dl vs. post 1.10 (1.01 – 1.19) mg/dl, P = 0.499), creatinine excretion rate (PLA – pre 71.7 (52.1 – 91.3) mg/dl vs. post 83.4 (62.2 – 104.5) mg/dl; Cr - pre 74.2 (50.2 – 98.4) mg/dl vs. post 100.5 (70.2 – 130.8) mg/dl, P = 0.387), or creatinine clearance (PLA – pre 87.2 (62.1 – 112.2) ml.min\(^{-1}\).1.73 m\(^{-2}\) vs. post82.8 (59.2 – 106.4) ml.min\(^{-1}\).1.73 m\(^{-2}\); Cr - pre 98.8 (66.8 – 130.9) ml.min\(^{-1}\).1.73 m\(^{-2}\) vs. post113.4 (86.5 – 140.2) ml.min\(^{-1}\).1.73 m\(^{-2}\), P = 0.310). Regarding individual responses to creatine supplementation, changes in general markers of renal function were within the normal range for all patients.

Discussion

The results of the present study showed that 8 weeks of Cr supplementation, composed of 1 week of loading and 7 weeks of maintenance, did not alter markers of renal function in patients with symptomatic PAD. The results of plasma creatine demonstrated that patients adhered to the Cr supplementation, as the plasma creatine levels increased from 40.5 ml/dl to almost 160 ml/dl. These results were similar to Harris\(^{25}\) who also reported increases in muscle creatine to values close to 160 mmol/kg of dry muscle, after a period of Cr
supplementation. In addition, both groups presented similar intakes of protein, which
was not an intervening factor in our findings.

In the present study, creatinine clearance, the gold standard marker of renal
function was not altered after Cr supplementation. Similar results were observed in
healthy young individuals26, 27, and patients with diabetes24, 28, chronic heart failure12, 29, and kidney disease30. Gualano et al24 performed Cr supplementation in patients
with diabetes at doses of 5g for 12 weeks. Additionally, the same group of researchers
performed a Cr supplementation protocol in a single kidney patient for 35 days
(20g/day for 5 days, followed by 5g/day for the next 30 days)30. These findings
demonstrate that regardless of protocol, time, and sample, creatine supplementation
does not affect renal function. In addition, the results expand the current knowledge,
showing that Cr supplementation is considered safe even in patients at high risk of
renal and cardiovascular disease.

A key point of the present study is the method of assessing renal function.
Other studies with creatine supplementation have used glomerular filtration rate
(GFR)24, 27 as a marker of renal function. However, GFR has some limitations. One of
these is that the equations used to estimate glomerular filtration cannot be generalized
to all populations due to variations in muscle mass, age, sex, and ethnicity31. Thus,
our findings strengthen the knowledge on the safety of creatine supplementation for
renal function in PAD patients, as creatinine clearance is considered the gold standard
in the evaluation of renal function32.

Individual analyzes of renal function markers demonstrated that there was
large intra-individual heterogeneity in both groups. It is well established that
variability in markers of renal function is a risk factor in the progression of chronic
kidney disease and death33,34. A recent study showed that diabetic patients have a 7% higher risk of dialysis/death due to variability in renal function markers33. It is noteworthy that half of the participants in the present study (Cr 50% and PLA 60%) were diabetic, which is one of the possible factors responsible for the intra-individual heterogeneity. Based on this, our findings suggest that creatine supplementation, in addition to being safe for renal function, may be an important strategy in PAD patients with diabetes, since it promotes potential effects on glucose uptake, reducing the risk of mortality24.

From a practical point of view, the results of this study indicate the safety of creatine supplementation for patients with peripheral artery disease. Therefore, interventions based on Cr supplementation can be used in order to improve muscular performance in PAD patients, as occurs in other clinical populations16 known to present muscle atrophy35, reduced strength36, and walking impairment6,37.

The present study has some limitations. Our results are restricted to patients with PAD without chronic renal failure, and whether these results are replicable in patients with PAD with renal impairment, needs to be investigated. Creatine supplementation was performed for 8 weeks, and it is not known if longer periods of Cr supplementation affect markers of renal function. It is worth noting that our findings are restricted to the proposed Cr supplementation protocol (loading and maintenance phase) and cannot be applied for other doses in patients with symptomatic peripheral arterial disease.

The patients in the present study were using antihypertensive drugs, which may affect renal responses. However, since the majority of PAD patients are under hypertension drug therapy, our findings increase the practical applicability of the results.
Conclusion

Eight weeks of creatine supplementation does not alter markers of renal function in patients with symptomatic PAD.

Conflict Interest

The authors declare no conflict of interest with CREAPURE.

Acknowledgment

To CREAPURE for the supply of creatine.

Funding

This work was supported by the Foundation for Research Support of the State of Amazonas (FAPEAM) [grant number #062.03159.2014] and Araucaria Foundation [grant number #002/2017]

References

Menêses AL, Ritti-Dias RM, Parmenter B, Golledge J, Askew CD. Combined lower limb revascularisation and supervised exercise training for patients with peripheral arterial disease: A Systematic review of randomised controlled

[22] Toora BD, Rajagopal G. Measurement of creatinine by Jaffe’s reaction - Determination of concentration of sodium hydroxide required for maximum

[29] Kuethe F, Krack A, Richartz BM, Figulla HR. Creatine supplementation

Figure 1. Study design

Figure 2. Flow diagram

Figure 3. Creatine plasma before and after the supplementation period in a sub-sample (n = 9 – PLA = 5, Cr = 4).

Figure 4. General markers of renal function PLA (n=15); Cr (n=14) and individual PLA (n=12); Cr (n=11) of renal function data: (A) serum creatinine, (B) creatinine excretion rate, and (C) creatinine clearance. Reference value Brazilian Society Cardiology and Nephrology38: dashed line.
<table>
<thead>
<tr>
<th></th>
<th>PLA (N=15)</th>
<th>Cr (N= 14)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women (%)</td>
<td>54</td>
<td>46</td>
<td>0.56</td>
</tr>
<tr>
<td>Age (years)</td>
<td>64 ± 8</td>
<td>64 ± 10</td>
<td>0.54</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>77 ± 10</td>
<td>68 ± 17</td>
<td>0.18</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.64 ± 0.09</td>
<td>1.60 ± 0.06</td>
<td>0.21</td>
</tr>
<tr>
<td>Body mass index (kg/m2)</td>
<td>28.7 ± 3.1</td>
<td>26.7 ± 6.5</td>
<td>0.43</td>
</tr>
<tr>
<td>Ankle-brachial index (mmHg)</td>
<td>0.50 ± 0.13</td>
<td>0.51 ± 0.16</td>
<td>1.00</td>
</tr>
<tr>
<td>Claudication onset distance (m)</td>
<td>143 ± 84</td>
<td>143 ± 65</td>
<td>0.88</td>
</tr>
<tr>
<td>Total waking distance (m)</td>
<td>371 ± 81</td>
<td>344 ± 82</td>
<td>0.65</td>
</tr>
<tr>
<td>Serum creatinine (mg/dl)</td>
<td>1.25 ± 0.5</td>
<td>1.02 ± 0.2</td>
<td>0.23</td>
</tr>
<tr>
<td>Creatinine excretion rate (mg/dl)</td>
<td>71.7 ± 35.4</td>
<td>74.2 ± 41.7</td>
<td>0.78</td>
</tr>
<tr>
<td>Creatinine clearance (ml.min$^{-1}$.1.73m$^{-2}$)</td>
<td>87.2 ± 45.2</td>
<td>98.8 ± 55.5</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Related comorbidities (%)

<table>
<thead>
<tr>
<th></th>
<th>PLA (N=15)</th>
<th>Cr (N= 14)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>86.7</td>
<td>78.6</td>
<td>0.67</td>
</tr>
<tr>
<td>Diabetes</td>
<td>60.0</td>
<td>50.0</td>
<td>0.43</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>6.7</td>
<td>7.1</td>
<td>0.74</td>
</tr>
<tr>
<td>Current smoking</td>
<td>78.6</td>
<td>78.6</td>
<td>0.68</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>46.7</td>
<td>28.6</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Data are presented as mean and standard deviation for numerical variables and frequency for categorical variables. \(^{a}\)T-test for independent samples. \(^{b}\)Mann-Whitney U test. \(^{c}\)Chi-square test. PLA – placebo group. Cr – creatine group.
Assessed for eligibility (n = 160)

Excluded (n = 128)
- Not meeting inclusion (n = 118)
- Declined to participate (n = 5)
- Other reasons (n = 5)
 Difficulty in communication (n= 2)
 Difficulty in traveling (n = 1)
 Involved in other studies (n = 2)

Randomized (n = 32)

Allocated for PLA group (n = 17)
- Received PLA supplementation (n = 16)
- Did not attend the experimental protocol (gave up participating) (n = 1)

Lost to follow-up (health problems - pleural effusion) (n = 1)
- Discontinued intervention (gastric discomfort) (n = 0)

Allocated for Cr group (n = 15)
- Received Cr supplementation (n = 15)
- Did not attend the experimental protocol (n = 0)

Lost to follow-up (n = 0)
- Discontinued intervention (gastric discomfort) (n = 1)

Analyzed (n = 15)
- Excluded from analysis (n = 0)

Analyzed (n = 14)
- Excluded from analysis (n = 0)