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Abstract

The aim of this thesis is the analysis of the spectral stability of plane wave solutions of the
3-wave resonant interaction (3WRI) model, when such solutions undergo localised pertur-
bations.

For the rst time, we provide a comprehensive topological classi cation of the spatial sta-
bility spectra with respect to the parameters space and the gain functions associated to
any stability spectrum. We nd that all the stability spectra of the coupled nonlinear
Schredinger (CNLS) system are enclosed in those of the 3WRI system. The topological
features of the CNLS stability spectra are gaps on the real axis (solutions not bounded in
space), and branches and loops o the real axis (solutions bounded in space which can be
linearly unstable in time). New topological components exist in the stability spectra of the
3WRI model: we name such components twisted loops. They are associated with explosive
instability (the corresponding solutions blow up in a nite time) and their gain function

is non-zero in a whole neighbourhood of the origin. We observe that the gain function
associated to the branches is non-zero at low wave numbers, symmetrically located with
respect tto the zero-value of the wave number, but it is zero at the origin of the plot (linear
instability of baseband-type). The gain function associated to the loops is non-zero only
away from the origin (linear instability of passband-type).

We show that the plane wave solutions of tt8VRI model are linearly unstable in time

for any choice of the physical parameters, including those ones associated to the solutions
that are explosive. Thus, there is linear instability of the plane wave for any choice of the
physical parameters corresponding to a positive gain-function.

Finally, we conjecture that the existence of branches in the stability spectra is a neces-
sary condition for the onset of rogue waves ascribable to rational or semi-rational solutions
obtained by Darboux Dressing Transformation. Indeed, we observe numerically linear in-
stability of plane waves with the subsequent generation of localised structures whose onset,
as a result of the perturbation of plane waves, must be investigated further due to the

dispersionless nature of the 3WRI system.
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Chapter 1

Introduction

1.1 Background and Current Research

1.1.1 Modulation Instability for Scalar Dispersive Equations

Many phenomena in nature can be explained via instabilities. Hydrodynamic instabilities
can occur if the initial physical features (velocity, pressure and density) of a uid ow are
exposed to small disturbances. Between all hydrodynamic instabilKielsin-Helmholtz
Instability (KHI) [L} 2] is well-known. It takes place between the interface of two uids
owing with di erent velocities. The most famous examples of the manifestation of KHI
in nature are the red giant vortex in the Jupiter's atmosphere and the generation of clouds
that are "ocean wave-like" in the Earth's atmosphere. If the two uids ow with di erent
densityRayleigh-Taylor Instability(RTI) [3] can occur: it is the explanation of the genera-
tion of "mushroom clouds" in the volcanic eruption or atomic explosion. It can be also seen
as the limit of another fascinating phenomenon that is tRéichtmyer-Meshkov Instability
(RMI) [4, 5|, 6]. In general, it is when a shock wave interacts with the perturbed interface
of two uids with di erent physical properties. At the beginning of the interaction just a
row of vortices with di erent signs are created, but then the perturbation grows in time and
"mushroom” structures arise. Plasmas exhibit a huge number of magnetohydrodynamics
instabilities, for example "sausage instability” and "kink instability" are observed in solar

corona [78].
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Modulational Instability (MI) is ubiquitous in nature and it was observed in several nonlinear
wave phenomend [9], such as in radio waves in transmission lineés [10], in light waves
in dielectric materials[[11] and in plasma waves during the nonlinear coupling of plasma
cyclotron waves and magnetohydrodynamic modes [12]. In the context of water waves,
Ml is referred to asBenjamin-Feir Instability so named because Benjamin and Feir rst
observed it in nonlinear Stokes waves on deep water surface [13, 14].

MI may arise if a plane wave of a scalar nonlinear dispersive equation is perturbed with a
long wave perturbation such that the original waveform is deformed and the wave amplitude
is said to be modulated [15, 16, 17]. Perturbing the amplitude of the plane wa\et) =

ae (™ ') with real amplitudea, wave numbek and frequency , by means of the plane

wavesh(x;t) = by e ®*  U + e {(Kx 1 one gets the perturbed solution

U(X;t):(a"' ux;t))ei(kx t) — aei(kx !t)+ tblei((k+K)X ' +)) t+h)2ei((k Kyx (0 ) t;

(1.1)

wherex is spacet is time, by, are real amplitudes of the perturbations arg << a , the

modulation frequency is <<! and the wave number of the perturbation k§ << k .



Chapter 1. Introduction 3

After perturbing, the amplitude of the resulting plane wave is not anymore a constant, being
instead a function of space and time. The perturbed solution reafs;t) + u(x;t) +
ua(x;t), where uq(x;t) = by (kKX () tand u,(x;t) = byoel(k KIx (1) t gre

the so-called sidebands andx;t) is known as the carrier wave.

MI has two stages: a linear and a nonlinear stag€. [9]. The linear stage is the mechanism
responsible for the ampli cation of the perturbation when the approximatian; << u
remains valid in time. In this limit, the equation for the perturbation is linear, and nonlinear
terms in the perturbation are meant as higher order corrections to the linear dispersive
equation. This approximated linear dispersive equation is namedlittearised equation
When this approximation is no longer valid because the perturbatians are such that

uj u, and the order of magnitude of the nonlinear terms becomes comparable to the
order of magnitude of the linear dispersive equation, then the nonlinear stage comes into
play. After the amplitude of the perturbed plane wave reaches its maximum value, it may
vanish by causing the formation of localised energy solutions, and solitons may occur as a
result of the balance between dispersion and nonlinearity [18].

Since the linear stage of Ml is a linear instability, it can be studied via the linearisation of
the nonlinear equation around the perturbation. By substituting the explicit expression of
u(x;t)+ u1(x;t)+ u(x;t) into the nonlinear equation, and keeping only the terms at the
rst order in the perturbation, the linearised equation can be written as a matrix equation

(see, for instance[]19])
A bo = 02 2, (1.2)

whereﬂ Aisa2 2 matrix, 0, oisthe2 2 zero matrix and the solution is the vector

bo = boie®X B bye iKx O T The condition such thathy is solution of )

is the vanishing of the determinant of the matri&, i.e. det(A) = 0, which gives the
dispersion relation for the perturbations.

In 1965 Lighthill [21] obtained the so calleBenjamin-Feir-Lighthill (BFL) criterionto
determine if a scalar system can be linearly unstable or not. Speci cally, he considered a
weakly nonlinear Stokes wave (i.e. weakly nonlinear periodic progressive wave, see [22])
on deep water and he found that, if the linearised PDE is a hyperbolic equation, then the
Stokes wave is neutrally stable, instead, when the linearised PDE is an elliptic equation,

then MI may occurl[17]. However, this result is obtained by considering negligible dispersion

1The explicit expression of the matrixA depends on the equation in study.



Chapter 1. Introduction 4

e ect and, for this reason, the BFL criterion is not a su cient condition for the existence
of MI. Indeed, when dispersion is negligble, the dispersion relation for the perturbation
is independent of the wave numbé&t ; on the contrary, when dispersion is present, we
can de ne a domain for the wave numbé&t of the perturbation such that Ml can occur.
Thus, also in the case in which we have elliptic PDEs, the argument of the square root
can be negative only for certain values Kf. Moreover, for% = 0, we obtain the
critical valueK ¢iic = K (a; P; Q) corresponding to the largest growth rate gfin( ( K))j.

The valueK ¢iic  depends on the amplituda of the plane wave solution, but not on its
frequency! and its wave numbek, whereas the modulgm( ( K))j is known as thegain
function. Thus, MI occurs for values of the physical parameters for whjich( ( K))j is

not zeroﬂ For instance, the NLS equation can be WHt@l{llE]
U iPux + iQjuj?u =0; (1.3)

when PQ > 0, by the BFL criterion, we have an hyperbolic equation and there is no
possibility to have MI; whereas PQ < 0, we have an elliptic equation and we can have
MI. Thus, the necessary condition to observe MIH®) < 0 and we need also to compute
for which valueK the gain functionjim( ( K))j takes real values di erent from zero. In

this particular case, the physical parameters are related one with each other by the formula

2
(  2PkK)?=P?K? K2+2Ea2 ; (1.4)

such that, if PQ > 0, the imaginary part of , that is the gain functionjim( ( K))j, does

not exist. Instead, ifP Q < 0, the explicit expression of the gain function is
r
jiim(( K))j=2PkK | PKj K2+2§a2 (1.5)
and the domain of the wave numbé&t, at which the gain function is non-zero, reads

2 Q 2.
K ZEa : (1.6)

The maxirraum value of the functionim(( K))j is reached at the wave number |15]

Keritic = %az-

2That is true also for multicomponent models.
%In the Chapter 2, we will write the NLS equation in a di erent manner.
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Looking at the expression of the perturbed solutil.l), the existence of complex mod-
ulation frequency entails that, as time goes on, a perturbation grows with the e ect
of amplifying the amplitude of[(1]1). Nevertheless, in general, the amplitude might not
grow up inde nitely because, at a certain time, the neglected nonlinear terms come into
play to possibly bound such a growth. From the physical point of view, the BFL criterion
corresponds to a necessary condition for the occurrence of the localisation of the energy
due to a balance between dispersion and nonlinearity. This fact is re ected in the frequency
spectrum of the waves interacting during MI. Indeed, MI can be also explained as a four-
wave resonant interaction between two in nitesimal sidebands at frequenicigs= !
with a strong carrier wave at frequendy [23]. A wave at frequency interacts twice
with a sideband at frequency; to produce another sideband with a di erent frequency
I,=2! 1. Similarly, this last sideband interacts with the carrier wave and reinforces the
rst sideband. In other words, they interact under resonance conditions for the frequencies
I'1+!1,=2! and also for the wave numbeks + ko = 2k, with ky., = k K. Indeed, if we
consider the perturbed plane wavie (IL.1) as solution of the NLS equation, the nonlinearity
term becomes proportional to
juju = ale* 1) 4 @2 el @k (krK)x @ (1 +) Oy
1.7
+albpe @k (K KDx @ (1 D Y4 grey o(azboj); j=1:2;

where c:c: stands for complex conjugate of the correcting terms and we have neglected

all the terms whose order of magnitude is smaller than the terms muItipIiedamj.

Here, the correcting terms to the plane waves have as arguments of the exponentials

2k (k+K)=2k ki 2k (kK K)=2k kpand2 (1 +)=2 1 Iy
2! (! ): 2! 5. Thus, 2k ko = ki, 2k ki = ko and 2! 1o = 14,
2! !1:!2

If only dispersion was present, the resonance conditions would not be satis ed because, in
the linear dispersion relation, frequency would depend only on the wave humber. Therefore,
even if the waves would interact with di erent frequencies, in general, they do not match
the resonant conditions. The interacting waves would propagate with di erent phase ve-
locities and, as a result, the dispersion e ect pulls apart the resulting wave. On the other
hand, if also the nonlinearity is present, then the perturbation satis es a linearised equation

whose dispersion relation involves both the wave number and the amplitude of the carrier
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wave. Although with di erent phase velocities, they propagate on the background of the
carrier wave and the wave numbers, as well as the frequencies, match the resonant con-
ditions. Indeed, because of the self-interaction term, the sideband, say, with frequency
satis es a linearised equation plus a forcing correction term proportional to the sideband at
frequency! » and to the squared carrier wave, (see, for instance, the second corrective term
in the expressio?)). If this forcing term oscillates with the same frequency of the other
sideband, then they resona@ If nonlinearity and dispersion compensate, the sidebands
grow linearly as time goes on and drive the carrier wave to oscillate around the resonant
frequency! with greater amplitude. In this case, we say that nonlinearity contrasts disper-
sion by compressing the plane wave, namely, Ml causes the localisation of the energy. As
already mentioned above, since when nonlinearity and dispersion balance one each other,
we say that the nonlinear stage of Ml comes into play and the occurrence of solitons was
observed in this stage [24, 25]. From here it is clear the importance of studying the linear
stability of physical systems undergoing small perturbations and searching for the existence
conditions of localised solutions. In this respect, the interest in mathematical methods to
treat Ml has witnessed an explosion during the '70s, after the powerful Inverse Scattering
Transform (IST) method to nd solutions of nonlinear PDEs was developed [26,(27, 28].

It was applied rst to the Nonlinear Schredinger (NLS) equationJ29], and then, after the
development of the Ablowitz, Kaup, Newell and Segur (AKNS) scheme [30], it was ap-
plied to the Kortweg de Vries (KdV) equation [31] and to other physical models. The key
idea is that IST is suitable for the investigation of the asymptotic behaviour of solutions
of nonlinear equations. A pioneering research in this sense was conducted by Kuznetsov
and Mikhailov [32]. Using the Shabat-schemel[33], they studied the stability of periodic
stationary waves of the KdV equation as time goes on. The asymptotic stability of the
system is explained by the vanishing of the continuous spectrum, while the discrete spec-
trum survives in time, that is the existence of a set of stable solitons as asymptotic state.
Later, several other works were conducted using the Shabat-scheme. For instance, the NLS
equation, whose solution goes to the amplitude of the Langmuir wavgxas 1  was

used for the investigation of the parametric instability of solitons in a homogeneous plasma

[34] and the KP equation, whose solution goes to the cnoidal wavgxasl  was used

“In the case of the NLS equation, we have chosen the frequency and the wave number of the perturbations

so that they resonate with the carrier wave.
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for the analysis of the stability of periodic waves in a weakly dispersive medium [35].

In the framework of the IST method, particular boundary conditions are required, for ex-
ample by imposing that the solution and its rst derivative are in the class of potentials
vanishing su ciently fast asymptotically. Indeed, it is di cult to deal technically with the

IST when solutions have more complicated asymptotic behaviour. Nevertheless, some re-
search works have been conducted to reformulate the IST such that one can work with more
sophisticated asymptotic solutions, for instance, solitons with honzero boundary conditions
as solutions of the focusing Nonlinear Schredinger equation [36, 37], and it has been shown
that combinations of the growing exponential solutions of the inverse problem saturate
the MI leading, then, to the formation of solitons in the nonlinear stage. In recent times,
this subsequent nonlinear stage of MI for the scalar NLS equation has been the subject
of intensive investigation and, using numerical and analytical techniques, the stability of
plane wave solutions with respect to localised and random perturbations has been studied
[38,139]. Similarly, the stability of plane wave solutions of the scalar NLS equation with
respect to periodic perturbations has attracted much attention, and has been investigated
in [4Q,[41,[42]43] using the theory of nite-gaps and matched asymptotics.

In 1974, Ablowitz developed an alternative and powerful spectral method to lead stability
analysis[[44]. The method is based on the fact that the solutions of the linearised equation
can be written in terms of the so called squared eigenfunctions (SE) (see for example [44],
[45, [46] for an introduction to squared eigenfunctions as solutions of the linearised NLS
equation), which in turn can be written in terms of the Lax operatdrs|[47]. Once a solution
of a nonlinear equation is perturbed, the problem to investigate the linear stability of the
system is equivalent to investigate the behaviour in time of the SE solutions of the linearised
equation (see, for example,_[48]). Indeed, via the construction of the SE, one is able to
compute the corresponding eigenfrequency whose imaginary part, i.e. the gain function,

provides information about the linear stability.

1.1.2 Modulational Instability and Other Linear Instabilities for Multi-

Component Systems

As mentioned above, Ml for scalar equations is the deformation of the form of the amplitude

of a plane wave as a result of the balancing of dispersion and nonlinearity. When these
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e ects are balanced, solitons may appear in the nonlinear stage. In this case, Ml arises when
two sidebands are added on the background of the carrier wave with which they interact.
Ml is the result of the self-interaction of the perturbed solution, such that there exists a
nonlinear interaction between plane waves linearly superimposed.

When dispersive nonlinear multi-component systems are taken into account, the single
component of a system may exhibit MI, but the entire system can be linearly unstable or
not. In this regard, the MI of two-component system of counter-propagating waves has
been analysed in the research warki[49]. The authors considered two-component solutions
of two coupled sine-Gordon equations, which are travelling with di erent group velocities
and each component is composed by two counter-propagating waves linearly superimposed.
Then, they used a multiple scale approach to obtain three asymptotic models at di erent
length scales and di erent timescales, which are systems of four evolution equations, one
for each wave. By considering the models so obtained, rst, they took into account the two
components composed by only one plane wave. At the super-long length scales, the leading
order in the dispersion relations is represented by a dispersion term, such that dispersion is
considered responsible for the MI. As soon as one considers the long-length scales, a term
coming from the self-interaction is added to the linear dispersion relation, so, dispersion and
nonlinearity compete with one another as described in the previous subsection. However,
without any restriction on the wave number of the perturbation, it has been observed that,
besides the linear instability of the single plane wave arising from the competition between
the terms of dispersion and self-interaction, any wave can be a ected by the coupling be-
tween the components. Indeed, such coupling can suppress or enhance this linear instability
as a result of the addition of a term coming from the self-interaction. In this way, the

e ect of nonlinearity becomes stronger or weaker compared to when coupling is absent.
The plane wave can gain or lose energy due to the sharing and the exchange of energy
occurring when the components overlap, and so, nally, leading to the linear stability or
instability of the system[[49] 50]. For these two-component systems, dispersion plays a
key-role in the occurrence of MI, and it has also been shown that coupled dispersionless
nonlinear systems are, indeed, stable with respect to the Ml [51]. The linear instability
can occur if the dispersive term is taken into account also if it is a higher order correction
to the transport and nonlinear terms [49, 50]. Furthermore, the presence of an additional

counter-propagating mode in any component caampletely inhibit or enable the linear
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instability because of the exchange of energy between the counter-propagating plane waves
in each component and between two coupled components as well. Indeed, because of these
couplings, nonlinearity competes with dispersion in a stronger or weaker manner [49, 50].
The classi cation of the linear instabilities in the paramete%space was carried out in

the research works for two coupled focusing or for two coupled defocusing NLS equations
[71] and for mixed coupled NLS equations, that is a focusing and a defocusing scalar NLS
equations are coupled [52]. Taking into account the coupling between two plane waves
considered as the two modes of a wave packet and whose perturbations are two Fourier
modes, the classi cation of the linear instabilities is performed on the basis of the energy
exchange between plane waves undergoing linear perturbations. These works con rm the
existence of instabilities also in defocusing regime (besides the long-wave instability) when
there is a coupling of two propagating modes. Several scenarios can occur. For instance,
when two focusing NLS equations are coupled, there can be cross-phase instability if one
unstable mode, or both unstable modes, of the perturbation excite each plane wave and
the energy is shared by the two co-propagating plane waves; or there can be self-phase
instability if one mode of the perturbation excites a plane wave more than the other one,
there is less shared energy between the two plane waves, and, so, there is linear instability
of just one plane wave.

Besides to dispersive nonlinear multi-component systems mentioned above, there is a non-
dispersive nonlinear multi-component system which can exhibit linear instability, that is the
3-wave resonant interaction3WRI) system[[53]. The solitons of thBWRI system interact

in a di erent manner from the solitons of dispersive nonlinear systems, thus one can expect
that the mechanism leading to the linear instability (and then to the possible formation
of solitons) is di erent for the two kinds of systems. For this reason, we refer to this
phenomenon as linear instability rather than as MI. Indeed, di erently from the solitons of
dispersive multi-component systems with quadratic coupling, originating from the balance
between dispersion and nonlinearity [54], the solitons of 8WRI system originate from

the mismatch of the group velocities of the interacting wave packets, once provided the
resonant conditions (see formulds (B.1) in Chapter3)I[53]. In order to highlight how special
the 3WRI system is, we remind the reader about the research vork [55] where the genera-

tion of dispersive shock waves was observed in absence of dispersion and whose behaviour

5These parameters are the wave numbers of the two component plane waves and of the disturbance.
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resembles the generation of shock waves in dispersive equations, such as the NLS and the
KdV equation. Moreover, the role of the dispersion in the system was investigatédiin [56].
The authors studied the linear stability in space of a triplet of dark solitons and showed
that the introduction of a quasi-negligible second order dispersion reduces the instability
allowing the three dark solitons propagation.

It is worth pointing out that there is no galilean transformation for which all the three
waves have zero group velocity and the velocities mismatch allows the envelopes to overlap
when the nonlinearity becomes important. Moreover, due to the fact that 8WRI system

is non-dispersive, in the asymptotic limits! 1  , the envelopes are well separated and

do not overlap; however, during the interaction, the envelopes can exchange both solitons
and radiation. Thus, the solitons and radiation (continuos spectrum) are on an equal
footing"[67] 58]. This feature of the3BWRI system makes its soliton solutions remarkably

di erent from those ones of other dispersive systems for which radiation decays as time goes
on [44,[59]. In fact, solitons and radiation interact nonlinearly and radiation never decays
asymptotically [57]58]. Kaup and collaborators carried out the linear stability analysis of
the 3WRI system when its solutions have a vanishing background, and gave necessary and
su cient conditions for linear instabilities to occur[[57]. The carrier wave and the two
sidebands have nite and in nitesimal amplitudes, respectively, and they interact under the
three-wave resonant conditionsg+! >+ ! 3 = 0 andky+ ko+ k3 = 0, where the frequencies

I'i and the wave numberk; can take any value, not necessarily in nitesimally close with
one another. These resonant conditions do not originate as a result of sel nteraction, but
they must be written together with the8WRI systenﬂ [58]. Under particular conditions,

the carrier wave can exhibit explosive and the decay instability [60, 61], but only if the
carrier wave travels with intermediate group velocity with respect to the group velocities
of the two sidebands and if it possesses solitons. We stress that the solitons in question
move on a vanishing background and can be obtained, in principle, via IST. In this case,
we say that the carrier wave is linearly unstable][57]. Nevertheless, thanks to the lack of
the dispersion, all we need to know is the linear behaviour at tinhel , and then 'we

can completely determine how this system evolves, even in nonlinear rgf@inhelooking

only at the time evolution of the scattering data. This allows to turn around the matter of

solving the inverse problem in order to see if an envelope possesses solitons in the nonlinear

5We will clarify this concept in Chapter 3.



Chapter 1. Introduction 11

regime. Some works on the scalar NLS1[86] 37 29] were carried out via this procedure.
However, obtainingN -soliton solutions, especially for multi-component systems, can be
rather di cult task to achieve.

Hence, the necessity to develop mathematical tools to investigate the linear stability of
multi-component systems. The application of perturbation theory to the IST can be ex-
tended, in principle, to investigate the linear stability of any integrable system, also those
ones which are multi-componerit [62,163]. The starting point is still the Lax Pair. Once the
scattering data are given by thdirect problem one can construct the associated potential

by the inverse problemPerturbing the direct and inverse problems, the linear perturbations
of the potential are written in terms of the variations of the scattering data (and vice versa)
by squared combinations of components of eigenfunctions and its adjoints: the so called
squared eigenfunctionéSEs) and theadjoint squared eigenfunctionfASES) [62,63]. Al-
though, the research works by Kaup and collaborators were carried out both on scalar and
multicomponent systems, one needs to use the IST machinery to get a representation of
the perturbation in terms of the SEs, and thus their expression in terms of the eigenmodes.
It is clear that in the framework of the IST method, the stability analysis is cumbersome to
apply to multicomponent systems, in particular for soliton solutions with a non vanishing
background. However, the property of the SEs to be solutions of the linearised equation is
local and it follows directly from the Lax pair without the need to apply the IST machinery
(see Chapters 2 and 3). In this respect, recently a new spectral approach has been devel-
oped in [64]. In this research work, the authors investigate the linear stability of continuous
waves in all regimes in the framework of the integrability and their method can be applied to
other more complicated solutions such as dark-dark, bright-dark, and higher-order solitons

travelling on a continuos wave background.

1.2 Motivations and Purposes

In the recent years MI has been proposed as a possible mechanism for the generation of
rogue waves."In oceanography, rogue waves are de ned as waves whose height is more
than twice the signi cant wave height, that is the average height of the highest one-third

of the waves in a wave record66, [23].
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From an experimental point of view, researchers are interested on their reproducibility and
observability in wave tank experiments. From a mathematical point of view, this is equiv-
alent to study the linear stability of solutions which can describe the dynamics of rogue
waves.

The dynamics and the physical features of rogue waves can be described by solutions of the
NLS equation, such as the homoclinic orbirts [67] of an unstable Stokes wave. Calini and
collaborators[[69] discovered that, beside the mechanism of MI, rogue waves are created
as a result of phase modulation. Using the gauge form of the Backlund transformation
[68], they constructed the associated solution of the linearised NLS equation, i.e. a squared
eigenfunction and so they explored the stability of Stokes waves. Finally, they stated the
following selection criterion for rogue waveamong the homoclinic orbits of a Stokes wave
with M unstable modes, the only 'good' candidate for rogue wave is the maximally iterated
homoclinic orbit, with all its spatial modes coalesced through phase modulatj6f].

A similar investigation was performed on the spatially periodic breathers on an unstable
plane wave background, obtaining a similar conclusion [70].

If one considers two coupled NLS equations (CNLS), besides the already mentioned non-
focusing instabilities between two unstable and two stable CNLS elds [71] or between a
stable and an unstable CNLS eld [52], baseband MI can exists. It is triggered by zero-
frequency disturbances, and it is believed to be responsible for the formation of rogue waves

[72,[73,74].

Between all the possible kinds of solutions suitable to model rogue waves, we focus on
rational solutions: they are solutions with a rational, or semi—ratio[ﬂadependence on the
variablesx andt, in contrast with the standard solitons whose expression is given in terms
of exponentials only. They are also solutions of multicomponent wave equations such as
the CNLS equation and the 3WRI system [75,] 76] 77]. In this thesis we take into account
the system of a resonant triad, not only because it encloses this kind of solitons, but even
because the nonlinearity term is the simplest that can occur between three interacting waves
[78,[79], and the interaction of waves under resonance conditions is of great interest in many
elds of research (see, for instancé, [80,181] and the literature therein). We investigate the

linear stability of the 3WRI model by considering solutions on nite background.

"Here, semi-rational solutions are meant to have an expression that is both rational and exponential in

the variablesx andt.
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Due to the technical mathematical issues already stated in the previous section, the linear
stability of this system and the mechanism leading to its linear instability are less studied
than those of other systems, such as the CNLS equations. However, further outcomes
can be obtained thanks to the approach developedlin [64], and we have applies such an
approach to the plane wave solutions of the 3WRI system in order to investigate their
linear stability and to con rm if linear instability can be considered a necessary condition
to explain the formation of rogue waves mathematically represented by rational solutions.
In order to do that, we take advantage of the integrability of this systém![82), 83]. This
fact is not obvious at all, since the stability of a solution is a local phenomenon, while the
integrability is a global characteristic of the equation. As it has already been mentioned
(see [62]°68]), solutions of a linearised equation can be written by squared eigenfunctions,
and, in turn, by means of the associated Lax pair. If an equation is Lax-integrable [84],
the stability of its solutions can be analysed (see, for instance| [71] and [52]). Once the
squared eigenfunctions are obtained, we look at their temporal behaviour: if they have an
exponential growth in time (i.e. the gain function is di erent from zero), then the provided
solution of the nonlinear equation is (neutrally) linearly unstable. We underline that this
approach allows us to generalise the formalismNo N matrices. As a consequence, the
solutions of the Lax pair equations are written in matrix form and the squared eigenfunc-
tions are more general than those ones used so far.

In addition, we use the spectral method developedin [64] for a technical reason: IST is al-
gebrically cumbersome and it becomes more and more complicated to apply if one wants to
nd solutions which are rational, semi-rational or, more generally, with a nite background.
Indeed, it is necessary to solve the inverse problem to see if localised structures exist asymp-
totically (after the interaction). For the3WRI system, the linear stability analysis which
can lead to the formation of solitons on vanishing background has leaded to the conclusion
that the envelope with intermediate velocity can decay surrounding alNitsolitons and,

after the interaction, the fast and the slow envelopes own additioNakolitons each one.
However, it has been impossible to nd the nall soliton solutions which, instead, were
written only in implicit form and the ndings were supported by numerical analysis [58].
Instead, this alternative approach [64] allows us to use Darboux Dressing Transformation
(DDT) [85] 86] for envelopes whose background are plane waves interacting resonantly,

and in this respect, it turns out that DDT is potentially more useful and algebrically simpler
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for nding rational solutions [[76]. Another reason for choosing this method is that this
approach does not depend on the functional class of the potential, contrary to the IST,
which requires the imposition of boundary conditions. Therefore, a wider class of solutions
can be taken into account, such as rational or semi-rational solitons, whose dependence
on spacex and timet usually is asymptotically polynomial, but also other solutions such
as breathers. We have numerically observed the generation of potential rogue waves and
breathers generated via the linear instability of such a system. This remarkable observation
would not have been possibile without the application of the approach [64], which is tailor-
made for multi-component systems with solutions on nite background.

In this thesis, rst, we carry out a comprehensive topological classi cation of the stability
spectra of the3BWRI system in the parameters space, where the parameters in question are
combinations of the physical parameters involved in the plane waves and in the system.
This classi cation is topological and we associate a gain function to any topology. We
observe that the stability spectra of the CNLS system are included in this classi cation and,
indeed, the gain function shows the presence of Ml-baseband-like and MI-passband-like for
such spectra. However, the stability analysis for the 3WRI system is richer, because it
presents additional topological features. Indeed, we observe a new gain function associated
to such topological features which can be considered neither a Ml-passband type nor a
MI-baseband type, and are, instead, associated to a stronger linear instability around the
zero wave number. In particular, we have observed, via numerical simulations, that this
kind of topology and its gain is associated to explosive instability, i.e. the three interacting
waves blow up in a nite time[[60, 61].

We show that the plane wave solutions of tl®VRI system are linearly unstable in time

for any choice of the physical parameters, including those ones associated to the solutions
that are explosive. The linear instability of the plane wave correspond to the observation
of a positive gain-function.

Although the onset of the linear instability of th8WRI system has not been clari ed, this
thesis is meant to be a prelude for its understanding. Indeed, we aim to investigate the
mechanism leading to this phenomenon in future research works. It is worth highlighting
that, in the research work [§7], the authors have analysed the stability of two coupled or-
dinary di erential equations (instead of three PDESs) whose forcing term is the interaction

with a third wave, with large amplitude, which does not obey the same dynamical equa-
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tions of the other two interacting waves with nite amplitudes [B8]. They speculate that
the third wave is a cosine as a function of the time.The authors claimed that a su cient
and necessary condition for the onset of instability is that the two interacting waves have
modes of opposite sign.

In this thesis, we perform the linear stability analysis on three coupled PDEs, and after
linearising every equation, the wave solution interacts with the perturbations of the other
two waves. Moreover, every solution propagates with di erent velocity and we cannot nd

a reference frame in which they have the same velocity. Instead, we can obtain a system
of three ordinary di erential equations only in the particular case in which the three waves
propagate at the same velocity [67]. For tf®VRI system with wave solutions propagating

at the same velocity, the Hasselmann's criterion [[89] 90] states that instability occurs if
the two sidebands modes sum together with the same signs, and in the case they interact
resonantly with the same signs, there is neutral stability.

Hence, we underline the relation between the presence of baseband Ml type and the pos-
sible existence of rational solitons which can model rogue waves, and in this regard, we
provide a necessary condition for the existence of rational solutions on a nite background
constructed by means of the DDT method. For sake of simplicity, we will refer sometimes
to these rational and semi-rational solutions as rational solutions of Darboux type or DT-
FB rational solutions, FB standing for \ nite background". We do that by the stability
analysis of the plane waves which are solutions of the 3WRI system. These plane waves
are meant as the possible background for solitons, namely as the seed solutions for the
algebraic construction of rational solutions of Darboux type. When needed, we will specify
if we deal with semi-rational solutions, instead of purely rational solutions.

The motivation to conduct this research is because, so far, the mechanism which causes
rogue waves formation is unknown, although several hypothesis have been formulated and
MI (like passband and baseband) is one of them|[91], we assume that their onset can be
due to the more general phenomenon of the linear instability, that is a phenomenon that
can occur in the 3WRI system. Moreover, rogue waves are ubiquitous in nature and are
observed in several physical settings, such as in water tank [92], in bre opti¢s [24] and in
plasmal[93]. They are also predicted in the atmospheére [94], in super uids [95], in Bose-

Einstein condensate5 [96] and in capillary waves [97].
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1.3 Overview of the thesis

In Chapter 2, we describe the spectral method developed_in [64] and we use the NLS
equation as a case study.

In Chapter 3, we give the 'set up' of the formalism for the 3WRI system: Lax pair and Lax
operators, construction of the squared eigenfunctions, characteristic polynomials and useful
rescalings of the physical parameters of the problem.

In Chapter 4, we conduct the stability linear analysis through the topological classi cation
of the stability-spectra in the parameters space and the associated gain functions. Thus,
we state a necessary criterium for the existence of rational and semi-rational solitons on a
nite background of Darboux type. However, the computations of the expressions of these
solutions is not the aim of this thesis.

In Chapter 5, we show some numerical observations of breathers and potential rogue waves.



Chapter 2

Linear Stablility of Plane Waves of
the NLS and CNLS Systems

In this chapter we present the formalism developedlin [64] by providing the NLS equation
as an example. Because NLS is a scalar equation, the space stability spectrum coincides
with the spectrum of the spatial part of the Lax pair[64]. This coincidence is not met in
the general case of the multi-component systems. Thus, in order to understand where the
spatial stability spectrum comes from, we provide the CNLS system as a further example
[64]. In this way we are able to write the general de nition of stability spectra for multi-

component systems.

2.1 Universal Nature of the Nonlinear Schiedinger Equation

and Modulational Instability

The origin of the Nonlinear Schmdinger equation is rooted in the theory of self-focusing
waves in electrical elds. In 1964, R. Y. Chiao et al. wrote a NLS-type equation [98].
They considered the wave equation for an electric eld plus a nonlinear term and concluded
that an optical beam of a single frequency, whose dynamics is described by such equation,
cannot spread in a nonlinear media, namely the beam is self-focused. Since then, more

investigations were carried out on the self-focusing phenomenon (see, for instance, [99, 100])
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and, in this context, the NLS equation was derived [In][99] as we know it today,
U iUy +2isjujfu=0; s?=1; (2.1)

where the subscripts denote the derivatives with respect to the spaaad the timet, | j

is the module of the classical eld(x;t), ands is a sign.

The NLS equation with the sigs = 1 is known as focusing NLS equation and was written
for the rst time in the research paper on the self-focusing optical beams in dispersive and
nonlinear medial [99]. Using the IST method, Zakharov and Shabat derived its solutions
classi ed as bright solitons which decay at zero at the spatial in nity, and as breathers
which decay at a constant background at the spatial in nity |29].

For s = 1, the equation is named defocusing NLS. Its solutions are known as dark solitons
due to their feature to have a nontrivial background intensity and a spatial local dip. They
were obtained by IST in [101].

The universal nature of the NLS equation lies in the fact that it describes the dynamics of
many systems in nature whose behaviour is that one of an envelope of a monochromatic
wave packet in a dispersive and nonlinear media when the dissipation can be neglected [19].
Zakharov was the rst to derive the NLS equation in the context of water waves [103]. Nev-
ertheless, it can be derived in the limit of weak nonlinearity from several equations via the
multiple scale method, for instance, by the Sine-Gordon equation [15]. The defocusing NLS
equation can also be derived from the KdV equation and the focusing NLS equation from
the modi ed-KdV (see for example [102]).

After Stokes wrote the approximate solutions of the Laplace problem [22], i.e. the Stokes
waves, Benjamin and Feir discovered that nonlinear Stokes waves are modulationally unsta-
ble [13]. It is well known the pivotal role of the NLS equation in the study of MI and the
NLS equation is one of the most used equation for modelling modulation of waves. In this
regard, we refer the reader to the bodk [15] for the linear stability analysis of plane waves,
solutions of the NLS equation.

Because the NLS equation had a key role in the understanding of the M| and because it is
a scalar equation, in the next section, we shall describe the spectral method developed in

[64], by using the NLS equation as a case study.



Chapter 2. Linear Stability of Plane Waves of the NLS and CNLS Systems 19

2.2 Matrix Form of the Nonlinear Schiedinger Equation

Before we proceed with the stability analysis, we make a 'set up' for a new formalism in which
the NLS is meant as a matrix equation, where the matrices involve?ar€. In order to do
that, we take advantage of mathematical techniques provided by the integrability. Indeed,
since the NLS equation is integrable [29], it admits a representation via two di erential

equations, which are called Lax equations,
x = X t=T; (2.2)

where the subscripts are the derivatives with respect to the spatial variatdaed the time
variablet, X and T are2 2 matrices nhamed Lax operators, being = (x;t; ) a
common solution of the two linear di erential matrix equationf (2.2), whife = X (x;t; )
andT = T(x;t; ) depend on the variables, t and on a complex quantity called spectral

parameter, according to the de nitions

X=i 3+0Q; (2.3a)
T=2i 23+2Q +i 3(Q? Qy); (2.3b)
where
0 1
=@ A (2.4
0 1

is a Pauli matrix. The matrixQ = Q(x;t) depends on the variables and t, contains the

complex dynamical variable = u(x;t) and introduces the sigs® = 1

0 1
0 su

Q:@ A (2.5)
u 0

whereu is the complex conjugate of the dynamical variakbie We are interested in non-
trivial common solutions of the Lax equationsZ), which are given by the compatibility

condition

xt = tx- (2.6)
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The NLS equation can be obtained bly (2.6), because it is integrable. By using (2.2)
and (2.6), we get an equation for the Lax operataxs and T

Xt Tx+[X;T]=0; 2.7)

where[X;T]= XT TX is the commutator of the two matriceX and T ﬂ Finally, by
the de nitions of the Lax operators|(2]3) and using the fact that

Q% = sjjQjj%l2 2; (2.9)

wherel, , is the2 2 identity matrix andjj jj denotesE] the spectral norm ofQ, we

obtain the scalar NLS equation in matrix form
Qi+ i 3Qu 2s 3jQjj*Q=0: (2.10)

In computing the equation[(2.10), we have used the property of the Pauli matgxo be
involutory, thatis 4 = 1, ,. Moreover, the anti-commutators 3; Qg =0 andf 3;Qxg=
0. The anti-commutator between two matrice& andB is de ned asfA;Bg= AB + BA.

One can check that[(2.70) includes the NLS equation in scalar form. By writjng (2.10) as

follows
0 1
0 s(u, + iu 2isuu 2
@ (U X ) =0y 7, (2.11)
Ui iUy +2isu U2 0

where0, - denotes the null matri2 2, hence,

U + iUy, 2isuu 2=0; (2.12a)

!By ([@.2), the left-hand side and the right-hand side of the conditior] (2]6) are rewritten in the following

way

xt :(X )t

Xi + X =Xy + XT ) (28a)
and

tx :(T )x

Tx +T x=Tx +TX: (28b)

2The spectral norm ofQ is de ned as
0 1
- - 0 wu
iQi =" ma; Q=@ o
su O

where max is the biggest eigenvalue of the matriQQY, where QY is the conjugate transpose of the matrix

Q.
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Ui iUy +2isu u2=0; (2.12b)

where the equation|(2.12a) is the complex conjugate of the equat.12b). In particular,
(.128) is the NLS equation foun and (2.124) is the NLS equation far .

2.3 Integrability and Linear Stability

In addition to the matrix NLS equation, we need to introduce Lax operators which are
independent of the spatial variabbe and of the time variabld. In this way, the resulting
Lax equations are integrable by the separation of variables method and the obtained solution

is mapped into the solution of the original Lax problem[31].

2.3.1 Lax Problem Revisited

Let us consider the simplest solution of the NLS equatipn (2]12b), namely the plane wave
uo(x;t) = ad(@™ 1) (2.13)

depending orx andt, wherea is the amplitude g is the wave number and is the frequency
of the wave solution. Lek 2 R be independent of the variablesandt. The frequency

depends ora and g by the relation
= P +2sa2; (2.14)

that is obtained by substituting[(2.13) in the NLS equatioh (2.12b).
In order to simplify the calculations, we introduce the transformation on the matrix solution

Qo = Qo(x;t),
0 1 0 1
0 su 0 sa
Q=@ ’A=Gc@ TAg L (2.15)
up O a o0

whereup = uo(x;t) is the plane wave given i (2.13)y, is its complex conjugate =

G(x;t) is a diagonal matrix which contains all the dependence on the variablasd t,
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andG 1= G 1(x;t) is its inverse. More in detail, the matri§&6 can be written as follows

(see Appendix P):
G= e zlax (@+2sad)] s. (2.16)

The transformation |(2.15) induces also a transformation on the solutiomf the Lax pair

-G (2.17)

such that it introduces the function = (x;t).

By putting the transformation ) into the the Lax paif (2]2), we obtain the PDEs (see
Appendix B):

x = W ; t= iz, (2.18)
where the operator®V = W( ) andZ = Z( ) are de ned as follows

iW =G IXG G Gy (2.19a)

iZ =G TG G G (2.19b)

The operatorsW andZ in (2.19) are2 2 matrices independent of andt and depending

only on the spectral parameter, whose expressions, in terms of their entries, [Fre

0 1 0 , 1
+ 4 isa 22+ 9% jsa(2
w=@ °? A z=@ 7 sl zq)A; (2.20)
ia J a2 o 22 %
and, in addition, they are related with one another is
z= 2 Jw (2.21)

3We have used the formulas
G oy = qu 3. G G = Ii(q2+23a2) .
and the anti-commutators

f 3;,Q9=0:
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The advantage of the revisited Lax Palr (2]18) is that we can integrate it by separation of

variables and a solution is
— al(Wx Zt); (222)

where we have used the fact thfV;Z] = 0. In turn, by using the transformation[ (2.17),
the solution of the Lax Pair[(2]2) is

- e %[qx (q2+25a2)t] 3e|(WX Zt) (223)

2.4 Investigating Stability via Lax Pair

The perturbations of the NLS equation can be written as combinations of the SEs which
are solutions of the linearised equatidn [44]. Since the SEs are written starting form the
Lax operators, it turns out that one can characterise the solutions of the linearised equation

by using such operators.

2.4.1 Squared Eigenfunctions

The starting point of our investigation is the Lax problerh (2.2) for the NLS equation.
Using the solutions and ! of the Lax problem|[(2.R), we de ne the SE= (  x;t)

= M L (2.24)

whereM = M ( ) isa2 2 matrix dependent only on the spectral parameter By ),
satis es the PDEs|[[64]

x=0X1; t=[T;1; (2.25)

which are compatible with one another because [of [2.7).
The transformation [(2.17) induces the similarity transformation

= G G L (2.26)
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where the matrixG is given in ), and = ( x;t), dened as

= M % (2.27)
satis es the PDEs (Appendik [C)

x =W, 1, = iz, ]; (2.28)
whose solution i§]

= dWx 2 (g :g)e (Wx Z0). (2.29)

where (0 ;0) is the initial condition atx = 0 andt = 0. Because of|[(2.27) and (2.22),
(0 ;0) M( ). Finally, because of the transformatior{s (2]26) arid (4.17), the SE, solution

of the PDEs [2.25), reads

= G (0:0 '¢'= @©:0 1% (2.30)

where is provided by|(2.23).

2.4.2 Solution of the Linearised Equation and its Connection with Integra-
bility

In this section we introduce the linearised equation (LE) obtained perturbing a generic so-

lution of the NLS.

“Let us suppose( x;t)= (x) (1), by integrating in x the rst of the equations
Z X
xX)= O+ i [W;  (x2)]dx1;
0

and, via iteration,
Z Z Z Z Z

X X X X X

1 1
(x)= ©O)+i [W; (0)dx, w; [W; (x2)]dxz dxi = (0)+i[W; (0)]x W; [W; (x2)]dxz dxa:
0 0 0 0 0
Similarly, by integrating int the second of the equations|(2.75), one gets
Zt Ztl
M= (0 iz O]t Z, [z, (t2)ldty dty;
0 0
thus,

(xt)y= (x) ()= (0) (O)+ i[w;, (0) (O)Ix i[Z; (0) (O)]t+ :::;

and, by setting (0) (0) = (0 ;0), the solution is ).
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Let us suppose to have a solution of a nonlinear equation and to add to it a small pertur-
bation, so that the perturbed solution is + u. As a consequence, the matrix solution is

perturbed

Q! Q+ Q; (2.31)
and the perturbed Lax operators are

X! X+ X T! T+ T: (2.32)

By substituting {2.32) in the equations (2]7), at the rst order in the perturbation, we get
the LE

(X)) (T)x+[XT]+[X; T]=0; (2.33)

which is an evolution equation for the perturbatiol@. Moreover, we stress that the
expression of the linearised equation, as it is written[in (2.33), is independent of the model
until one chooses the Lax pair, namely the matfxand, for this reason, the LE (2.33) is

written more generally as follows
A; Byx+[AT]+[X;B]=0: (2.34)

We are interested in searching for solutioAs= A(x;t; ) andB = B(x;t; ) related to
the fundamental matrix solution of the Lax pair. In this respect, we provide the following

propositions, which are also stated in_[64].

Proposition 2.4.1. If the pair A, B solves the linearised equati034), then also the
pair F = F(x;t), H = H(x;t) de ned as

F=[A1; H=[B]; (2.35)
satis es the linearised equatiorj (2.B4), namely
Fi Hx+[F;T]+[X;H]=0: (2.36)

This is a consequence of the Jacobi identity and of the fact thats a solution of |(2.2b)
[64].
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Proposition 2.4.2. The following expressions

@X @T
F= —; ; H= —; ; 2.37
@ @ (2.37)
are solutions of the linearised equatidn (236).
The validity of this statement follows from the fact that the matrices
@X @T
A= —,; B=—; 2.38
@ @ (2.38)

are solutions of the equatior] (2.84) and from the Propositjon 2|4.11 [64].
A consequence of the Propositign 2.4.2 is that any sum or integral of F over the spectral
variable is a solution Q of the LE (2.33). As in the paper [64], we assume that the

perturbation Q has the integral representation
Z
Q= dF (Xt ) (2.39)

which provides a solutionQ bounded and localised ir at any xed timet. We require
that the perturbation is localised, so that the absolute value of the perturbed solution goes
to a constant agxj! 1

The matrix F (x;t; ) and the perturbation Q satisfy the same linearised equatidn (2.33)
provided that only local terms are involved in their expressions [64]. The sol&iptays the
same role as the exponential solution of any linearised equation with constant coe cients,
namely, by varying over the spectrum, it provides the set of "Fourier-like" modes of the

linear PDE [2.3B) and it takes the general expression [64]

X _ .
F(xt )= G(xt) jm ()@l m) Hm 2 lEOMI()G L(xt); (2.40)
jm=1

wherew; and z; are the eigenvalues of the matric#¥ and Z, respectively andN is the
dimension of the matrice8V andZ. The coe cients jx ( ) are arbitrary functions of the
spectral parameter , whereasF M)( ) constitute a basis (we will obtain explicitly the
formula (2.77) in the section 2.5).
If we want Q to be bounded, then the solutioR must be bounded ix for any xedt and

, and the subset of the complex-plane, over which the integra9) runs, constitutes
the so-called stability x-spectrum of the solutio, denoted bySx [64]. The spacial

spectrumSy can be geometrically de ned as follows:
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De nition 2.4.3. The x-spectrumSy, namely the spectral curve on the complexplane, is
the set of values of the spectral variablesuch that at least one of these complex numbers

Ki =W+ Wz, ) =1;2:5N (modN) is real.

Similarly, one can de ne the stability t-spectrum, denoted By, for which the perturbation

Q and the solutionF is bounded and localised in time for any xedand . Here, we
are interested in nding the values of the spectral parametefor which the perturbation

Q is bounded in space but it can grow up in time, such that the soluti@rcan even be
linearly unstable in time[[64]. In the case of the NLS equation, we will do that by nding
both the Sy and S; spectrum. The values of belonging to theSx spectrum, but not to
the S; spectrum are those ones for which linear instability occurs. We highlight that, for
the scalar NLS equation, the spectrum of the opera@{ X and the spectrum of the
operator% T coincide with the stability spectrunsx and with the stability spectruns,,
respectively (see [64] for more details about this point).

In the following, we nd the general expression Bffor the NLS equation. AlthougtH is
also a solution of the LE, we choose to work withonly for the sake of simplicity. Because
we are in the case 02 2 matrices, we use the algebraic basis generated by the Pauli
matrices.

From (2.37), the solutionF can be written as

F=2i 5 O (2.41)

where we have used the commutation rules between the Pauli matrices. Therefore, we
are interested only on the computation of the o -diagonal part of the SE in particular,

becauseG is a diagonal matrif, we consider only the following SE:
©=g (Og 1 (2.42)

where (9 = @Wox Zot) (9)(0; 0)e (Wox Zo!) (see[[64] for more details about the proce-
dure for obtaining this solution after the diagonalisation of the matriddsand Z), where
Wy and Zg are the diagonalised matrices & and Z, and the latter are simultaneously

*By the de nition of  (2.26), we have

= G G l:G( (o) 4+ (d))G 1:G (O)G 14 (d);

where © and (9 are the o -diagonal part and the diagonal part of the matrix , respectively.
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diagonalised because they commute with one another. We cannot have the term propor-
tional to  (9(0;0), because, whew =0 andt = 0, the solution must be still o -diagonal.
Thus, we impose (9(0;0) (0 ;0) and (@(0;0) 0. Moreover, if the matricesV
andZ were not diagonalised, therf x;t) would have also had entries on its diagonal part,
but we want to take only its o -diagonal entries. Indeed, once put®(0;0) (0 ;0),

one can check this by assuming that the exponengdfW @ +W©)x (Z@+Z) can pe
approximated by the Taylor serids » + i(W(@ + W©)x (2@ + Z()t) + :::: and,
then, by substituting it into the expression of x;t).

Let us suppose that the expression of the initial condition is
©©0:00= 1+ o (2.43)

where and are arbitrary constants, and, and , are the Pauli matrices

0 1 0 1
1:@0 1A; 2:@0 IA;
10 i 0

Let Wo and Zg be proportional to 3. Indeed, because of the property of the trace to be
invariant under cyclic permutations, it turns out that the trace of the similarity transfor-
mations for diagonalising the matrice&4 andZ in ) is zero as well a#/g andZg are

2 2 traceless matrices.

Since the o -diagonal Pauli matrices, 1 and », anti-commute with the diagonal Pauli

matrix 3, we get

0 = g 2i(Wox Zot)gi(ax (gP+2a2)t) 3. if  s=+1: (2.44)

0 = g 2i(Wox Zot)gi(ax (o® 2a2)t) 3 if  s=-1: (2.45)

We have supposed = 0 for the defocusing cass = +1 in ([2.44), and = 0 for the
focusing cases = 11in ). This is becaus&) is an o -diagonal matrix equals to
Q= a (6@ (2391 s jf =41 and equals toQ = ja €@ (@ 229 3 jfg= 1
and we choose to perturb with a matrixQ with amplitude proportional to 1 if s=+1 or
proportional to , if s= 1. Moreover, sincd= satis es the same evolution equation of
Q and they are related with one another i39), then the perturbatié@® and F must
be proportional to the same Pauli matrix. In turtk is given in [2.4]L), so that the squared
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eigenfunctions must be those if (2J44) anfd (2]45). Finally, using the commutation and
anti-commutation rules of the Pauli matrices applied to the expre332.41), the solution

of the LE is

F= 2 e 2Wox Zodlax (#2290 3 jf g=41; (2.46)

F=2 e 2Wox Zohglax (¢ 2ata jf g= 1. (2.47)

We observe that, in the case of the NLS equation written 2ia 2 matrices, the di erences
of the egeinvaluew; andz; arew; Wwj+1 =2w; andz; zj+ =2z forj =1;2 mod(2),
because of the commutation rules of the Pauli matrices. This does not hold for matrices

W and Z whose dimension il > 2.

2.4.3 Spectral Stability Analysis

The matricesW and Z are simultaneously diagonalised and are related one with the other
by means of formull) and thus their eigenvalues are related asﬁ/vell

w = g 2 sa z= 2w, (2.48)
where we are considering the plane wave wgtk 0.
In both the focusing and defocusing & 1 ands = +1) cases, the eigenvalueg and
z are reals if and only if 2 Sy and S;, respectively. In the defocusing case= +1 the

solutionu = ae 2@%t js linearly stable because the x-spectrum

Sy=f1 < ag fa < +1g; (2.49)
is included in the spectrum of the operatar

Ss=S f =i 1 < < +1g: (2.50)

Both the spectra are shown in the gure 7.1.

In the focusing cass = 1, the solutionu = ae?a’t is linearly unstable. Indeed, the

%In order to obtain the eigenvaluesv and z, we have solved the equations
Det(W wl, 2)=0; Det(Zz zl, 2)=0;

with unknownsw and z, and Det( ) is the determinant.



Chapter 2. Linear Stability of Plane Waves of the NLS and CNLS Systems 30

Figure 2.1: Defocusing case, a=1.

X-spectrum is

Sx=fl < < +1g f = i : a +ag; (2.51)
while t-spectrum is

Ss=fl < < +1g f =i : < a or > +ag (2.52)

In this case the branch a < < +a belongs toSx but not to S;, as shown in the

gure P.2 This is related to the MI phenomenon, indeed, in such a case, the squared

Figure 2.2: Focusing case, a=1.

eigenfunctions in[(2.46) and (2.47) grow exponentially as time goes on.
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2.5 Wave Coupling and Solution of the Linearised Equation

for the CNLS System

In the following we give an introduction to the linear stability problem of the plane wave
solutions of the CNLS system within the integrability framework to prove that the main
objects to be computed are the eigenmodes' wave numbers and frequencies de ned on the

stability spectrum. In the presentation, we will follow [64].

For the CNLS system, we start by choosing the Lax operabrisc;t; ) and T(x;t; ) to
be

X()=i + Q; T()=2i2+2 Q+i(Q> Q; (2.53)
where , Q are matrix-valued functions ot andt, and is the spectral parameter, and
0 1
1 0 O
= %o 1 og; (2.54a)
0O O 1
0 1
0 vy v,
Q= %ul 0 O E : (2.54Db)
Uo 0 0

Here and below the asterisk denotes complex conjugation and the four eld variables
U1;Up;Vy; V2 are considered as independent functionsxofand t, and are conveniently

arranged as two two-dimensional vectors, that is
0 1 0 1

u v
u=@ ‘A y=@ ‘A (2.55)
Uo Vo

Then the matrix PDE [[2.J) becomes, in this case,

Q= i(Qu 2Q%; (2.56)

which is equivalent to the two vector PDEs

Ut = ifuxx  2(vYu)u]

iV 2(UWV)V]; (2.57)

Vi
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equivalent to the CNLS system upon setting

V1 = Si1Uj; (258&)

Vo = SolUo: (2.58b)

Here the dagger notation denotes the Hermitian conjugation (which takes column-vectors

into row-vectors). In this simpler setting, iQ(x;t) is a given solution of the equation

(2.56), the linearised equatior (2.83) for a small chang2(x;t) reads

Qi= i[ Qu 2(QQ%+QQQ +Q*Q): (2.59)

Moreover, the Propositions 2.4.1 and 2.4.2 are still satis ed for the CNLS system (and

any multi-component system, satisfying certain hypothesis, see [64]), and the fact that the
perturbation Q and the solutionF are linked by the integral[ (2.39) guarantees that the

matrix F (x;t; ) satis es this same linear PDE, namely
Fi= i[Fx 2(FQ?+ QFQ+ Q%F)]; (2.60)

and, for 2 Sy, these solutions should be considered as eigenmodes of the linearised

equation.

The spectral analysis is based on the following

Proposition 2.5.1. The matrix
F=i[l ;1 ; (2.61)

de ned in the Propositiorj 2.42, along wit (2.53), in the case of the CNLS system, satis es

the same linear equation satis ed by .

The Propositior] 2.5.]1 has been specialised to the case of the CNLS equation, but it is stated
in a general form in[64] (see Proposition 4 of the paper), in which it is formulated for any
multi-component system provided that each term in the expression of the Lax operators
has a local character.

We can compute analytically the matrik if the fundamental matrix solution (x;t; ) of
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the Lax pair corresponding to the solutid@(x;t) is explicitly known. Here we devote our

attention to the stability of the plane wave solution of (2.56), or of the equivalent vector

system [(2.5]),
ux;t)= @3 Da: y(xt)= @3 Vp:; = ¢ +2b%: (2.62)

In these expressiona and b are arbitrary, constant and, with no loss of generality, real

2-dim vectors:
0 1 0 1

a=@MA. p=@™A. (2.63)
az o}

The plane wave solution of the CNLS system is obtained by setting

by = siay; (2.64a)

by = Spay: (2.64b)

The reduced version of this system is the NLS one-component versionysfor v, =
O;vy = uy, that turns out to be a good model of the Benjamin-Feir (or modulational)

instability which is of great physical relevance (see Chapter 2).

The main focus of this section is to understand how the specti@gchanges by varying the

parametersas, ag, by, by and g. In matrix notation, see|(2.54b), this plane wave solution

[@.62) reads

0 1
0 bh b

Q=G G 1!; = %al 0 o%; G(x;t) = élax ot Zpt) . (2.65)
a 0 O

where the matrix has the expression (2.54a) while the matrixis

0 1
00 0

= %o 1 o%; (2.66)
00 1

and we conveniently introduce the real parameters

p=bha + ay (2.67a)
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(= bar bya (2.67b)

which will be handy in the following. Next we observe that a fundamental matrix solution

(x;t; ) of the Lax equations has the expression
(Xt )= G(x;t)ei(XW( ) Z() - (2.68)

where thex, t-independent matrice¥V and Z are found to be

0 1

ib; ibp
W()=% iag q O E: q i ; (2.69)

iaz 0 + q

0 1
2 2 2 b (2 + b
ZU:%)i(Z dar 2?2 o ahp aiby §= 2 2W () W) p;
i(2 + ga agby 22 @ ab

(2.70)

with the property that they commute,[W ; Z] = 0, consistently with the compatibility
condition y = . We consider here the eigenvalueg( ) andz( ), j =1;2;3, of
W ( ) and, respectively, oZ ( ) as simple, as indeed they are for generic values.ofn

this case bothW ( ) andZ( ) are diagonalized by the same matifix( ), namely

W( )= U()Wp( )U (): Wp =diagfwi; wy; wag

Z()=U()Zo( U *(); Zp =diagfzi; z2; zag: (2.71)
Next we construct the matrix= (x;t; ) via its de nition, see [2.6]1), [(2.2p) and[(2.37),

Foot )= 5 ot M) Hat )]s (2.72)
which, because of the explicit expressifn (2.68), reads

Fxt )= G(x;t)h ;OO ZOIM (e TOWE) 12 ) G (xt):  (2.73)

As for the matrixM (), it lies in a nine-dimensional linear space whose standard basis is

given by the matrice® (™M) whose entries are

BI™ = (2.74)
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where j is the Kronecker symbol (x =1 if j = k and jx =0 otherwise). However the

alternative basis/ M) which is obtained via the similarity transformation
vim)y=y)Bimu 1(); (2.75)

whereU( ) diagonalizesV andZ (see [2.71)), is more convenient to our purpose. Indeed,

expanding the generic matrikl ( ) in this basis as

X3 .
M()= im (V™) (2.76)
jm=1

the scalar functions j,, being its components, and inserting this decomposition into the

expression[(2.73), leads to the following representatiorfof

x3 _ .
F(x;t; )= G(x;t) im ( )e|[(X(Wj wm) (g Zm)]F(Jm)( )G 1(X;t); (2.77)
jim=1

where we have introduced the, t-independent matrices
. h . i
FOMcy= o vimey (2.78)

The advantage of expressioh (2]77) is to explicitly show the dependence of the nfatrix
on the six exponentialg/ (X wm) t(z zm)],
The elements j ( ) are arbitrary because they are the coe cients on the basig ()

used to write the matrixM () in (2.76), that is, in turn, arbitrary.

2.6 Eigenmodes' Wave Numbers and Frequencies for Multi-

Components Systems

The Proposition[ 2.5.]1 stated in the previous section guarantees that, for any choioé
the functions jm ( ), the expression?) be a solution of the linearized equat2.59),
see [2.6D). The requirement to hav&® bounded is equivalent to requirf bounded.
Looking at the formula (2.77), sincejx are arbitrary, it is su cient to impose that only
one dierence, sak; ko, is real and the corresponding;» 6 0, and to impose that the
other coe cients are 23 = 31 =0." The further condition that the solution Q (x;t) be

bounded inx at any xed time t results in integrating expressioh (2]77) with respect to the
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variable over the spectral curv&, of the complex -plane:
Z

Q(xit) = dF (xt ): (2.79)

Sx

The spacial spectrunsy can be geometrically de ned as follows:

De nition 2.6.1. The x-spectrumSy, namely the spectral curve on the complexplane,
is the set of values of the spectral variablesuch that at least one of the three complex

numbersk; = wj+1  Wj+2, | =1;2;3(mod 3), or explicitly
k()= wa( ) ws(); ka( )=ws( ) wi(); ks()=wi() wa(); (2.80)

is real.

Observe that thek;'s play the role of eigenmode wave-numbers (dee (2.77)).

The requirement to haveQ bounded is equivalent to requifeé bounded. Looking at the

formula ), since j are arbitrary, it is su cient to impose that only one di erence, say
ki ko, to be real and the corresponding»> 6 0 and to impose that the other coe cients

are 3= 31 =0.

To the purpose of establishing the stability properties of the continuous wave solUtion|(2.62)
we do not need to compute the integral representatién (2.79) of the soluti@nof (2.59).
Indeed, it is su cient to compute the eigenfrequencies

Ma()=22() z3(); '20()=2z3( ) za(); '3()=z() z2); (2.81)

as suggested by the exponentials which appeaf in (2.77). Their expression follows from the

matrix relation (2.70)

z= % 2wj w p; (2.82)
and read

= K2 +wj++w2);, J=1;2,3(mod3): (2.83)
This expression looks even simpler by using the relatier w, + w3 = implied by the

trace of the matrixW ( ) (see [2.69)) and nally reads
Fi = ki (w ); j=1;23: (2.84)

The consequence of this expressi¢n (2.84), which is relevant to our stability analysis, is

given by the following
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Proposition 2.6.2. The continuous wave solutior] (2.62) istable against perturbations
Q whose representatior] (2.89) is given by an integral which reméy over those values

of 2 Sy which are strictlyreal

The proof of this Proposition is provided in_[64].



Chapter 3

The 3-Wave Resonant Interaction

Model

In this Chapter we introduce the 3WRI system and we reformulate it in order to include all
the possible velocity orderings and all the possible choices of signs in just one Lax pair. This
reformulation simpli es the computations in view of a complete classi cation of the spatial
stability spectra in the parameters space (see Chapter 4). Then, we apply the formalism
developed in[]64] as introduced in the Chapter 2. Finally, we write the di erences of the
eigenvalues of the matrice& in terms of the di erences of the eigenvalues of the matrices

Z.

3.1 Linear Stability Analysis of the 3WRI Equations: Histori-

cal Overview and State of the Research

The 3-wave resonant interaction (3WRI) model describes the dynamics of three waves inter-
acting by a quadratic nonlinearity and without dispersion and dissipation. The nonlinearity
term can be considered like a perturbation at the rst order of the linear dynamics[[55, 78].
The weak, quadratic nonlinearity and the neglected dispersion make the system the simplest
model to be analysed in case of resonant interaction. The interaction is called 'resonant'

because it takes place only when the frequencieand the wave numbers; of each wave
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with j = 1;2; 3 satisfy particular relations, namerkesonant conditions
1+ 2+ 3=0; 1+ 2+ 3=0: (3.1)

Moreover, the dispertionless dynamics entails that for time goinglto the solutions are

well separated and do not decay, and the model is integrablé [58]. The dynamics with
dispersion can be also described by adding a dispersive term that, in general, makes the
model non-integrable, unless it is a second order correction to the linear dynamics that acts
in a timescale longer than the nonlinearity. However, this correction a ects substantially
the stability of the system. For instance, in the research wark [56], a triplet of dark solitons
with locked velocity has been found to be always unstable. Nevertheless, a quasi-negligible
second order dispersion balances the nonlinearity e ect so that a stable triplet of dark soli-
tons can propagate.

In this thesis we are interested in the linear stability analysis of the simplest solutions of the
3WRI system, i.e. the plane waves. The stability of a resonant triad was studied rst in
1967 by Hasselmann for spatially uniform plane waves and he formulated a stability criterion
(namedHasselmann's criteriof89]:

"the nonlinear coupling between two in nitesimal componeritsand 2 and a nite compo-

nent 3 whose wave-numbers and frequencies satisfy the resonant-interaction conditions
1 2= 3 1 2= 3

is unstable for the sum interaction and neutrally stable for the di erence interaction.”
In other words, the criterion above states that the wave with highest frequency exhibits
instability [44,[90]. The dynamics of a conservative system of coupled plane waves with

amplitudes modulated in time is described by the ordinary di erential equations

dA;

W = SlA2A3,

dA;

at = SpAA;z; (3.2)
dAs

W = S3A1A2,

whereA; = Aj(t), with j = 1;2;3, are complex slowly varying amplitudes, are signs
such that sj2 = 1, and the asterisk denotes the complex conjugation. Let us suppose
that the waveAs; is the 'pump’, whose amplitude is initially nite and it is approximately

constant in time, while the amplitudes of the other two interacting waves are in nitesimal
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and dependent on time. These assumptions lead the sysfenj (3.2) to reduce td |44, 57]

dA

@ - SRS

dA>

at = 55A A3z, (3.3)
dAs
—=0:
dt

and becausé\3 is constant in time, we obtain

dZAj
dt?

s1S2AjjAz% j =12 (3.4)

If s1 = s, =1 andsz = 1, then the in nitesimal amplitudes grow exponentially until the
linear approximation is not longer valid, the amplitudés and A, become comparable to
the amplitude A3 which, in turn, depletes. However, this process is periodic, in the sense
that, after an exact perio@tg E] A1 andA, deplete andA 3 grows [57]. ThusA; andA» are
periodic, andA3 is nonlinearly unstable: the linear approximation is not valid anymore when
the in nitesimal amplitudes reach the value of the nite one. ¢f = s, = s3, all the three
amplitudes grow inde nitely and the system exhibits explosive instability [57,/60/ 61, 104].
Beside research works on the system of ordinary di erential equati (3.2), further research
has been carried out on the systefn (.2) and on the stability of its solutions. In particular,
if the amplitudesA; depend on both time and space, such that the syst(3.2) involves
partial derivatives with respect to both timé and spacex, general solutions are wave
packets[[105,106]. The starting point of the investigation in this thesis is the 3WRI model,
that is written in general form as an integrable system of three PDE4 in1 dimensions
[535]

8

% it + C1lhix = S10h0s 5

5 bt + Colhx = SoGh g ; (3.5)
Ost + C3sx = S30,. (% ;

whereq = g (x;t) are complex amplitudes; is the group velocity of theg th-packet, s;
such that sj2 = 1. The subscriptsx andt denote the partial derivatives with respect to
spacex and timet, respectively, while the asterisk stands for the complex conjugation.

By assuming that the resonant condition§ (B.1) are satis ed, the syst¢m|(3.5) describes

lto is the time that the in nitesimal solutions A; and A, take to become comparable to the amplitude

As.
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several processes that can be classi ed mainly by the signsand by the ordering of

the velocitiesg [57]. Indeed, the syste.5) comes from perturbing the di erential

equationutt + (i@ )?u = N(u), where ( ) is a real nonnegative polynomial, with
2(0) > 0, and N is twice di erentiable function, withN (0) = N40) = 0, enclosing

nonlinear terms[[55, 78, 79]. After using the multi-scale method, one gets an equation for

the lower order error term and, in order to avoid that this term grows linearly, we need to

set equal to zero some terms such that, after rescaling, we obtain the systerh (3.5) with

signss; = sgn(N°R0) ), j = 1;2;3 [55]. Therefore, the systen{ (3.5), with the resonant

conditions ) and with a sigrs; dierent from the other two signs, is associated to

decay instability. On the other hand, the syste.5) can also be obtained, with the same

procedure described above, by replacing the té¥ntu) with the termE] N (ux), such that

the signs are de ned as; = sgn(NQ0) j m ), forj; I; m =1;2;3 and all distinct [55].

As a result, the conditionsl) are satis ed fa@; = s, = s3, provided that the ratios

—j are all positive. This is the case known as explosive instability. Indeed, by considering

wave packets as solutions, we can individuate the solutions with explosive behaviour via the

analysis of theManley-Rowe relation [107]
z

Z
jonj?dx  s1Sp  jopi?dx = l1; (3.6a)

R R

Z Z
jpj®dx  sps3 josi®dx = l23; (3.6b)

R R

Z y
jogi®dx  s1S3 jenj®dx = lag; (3.6¢)

R R

with ¢ being a smooth function satisfying the conditigqj?! Oforjxj!1 , wherej j is

the modulug’| and 115, |23 and I 13 being constants. The equation§ (3.6) are conservation

2The subscriptx denotes the derivative with respect tox of the solution u.
3If we multiply each equation for the envelopej by its complex conjugateq , and if we add to this

equation the equation forg, multiplied by ¢, we obtain an equation for the action of every envelopg [55]

(that is the energy of the wave divided by; [57])
z Z

E jqudXZZSj Ref o1 p gz gdx; j=1;2;3;
dt R

and Ref g is the real part of the productqupgs. Finally, by summing two by two these equations and by

integrating them with respect to the time, we get the Manley-Rowe relations. [55]
“This is a consequence of the fact that the solutiong are wave packets and so they are also square-

. R. .,
integrable jgjcdx< 1.
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laws of the action exchanged between the interacting envelopes [108, 109].

By looking at the reIationsG), we deduce that when all the sigisare equal one to
another, the system[(3]5) can exhibit solutions with spikes at a nite time because the
conserved quantity; may not bound the actionRqu j? dx of any packet in the left-hand
side of the equationsG). Indeed, the envelope can grow up inde nitely and blow up
at a nite time although their mutual exchange of action allows; to remain constant
[60, [55,[110]. If instead one sign is di erent from the others, the systdm|(3.5) describes
two kind of interactions: decay instability or stimulated backscatter|[57]. For example, let

us consideis3 = 1ands; = s; =1, then the Manley-Rowe relationsbecomdf]

z z
jomj?dx  jopifdx = 11 (3.7a)
R R
Z z
jogi®dx+  jopj?dx = lg; (3.7h)
R R
Z z
jpi®dx+  josi®dx = I3 (3.7¢)
R R

With this choice of signs, the constants; are nonnegative and bound any norm of the
envelopes at any time, such that the solutions do not grow up inde nitely and remain
bounded (see [55] and [110] for more details). This process is interesting because, during
the interaction between the envelopes, linear instability may occur. In this respect, in [111],
by using the IST formalism and numerical techniques, the authors studied the stability of
a nite amplitude wave interacting with two initially in nitesimal amplitude waves. In this
way, the system([(3]5) reduces to a system of two linear equations for the initial in nitesimal
waves. Because the small amplitudes can grow up during the interaction, after a certain
time, nonlinearity comes into play and the linear approximation is not valid. However, there
is a connection between the linearisation of the 3WRI model and the Zakharov-Shabat
problem describing its nonlinear evolution. In particluar, after some transformations, the
3WRI model describing the interaction between a 'pump' and two in nitesimal sidebands,
reduces to three Zhakarov-Shabat problemsli[57]. This is because the system is disper-

sionless, the envelopes are well separated in the initial and the nal states, and hence the

5Only two conserved quantitiesy; are linearly independent. Indeed, fdr, and |43 linearly independent,

thenI23: |12 |13-
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Zhakarov-Shabat scattering data contain all the information about the nal state. A con-
clusion about the linear stability analysis of the 3WRI model is that, if the highest-frequency
pump has the middle velocity and contains solitons, then linear instability occurs and in the
nal state the pump can show a spike at a nite time (explosive instability) or can deplete
(decay instability) [57]. We highlight that this analysis was conducted by supposing that
the potential of the eigenvalues problem goes to zeraxdsl (see also[[58]).

Although, the Manley-Rowe relationsare useful to predict if square-integrable solutions
blow up at a nite time, we can not use them when plane waves solutions are considered.
For this reason, even if we do not exclude the possibility of the existence of solutions with
explosive instability, in our analysis, we need to consider any choice of signs, also that one
in general associated to explosive instability, isg.= s, = s3.

Moreover, most of the research works lead so far dealt with wave packets, not with plane
waves as, instead, we shall do. In addition, the linear stability analysis was carried out by
considering the two side-bands and the pump as solutions of the three 3WRI system. The
framework of our research is more general, in the sense that we deal with a system of three
plane waves, we perturb every solution and then every solution interacts with the pertur-
bations of the other two interacting waves. In other words, we are considering a system of
three pumps interacting in resonance one with each other and every pump interacts with
two side-bands.

In the literature, the system| (3]5) has been written in di erent forms, obtained by rede ning
the variablesg and the velocitiess;. This is because, from the computational point of
view and depending on the applications, a form may be more convenient than others. For
instance, let us consider the case in which one sign is di erent from the others. If one puts
=0, = andg = ggands; = p1, S = p2 andsz = pz, the system ) can

be written in a more general form by introducing a complex coupling conskartl12]/56]
8

§ Gt + C1tix = P1K g
3

Although the equations[(3]8) describe the interactions between three waves in a homoge-

Cpt + Colpx = P2K hOs; (3.8)
Ot + Calx = P3K !

neous medium |58, 111], they can be mapped into a system with a phase factor describing
the interactions in a medium with weak inhomogeneity and an IST problem is formulated

in order to understand the e ect of inhomogeneities on the three waves interacfion/ [112].
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In this thesis we apply the spectral analysis method developed_1h [64] to plane waves
only. On the other hand, several other researches were carried out on more complicated
solutions of the 3WRI system. In fact, it is well known that the 3WRI model has so-
lutions that are triplets of solitons travelling together with a common velocity, the so
called simultons Interesting research works were conducted on simultons in the last

years [82[113[ 114, 115, 116]. Indeed, the syst¢m (3.12) has also been used in a co-

variant form [56] obtained transforming the eldsj as ui(z;y) = K C1C2C2 au(x;t),

P

C1

uz(z;y) = K o4 (xt), us(z;y) = K

tons Vi = A, Vo = i satisfying the conditiond < Vi < V. After that transfor-

C1C; gz(x;t) and with 'velocities' of the soli-

mations, z and y are the temporal and the spatial variable, respectively. The equations
so obtained have a simulton solution constituted by three dark solitons which are always
unstable unless the 3WRI system is perturbed via a weak dispersion. It was observed that
this weak dispersion reduces the MI[56]. Even if the perturbed system should not have
solitons, the dispersion parameters are chosen such that only the shape of the soliton are
slightly modi ed and at the same time the instability is reduced [56]. In the same work,
the analysis and the classi cation of the stabilities according to the signs is carried out.
The stability of a simulton composed by two bright and a dark solitons (BBD) was studied

in the paper[[114]. Let, ¢, and c3 be the velocities of the triad solutions of the 3WRI
system andc be the velocity of the simulton. It was found that whemnis brought below a

critical value, that is

2C1C

= 3.9
Guns cttc Qo o)’ (39)

the simulton becomes unstable) depends on the parameters involved on the expression
of the simulton, and when 1< Q < 1, we havec; < cyns < C2. Furthermore, an unstable
simulton decays in a stable one emitting a pulse wltgés brought above the valug,rs and

the simulton becomes a '‘boomeron' in the sense that its nal velocity is di erent from the
initial one. The stability was also analysed under collision between two stable simultons,
and it was found they can pass through each other maintaining their shape if their velocities
are di erent, and repulse or attract each other if their velocities are the same. A similar
analysis was carried out on the interaction between a stable or an unstable simulton with
a linear wave[[115]. Bearing in mind the outcomes described above, an interesting future
direction of research is the stability analysis of rational triads, whose analytical expressions

were found by Darboux Dressing Transformation [inl[F2] 83].
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3.2 Lax Pair

As explained in Chapter 1, the main aim of this thesis is to individuate values of the physical
parameters for which linear instability occurs. In general, we observe that a change of the
ordering of the velocities is re ected into a change of the Lax pair associated to the system.
This would be quite impractital in view of a complete classi cation of the instabilities
(and of the stability spectra that we will introduce later in this work) with respect to the
parameters. For this reason, in the following discussion, rst we observe some symmetries
in the 3WRI system, and then we use such symmetries to write a general expression for
the Lax operators including all possible orderings of the velocities. This general expression
allows us to compute all the necessary analytic tools and, only in the end, deduce what

happens if we change the velocities ordering without further complicated computations.

3.2.1 Symmetries

The Lax operators associated with the systepn (3.5)1[63| 58] make our computations hard
to carry out because of the square roots in their expressions. In order to write the Lax

operators in the easy form, one can rescale the etfisas follows[[55]
s

g= —223sgu; j=1;23 (3.10)

J

wheresj2 =1 and
1= C C3 2=C Cg 3= C G (3.11)

and the system[(3]5) becomes
8

% Ut + CiUix = SpSzj 1jUyUg;

:

“ Ugt + C3U3x = S1Sp] 3juqUy:

S1S3] 2jUpUs; (3.12)

Upt + Coloy

The symbolj j denotes the absolute value of the dierences of the velocities which is

de ned as

. %6 g i Ga>c;
6 Gj= i =1;2,3 (3.13)
g G if ¢ >cj;
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Thus, once xed, say, the velocitgs, the system ) takes two di erent expressions
corresponding to the orderings > c, andc, > c1. The same argument holds whean, or

C2, is xed. Therefore, the systen (3.12) encloses six systems associated to every velocities
ordering[ﬂ and they correspond to six Lax Pairs. We can not write all the six Lax pairs in
one, because the di erences of the velocities appear only after computing the compatibility
condition for the Lax operators. Every Lax operator contains terms proportional to the
single velocities;j, but not terms proportional to their di erences, that, instead, appear
after the computation of the commutator between the two operators. Precisely, the six

3WRI systems are:

C1)) ca>cp>cC3

S2S3(C2 C3)UyUs;

s153(C1 C3)UjUs; (3.14)

8
% Uit + CrU1x
E Upt + CoU2x

© Ug + Cglax = $152(C1 C2)UqUy;

Co) ct>c3>cCo

S2S3(C2  C3)uyUg;

Ugt + CoU2x

8
% Ugt + CilUix
E s183(C1 C3)ujus; (3.15)

" Ugt + CgUax = S152(C1 C2)UpUy;

C3) cz>c1>cC2

8

% Uyt + CUix = S2S3(C2  C3)UyUs;

E Upt + Colax = S1S3(C1 C3)UqUs; (3.16)
Uzt + CaUax = S1S2(C1 C2)ujUy;

Cs) c3>C2>cCy

$283(C2  C3)UyUg;

8
% Ugt + C1U1x
E Ugt + CoUpx = S1S3(C1 C3)uqUg; (3.17)

" Uzt + Calax = $152(C1 C)UjUy;

8In this discussion, we are not considering the choices of the signs.
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Cs) cz>c3>cCy

Ui + Cilix = SpS3(C2  C3)UpUg;

Upt + CoUpx = S1S3(C1 C3)UpUs; (3.18)

VWA /AR 00

Ugt + CaUsx = S152(C1 C2)UpUp;

Ce) C2>C1>C3

8

% Uit + Cilax = S283(C2  C3)UpUg;

E Uzt + CoUpx = S1S3(C1 C3)UpUgz; (3.19)
" Ug + CgUsx =  S152(C1 C2)UjUy:

Since our aim is to classify the spectra of the Lax operators with regard to the parameters
involved in the3WRI model, we should examine every Lax Pair (8.14)-(8.19) to get a

complete classi cation. Nevertheless, our analysis can be further simpli ed because in the
system of equations| (3.12) only the product of signs appear. This implies there are only

four possible products of signs, each one corresponding to two di erent combinations of
the signd’}

S1) fors; = sp = s3

8
% SpS3 = 1;
E s1S3= 1 (3.20)
- 8182 =1;

Sp) forsyp=s3= s
8
% S2S3 = 1
E S1S3 = 1; (3.21)
©s182= 1

"For example, the cases; = s, = sz encloses two combinations of signs that areg = s, = 1 and

ss=1ors;=s,=1andss = 1
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83) fors, = s3= s
8
% SpS3=1;
E S1S3 = 1; (3.22)
518 = 1

S1S3=1; (3.23)

At this point, it is worth reminding that we are including also the "explosive case" (i.e.
the case [(3.2B)). In fact, as already mentioned, we do not have reason to exclude this
case. A priori, we cannot know if the system with the combination of sign3.23) is
actually explosive for the plane wave solutions because we can not predict the possibility
of explosive behaviour via the Manley-Rowe relations, for the plane wave solutions are not
square-integrable.

By combining the systems (3.14)-(3.]19) with every possible choice of sfgns|(3[20)}(3.23), we
get in total twenty-four systems of equations, everyone denoted by the léfjgrassociated

to a Lax pair, and by the lette6; , associated to the choice of signs. Therefore, for instance,
the system of equation€,S; is the one corresponding to the Lax pdi with a choice of
signsS;. However, only twelve cases are relevant because the others can be obtained by

the former via symmetry, as will be shown below.

Proposition 3.2.1. For every xed choice of signs, if the velocities ordering is reversed,
the resulting system is symmetric to the former one by relabelling of the indices, that is

equivalent to exchange the bigger velocity with the smaller velocity.

Proof. Let us consider, say, the velocities orderings, ), and Cy, ), and let us
suppose that the signs;s;, s1S3 and s;s3 are xed and are the same for both systems.
In the system ) the di erences of the velocities are all positive, while in the system
) they are all negative. However, there is a minus in front of the negative di erences

in (3.17), such that the sign in front of the interaction term is the same of the system
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B.14). In particular, the systemg (3.14) and (3]17) are equivalent, in the sense that one

can be obtained from the other by a relabelling. Indeed, after the substitutibris 3,

3! land2! 2in the system|(3.17) we get the systerh (3]14), and vice versa. Thus, if
we consider rst the syste?) in which the solutian has the smaller velocity ands

has the bigger one, after relabellingy has the bigger velocity ands; has the smaller one.

This reasoning can be extended to all orderings of velocities. O

As a consequence of the Propositipn 3]2.1, we may consider only three orderings instead
of six. In particular, the equivalent orderings ar€; with C4, C, with Cs and C3 with

Cs. We note that once the signs are xed, for example after choosing the si§ans

the signs of the interactions are positive in all the systerps (B.14)-(8.19), and this is a
consequence of the presence of the modulugj in the system ). Since the choice
$1S2 = S1S3 = S»S3 = 1 is not allowed, it looks like the negative interactions are not
allowed. Nevertheless, there is another symmetry in the model that makes the interaction

of any sign possible.

Proposition 3.2.2. For any choice of signs and any velocities ordering, the 3WRI system

admits interaction with both positive and negative signs.

Proof. Let us consider the syste4) with xed signs. If we change every solution
up ' u; and then we dene u; = u;, then we get that the solutionsy; satisfy the
same system ofi; with the same interaction, namely); are also solutions of the model.
On the other hand, if we come back tg;, we get a 3WRI system fan; , but with the sign

of the interaction opposite to the former, i.e. negative. O

Proposition[3.2.11 and Proposition 3.2.2 suggest that we can change the interaction sign
by changing simultaneously the signs of all the amplitudes of the solutignsBelow, we
shall show that, once the ordering of the velocities is xed, the systemsufoend for u;

describe the same processes.
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3.2.2 A General Expression for the 3WRI System

In order to ful | the stability analysis, we need to deal with six Lax pairs (or with three Lax
pairs if we want to rediscover the other three orderings by symmetry) and, once xed the
velocities ordering, we will vary the signs to reproduce the four c&gsS,, Sz and Sy.
However, our analysis can be simpli ed further because the cases analysed in the previous
section can be rediscovered if the 3WRI model is interpreted and written in a particular
fashion (as explained below).

Let us consider th&8WRI model

s1(C2  C3)uyus;

Upt + ColUox

8
% Uat + C1U1x
E Sg(Cl C3)U1U3 ; (324)

" Uzt + C3Uax = S3(C1 C2)uqUy;

wheres; are signs such thausj2 =1,j = 1;2;3, and the velocities and their orderings

can be whatevef| Indeed, in some of the systents (3]14)-(3/19), the di erenags ¢+
appear with a minus in front of them. In the systerh (3]24), the sign minus is included in

the de nition of s; and, for this reason, there are eight possible choices of signs:

S/)s1=s;=1,s3= 1

S;) s1=%=

|
=
n
w
|
[EEN

S;) si=sg=1,s= 1

S,) s1=83=

|
=
w
N
|
[EEN

S;) s2=s3=1,s1= 1

|
=
g
=
I
[EEN

S;) S2=S3=
S;) si=s2=s3= 1

54) S1=Sy)=5s3=1.

8We are taking into account also the combinations of signs not included in the classi cation of the

choicess; .
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The combinationS; is obtained from the combinatiofs, by a symmetry. To prove that,

let us consider the 3WRI system for the solution= u(x;t)

si(C2  C3)u,ug;

S2(C1  C3)uqUs; (3.25)

8
% Uzt + CrlUix
E Upt + CoUoy

" Ugt + CgUzx = S3(C1 C2)UyUy!

Proposition 3.2.3. In the system|(3.25), the interaction term is left invariant by changing

all the signss;, (see alsol[57]).

Proof. The system |(3.2b) admits solutions likg = € iuj, where j are arbitrary phases.

We also writes; = jsjje 3961, with jsjj =1 and

8
2 0 if s =1,
arg(sj) = S =123 (3.26)
- if s= 1
the signss; are mapped into the signs; via the following transformation

§ = el @rg(s )+ j); j=1:23 (3.27)

and when we come back to the system fgr, we have

8

% Ugt + ClUix = (C2  C3)u,Uge i( 1+ 2+ 3 arg(s1) 1)

g Upt + Colpy = (C1 C3)U1U3e i( 1+ 2+ 3 arg(s2) 2) (3.28)
“Ug + Uz = (€1 Co)ujuye (1t 2t s arg(se) a)

The system |(3.2B) is equivalent to the system

8
% Uit + CiU1x = (C2 C3)u2u3ei arg(s1)
3 Uz + Callzx = (G0 Co) g S (3.29)

T Uzt + CaUzc = (€1 Cp)uqu,e A9(ss)

onlyif = 2= 3 and = 1+ »+ 3. Becauses; ands; are just signs,
has value or 0. Moreover, looking at the system for the solutian, one has also

e i1+ 2% 3 arg(sj)) = @ i( 1+ 2+ 3 arg(sj) ),withj =1;2;3, and sod @9(s)) = d@rg(sj)+ )

such thatarg(sj) = arg(sj) + . Let us supposes; =1,s, = 1landsz = 1, there

are two possibilities: = 0, and arg(s1) = 0, arg(s2) = arg(sz) = ,or = ,and
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Velocities ordering
Signss; C C, Cs Cy Cs Cs
SI S1C1 $C; S4C3  S1Cy SCs  S4Cs
S; S1C SC; S4C3 S1Cs SGCs S4Cs
S S$C1 S1Co S3C3  SCy S1Cs  S3Ce
S, $C S1C,  S3C3 SCs S1GCs S3Cs
S; S3C1 S4Cp SC;  S3Cy SiCs  SCp
S; S3Cy S4Cy;  SC3 S3Cs  S4Cs S2Cs
S:{ S4C1 S3Co S1C3  S4Cy S3Cs  S1Cs
S, S,Cy S3C; S1C3 SiCs S3Cs S1Cs

Table 3.1: 3WRI cases.

arg(s1) = , arg(sz) = arg(sz) =0.

This means that if we want to leave unchanged the interaction, we need to change both
the signss; and the signs of all the amplitudes, i.e;; = u;. In other words, changing

all the signss; is equivalent to changing all the signs in front of the amplitudes of the

solutionsu; . O

As a consequence of the Propositipn 3]2.3, we take into account only four possible choices
of signs (instead of eight) that, combined with the six possible velocities orderings, give
twenty-four systems in total, although we expect twelve relevant cases only. This means
there is another symmetry, in fact the Propositipn 3.P.1 holds for the system (3.24) as well.
We can associate every case of BRI model ) to every case of the model described
by the system([(3.24), as shown in the Taljle B.1. Let us focus on the chdifeand S, .

Once the signsS; are xed, the system 3WRI4) gives us the right casesC,, S;Cy

and S4Cs for the solutionu;, while the other remaining cases are reverse®;C;, S4Cs,

S,Cs and the sign minus denotes this reversion. Nevertheless, these cases are the right
ones foru; = u;, and can be also obtained with the right signs by changing the signs
Sj ! sj. Moreover, by the Proposition 3.2.1, the cafyC; is equivalent to the case
S1C4. The same argument holds for the other orderings.

Finally, we observe that with the mode] (3./12) one would have to deal with three Lax pairs

and then, to obtain the other orderings, we have to swap the bigger velocity with the smaller
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one. As we show in the following, withh (3.24) we deal with only one Lax pair and, if we
wish, we can cover all cases by a change of sign or by changing the values of the velocities

without changing Lax pair.

3.3 Plane Wave Solutions

The system|(3.24) admits as solutions the plane waves
up = ael it 1%, U, = ape( 2t 2% uz = age'( 3t 3%): (3.30)

wherea; are the amplitudes, j are the frequencies and are the wave numbers.

By choosing the reference frame moving with the wawg such that the velocitycz = 0
and by substituting the solutiorus in the last equation of the systenj (3.24), we get the
resonant conditions

1+ 2+ 3=0; 1+ 2+ 3=0: (3.31)

The amplitudeas takes the expression

. i C
az = iszaiay 1 2; a2 R; (3.32)
1t 2

thus, the solutionus is

Uz = isgaidr C1+ e i 2t (ar 20 (3.33)
1+ 2

Moreover, by setting the expressiop (3]33) and the other two plane wavesnd uy in
(B.30) into the rst two equations of the system[(3.24), the nonlinedispersion relations

are obtained

(e ¢
= tigem @@ @
C1 ca( 1+ 2) (3.34)
_ 2 sci(ct  ©).
2= —t+ SpSga; ————
C2 c( 1+ 2)

3.3.1 Galilean Invariance

The system|(3.244) is invariant under the substitutions

uj (X t) = uj (x; t); (3.35)
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where space and timet transform as the Galilei transformations

8

2y = X+ vt:

N (3.36)

t=t;
and the characteristic, linear velocities are

G=g+v, j=1,23 (3.37)
Furthermore, by replacing the plane wave solutions|in (3.35), we[fjet

i= itV i= i q = q; 8 =1:;23 (3.38)

By the Galilean transformations for the frequencies and for the wave numbers|(3.38), with-
out loss of generality, we choose, for example,= gand , = ¢g. However, due to the
resonant conditions[(3.31), we can put, = » = g only, otherwise three wave resonance
does not occur.

From now on, we shall choose the reference frame in whigh 0, and we shall x

1= 2= gand, as a consequence; = 2q. In this way, the plane wave$ (3.30) become

up = alei(qt 1X); Up = azei(qt 2X); Uz = issalazclzqcze i2qt ( 1+ 2)X); (339)

where the frequencies are

Co(C: C
L= a. Slssa§ 2(C1 C),
“ 296 (3.40)
q 2Ci(ct  ©) '
2= — + spsza]—————!
C 29
%Indeed,
uj (x;t) = uj (x; t);
entails
a,-ei( it ix) = ajei( it ix).
and, by substituting (3.38),
aelit %= gl vt ix,

from which the formulas ).
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3.4 Lax Pair Formulation

The phenomenon of the linear stability, is analysed using the feature of the 3WRI model
to be Lax-integrable. Indeed, a squared combination of fundamental solutions of the Lax
pair is presented like a combination of the 'eigenmode-solutions’ of the linearised equation
[64]. In this respect, the di erences of the eigenvalues of the Lax operators are necessary
to write a solution of the linearised equation. In this section we give the explicit expressions
of the Lax operators involved in the Lax formulation of the problem. We show how a
similarity transformation allows us to break free the Lax operators from the dependence of
space and time variables, such that the Lax equation is reduced to the Liouville equations,
whose integration is trivial. A further gauge transformation simpli es our computations and
makes our formula easier to handle. Finally, we nd out that every Lax operator, obtained
after such transformations, is written as a polynomial expression in the other Lax operator.
Therefore, we obtain the relation between the di erences of the eigenvalues of the Lax
operators, and the solution of the linearised equation is provided in detail.

In the following, we apply the theory for multi-component systems provided in Chapter 2.

3.4.1 Linearised Equation

In this section we present the Lax pair and the linearised equation, following the research
work [64].

Since the 3WRI is Lax-integrable, we associate to the system [3.24) the Lax operators
X X(xt )YandT T(xt; )

X= i C+U; T=iD+V; (3.41)

wherex andt are the space and time variables, respectivelyis the spectral parameter,

andC andD are3 3 matrices depending only on the linear velocitigs

0 1
(e + ) 0 0

ng 0 12 ) 0 E; (3.42)
0 0 12a )



Chapter 3. The 3-Wave Resonant Interaction Model 56

0 1

2 00
chl?,cz%o 1 ()E: (3.43)

0 01

The matricesU = U(x;t) andV = V(x;t) involve the solution@ u; of the system ),

the signss; and the velocities;;, and they are de ned as follows

0 1
0 S1uUq S1S2S3U,
U= S152S3U4 0 S3U3 E ; (3.44)
SaU2 S1S2S3U3 0
0 1
0 S1C1U1  S1S2S3C2U5
V= % $18253C1U4 0 0 E : (3.45)
SoCoU2 0 0

Let us introduce the Lax pair

x=X57 G=T7 (3.46)
whose solution™= ~(x;t; )isa3 3 matrix which satis es the compatibility condition
Xt = TG (3.47)

that is equivalent to the equation for the Lax operators

Xy Tx+[X;T]=0; 87 (3.48)
or, equivalently,

U W+[UV]=0; 87 (3.49)
Here and thereafter the brackefs; | denote the commutator between the operators.

Proposition 3.4.1. The following two operators

X = iC + U; T=iD +V; (3.50)
where
1 2
cC=C+ é(cl+ c)l; D=D+ §clczl; (3.51)

1%We remind the reader that the asterisk stands for complex conjugation.
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and| is the identity matrix3 3, constitute a Lax pair
x = X t=T; (3.52)
whose solution transforms as

= mijcicet ig(a+c)x. (3.53)

Proof. Indeed the matrice and D, involved in ), are

C= Gt t(are) o+ ) (354
2

D= éclczl+c1c2( + + ); (3.55)

where

0 1 1
0 0O 0 0O

+=%01(§; =%00(§: (3.56)
0 0O 0 01

This means that the Lax operatorX and T have a diagonal part proportional to . and

, and with entriesX 11 and T1; which are null elements. Looking at the compatibility
conditions [3.48) and|[(3.49), we see that the termsiZ ¢ 1czl and 5 (1 + ¢)! do not
a ect the computation of the 3WRI equations and then the stability analysis. Moreover,
by substitutingX” = X +ig(c1+ ) andT =T i% € 1C; in the Lax pair ), we have

the equations

% ié(cl+ C) " =X7T (3.57a)

- .2 - -

t+ 13C16 "= T3 (3.57b)
and, by dening = ®iscicet iz(a+e)x the equations ) become the Lax pair
(8-52). O

If we perturb the solutionsy; ! u; + uj, we have, as a consequence, that also the Lax

operators become perturbed ! X + X, T ! T+ T. If we set these perturbed
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operators in the compatibility condition[ (3.48), at the rst order in the perturbation, we
get the equation for the perturbationsX and T [64]

Xt Tx+[ X;T]+[X; T]=0; (3.58)

namedlinearised equationin order to nd a solution of the linearised equation related to
the solution of the Lax pair[(3.46), we de ne the squared eigenfunction (  x;t; ) by

the following similarity transformation
= M L (3.59)

whereM = M ( ), is a constant matrix, independent ox andt and ! is the inverse of
the matrix = (x;t; ). After that, two propositions, stated in the paper [64], are given

below.

Proposition 3.4.2. If the pairE, J solve the linearised equatio58), then also the pair

F=[E]; H=[J]; (3.60)
is a solution of the linearised equatiop (3]58), namely
Fi Hx+[F;T]+[X;H]=0: (3.61)

Proposition 3.4.3. The following expressions,

@x [
@’ @
provide solutions of the linearised equatidn (3.58).

One notes that, to obtain the solutiotr, one needs to know the explicit expression of the
squared eigenfunctior] (3.59) related to the solution of the Lax pair. This will be the aim

of the next section.

3.4.2 Similarity Transformation of the Lax Pair

Once the Lax operators are provided, we see that only the matrideasnd V enclose the

solutionsu; and, so, the dependence on the variablesand t. Below, we introduce a
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similarity transformation by which the Lax pair becomes a pair of Liouville equations simple
to integrate. In this way, one can obtained the squared eigenfunctions.

Let G = G(x;t; ) be a matrix such that
U= GUyG 1 V = GG L (3.63)

with G 1 the inverse ofG = G(x;t; ) and

0 1 0 1
0 S1a1 S1S2S3ay 0 S1C1a1 S1S2S3C2ar
Up = %813233611 0 S3az § ; Vo= % S1S2S3C1a1 0 0 E ;
Spay S1S2S3a3 0 SpCoay 0 0
(3.64)
so that the Lax operators are independentfandt.
More in details, the explicit expression of the matiix is (Appendi@)
Gz=e s(1 2Xgil@ x) .d@ 20 . (3.65)

and[ +; ]=0. In addition, this transformation induces the similarity transformation
= G on the solution of the Lax proble@, and, so, on its squared eigenfunctions (see

de nition in [64])

= G G1L (3.66)

"The operator X is

X =G(iC + UG %
this, substituted in x = X , gives
x=G( iC +UgG *;
and, by multiplying to the left by G 1,
G',=( iC +UyG *:
SinceG ! ,=(G ! )x (G YHx and(G G)x =(G )G+ G G4 =0, we obtain
(G ' )x=(iC +Uy G 'G)G ")
this, afterdening = G ! andiWo=iC + Uy G Gy, becomes

X:iWoI
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and on the Lax operators (appeno@ E)
iWo=G XG G Gy; iZo=G TG G G (3.67)
Therefore, the Lax pair becomes
x = i[Wo; ] ; t= ilZo]; (3.68)
whose solution is
= dWox Zoh) (g ;g)e I(Wox Zob), (3.69)

with (0 ;0) initial condition. Explicitly, we have

0 1
172 is1a4 iS1SpS3as
Wo = % iS1S2S3a; Co % iS3a3 ; ; (3-703)
iSoa iS1S2S335 Cp+ 152
0 1
0 iS;LC]_a]_ is 1S2S3Czay
Zo= % iS1SpS3C1a C1C 0 § ; (3.70b)
iSzCzaz 0 cicc+ Qg

with wave-numbers 1 and > given by [3.40) andWo; Zo] = 0.

3.4.3 Gauge Transformation

In order to carry out our stability analysis, we need to know the eigenvalues of the matri-
cesWp and Zp, and so it is necessary to compute the characteristic polynomials of such
matrices. However, the expressiorjs (3./0a) afd (3]70b) make the computation of their
characteristic polynomials di cult. For this reason, we introduce a gauge transformation
simplifyng the form of the polynomials that we will introduce in the next sections.

The matricesG, Wo andZ, in (3.63) and [3.70) can be generalised as follows (see formulas

in the AppendiX D),

0 1
ei(mqt I 1X n 2x) 0 0

G= 0 ei((m Dagt (I 1) 1x n 2x) 0 %; (3_71)

0 0 M+ at 1 1x (n+1) 20)
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or,

G = mat (I1+n 2)x)lg i(at 1%) +gat 2x) : (3.72)
0 1
1+ 2n is1a4 i313253a2
Wo( ;I;n)= % iS1S2S3a1 co+ 1(I 1)+ on iSzaz § ; (3.73)
iSoay iS1S2S385 ci1+ 11+ 2(n+1)
0 1
mq isiCiaq iS1S2S3C0an
Zo( ;m)= % iS1S2S3C1a1 c1G+ g(m 1) 0 §; (3.74)
iISoCray 0 C1C+ q(m+1)
wherel, m andn are rational numbers.
They reduce to|(3.66),(3.70a) and (3.70b) by setting =0, | = 3 andn= 3.
Let us de ne the gauge transformation
G = Ge i(mgt (I 1+n z)x)l; (3.75)
such that,
-G =G = - (3.76)
with = g(mat (L1+n 21 The Lax pair become$?
8
2 x =X ;
N (3.77)
. t = T :
By combining the Lax pair[(3.77) with[(3.76), we get
8
2 x = 1W
N | (3.78)
t= 1Z .
On the other hand (Appendik |G)
8
2 x = iWo ;
(3.79)
XandT T.

2| this case,X
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and therefore,
W=Wy (I 1+ n y)l; Z=27Zy mql; (3.80)

with I, n and m which are, in general, rational numbers.

By using the gauge transformation$ (3]75) a 80), by settimy=0, 1= 3, n= 1
and multiplyingW by 2c;czqg, we shall work with the matrices
0 1
0 islal i515253a2
W = 20102(1%) iS1S2S3a1 Co 1 iS3a3 § ; (3.81)
iSoay iS1S2S383 C1+ »
and
0 1
0 is 1C1a1 i515253c2a2
Z= % iS1S2S3C1a1 c1c q 0 § (3.82)
iSoCoay 0 cicc+ q

This choice will prove convenient in the light of the treatment illustrated in the next chapter.

3.4.4 Relations between the Transformed Lax Operators and the Dier-

ences of their Eigenvalues

The matrix W is expressible as a polynomial of the matle(AppendixE) as follows

W=(c1 2% ca( g e )Z+c(q ack)Z (a c)(asdsiss ajcisss)l;

(3.83)
and vice versa, the matriX as function of the matrixXw (AppendixE]) is
a3siss(C1 C)  afsysz(cy Cp) (c2+ c1)q _ w?
2¢10 2c2q cic2(c1 ) AcicseP
W a?spssci(cr © ass183c2(C1 ¢© cL G 2
15283C1(C1 C2)  @S183C(C1 C2) L 9(Cr C2) (c1+ ) + q
2c1C2q 2co(q 2c1q C1C2 Ct C
(a3sis3  a3syss)l:
(3.84)

In addition, ifw; andz;, j =1;2;3 are the eigenvalues W and Z, respectively, then

w=(c @)z cl q ac )z+c(q ac )z (g c)(adcsiss aicsyss); | =1:;23;
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(3.85)
and
~assiss(ci ) agspss(cy ) (2+c)g | _ w}
: 2¢19 2c2q cicx(c1 ) 4cicsq?
W aissstu(Ct C)  @gsissC(C C2) |, A(G Co) (C+cp) + 29
2c1c2q 2c2q 2c1q C1C2 e c1 ©C
(a3sis3  a2sps3); | =1;2;3;
(3.86)
hence, the di erences of the eigenvalues\f are (Appendix]I)
CL+ C .
Wi Wi+ =(z za)(c &)  Z+2 CC +qcl & j =1;2,3; mod(3):
(3.87)
and the di erences between the eigenvaluesZofare (Appendi>{|l)
C+ C
(zj Zj+1) 2855153C2(C1 C) 2afspssci(cr ) ZECiCS+2c1c2q =
W +2 2q
= f +
(wj Wje1) 2016, €1 C
(3.88)

3.4.5 Characteristic Polynomials and Rescaled Di erences of the Eigenval-

ues

Although in the previous sections we use some transformations to greatly simplify the
Lax operators and the Lax pair, the characteristic polynomials are still hard to handle.

However, we can do some further substitutions to obtain a more elegant expression of the
characteristic polynomials.

First of all, we can rescale some parametersdoyOnce the characteristic polynomials of

W and Z are denoted withPy (w; ) and Pz (%; ), respectively, then the amplitudes, the

unknownsw and z, and the spectral parameter can be rescaled as follows:

ar=q1, a=4qg2; (3.89a)

W= PwW; Zz= qz; (3.89b)
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= @: (3.89¢)
At this point, we rename the characteristic polynomials
P(w; P(z,
Puwi )= Ut )i = TED. (3.90)

The coe cients of these characteristic polynomials are expressions of the rescaled ampli-

tudes to the second and to the fourth and we bene t from further substitutions,

- cis1 {1+ se 3. Dy = cs1 I se 3.

: 3.91
P S1S2S3 S1S2S3 ( )
and combinations of the velocities
Ci C
= ps3; C1+ Co = pPa; 60: 3.92
Lt G Ps; 1t C2= Pa; P4 ( )

We highlight that later in our analysis we will consider also the limiting cpsé1  (that
isps! 0.

The computations of the characteristic polynomials after the substitutions above show that,
after multiplying the variablew by a factor ps, we can rescale once more the polynomial

Pw (w; ) by a factorpi. Finally, the characteristic polynomials become
Pw(w; )= wl+[2  pa(2+ pp)]w?+

+ pp(1+2pF ps )+ pps( 3+ps) (P (2 1) wH

(3.93)
+[pa( pa( 1+ pa+ pa(ps+ )] pipS+
+pr 1+ p3(p3+2p2ps +p3)
and
Pz(z; )= 2°+22%+( ?+p Lz+p  pu (3.94)

Moreover, by setting the substitutions above, we rewrite the formulas (3.83) and (3.84)

respectively as follows

W = psZ?+ q(l+ ps )Z + pspd; (3.95)
and
2 2 2
zZ= LS W2+ p2p322p3+p3+1 W+
1 p3 +p5(pr ) p2ps+ ps 1 p3 +p5(pr ) p2ps+ ps

2mp3 PP poPs
1 ps +p3(pr ) PPzt ps




Chapter 3. The 3-Wave Resonant Interaction Model 65

(3.96)
hence, the di erences between the eigenvalues become
Wi Wis1 =(z Z+1)[( psz+2 + 9l p3)l; (3.97)
forj =1;2;3, mod(3), and
Zj Zj+1 =
(Wi Wp) ps ps( 2 +pa+1)+ padP((P2+2)ps 2) wz 1 (3.98)

1 ps +p5(pL ) PPz s ’
forj =1;2;3; mod(3). Furthermore, we give some useful formulas. Because the trace is

invariant under cyclic permutations, the eigenvalwgsandz; satisfy the following relations

Wi+ Wo+ W3 =((2+ p2)pz 2 ); (3.99)

21+ 2o+ z23= 2; (3.100)

with ps = ¢ + ¢, and by the computation of the determinant of the matricé&8 and Z,

we get
21223 = P11 P2 (3.101)
WiWoWs = pIp3 P P +2Pps+ PE+ps 1 4p popst P51 ( +ps)

(3.102)
Obviously, the formulas above are satis ed for both complex and real

Because a solution of the linearised equation can be expressed as combination of the ex-
ponentialse Wi Wi+1) 1z z+)) [64], we have completed the preliminary calculations in

order to prepare the work for the stability analysis.



Chapter 4

Spectra and Linear Instabilities of

the 3WRI Equations

In this Chapter we will follow the theory for multi-component systems provided in Chapter
2 and we will use all the preliminary computations carried out in Chapter 3.
We provide the de nition ofSy-spectrum as composed by the values of the spectral pa-
rameter which are the roots of the polynomid ( ; ) of the squares of the di erences

= (w1 W»)2. The analysis of the nature of the-roots allows us to obtain a full topolog-
ical classi cation of the stability spectra in the parameters space. Using a numerical routine
implemented in MATLAB R2017a, for any generic choice of the physical parameters, we
plot the stability spectrum and its associated gain function (see de nition below). The fact
that this function is always di erent from zero indicates that linear instability occurs for

any generic choice of the parametgpsg, p, and ps.

4.1 Spatial and Temporal Stability Spectra

Given the real parameters;, p; and ps (see formulas[(3.91) and (3.92)), we are interested
in nding the values of the complex spectral parametersuch that the plane waves are
bounded in space and see if they are linearly stable or unstable in time. In other words, let

w; be the eigenvalues of the matri¥/ andz; the eigenvalues of ; them we aim to search
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those values of the spectral parametecorresponding to real di erencedg = wj+1  Wj+2,
whereas the dierence$; = z.+1  zj+2 can be real or complex. This latter point can be

understood for the di erenceg; are linked to the di erenced j by the formula
ki="'j( pszi+ql pa); j=1;23 (4.1)

Therefore, values of the spectral parametercorresponding to reak; may correspond to
complex! ; and so linear instability may occur.

In the following, we will refer to the eigenvalues (resp. z) of the matrix W (resp. Z)
also asw-roots (resp.z-roots) of the characteristic polynomidy (w; ) (resp. Pz(z; )),
namely, the polynomial roots of the equatid®y (w; ) =0 (resp. Pz(z; ) =0), solved
with respect tow (resp. z). From here on, we xg =1, without loss of generality, because

of the Galileian invariance (Chapter 3).

De nition 4.1.1. The spatial stability spectrunSy for the plane wave solutions of the
3WRI system ), is de ned as the locus of theplane identi ed with C such that,
for xed values of the physical parameters, p» and p3, the characteristic polynomial
Pw (w; ), admits at least twow-roots such that their di erence is a real number, namely,
the set of the spectral parameter for which there exist at least two eigenvaluas and

W, for the matrix W, for some™ and m, for which(w~  wp) 2 R.

De nition 4.1.2. The temporal stability spectrun®; for the plane wave solutions of the
3WRI system ), is de ned as the locus of theplane identi ed with C such that, for
xed values of the physical parameteps, p, and ps, the characteristic polynomidbz (z; )
admits at least twoz-roots such that their di erence is a real number, namely, the set of
values of the spectral parametersuch that there exist at least two eigenvaluesand z,

for the matrix Z, for some™ and m, for which(z2  zy) 2 R.

In the following, we give the de nition of the components of the stability spectr@xn.

De nition 4.1.3. Real values of the spectral parametey not belonging toSx constitute

a gap (G). A gap, including a single isolated real point within its real endpoints, will be
renamed assplit gap (SG).

Complex values of the spectral parameterbelonging toSy correspond tobranches(B)

and loops (L), which are open and closed curves, respectively. Figure of eight loops, self-

intersecting on the real axis, will be referred to agisted loops(TL).
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Once the parameteps is xed, the topological classi cation of the spacial stability spectra
Sy in the (p1; p2) parameters space, can be obtained by means of the algebraic-geometric

procedure described in the next sectidhs

4.1.1 Polynomials of the Squares of the Di erences

Let us write the characteristic polynomialf (3]93) ar[d (3/94) in a general form

x3 R
Pw(w; ) Pw(w; ;p1;p2;p3) = aj(W)WJ = (w w); a(3w)=l; (4.2a)
j:O ]:1
x ()i ¥ (2)
Pz(z; ) Pz(z ipupspe)= &7’z = (z z) ag’ =1: (4.2b)
j=0 j=1

By combinations of the coe cientsf aj(W)gf:O, we construct the coe cients of the poly-
nomialPw( ; ) P w( ; ;p1;p2;p3) of degree3 in the variable , whose -roots are the

squares of all the possible di erences of the roots of the polynorRigl(w; ) (Appendix
J),

\8
Pw(; ) P w(; ;pupz2ps)= W wp)? (4.3)
jih=1
j<h
that is a 2-variate polynomial in and . For the sake of simplicity, we will refer 8w ( ; )
as thepolynomial of the squares of the di erence# -root (resp. -root) of Pw( ; ) is
a polynomial root of the equatio®w ( ; ) =0, solved with respect to (resp. ).
For any xed pi1, p2 and ps parameters, the spectrun$y is the locus of the -roots of
Pw(; ) foral 2R, 0. In other words, the spatial spectrurB; can be seen as a

one-parameter algebraic variety over the complex numbers, and it is de ned as

Sy=f 2CjPw(; )=0; 2R; 0g : (4.4)

(2)

Similarly, by combinations of the coe cients Eh gj3=0, we can construct the coe cients

of the polynomialPz( ; )= P( ; ;p1;p2;p3), that is a polynomial of degre8 in the

1An analogous procedure can be implemented for deriving the temporal stability spec8a starting

from Z instead of W.
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variable and whose -roots are the squares of the di erences of the roots of the polynomial

Pz(z; ) (Appendix]J),

Pz( ;) P z(; ;pip2ps)= (z zn)? ; (4.5)

that is a2-variate polynomialin and . A -root (resp. -root) of Pz( ; ) is apolynomial
root of the equationPz( ; ) =0, solved with respect to (resp. ).

For any xed p1, p2 and ps parameters, the temporal spectrurg; is the locus of the -
roots of Pz( ; ) forall 2 R, 0. In other words, the spectrun$; can be seen as the

one-parameter algebraic variety over the complex numbers, and it is de ned as

Si=f 2CjPz(; )=0; 2R; Og: (4.6)

4.2 Real Spectrum

In this section we take into account only reatroots. By bearing in mind this assumption,

and becausé (w; ) is a cubic polynomial, the existence of a realroot implies that the

other two w-roots are real too, otherwise there are two complex conjugateoots and a

w-real root. Therefore, in the rst case the di erencdg are all real and the corresponding
values belong to the spectrui8,. In the second case, they are all complex angalues

belong to agap

By denoting by (P (y)) the discriminant with respect to/ of the polynomialP (y), we

observe that the polynomial of the squares of the di erendeg (0; ) (resp. Pz(0; ))

is equal to the discriminant with respect tw (resp. z) of the characteristic polynomial

Pw (W; ) (resp. Pz(z; )) with the opposite sign,

Pw© )=  wPw(w; )i Pz(0; )= o(Pz(z: )); (4.7)
and they are related as follows

Pw(0; )= Pz(0; )R?(); (4.8)
where

P20 )=4 % 2702 4 3p+18 p1(p2+2)+ 2((p2 20)p2 8) 4(pz 1)% (4.9)
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and

R()= ps +pP5(p1 ) paps+ps 1 (4.10)

Since we imposég; to be real, we consider onlpw (0; ) O.

Indeed, by assuming( ) 6 0, Pz(0; ) OifandonlyifPw(0; ) O, thatis, by ),
if Pz(0; ) is negative or zero, theRw (0; ) is like that, and vice versa.

There is also the limiting casB( ) =0, satis ed for

_ Pi(pps p2+1) 1
ps p; 1

: (4.11)

for which Py (0; ) =0, but Pz(0; ) can be zero, positive or negative. In the following
proposition we prove that only the real part & contributes to the stability, namely that,

if Sx has an o -real component, then the solution is expected to be unstable.

Proposition 4.2.1. For a generic choice of the physical parameters, the plane wave solution
of the 3WRI system is stable against perturbatiorfd integrated only over values of in

Sy strictly real, with the exception of the point separating a split gap.

Proof. Let us suppose 2 R, so thatw; andz are roots of third degree polynomials with
real coe cients. As a consequence, the characteristic polynomials can have: three real and
distinct w-roots; or a real triplew-root; or a w-real double root and a real simple-root

or two complex conjugatev-roots and a reaiv-root. We impose thatw;  wj+; be reaE],

thus we exclude the case in which the characteristic polynori@h; ) has two complex
conjugatew-roots and a realv-root.

Let us assumdk( ) 6 0 and letw; be real and all distinct, i.ePw (0; ) < 0. Thus, since

ps 2 R, all the di erencesw; w;.+; are also real and all distinct
W Wiv1 =(z z+)( Z+2ps pstl); j=1;23; mod(3) (4.12)

and then the produc(z; zj+1)( z+2ps pa+l) isrealtoo. For 2 R, we cannot have
(zy z+1)2Cand( z+2p3 p3+tl) 2Csothat(z; Zz+1)( z+2p3 p3+l) 2R
because, by the relatioth (4.8), we would hake (0; ) > 0, and soPw (0; ) > 0, in contra-
diction with the hypothesis. Instead, we can hal® zj+1) 2 Rand( z+2ps pa3+l) 2

2Sincew; are roots of a third degree polynomial with real coe cients, then the requerement to have at

least a real di erence implies that all the di erencesy;  w;.1 are real too.
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R, so that their product is real, and thew; wj+1 2 R, 8j =1;2;3.

Moreover, we remind that if also only two roots coincide, th&z (0; ) = 0, and this
condition pushesPw (0; ) = 0 to vanish, but we are imposin®w (0; ) to be strictly
positive.

Therefore we conclude that if 2 R and R( ) 6 0, then Pw(0; ) < O if and only if
Pz(0; )<O.

Let us suppos®w (0; ) =0 andP(w; ) has a double real root and a simple real root. For
the sake of simplicity, we impos&; = w», while ws is di erent from the other two. From
the formula [4.12) and by considering; 6 0, we distinguish three cases corresponding to

all the possibilities for which we hawe; w» =0:
1.z27 z=0and z3gp3 p3+1=0,(Pz(0; )=0 andR( )=0);
2.27 z=0and z3ps p3+160,(Pz(0; )=0 andR( ) 60);
3.2 z60and z3ps p3+1=0,(Pz(0; )60 andR( )=0).
In the following we shall discuss the reverse arguments: starting from the hypothesis 1.,

2., and 3., we show thatvy = w», and thew-roots are all real, i.e. iPz(0; ) =0, then

Pw(o; ):O.

1. If z1 = z,, then z; and z, are real, therzs is necessarily real, and for this particular case

we get
1
3= — ; 4.13
37 b (4.13)
and by [3.10D)
1 1
21=2= - —+ X 4.14
1=2= 5 o (414)
Moreover,
1 3 1 3
= - — X = - — X 4.15
2 I3 > s L= o ; (4.15)
so that

z1 22=0; (22 z3)= (23 2z1): (4.16)
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By keeping in mind formulag (4.13) and (4.[12), we compute the di erenegs w;+1 and

get

ps 3

wyp we=0; wp wz= (w3 W)= 2 m ( zaps p3+1); (4.17)

all real, because all the parameters involved and all the timeare real.
Thus, we conclude thaPz (0; ) =0 impliesPw (0; )=0.

Furthermore, the characteristic polynomi&(z3; ) becomes proportional t&R ( ),

1 ps +ps(p1 ) P2ps+ ps 1
P(z3; )= = = SR(): (4.18)
P3 P3
This implies that, ifzz3 = X is a zero of the characteristic polynomi&(z; ), then

Ps
R( )=0 and has the expressiof (4.1.1). The reverse argument is also truB:(if) =0,

thenzz = p% is a zero of the characteristic polynomiBI(z; ).

2. We assume; = zp and z; and z, are both real. As a consequeneg is real, but we

impose thatzs does not satisfy the formuld (4.13) any more. Nevertheless, by the formulas

(B.100) and [3.101), we have that
22°+2z7+(1  )p2=0; 7 =2z1= 23 (4.19)

and oncez; is obtained¥, we can use[(3.10) to gets = 2(z + ). Therefore, the
relations [(4.17) and|(4.16) are still satis ed, indeed

21=2;, 23 21= (22 zZ3)= (Bz+2 ), z=721= 2o (4.20)
and then,
Wi1= Wz W2 wz= (wWg wi)=Q@z+2 )( pszy ps *+1); 7z =2z1= 2 (4.21)

and all the three di erencegw; w;.1) are real. Even for this casez (0; ) =0 implies

Pw(0; )=0. In this caseR( ) is di erent from zero.

3. Let us consider the most general case in which all the thzeare di erent from one

another. Pw (0; ) =0 whenR( ) =0. We identify two sub-cases:

%It is not the aim of our analysis to nd the explicit expression of the solutiong = z; = z,.
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3a) Pz(0; ) < 0, and the characteristic polynomiaP(z; ) has three realz-roots all

distinct;

3b) Pz(0; ) > 0, and the characteristic polynomid?(z; ) has two complex conjugate

z-roots and a reak-root.

Furthermore, sincdr( ) =0, thenPw (0; ) =0, andP(w; ) has a) a real doublev-root

and a simplew-root or b) a triple realw-root.

3a) Let us suppose; are all di erent, but z3 = p% . By substituting = p% z3, into

the other two di erencesw, w3z andwsz wi, we get

Wy, Ws= p3s(zz z3)(z1 z3); wz wi=p3(z2 z3)(z1 z3); (4.22)
that is
Wy Wwz= (W3 Wi); (4.23)

and in addition
wp W =0: (4.24)

However, this case is impossible. Indeed, by using the fornjula|(4.22) and matching the two

formulas
Wz Wz=(2z2 z3)( pszz p3 +1); (4.25)
w3 Wi=(z3 z1)( pszz ps +1); (4.26)

via (4.23), we get the equation
(z2 z3)( pszz p3 +1)=(z1 z3)( psz2 p3 +1); (4.27)

that is satis ed forz; = z,. However, this is a contradiction to the hypothe$s (0; ) < O.
Thus, we can not hav®z (0; ) < 0, and instead we havBz (0; ) =0. Note that because

of the formula [4.8), we havdr( ) =0.
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The case b) is impossible. Indeed, becauwse= w, = w3 has to be veri ed, we need to

imposezy = zp = z3 = p% , that is a contradiction to the hypothesi®z (0; ) < 0.

3b) If Pz(0; ) > O, the characteristic polynomiaP(z; ) has two complex conjugate
roots, say,z; and z,, and a real rootzz. In order the case a) to be veri ed, the relation
Z3 = p% has to be satis ed. We can not have zjps p3+1)=0,forj =1;2
because this equation would be satis ed only foroots all real, but we are in the hypothesis
Pz(0; ) > 0. We note that, sinceRe(z1) = Re(z2) andim(z1) = Im(zp), thenz, Zz3
andzz z; are complex with the same imaginary part aag 2z, = 2ilm(z;). Moreover,
becausew, w3z = (wz wi) = p3(zz z3)(z2 z3), the dierencesw, w3 and

w3 Wwj are real, in particular
W, wz= (wz wi)= ps (Re(z) z3)?+(m(z))? ; z =2z1= 25 (4.28)

and we have that ifpsps > 0, thenw, w3 < 0 < w3z wq, and if psps < O, then
w3 wi<0<wsy Wwa.

Moreover,z3 coincides with the solution oR( ) and the formula ) is still satis ed.
The case b) is impossible because, since we require a priori that all the matsust be
di erent from each other, we have to imposg zjps p3+1)=0,8j =1,;2,3in order
to have all the threew; coinciding and real, which gives us aJl coinciding and real, but

this is a contradiction to the hypothesiBz (0; ) > O.

Let us supposd®(w; ) has a triple real root, that iPw (0; ) = 0. We distinguish two

cases:

1.z1=2,=2z3,but pszz p3s +160, (Pz(0; )=0 andR( )60);

2.21=2=12z3,and p3zz p3 +1=0, (Pz(0; )=0 andR( )=0).

All the cases above are trivial to show, but in the case 2., we have that, by making the

sum of all the threez; solutions of the equation psz; p3 +1=0, 8] =1,;2;3, we get

z1+ 2+ 73=3 p%, with p3 6 0, in contrast with the trace |(3.100), unless = p%

Finally, we conclude that iR( ) =0 andPz(0; ) > 0, thenPw(0; )=0 andP(w; )
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has a double real root and a simple real root.

If Pz(0; ) > O, we have that all the three real di erences; w;.; correspond to the
three di erencesz;  z+1, all complex.

On the other hand, let us assume now thatis complex, = + i , with nonvanishing
imaginary part, 60. Letw; = ; +i j be the (generically complex) roots &y (w; ).
With this notation, we have that one of the wave numbers, day= w1 w», will be real
onlyif 1= o= . Then, from ) , we have that 3 = z; z, will also be real only

if the following equation is satis ed:

s l+ps(ps peps+pPi(pr )+ D)+ 1+pd 1+pd ps 3 (4.29)
Q;

Writing the polynomialPy (w; ) asPw (w; )= i-1 (w ; i j),and comparing the

real and imaginary parts of the coe cients of same powerswffrom this expression with
those obtained from[(3.93), we get, in addition to equatioh (4]29), six further polynomial
equations, constituting overall a system of seven polynomial equations for the seven un-

knowns 1, 2, 3, , 3, , ,each equation being of degrde 2 or 3 in the unknowns:

P3P3+ PAPS 12 3+ 3 2+ 1 3+ 2 3+pa( 1+p(ps+ )

(4.30a)
p1( 1+ pa(p3+2p2p3 +p3 )i

(1+ 2) 3 +( 12+ %) a+(p2 ppa)( 1+p3); (4.30b)
1+ 1 2+( 1+ 203 ( +2 3 P+pps@@ ps )+

(4.30¢)
po( 1+ ps( 2ps+ D)+ P+p5 1+ 2 %,
(1+ 2+2 3) +( 1+ 2) 3+( 2 +p3(p2 PPz +2p3 )); (4.30d)
R+p2ps 1 2 3 2; (4.30e)

2 5 2 (4.30f)
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Using an algebraic manipulation software (like Mathematica or Maple), after a long and
tedious work (we apply the method developed|inl[65]), one shows that, fge@ericchoice

of the parameters, p, andps, system[(4.3D) either does not have real solutions or features
at most 72 complex solutions. This excludes, for a generic choice of the parameiers
p2 and p3, that there exist sets of non-vanishing measure o the real axis on thplane

for which z; and z, generate a real di erence whew; andw, generate a real di erence,
namely for which either side of (3.p8) is real. As the set of exceptional complex values of
for which either side 08) is real has generically at most vanishing measure, it does not
contribute to the integral in [(2.7P); therefore, for a generic choice of the paramefars

p2, and ps, the plane wave solution is stable against the perturbati@n integrated only
over values of in Sy strictly real, with the exception of the isolated points in the split
gaps. The discussion of the non-generic choices of the parameters, and ps, possibly
allowing a set of non-vanishing measure o the real axis on thplane providing a stable

contribution to the integral of the perturbation, is left to future investigation. O

We stress that for both the cases 1. and 2.Hf{z; ) has a double real root and a simple
real root, then it is the same also fd? (w; ).

Whatever the labelling is, we have always three real dierenogs wj+1. Moreover,
the relationsz;  zj+; =0 andzj+1  Z+2 = (Z+3 z) implyw; wj+1 =0 and
Wi+1 Wj+2 = (Wj+3  wj) forj =1;2;3, mod(3). In particular, one can prove that,
for real , there is anorder relationfor the di erencesz;  z+1 andw; Wwj+1, and there
exist a bijective relation between the two orderings of the di erences, but this argument

will not be discussed in this thesis.

4.2.1 Gaps and Branches

In this section we give a topological description of the components of the spectBym
which are referred to as gaps and branches. We impose that the eigenvaluds arfe
non-simple and we take into account the polynomRy (0; ) and its relation with the
polynomialPz (0; ) given by ). In fact, as discussed in the previous section,@ (4.8),

the eigenvaluesy; are non-simple if and only if the eigenvalugsare non-simple, with the
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exception of a point on the real axis of thg spectrum’] Thus, one can study rst the
discriminant with respect to of Pz (0; ) to get the main structure of theSy spectrun‘E],

but then one needs to introduce a resultant, which will be de ned later, to know for which
values of the physical parameters a split-gap occurs. Therefore, it is useful to introduce the

discriminant Pz (0; ) which can be factorised as

Y
Pz(0; )= Dj(pi;p2)%; 8p32R; (4.31)
j

and the resultantRes (Pz(0; );R( )) which can be factorised as

Y
Res (Pz(0; );R( )= Rj(p1ipz2;pa)’i: (4.32)
j

Let D; be the real-analytic variety in the parameter spa®; p2), implicitly de ned as
Dj = fp1;p2;ps 2 R:Dj(p1;p2) = 0; Rj(pa;p2; p3) =0 (4.33)

Once the value of the parametgr is xed, a rst topological classi cation of the possible
curves in the -plane in terms of the choices of the parametdrs; p2) can be made by
observing the nature of the -roots for which the matrixZ (resp. W) has non-simple
eigenvalues. This corresponds to analysing the sign of {4.31). By impofing|(4.31) to be
negative, we obtain a set of regions in th{@;; p2)-plane in whichZ (resp. W) is not
diagonalisable for two real values of and for a pair of complex conjugate values of
This values of identify the end-points of a gap and of a branch, respectively. On the
contrary, if (4.31) is positive, we obtain regions in ttfps; p>)-plane in whichZ (resp. W)

is not diagonalisable either for four real values otorresponding to the end-points of two
gaps, or for two pairs of complex conjugate values oforresponding to the end-points of
two branches. In addition, besides theroots of the polynomiaPz (0; ), the polynomial
Pw (0; ) has also one real doubleroot, that is the -root of the polynomialR( ). The
value of this -root depends on the parametefs, p, and p3, and so it varies ag; vary,
and it varies in the(ps; p2)-plane once the value qfs is xed. Interestingly, we have found
that also the sign of the resultanZ) is relevant for the classi cation of gaps and it is

a determining factor for de ning the so callegplit-gap In particular, a split-gap exists in

“We can have at most one split-gap. This is a consequence of the form4.8), in whRl ) is a rst

degree polynomial in , and the only root gives the point between the two endpoints of a gap.
50One observes that the discriminant with respect to of Py (0; ) is always zero because the polynomial

Pw (0; ) has a double real -root for any choice of the parameters; .
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the regions of thg(ps; p2)-plane for which the resultant is negative (see below).
Finally, the curves de ned by| (4.33) are the boundaries of the regions in(ihep,)-plane

associated to di erent topologies of the spect®y.

In order to de ne the number of gaps and branches, we compute the discriminafP (z; )) =

P z(0; ), that is a polynomial in , with parametersp;, p2, and ps. The polynomial

Pz (0; ) is negative whenever the three roats are real, and it is positive if only one root

z; is real. As a consequence, for xed valuesmf p,, and p3, the polynomialPz (0; )

is positive (resp. negative) for those values ofinside (resp. outside) the gap, and they
become zero at the end-points of gaps. Gaps and branches appear or disappear at the
multiple-zeros of the polynomidPz (0; ) (as discussed more in details later), thus at the

zeros of the discriminarfﬂ Pz (0; ), namely when

P2(0; )= 256(1 P2)(pi+ P2) 270 (P2 L)(p2+8)%°=0:  (4.34)

The three polynomial factors appearing ih (4|34) bound the regions in thg p2)-plane

characterised by di erent numbers of gaps and branches. We denote such curves as follows

Di=f(p;p2) 2 R%:p1 p2=0g; (4.35)
D, = f(p1;p2) 2 R?:p1+ p2 =0g; (4.36)
Ds=f(piip2) 2 R?: 2797 (p2 L)(p2+8)2 *=0g: (4.37)

On the curves 5)7), two real values ofroots collide by closing a gap, or they
separate by opening a gap. Whenever two realoots collide to close a gap, they become
two complex conjugate roots, and so they identify the end-points of a gap. Vice versa, if
two complex conjugate -roots become two real-roots, we expect that a gap appears. As
a result, the(p1; p2)-plane is divided in domains identi ed by di erent number of gaps and

branches.

Proposition 4.2.2. The Sy-spectrum has the gaps and branches structure described in
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Table 4.1: Gaps and branches structure.

Regions in the(p; p2)-plane #G #B -roots of P, (0; )
O<p2< \ p2<p1<p2 2G 0B 4 distinct and real
<p2<p1\ <p: 2G 0B 4 distinct and real
<p2< p\ < p; 2G 0B 4 distinct and real
p2> \ p2<p1<p:2 1G 1B 2 distinct and real,2 complex conjugate
pr<p2< p1\ pr<O 1G 1B 2 distinct and real,2 complex conjugate
pr<pz2<pi1\ pr>0 1G 1B 2 distinct and real,2 complex conjugate
Po< 0\ po<p1r< p2 0G 2B 2 pairs of complex conjugate roots

table[4.]. where the polynomial is de ned as

=27p2 (p2 1)(p2+8)% (4.38)
and the intervals in the parameter space are written in implicit form.
The classi cation of gaps and branches in tlip;; p2)-plane has been obtained by studying

simultaneously the sign of the discriminant (Pz(0; )) and the signs of the following

polynomials[[117]

01=8apay 383 (4.39a)
02 = 64apa; 16ajazaj 16a3aj+ 16aajay 3a3; (4.39b)
03=8aga; 4axazas + a3 (4.39¢)
04 =12apas 3ajaz+ a3; (4.39d)

5Note that the discriminant w.r.t.  of both the discriminant ,(P(z; )) and of the polynomialPz (0; )

is actually the same, although ,(P(z; )) and Pz (0; ) have opposite signs.
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wherea; are the coe cients of[]
Pz(0; )= as *+ag 3+a; 2+ a; +ag (4.40)

Let us identify, case by case, the conditions on the polynomials (4.39a)-(4.39d) and on the
discriminant  (Pz(0; )) within the regions in thgpy; p2)-plane [117].

By imposing Pz(0; )> 0, o1< 0Oand o2< O, we have4 distinct real -roots

which identify the four end-points 02 gaps and0 branches.

When Pz(0; ) < 0, we have2 distinct real -roots and2 complex conjugate

-roots. In this case we have gap andl branch.

The conditions to obtain the regions in th@y; p2)-plane corresponding two pairs of

complex conjugate roots, are

1. Pz(O; )> 0, 01> 0 and 02> 0;

2. PZ(O’ )> 0! o1 < 0 and 02 > %’

3. Pz(; )>0, o1>0and g2<0.
Thus, we haved gaps and2 branches.

The condition to have4 real roots all coincident, thatis Pz(0; )=0, ¢4=0

and o =0, is never satis ed.

There are some extreme points of gaps domains. Indeed, the conditid? (0; ) =

O and o4 =0 is veri ed at the points(4;4) and ( 4;4) for which we have a triple

real root and a simple real root, thus we hategap. The condition P(2)=0,
02 =0 and (1 < Ois veri ed only at the point(0; 0) for which we have two double

real roots andl gap.

Furthermore, there are some exceptional points for which, although they are corre-
sponding to0 gaps, the nature of the roots is di erent from that in their neighbour-

hood. In more detail, we have two pairs of complex conjugateoots at the point

"Strictly speaking, we should have written
P20 )=as *+a3 *+a 2+a +ao;

but the sign on front of the polynomialPz (0; ) is completely irrelevant after the computation of the

discriminant w.r.t.
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(0; 8), thatis when Pz(0; )=0 and g2 > 0, or a real double root and two
complex conjugate roots for 1) Pz(0; )=0 and o2> 0,0r2) Pz(0; )=0,
o1 > 0and o3 6 0, and the corresponding domains belonging to the curies

and D, and they are:

p_

8+4 3<p2<0; fpr=p2[ pr= P20 (4.41a)

p_

po< 8 4 3; fpi=p2[ pr= p2g; (4.41b)

or,
p_
4<py< 20+8 6, fpi=p2[ pr= pP20; (4.42a)
p_
20 8 6<pr< 4 fpr=p2[ pr= P20 (4.42b)

2
We have alsd real distinct -rootsfor Pz(0; )> 0, o1< O0and0< g2< 2%

Other limiting cases can be discussed, but this is not the aim of our research work

because we are interested in generic cases only.

The same classi cation for branches and gaps was obtained_in [64] for the CNLS equation.

Split Gaps

Looking at the expressions (4.35), (4/36) and (4/37), we deduce that the gaps structure

described so far can change by varyipg and p, only. Nevertheless, sincBw (0; ) =
P2(0; )R?( ), Pw(0; ) can be zero wherR( ) = 0 also if Pz(0; ) is negative or
positive. SinceR( ) is a rst degree polynomial and it has real coe cients, the equality
R( ) =0 may be veri ed just at one point of the reaﬂsx-spectrunﬂ Moreover, because

of the expression oR( ), for values ofp; and p, varying in an interval so that we have

a xed number of gaps, this point can move inside or can coincide with an endpoint of

gap. SinceR( ) depends orps as well, we expect that the regions in thH@1; p2)-plane

8This point is also a real double-zero of the polynomi&?( ).
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in which the zero oR( ) is inside a gap move by varying. Moreover, wherR( ) =0

then Pw (0; ) =0 too, and for this reason we have only two possible scenarios:

1. Pz(0; ) > 0 and the double-zero is within a gap, i.e. a split-gap;

2. Pz(0; ) =0 and the double-zero is a triple-zero of the polynonfa), (0; ), and it

coincides with the end-point of a gap.

We underline that the situation in whictiPz(0; ) < 0 and Pw (0; ) = O never occurs
because of the Propositidn 4.2.1.

We de ne a transition in the evolution of gaps structure, also in the case in which, a
split-gap appears because a point falls within an existent gap (or, vice versa, a split-gap
becomes an e ective gap because a point shifts from the inside of a gap to the end-point
of the gap). To see for which values of the parametgyssuch a transition occurs, we have

to understand for which values of the parameteys p2 and ps the zero ofR( ) collides

with a zero of Pz (0; ), or, in other words, wherPz(0; ) has a common root with the
polynomialR( ). This analysis is conducted by studying the resultant with respect to
between the two polynomialBz (0; ) andR( ). The discriminant with respect to of the
product Pz (0; )R?( ) does not give us further information about this kind of transition,

since the quantity’)

(Pz(0; JR*( )= (Pz(0; )R( )(Res (Pz(0; )R( J:R(M? (R( )=

= Pz(0; )( R())*Res (Pz(0; );R( ))*(Res (R( );R( N
(4.43)

is always zero because of the resultades (R( );R( )) = 0. However, the other terms
might or might not be zero. Therefore, the useful quantity to analyse is the resultant
Res (Pz(0; );R( )): in other words, we are interested to understand for which values of
the parameterg,, p, and ps the resultant

Res (Pz(0; }iR( )= p3 2mps+(p2 DLpd+pz+2 1°
(4.44)
Ps P P; dp2+4  2pi(pe 2)P5 Api+(pAp2+4) 8)ps +4

is zero or not. In the discussion below, we shall prove that|in (4.44), the polynomial factor

that appears squared does not correspond to any transition, while the other polynomial

°Note that R( )=1.
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factor identi es a curve bounding the regions in th@;; p2)-plane where there exist split

gaps; we de ne such a curve as,

Da = fp1; p2; P32 R Ra(p1; p2;p3) =0G; (4.45)
where the polynomiaR4(pz1; p2;p3) = Rais

Ra=ps P3 pi 4pe+4  2pa(p2 25 4pi+(pa(p2+4) 8)ps +4: (4.46)

Proposition 4.2.3. In the (p1; p2)-plane, the curveDy, de ned in (4.45), identi es the
transition curve for the existence of split gaps. In particular, once the valuggx o xed,
the values of the parameters and p, for which the polynomiaR, is negative correspond

to regions where there are split gaps.

Proof. Let us writePz(0; ) andR( ) in a more general form

Pz(0; )= a4 “+az 3+ a *+a +a (4.47)

R()= b + by (4.48)

and let j; and ; be the roots ofPz (0; ) andR( ) respectively, so that the resultant with

respect to can be written as

¥ Y
Res (Pz(0; );R( )) = asbf (« ) (4.49)
k=1j=1

Let us suppose that, say; are all real and distinct, such that we have two gaps. Let us
consider the initial situation in whichy = 1< < 3 < 4, which corresponds to having
) equal to zero and the point; coinciding with an end-point of a gap. Then, we vary
the values of the parametens; and p; so that ; increases until we have, < 1< <

3 < 4, and we have that is negativdT_U] and 1 is inside the gap. In particular, we
have the so called split-gdf} Thus, the resultant[(4.4P), and sd (4.44), is negative for this

kind of gap structure. Finally, we conclude that the relevant part of the resultant is only

a,b} is positive, becausey = 4.
11§, per absurdum, it wasR ( ) = 0 also in the case in whicPz (0; ) < 0, then would be positive

for the ordering 1 < 2< 1< 3< 4.
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the second polynomial. Indeed, by rescalingy ~= a , witha 2 R, in bothPz(0; ) and

R( ). In this way, we get the resultanRes (Pz(0;7);R (7)) = a*Res (Pz(0; );R( )).
Therefore, can be rescaled to eliminate the squared polynomial, or, in other words, such
a polynomial is arbitrary.

Let us consider another situation in which we have two distinct real roots and two complex
conjugate roots {G 1B), and we focus only on the produc(tg ‘k":l le=1( K j). One

can show that the product between the ternfsy ;) corresponding to the two complex
conjugate | is always real and positive. Indeed, let= c+ id and ;= ; = c id be

the two complex conjugate roots. Sinceis always real, then the following product
(1 )1 )=(c+id )c id )=cS+d?+ 2 2 =d*+( 0©)? (4.50)

is positive. At this point, the proof above on the case for the four distinct real roots can
be repeated also here, by considering only the two factors of the resultant corresponding to
the two distinct real roots .

The proof for the other cases, showed in table]4.1, is straightforward. O

By taking into account the regions associated to split gaps, a general classi cation of gaps

structure is given below.

Proposition 4.2.4. Besides the gaps structure described in tgblg 4.1, $iespectrum may

feature split gaps for the following choices of the parameters:

1) if 1<pz<1 1<p1< .andpy>1 Blzwithl 512<0;
3 3

2) ifpg< lorps>1, 1<pi< zandpy>1 ngwithl 512>0;
3 3

where
p -
L5 2
=2, P2 2 2p Y 1v(p 5 (4.51)
B ps iPaj
2 p 2 2ip? 1jp 1+(p2 1)p
,= S+ + 3 3; (452)

p3 P3 jpsj3

and the intervals inl) and 2) are written in implicit form.
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(@) (p1;p2)-plane,ps = 0.
Figure 4.1: (p1; p2)-plane, whenps =  0:6. Split gaps appear inside the region bounded
by the curveDg,.

(@) (p1;p2)-plane, pz = 2.
Figure 4.2: (p1; p2)-plane, whenps = 2. Split gaps appear inside the region bounded by

the curveDy.
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The Figures 4.1(8) and 4.2(a) show where there exist split gaps. By overlaying the results

of the Table[4.] to the ndings of the Proposition 4.2.4, the total number of gaps and split
gaps is predicted. For example, looking at the Figlire 4.]l(a), we have a totdlGfand
1SG in the region between the curvBs and D4, while we havelG and1SG in the region
betweenD4 and Ds. Instead, in Figur¢ 4.2(a), the region beldl; has1G and1SG, while
that one aboveD3 has1G and1SG.

Symmetries and Gaps

In the following discussion, we take advantage of the symmetries in(fhepz)-plane to
classify gaps aps changes. Indeed, since Pz (0; ) is invariant under transformations
p1! pr andpz ! p2, the plot of the curvedD1, D, and D3 are symmetric with respect
to the pp-axis. The curveD, depends also ops, and it has symmetriep; ! p1, P2! p2
and ps3 ! ps. Nevertheless, for nite values gfiz, such a curve is not symmetric with
respect topy-axis and moves in thép;; p2)-plane asps varies. In particular, by changing
ps to ps, the D4 plot is re ected with respect tops-axis. The curveD,4 can be written

by expressing, as a function ofp; and p3

. s P
2ips P3 papitp3 1

P2(P1;P3) = 2+ Pap1+2p3 2 : (4.53)
and by changings ! ps3, we get
p2(P1; Ps)= 2 papL+2p5 Aps p%jp pggpl il l; (4.54)
3
that is p2(p1; p3) = p2( p1;pP3), and one can de ne
paPripe) = 2+ popy+2p3 O3 i ;%3 L (4.55)
wherep; = p1 and the bar denotes the parameteps and p, after the transformations.

Thus, p2(p1; p3) is the curvepz(p1; p3), re ected with respect to thep,-axis.
On the other hand, aps approaches in nity,D4 becomes symmetric to thp,-axis. In the

following, we shall discuss the symmetriesnf in more detail.

Proposition 4.2.5. For 1< p3 < 1, and forps < 1 or ps > 1, the curveDy4 is
asymmetric with respect to the-axis. Forps! 1, D4 is symmetric with respect to

p2-axis. Forpsz =0, D4 disappears. Fops =1, D4 coincides withD1, while forps = 1,
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D4 coincides withD,. Forps =0, p3 =1 andps = 1, there are not split gaps and the

gaps structure is described only by talple}4.1.

Proof. By looking at the expression dd, written as a function ofpy, i.e. (4.53), we see
that po(p1) is neither even nor odd. Nevertheless, by dividing (#.45) by the maximum power

of ps, after taking the limitps! 1, we obtain
p?
p2(p1) = 1 Zl; (4.56)

which is clearly an even function, and so it is symmetric with respect topheaxis.
Furthermore, the domain of the functiorf (4.53) is

1
8p3 2 R=qg; (P12 R:p1 s ps (4.57)

The curveDy is not de ned forps = 0. In addition, once we chosps = 1, (#.53) can

be considered as a function pf only, whose explicit expression is

P2(p1) = P (4.58)

that are D; and Dy for p3 =1 andps = 1, respectiveI)E]. In these cases the cunie,
becomes(pi1  po)? or (p1 + p2)?, which are positive and, as a result, there are no split

gaps, and the discussion reduces to Taple| 4.1 only. O

Because of curve symmetries on tliip;; p2)-plane, here and thereafter we consider only
negative values ops.

The Figured 48 anfl 4]4 are plots of th@:; p2)-plane with the entire topological classi -
cation of gaps and branches components far= 0.6. We chooseps = 0.6 without
loss of generality, indeed fgpsj > 1 the curveD4 moves in the regions witiG and0G

by creating a split-gap, and the discussion is the same.

4.3 Complex Spectrum

In the previous section we have considered the characteristic polyndd{@al ) and we
have analysed the situations in which twg -roots coincide. We can summarise the clas-

si cation of -roots at which at least one di erence;  wy is zero, i.e. =0:

12The domain of the functionpz(p1) becomesf p; 2 Rg for this case.
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Figure 4.3:(p1; p2)-plane,pz = 0:6
1. 4 distinct real roots and/orl double real root 2G 0SGO0B or 1G 1SG0B);

2. 2 distinct real roots,2 complex conjugate roots and/ot double root (G 0SG 1B or

0G 1SG1B);

3. 2 pairs of complex conjugate root9G 0SG 2B).

Let us consider the polynomial of the squares of the di erenBgg( ; ), de ned in (4.3),
which is a sixth degree polynomial inand a third degree polynomial ir?. We construct the

polynomialQ( ) Q ( ;p1;p2;p3), that is the discriminant with respectto of Pw( ; )

Q() Pw(; ): (4.59)

Then, we perform the polynomial factorisation @ ( ) with respect to . This results in

the following form

Q()= Q%()Q2); (4.60)
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Figure 4.4:(py1; p2)-plane,ps = 2

whereQ1( ) Q 1( ;p1;p2;p3) andQz( ) Q 2( ;p1;P2; P3) are two polynomials in the
variable , whose degree are four and six respectively, §h(0) 6 0. We will refer to

Q1 and Q; as theevenand odd parts of Q( ), respectively.

Proposition 4.3.1. Let be the largest positive root oQ,( ). Then, for > , all the
-roots of Py ( ; ) are real; therefore, the stability spectra always contains part of the real

axis and never features a gap containing the point at in nity.

Proof. The polynomial of the squares of the di erences is written as (Apperndix J)

ff fa

Pw(; )= 3 f12+4 5

(4.61)

wheref1  f1( ;p1;p2;p3) andfy  fo( ;p1;p2;p3) are polynomials whose unknown is
the spectral parameter and they are depending also by the physical paramepmrsp,

and p3. In particular, for the 3WRI model, these polynomials have the general expressions

fi= o+ 1 + 2% (4.62a)
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fa= o+ 1+ 2%+ 33+ 4%+ 5%+ 5 & (4.62b)

The polynomial of the squares of the di erences (4/61) vanishes for ampot

3 f12+ﬁ f2_,

i (4.63)
and, by diving [(4.6B) by 3, we get the equation
f, 2 1,
=+ <. =0: .
1 25 5570 (4.64)
Sincel! Oas ! +1,wedenel | so thatthe equation ) becomes
f12 2 fa 3
+ -1 —£3=0: .
1oty + ] 2°=0 (4.65)

At this point, we note that for = 0, we have the impossible equalify= 0, that means
all the three roots approach in nity as goes to zero. Thus, we deal with a singular
perturbation problem and, in order to solve the equatign (4.65), we set the rescaled variable

= -y into the equation {4.65) and substituté; andf, scuh that

by 2
1+ (ZJZ 0 7%+¥ 0212 1 63 %022"‘
2 2 2
Y° 22 Y y 3 4.66
T2zl 22 gzt (4.69)
N A T AR N AR TR AR T AN A Sy
53 12 63 3 244 2 64 4 65 5 66 6 :

By using the principle of dominant balance, we require that at least two leading-order terms
have the same order of magnitude. By imposing the condition

3
. (4.67)

01‘ w
1

we get

1
=

(4.68)

that gives us solutions not approaching in nity asl 0, so we have to rule out this choice.
The right expression for is given by the condition

2
- (4.69)

m‘w
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hence,

N

= (4.70)
By substituting {4.70) in [4.66), we obtain

+y? 022+§f 2 262 ty %01?’:2 i %15:2 + (4.71)
Therefore, we look for solutions of the kifd

y=yo+ Zyi+ O(); (4.72)

and by putting the expansion above into the equati¢n (4.71) and collecting the terms with
respect to equal powers of

p- 1 5
S 1 o+ Byi 2 2yoys 56y O eydyr +
(4.73)
2\4 6
Yo 2 6Y0 A
+ 220 —2 +1+ =
4 ZyO 6 1 O’

where we have neglected the terray ).

By expanding and matching the coe cients of" to zero, forn = 0;1, we obtain the

equations
2,4 6
1 2 + 2Yo 6Y0 -0- 474
Yo+ = 6 0; (4.74a)
1 3 2.3 5Y5 5
5> 1 2% 1Yot 2Yoy1 2 2Yoy1 6 6Yoy1=0; (4.74b)

whose solutiong areyg; with j =1;::,6. To nd the order of the correction, we have
to substitute the solutionyg; into the second equations and get;. Thus the solutions

are of the kindy; = yo; + O( %), j =1;:6. Moreover,ygj are all reals, in fact, if one

13Because of (4.7D), the corrections to the roots must be a regular perturbation expansion in powers of

1 . . . .
2, otherwise we can not match powers of an expansion having only integral powers.of
YFor the aim of this discussion the explicit expressions wf; are not necessary.
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considers the polynomia| (4.74a) as a third degree polynomial whose unknowyg ihe

discriminant is

2 2
o558 2 96 (4.75)
i.e.
vo =6144p3 pi 1 ® 12058 + 1298p4 + 431p2 + 48 °; (4.76)

and the conditiorF_5] yo Olis satised8pz 2 R. In addition, by the Descartes' rule of
signs, it results thatygj are all positive, hencgg are reals.

However, we are interested in nding, i.e.
i=yg z+O0@); j=1;u6 (4.77)
and, coming back to the old variables, it turns out that
p— ,
=Yy j+0O(); j=1;u6 (4.78)

Finally, keeping in mind the assumption 2 R™, the roots j are all reals. Furthermore,
sinceyq are solutions of the polynomial (4.74a) and since = 2 3p§+1 > 0 and
6=(4pS 8pi+4p3) > 0, 8p32 R, by using the Descarte's rule for such a polynomial,

we see there are exactBpositive and3 negative roots. O

Let us impose a dierencav; wy to be real and strictly positive, i.e. > 0. By the
formula (4.59), the values of for which two -roots collide are those ones for whi€y( )
vanishes. After that,Q»( ) may change sign, that is, after a collision, tworoots may
change their nature. In more detail, two realroots may become complex and vice versa.
Indeed, if the polynomial of the squares of the di erences is regarded as a polynomial in

for any xed , we expect one of these scenarios:

a) 6 distinct real -roots;
b) 4 distinct real -roots and2 complex conjugate -roots;

c) 2 distinct real -roots and2 pairs of complex conjugate-roots;

15That is the condition for which ij are three distinct real roots or multiple real roots.
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d) 3 pairs of complex conjugate-roots.

As varies, two or more of the above scenarios can coexist. However, the case d) never
occurs. There is no interval of in which all the roots are complex. In other words,> 0,

there are at least two real roots. This is a consequence of the fact that the polynomial
of the squares of the di erenceByw ( ; ) is equal to the square of the polynomial of the
dierencesw-  wp, (Appendix[J). Since the polynomial of the di erences has only real
coe cients, it can have a pair of complex conjugated-roots at most. As a result, we
expect two pairs of complex conjugateroots at most for the polynomial of the squares

of the di erences.

In this section we focus on the complex subset of Bg-spectrum which may lead to
instability in time (besides the point separating a split-gap). This part of the spectrum
consists of open and closed continuous curves named branches and loops respectively. To
understand how these curves appear, we have to imagine an initial situation in which
the values of the spectral parametersare roots of the polynomiaPyw (0; ). Then, we
impose the condition > 0, so that the values of the spectral parametersre roots of the
polynomialPw ( ; ) 8 2 R. After that, one or more of the scenariog), b) or c) occur

as varies. For example, at = 0, let us consider the initial condition for which we hage
distinct real -roots and2 complex conjugate -roots. Let us suppose that the polynomial
Pw( ; ) has2 distinct real -roots and2 complex conjugate -roots for some 2 R.

This means that all the real roots remain on the real axis and theomplex conjugate
roots collide at some point on the real axis and then go to in nity necessarily on the real
axis (see Proposition 4.3.1). In this case, the spectrum would be composéd@hbsnd 1B

and OL. However, several other situations can occur agaries. For instance, ldb) be the

next situation. We have thaR real -roots become a pair of complex conjugateroots.
Since8 > 0 these couple of complex roots must remain conjugate (they are the roots of
a polynomial with real coe cients) and, in addition, all the roots must be real as1
instead of having a branch we have a loop. In this case, the spectrum would be composed
by 1G 1B 1L.

A loop can be regarded as a branch closed on the real axis. Sometimes, the di erence with
a branch is that it is created by -roots not corresponding to = 0. In any case, a loop

comes from two initial real -roots, instead of two complex conjugate-roots, unlike a
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branch. Nevertheless, there are some situations in which a loop is created by starting from
real -roots associated to = 0. As varies, two real -roots cannot travel in a branch
because, if that happens, they are forced to travel it again in order to come back on the
real axis when !'1  (see Propositiorf 4.3]1). For the same reason, two initial complex
conjugate roots, starting form the ends of a branch, travel such a branch but never come

back on it. Therefore, they collide on the real axis and, after that, approach in nity.

Proposition 4.3.2. The -roots cannot be periodic functions of.

Proof. Since -roots are solutions of a polynomial, they can not be periodic. In particular,
once the other parameters are xed, let us suppose, that theoots are periodic functions
of . Then the limitof () as !1 is not convergent, because they are oscillating.

Thus, the ( ) must be monotonic function of . O

4.3.1 Loops Classi cation

In this subsection we give the loops classi cation and so the complete spectra classi cation.
The (p1; p2)-plane is divided in regions in which the spectra have the same topology and
the number of gaps and the number of branches are known in every region. After choosing
the values of the parameters, p, and psz in any of such regions, we use MATLAB codes in
order to nd the -roots of the polynomiaQ,( ). Between these roots we select only the
real and positive -roots. If we nd ;,..., n real and positive roots, we have to consider

N + 1 intervals: fromOto 1, from 1 to », etc... , until the last interval from y to

+1 . In this way, if the polynomial of the squares of the dierencPsy( ; ) is meant

like a polynomial in the variable, every coe cient of such a polynomial is a function

of the variable. Then, we require every coe cient to be positive within every interval
fj; j+10 withj =1;:5N 1. After that, we see that the coe cients can change their
sign inside intervals whose endpoints do not coincide with the@ots of Q,( ), we denote
them as 1;:::; m, and so further intervals appear in thedomain. We apply the Descartes
rule of signs in all the interval§ j; j+19, withj =1;:;M 1, and we see how many
real positive, real negative and complex conjugate roots there are. Nevertheless, di erent
cases may be present. For example, if we have three sign changes for the polynomial in

and for the polynomial in , then we may have3 positive roots,3 negative roots, or
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3 positive roots,1 negative root and2 complex conjugate roots, o8 positive roots, 1

negative root and2 complex conjugate roots, dt positive root,1 negative root and pairs

of complex conjugate roots. However, only one of these options is the real one. Therefore,

we choose a generic point in every inter¥al; j+19,j =1;:;M 1, and compute again

the coe cients of the polynomial of the squares of the di erences. We count the number

of sign changes in every interval. Thus, we exclude all the options not corresponding to

the real one. By this method, as varies, we can imagine the dynamic of theroots on

the Sy spectrum, and so suppose the creation of a new spectrum component, or when two
-roots collide to return to the real axis.

Moreover, we write down a formula linking the number of branches, loops and twisted

loops:
#TL+2# L+#B=# *; (4.79)

where * stands for the positive roots aB»( ).

4.3.2 Spectra Classi cation: Descartes Rule of Signs and Sturm Chains

Here we give a detailed, but general, description of the procedure used to obtain the
topological classi cation of the spectra in théps; p2)-plane. Then, we will apply this
procedure to any region in the parameter space with a particular number of gaps and
branches.

Let P(x) be a polynomial irx with real coe cients, and letdeg(P) be its degree. Let us
supposeP (x) is ordered by descending variable exponent, then the number of positive roots
of the polynomial is equal to the number of sign di erences between consecutive nonzero
coe cients, or is less than it by en even number. Multiple roots are counted separately.
In order to obtain the number of negative roots, we substitutex into the polynomial
P(x) to get Q(x) P( x), and we apply the Descartes rule of sign @(x). If, for
instance,P (x) is a third degree polynomial, and the sequence of successive sigR{Xgr
isf++ g ,we expectl positive root. On the other hand, let us suppo&€x) has the
sequence of successive signs + + g . Then, the polynomialQ(x) has2 positive roots

and the polynomialP (x) has?2 negative roots. Since the number of complex roots must

be equal todeg(P), the minimum number of strictly complex roots teg(P) (p+ n),
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wherep denotes the number of positive roots, amddenotes the number of negative roots.
Thus, if we apply the Descartes rule of signs to bd@{x) and Q(x), and the sum of the
number of their positive roots does not matateg(P), we expect the polynomidP (x) to
have complex roots.
We apply the Descartes rule of signs to the polynomial of the squares of the di erences
Pw( ; ), regarded as polynomial in, for any choice of the parametens;, p, and ps.
The polynomialPw ( ; ) is a sixth degree polynomial and the coe cients of and of

5 are constants and so independent on In other words, their signs are the same as
varies. However, the other coe cients are depending onand so their sign can change as

varies. Thus, after choosing the valuesmf, p> and p3, we get

Pw(; )=06 %+ 05 >+ ga() *+as() >+ g() *+ () + () (4.80)

wheregs and gs are numbers, whilgj ( ),with j =0;1;2;3;4, are polynomials in .
The trick is to require some coe cients to be positive and see for which value dhis
condition is satis ed. For instance, let; and » be the two values of at which Q( ),
i.e. Q2( ), changes sign. We impose the conditiogy ) > 0, 8] = 1;2;3;4, in every
interval0< < 3, 1< < s2and < < +1. Sometimes, it will happen that
some polynomial coe cient is negative, for example, for< < 3 < 4 and instead
positive for 1 < < 1. In such case, we will split the-domain in intervals ag0; 1],
[1; 2, [ 2; 3, [ 3,+1), where we have redened; = , and 2 = 3. Then, in every
of this interval we apply the Descartes rule of sign. We choose a particular value of
say, into the intervalf 0; 1g, substitute it in the polynomialPw ( ; ) and count the sign
changes. For example, we could have the sequence of §igns + g, thatis
associated to the possibilities3 positive andl complex conjugate -roots, or 1 positive
and 2 complex conjugate -roots. Whereas, for the polynomid#dy ( ; ) after substituting

! , we have the sequence of sighs + + g associated to the possibilities:
3 negative and) complex conjugate -roots, or1 negative and2 complex conjugate -root.
By combining altogether the sequences of signs we obtain the possibilBipssitive and3
negatives -roots, 3 positive (resp.3 negative),1 negative (resp.l positive) and2 complex
conjugate -roots. After that, we will repeat the same procedure by choosing a particular
value of into the other intervals.
Once we have the intervals in which the structure of the algebraic curves in tpdane

may change, we will apply the Sturm chains method to the polynondal( ; ). First
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of all, we choose a value of in every interval[0; 1],[ 1; 2], [ 2; 3] and[ 3;+1 ), and
substitute this value of in the polynomial of the squares of the di erences which be-
comes dependent only on, i.e. Pw( ). From here, we construct the Sturm chain
fP \Sf,)gfzo =fP &?);P\(,y; P\(,i);P\(A?,’);P\(A‘});P\(,S); P\(,S)gfor every xed inany intervall0; 4],

[1; 2], [ 2 sland[3;+1):
PW ()= Pw();
PP = PR
P@ ()= Remainder P ( )PP () ;
P& ()= Remainder PS( );P@ () ;
PYW( )= Remainder PO ( );P&() ;
P\(IS)( )= Remainder P\(A‘j’)( );P\(,C)( )

p\(/s)( )= Remainder P\(,C)( ):Péi’)( )

The result of this computation is a sequence of numbers changing akanges, and we
write down only the sign of every number in the sequence and, from such a sequence, we
extract the sequence of the corresponding signs. This sequence of signs changes only if we

choose values of from intervals di erent from to each other.

4.4 Gain Function

In this section, we present the functidd(!; k ) as an implicit function of the eigenwavenum-
berk = w; w; and of the eigenfrequendy = z; z;. The vanishing of the this polynomial,
i.,e. H(I;k ) =0, for xed k, provides! as a function ofH and of the other parameters of
the systemps, p2 and p3, whose imaginary part is the gain function. However, we do not
solve this polynomial because it is sixth degree polynomidl,imnstead, we will compute
numerically (via a MATLAB 2018a routine) and we will display an example of the gain
function for any spectrum in the classi cation in the next section.

In the following, we show how the functioH (!; k ) is obtained.

Let us consider the two characteristic polynomid®s (z; ) and Py (w; ). Because the
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two associate matrices commute, i.6Z; W] = 0, they have roots in common, such that
their resultant must be zero for values of the parameters involved in their expressions. The

resultants with respect tg; and p, read, respectively,

Res, (Pz(z; );Pw(w; ) =( pa(pe+2z( +2z))+w 2z) 2+ p(ps( +2) 1)%+
+p3( +z 1) +z+1)(z( +2) D+ps wEz( +2) 2) z( +2)%+z +wH

+2 (W+ 2)+ wz+ 22 1 ;
(4.82)

Res,(Pz(z; )iPw(w; ) =( pips psz+(w 2z)( +2)  +pupa( +2) 1)%+
+H +2)(P5( ((+z L) +z+1)+ ps(w(z( +2) 2)+z( +z 1) +z+1)+

+H +w)( +w+ 2):
(4.83)

Because the resultant$ (4.82) anfl (4]83) are the product of two polynomials, for each one
of them, we equal to zero the polynomial with the simplest expression, in this way we obtain

two maps between the eigenvalwe and z,

+z
and
w! ps(p2+z( +2)+ z: (4.85)

Using the two maps|(4.84) and (4.85), we de ne the two polynomials by taking the numer-

ators of the following expressions

Ji(z1;z2; ) =4 +z)( +2z2)(k z1 2z2) p3(pr+ zi)( +2z2) p3(pr+ 22)( + Z1)));
(4.86)

and
Jo(z1;22; ) =4(k  (ps(p2+ za( +z1))+ 21 pa(P2+ z2( + 22)) + 22)); (4.87)
and, after the substitutiond = z; 2z, and = z; + z, they become

Ji(; )=k (+2 )% 124+ 244ppg 4 ( + +pa)+!2; (4.88)
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Jo( 5 )=k I(ps( + )+1): (4.89)

Moreover, we introduce another polynomial, that is the polynomial of the sums of the

eigenvalueg; (Appendix[K)

Sy(; )= 344 ?+(5 %+p 1) +pt+ ( 2+p+2 ?): (4.90)

Then, the Groebner basis of the three polynomial ; ), Jo( ; ) andSz(; ) vields a
list of polynomials of which only the rst is independent onand and provides the gain
function
H(k)=k* 12 4 43 pps+ 12 4
k12 12pips+ p3 ps+4p+2!2 8 612 4 +
+2k!° pips (P2 2)pf 6 +pi pit4p+2!? 8 2%+8 +

+14% 8 p? o dpp+4 +2pi(pe 2P3+4pips (pa(p2+4) 8)pF 4 +

(4.91)

4.5 Description of the x-Stability Spectra

In this section we provide an analytical description of the spatial stability spectra obtained
for any generic choice of the parameters in tf®; p2)-plane and we display both th8y-

spectrum and its associated gain functiors = ( ks) in any region of the(ps; p2)-plane

(see Appendices M ar{d L).

Regions with 1 Gap and 1 Branch

In the regions withl gap andl branch, we note the following correspondence between the

number of loops and the number of positiveroots:

2L: 5 positive -roots;
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1L: 3 positive -roots;

OL: 1 positive -roots.

If we choosgp; = 0:8, p, =0:4andpz = 0:6, we have thatQ,( ) changes sigi times
at any of the following values of: 1 =0:028 , =1:887, 3=2:115 4= 3:146and

5 = 33:419. After applying the Descartes rule of signs to the polynomial of the squares of
the di erences multiplied by minus, further intervals must be considered whose end-points
are: 1=0:028 ,=0:152 3=1:887, 4=2:115 5=3:146 5=6:517, 7=15:021
and g = 33:419 Then, we apply the Sturm chains technique by substituting a generic
value on every interve j; j+1] into the expression of the coe cients and we count the
sign changes. Finally, we can classify the nature of theots and so we can describe the

whole spectrum. In particular:

0< < 1:4 -roots on the real axis an@ -roots are travelling along the branch;

1< < 5.2 -roots on the real axis2 -roots on the branch an@ -roots on a

loop;

2< < 3.4 -roots on the real axis, an@ -roots on a loop or on the branch;
3< < 4.6 -roots on the real axis;

4< < 5. 6 -roots on the real axis;

5< < g 4 -roots on the real axis?2 -roots on the second loop;

6< < 7.4 -rootson the real axis2 -roots on the second loop;

7< < g 4 -roots on the real axis2 -roots on the second loop.

> g: 6 -roots on the real axis.

We conclude that2 loops exist for these choices of the physical parameters.
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Figure 4.5: Stability spectrum fop; = 0:8, p, = 0:4, p3 = 06. = Re( ) and
=Im( ).

Figure 4.6: Gain function( k3) whereks = w1  w, associated to the stability spectrum

obtained atp; = 0:8, po=0:4, p3 = 0:6.

By settingpy = 40, po = 3:0andps = 0:6, we have thatQ,( ) changes sigr8
times at any of the following values of. 1 =0:030, , =31:959and 3 = 49:660. By
applying the Descartes rule of signs, further intervals must be considered whose end-points
are: 1 =0:026 5, =0:030, 3=0:525 4, =231:959 5 =238:834 ¢ = 49:660and

7 =52:214. Then, we apply the Sturm chains technique and we obtain the classi cation

of the nature of the -roots:

0< < 1:4 -roots on the real axis an@ -roots on the branch;
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1< < 2.4 -roots on the real axis an@ -roots on the branch;

o< < 3.2 -roots on the real axis, an@ -roots on the loop an® -roots on

the branch;

3< < 4. 2 -roots on the real axis an@ -roots on the branch an@® -roots

on the loop;

4< < g 2 -roots on the real axis an@ -roots on the branch an@ -roots

on the loop;
5< < g 6 -roots on the real axis;

> 7. 6 -roots on the real axis.

Therefore,1 loop is present in this spectrum.

Figure 4.7: Stability spectrum ap; = 4.0, po = 30, p3= 06. =Re( ) and
=Im( ).
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Figure 4.8: Gain function( k3) with k3 = w; wy associated to the spectrum obtained

atpr= 40, po= 30,p3= 06

By settingp1 =1:0, pp =3:0andp3 = 0.6, we have thatQ,( ) changes sigri time in
the point 1 = 36:911 After applying the Descartes rule of signs, further intervals must
be considered whose end-points arg:= 0:079, ,=3:664 3=36:911 Then, we apply

the Sturm chains technique and we get the following classi cation:

0< < 1:4real -roots and2 -roots on the branch;
1< < o 4real -roots and2 -roots on the branch;
2< < 3. 4real -roots and2 -roots on the branch;

> 3. 6 -roots on the real axis.

No loops exist into the spectrum for these choices of the physical parameters.
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Figure 4.9: Stability spectrum ap; = 1:0, p» = 3:0, p3 = 06. = Re( ) and
=Im( ).

Figure 4.10: Gain function( k3) wher&ks = w;  w; associated to the spectrum obtained

atpr=1:0,p2=3:0,ps= O0O6.

4.5.1 Regions with 0 Gap and 2 Branches

In the regions withO gap and2 branches, there is the following correspondence between

the number of loops and the number of positiveoots:

2L: 6 positive -roots;

1L: 4 positive -roots;
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OL: 2 positive -roots.

Let us setpy = 62, pp = 6:3andpz = 0:6. For these values of the parameters
the polynomialQ2( ) change sign6 times at the values of: ; = 0:168 , = 1:219

ar 3 = 63:296, 4 = 63:549 5 =064:132 = 70:732 Then, we apply the Descartes
rule of signs and we nd further intervals whose end-points are:= 0:168 , = 0:45],
3=0:839 4=1:015 5=1:219 =2:746 7=63:296 3=64:132 ¢ =66:267,

10 =70:732 11 =71:817, 1, =82:022 13=287:860. In this way, by the Sturm chains

method, we have the classi cation of the-roots:

0< < 1: 2 -roots on the real axis2 -roots on a branch an@ -roots on the

other branch;

1< < 2.4 -roots on the real axis an@ -roots on a branch;
2< < 3.4 -roots on the real axis an@ -roots on a branch;
3< < 4.4 -roots on the real axis an@ -roots on a branch;
4< < 5.4 -roots on the real axis an@ -roots on a branch;

5 < < g 2 -roots on the real axis2 -roots on a branch an@® -roots on a

6 < < 7.2 -roots on the real axis2 -roots on a branch an@® -roots on a

7< < g 6 -roots on the real axis;

g§< < o4 -roots on the real axis an@ -roots on a loop;
9< < 104 -roots on the real axis an@ -roots on a loop;
10< < 11. 6 -roots on the real axis;

11< < 12 6 -roots on the real axis;

12< < 13. 6 -roots on the real axis;

> 413. 6 -roots on the real axis.
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Thus, we see loops in this spectrum.

Figure 4.11: Stability spectrum witlp; = 62, p,p = 63, p3= 06. =Re( ) and
=Im( ).

Figure 4.12: Gain function( k3) whereks = w; wy associated to the spectrum obtained

atp1= 62, p2= 63, p3= 06

If we choosgp; = 4:0,p2= 4:2andpsz= 0:6, the polynomialQ,( ) vanishest times
in these points: 1 = 0:129, , = 0:240 3 = 36:370and 4 = 44:444. By using the
Descartes rule of signs we havej = 0:129 , = 0:179 3=0:240 4 =0:380 5=
0:495 =1:047, 7 =36:370 g =43:943 o =44:444 1o =46:439 11 =49:745
12 = 57:025 By constructing the Sturm chains method, we obtain the followingroots

classi cation:
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0< < 1: 2 -roots on the real axis2 -roots on a branch an@ -roots on the

other branch;
1< < 2.4 -roots on the real axis an@ -roots on a branch;
2< < 3.4 -roots on the real axis an@ -roots on a branch;

3< < 4. 2 -roots on the real axis2 -roots on a branch an@® -roots on a

4 < < 5 2 -roots on the real axis2 -roots on a branch an® -roots on a

5< < g 2 -roots on the real axis2 -roots on a branch an@ -roots on a

6 < < 7.2 -roots on the real axis2 -roots on a branch an® -roots on a

7< < g4 -roots on the real axis an@ -roots on a branch or on a loop;
g < < 9.4 -roots on the real axis an@ -roots on a branch or on a loop;
9< < 10. 6 -roots on the real axis;
10< < 11: 6 -roots on the real axis;
11< < 12: 6 -roots on the real axis;

> 12. 6 -roots on the real axis.

Only one loop is present in the spectrum.
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Figure 4.13: Stability spectrum witlp; = 40, pp = 42, p3= 06. =Re( ) and
=Im( ).

Figure 4.14: Gain function( k3) whereks = w; wy associated to the spectrum obtained

atpr= 40, p= 42 ,p3= 06

If we choosep; =1:0, po = 3:0andpz = 0:6, the polynomialQ,( ) vanishes? times
in these two points: ; = 8:421and , = 13:280. By using the Descartes rule of signs
we have: ; = 0:076 » = 0:769 3 =2:284 4, =8:421, 5 = 11:354 ¢ = 12:477,
7=13:157, 3§ =13:280, ¢ =13:289 By using Sturm chains we get the followingroots

classi cation:

0< < 1: 2 -roots on the real axis2 -roots on a branch an@ -roots on the

other branch;
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1< < .2 -roots on the real axis2 -roots on a branch an@ -roots on the

other branch;

2< < 3.4 -roots on the real axis2 -roots on a branch an@ -roots on the

other branch;

3< < 4 2 -roots on the real axis2 -roots on a branch an@ -roots on the

other branch;
4< < 5.4 -roots on the real axis2 -roots on a branch;
5< < g 4 -roots on the real axis2 -roots on a branch;
6 < < 7.4 -roots on the real axis2 -roots on a branch;
7< < g 4 -roots on the real axis2 -roots on a branch;
g< < g 6 -roots on the real axis;

> g 6 -roots on the real axis.

No loop is present in the spectrum.

Figure 4.15: Stability spectrum witlp; = 1:0, pp = 3.0, p3 = 06. =Re( ) and
=Im( ).
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Figure 4.16: Gain function( k3) whereks = w; Wy associated to the spectrum obtained

atpr=1:.0,p2o= 30, p3= 06

4.5.2 Regions with 2 Gaps and 0 Branch

In the regions with2 gaps andO branch, there is the following correspondence between the

number of loops and the number of positiveroots:

2L: 4 positive -roots;

1L: 2 positive -roots.

The region with2 gaps,0 branch andO loop does not exist. This is because theroots
which start to move in the interval between tiegaps would be trapped inside such interval

and never would go to in nity: this is in contradiction of the Propositipn 4.B.1.

Let us setp; = 700, p, = 60:0andpz = 0:6. The polynomialQ2( ) changes sig
times in the points ; = 1:596, , =218:582 3=968:174, 4, =3944:396. After applying
the Descartes rule of signs, the end-point of the intervals becomes 1:596, , = 32:536,

3 =218:582 4, =482:289 5=968:174, 5= 1480:780, 7 =3944:396 g =4733:800

By using Sturm chains method, we get the followingroots classi cation:

0< < 1:6 -roots on the real axis;
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1< < 2.4 -roots on the real axis2 -roots on a loop;
2< < 3.4 -roots on the real axis2 -roots on a loop;

3< < 4 2 -rootson the real axis? -roots on aloop an® -roots on another

4< < 52 -rootson the real axis? -roots on aloop an@® -roots on another

5< < 4 4 -roots on the real axis?2 -roots on a loop;
6< < 7.4 -roots on the real axis2 -roots on a loop;
7< < g6 -roots on the real axis;

> g: 6 -roots on the real axis.

Therefore, we se@ loops in this spectrum.

Figure 4.17: Stability spectrum witlp; = 700, p, = 60:0, p3 = 06. =Re( ) and
=Im( ).
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Figure 4.18: Gain function( k3) whereks = w; Wy associated to the spectrum obtained

atpp= 700, p2 =60:0, p3= 0:6.

Let us setp; = 0:2, pp = 0:6 andps = 0:6. The polynomialQ»( ) changes sigr2
times in the points 1 = 2:348and , = 18:989. After applying the Descartes rule of signs
,the end-point of the intervals become:; = 2:348 , = 6:410and 3 = 18:989 After

constructing the Sturm chains, the-roots classi cation is:

0< < 1:6 -roots on the real axis;
1< < 2.4 -roots on the real axis2 -roots on a loop;
2< < 3.4 -roots on the real axis2 -roots on a loop;

> 3. 6 -roots on the real axis.

Therefore, there is onl\l loop in this spectrum.
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Figure 4.19: Stability spectrum witlp; = 0:2, pp = 0:6, p3 = 06. = Re( ) and
=Im( ).

Figure 4.20: Gain function k3) whereks = w; w» associated to the spectrum obtained

atp1 =0:2, po=0:6, p3= 0.

4.5.3 Region with 1 Gap, 1 Split Gap and 0 Branches

There is only one possibility:

1L 1TL: 3 positive -roots.

By choosingp; = 900, p, = 60:0 andps = 0:6, the polynomialQ,( ) vanishes in
the points ; = 63:032 , = 2891:269and 3 = 4474:552 By the Descartes rule, the-
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domain is split by these points:; = 63:032 , =267:710, 3 =1569:140, 4, = 2891:269
5 = 4474:552, ¢ =6153:740. The -roots classi cation is obtained by the Sturm chains

construction:

0< < 1:4 -roots on the real axis an@ -roots on a loop;

1< < 2.2 -rootson the real axis?2 -roots on aloop an® -roots on another

2< < 3.2 -rootsonthe real axis2 -roots on aloop an@® -roots on another

3< < 42 -rootson the real axis2 -roots on a loop an® -roots on another

4< < 5.4 -roots on the real axis an@ -roots on a loop;
5< < g 6 -roots on the real axis;

> . 6 -roots on the real axis.

In this spectrum it looks like there are only two loops, but actually there arwop and
1 twisted loop. Therefore, the second loop that we have found has to be counted twice.
Indeed, we cannot individuate the exact value oin which the two -roots collide on the
real axis to become again two complex conjugate roots travelling the second part of the

twisted loop.



Chapter 4. Spectra and Linear Instabilities of the 3WRI Equations 115

Figure 4.21: Stability spectrum witlp; = 90:0, p, = 60:0, p3s= 0:6. =Re( ) and
=Im( ).

Figure 4.22: Gain function( k3) whereks = w; w, associated to the spectrum obtained

atpr = 900, p, =60:0, p3= 0:6.

4.5.4 Region with 1 Split Gap and 1 Branch

In this region we have:

1L 1TL: 4 positive -roots;

1TL: 2 positive -roots.
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Letus x pr = 14, p,= L10andpsz = 0:6. The polynomialQ2( ) changes sign
4 times in the points ; = 9:216 , = 11:823 3 = 12:195and 4 = 27:053 By the
Descartes rule of signs, we get:; = 0:002 , = 0:421, 3 = 9:216 4 = 11:823
5 =12:195 ¢ = 27:053 so that, by using the Sturm chains technique, theroots are

classi ed as follows:

0< < q1: 2 -roots on the real axis2 -roots on a branch an® -roots on a

loop;

1< < 2.2 -roots on the real axis2 -roots on a branch an® -roots on a

loop

2 < < 3.2 -roots on the real axis2 -roots on a branch an® -roots on a

loop
3< < 4.4 -roots on the real axis?2 -roots on a branch or on a loop;
4< < 5. 6 -roots on the real axis;
5< < g 4 -roots on the real axis2 -roots on a loop;
> . 6 -roots on the real axis.
In this spectrum there isl loop and1 twisted loop. Also in this case it is not possible

distinguish the exact value of in which two -roots collide in the point separating a split

gap and then they become again two complex conjugate roots.
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Figure 4.23: Stability spectrum witlp; = 114, pp = 1.0,ps= 06. =Re( ) and
=Im( ).

Figure 4.24. Gain function( k3) whereks = w; w, associated to the spectrum at

pr= L4, p= 10, p3= 06

If we choosep; = 4, p2 =2 andps = 0:6, the polynomialQ2( ) vanishes2 times in
1 =9:591and ; =98:262 By the Descartes rule of signs, we get the poinis= 0:136,
2 =9:591 3=19:547, 4,=45:537, 5=98:262 The classi cation of the -roots is:

0< < 1 2 -roots on the real axis?2 -roots on a branch an® -roots on a
loop;

1< < 9.2 -roots on the real axis2 -roots on a branch an@ -roots on a

loop;
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2< < 3.4 -roots on the real axis2 -roots on a loop;
3< < 4.4 -roots on the real axis?2 -roots on a loop;
4< < 5. 4 -roots on the real axis2 -roots on a loop;

> 5. 6 -roots on the real axis.

It looks like we have only one loop, but actually this is a twisted loop.

Figure 4.25: Stability spectrum withpy = 4:0, po = 2:0, p3 = 0:6. = Re( ) and
=Im( ).

Figure 4.26: Gain function k3) whereks = w; w, associated to the spectrum obtained

atpr= 40, pp=2:0,p3= 06

Summarising, all the possibile topologies in t{@ ; p2)-plane are:
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1G0SG1B 2L OTL;
1G 0SG1B 1L OTL;
1G 0SG1B OL OTL;
0G 0SG2B 2L OTL;
0G 0SG2B 1L OTL;
0G 0SG2B 0L OTL;
2G 0SGOB 2L OTL;
2G 0SGOB 1L OTL;
1G 1SGOB 1L 1TL,
0G 1SG1B 1L 1TL;

0G 1SG1B OL I1TL.

4.6 Topological Classi cation of the Spectra in the Parameter

Space

At this point, we can obtain the entire topological classication of the spectra in the
parameter space. In order to do that, we need to describe the curves ir{jhig,)-plane
separating the regions with di erent number of gaps, branches and loops. First of all, we

compute and factorise the polynomi&,( ) at =0,

%
Q2(0)=  Dj(py;P2;pa)¥ ; (4.92a)
j=1

whose corresponding curves are given |by (4.33), as well as the discrimind@s(oj with

respect to ,

N
Q2( )= Ej(p1ip2ipa)? ; (4.92b)
j=0
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where the functionEE; depend on the parametens;, p> and ps.
Similarly to the de nition (4.33), letE be the real-analytic variety in the parameter space,

implicitly de ned as
5 = pup2;ps 2RO9(pup2) 2 R 1jEj(p1ip2ips) =0 (4.93a)

The curves[(4.93a) de ne transition regions with di erent topological structures. In partic-
ular, we nd again the curvesa), which af®, Dy, D3 and D4 coinciding withEy,

E», Es and E4, respectively, plus another curve that we denotekas

If the matrix W features the parameterp;, p, and pz only in polynomial form, therD;,
with j =1;2;3;4, and Ey are algebraic varieties over the reals.

De nition 4.6.1. Let
0 1

[ [
c=@ DjA " Eo; (4.94)
j=1;2;3;4
be the set of all the varietie®; joined with Ep. The setC de nes the boundaries of the
regions in the(pz; p2)-parameters space associated to di erent topologies of the spectra

Sx.
For instance, if the (e ectiv@ parameter space is 2-dimensional, th€ris a set of curves

on the real plane.

Finally, in the gures 4.2} andl 4.28, we show the curv@én the parameters space and the

entire topological classi cation of the spectra in this space.

®The parametersp; and p, may appear in the de nition of the varietiesD; and E combined in a certain
number of functions, whose total number can be less than the original number of parameters; then, these

functions of the parameters, on which the varieties depend, play the role of \e ective" parameters.
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Figure 4.27:(p1; p2)-plane,pz = 0:6.
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Figure 4.28:(p1; p2)-plane,pz = 0:6.



Chapter 5

Classi cation of the Stability
Spectra on the Physical Parameters

Space and Numerical Simulations

Based on the results obtained in the previous chapter, in the following we discuss the
classi cation of the stability spectra in terms of the physical parameters space. We divide
the parameters space in octants and in every octant we provide the values of the physical
parameters. Then, we provide some examples of numerical solutions of the orgyvial
system to show that the plane wave solution is everywhere linearly unstable and that the
presence of a branch into the stability spectrum can be associated, depending on the class
of the perturbation, to the onset of localised structures such as breather-like solutions and
potential rogue waves.

These numerical simulations have been included manly for the sake of complementing the
analytical results: although the theory presented herein cannot quantitatively explain these
numerical experiments, it is interesting to observe that perturbing plane waves associated to
di erent spectra and integrating numerically (over a short time) ti8VRI system using the

di erent perturbing waves yields di erent time evolutions and behaviours, hence suggesting
a potential link, in the spirit of what has been done for the NLS systeni id [72]. This link

may be the subject of future investigation.
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5.1 Classi cation of the Stability Spectra on the Physical Pa-

rameters Space
The formulas |(3.9]1) can be written as follows

S1S2S3P1 = CiS1a] + C5Spa3; (5.1a)

S152S3P2 = CiS1a]  C5S2a5; (5.1b)

by summing and subtracting (5/1) and (5.]Lb) we get, respectively,

= 22 (py+ py); (5.2a)
1T 2a3
S1S3
G= 25 (P P2 (5.2b)
2a3

Moreover, we know that

Ci C2,
Ci+ G

p3 = (5.3)

Let us separate the parameters spag®; p2) in quadrants and let us enumerate clockwise
the quadrants with the roman numbers I, II, Ill, IV. Then, let us separate further every

quadrant in two parts or octants according to the following scheme:

In every octant, we have the following relation between the paramepgrand p;:
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Octant la: jp1j > jp2j, p1> Oandpy > O;

Octant Ib: jp1j < jp2j, pr> Oandpy > O;

Octant lla: jp1j < jp2j, pr < Oandpz > 0;
Octant lIb: jp1j > jpz2j, pr < Oand p, > O;
Octant Illa: jp1j > jpz2j, pr < Oandpy < 0O;
Octant IlIb: jp1j < jp2j, p1 < Oandp; < O;
Octant IVa: jp1j < jp2j, p1 > Oandp; < O;

Octant IVb: jp1j > jp2j, p1> Oandp; < 0.

In order to see which choice of signs exists in any octant, let us take into account the
formulas (5.2a) and|(5.2b).
In the quadrant |, we havep; > 0 and p; > O, then, by the formula [(5.2g), it results

in s;s3 = 1, and sos; = s3 = 1. In the octant la, we havep; > p2, then, by
the formula ),5153 = 1. This yields that the choice of signs 8; or S, , that is
s; = s, = s3= 1 Inthe octant Ib, we havey < p, thus, by the relation [(5.2p), the
choice of signs i$; orS; , thatiss; = landsy=sz=1ors;=1ands;=s3= 1,
respectively.

In the quadrant Il, we havg; < 0 and p, > 0, and by the formula ), it results
s1853= 1,and sos; = s3. Inthe octant lla,p1 > py, as a consequence of the relation
), we havesysg = 1. Therefore, the choice of signs B or S;, corresponding to
s;= landsp;=sz3=1ors;= ands; = s3= 1, respectively. On the other hand
in the octant Ilb, we haveps < py. By the formula [5.24), we obtairs;sz = 1. Thus
we have the choices of sigss = s, =1 andsg3= lors; = s;= l1landsz=1 which
are denoted a$; and S, , respectively.

In the quadrant Ill, we havep; < 0 and p, < 0. By the relation [5.2a), we obtain
sps3= 1, thatissp;= landsz3=1ors; =1 andsz = 1. Inthe octant llla,p1 <p2,
and as consequence of the formufa (5.2b) we gess = 1. Therefore, the combinations
of signsares; = s, =1 andsz3= 1lors;=s,= 1andsz =1 corresponding to the

choicesS; and S, , respectively. In the octant 1lib, we hayg > p 2, then s;s3 = 1, that
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issgj=s3=1ands3= 1lors;=s3= landsz=1. They correspond to the choices
S, andS, , respectively.

In the quadrant IV, we have the relationg; > 0 and p, < 0. By the relation ),
it results ins;s3 = 1, and sos; = s3 =1 ors; = s3 = 1. Moreover, in the octant
IVa, p1 < p2, then, by ) SpS3 = 1, we obtains; = s3 =1 ands, = 1or
sg = s3= lands, = 1. These combinations of signs are denoted&}. and S, ,
respectively. In the octant IVbp; > p, and, by the formula|(5.2a), this yields,sz = 1.
Thus, we haves; = sp = s3=1 ors; = s, = s3= 1, corresponding to te choiceSI or
S, , respectively.

In the following subsection we will provide the mapping from the parameperg,, ps into

the parametersc, ¢z, a1 and a;.

5.1.1 Octant la

By looking at the formulas[(5]2), i1 > p2 > O, thenpy + po > Oandp; p.> 0. As a

consequences;sz =1 ands;sz =1 and, s0,s1 = S = S3.

By subctracting (5.2a) from|(5.2pb)

1 1 1
d &= E(pl-'- P2) Ta%(pl P2) = Fa%[pl(a% af) + po(af + a3)l: (5.4)
7 1

For p3 < 0, we havejc,j > joj, socs 3 < 0, and

2 2
o< Pe Bt e
P2 aj a3

then jaij > jayj: (5.5)

Similarly, forps > 0, we havejc,j < jcij, the equationc2 ¢35 > 0 gives us the condition
jaij > jagj. We havejaij & jayj, otherwisep, < O.
In conclusion, for both the casgeyj > jcij (p3 < 0) andjcyj < jcij (ps > 0) the amplitudes

satisfy the relationjajj > jayj.

5.1.2 Octant Ib

By (5.2), if po>p1> 0, thenpy+ p, > Oandp; p. < 0and also we haveysz = 1 and

s1S3= 1. Thus, it results insp = s3 = S;.
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By subtracting [5.2&) from [(5.2p)

———pi(a2+ ad)+ px(a3 afl]) < O: (5.6)

1 1
G &= Ta%(pﬁ p2)+ Ta%(pl p2) = 22

For p3 < 0, we havejcyj > jcij. Thus,

a2 a2
0< & 1 a'2
P a5+ af

then jaij > jayj: (5.7)

It must beja;j & jayj, although we have the contradictiop; < 0.
One can show that for botljcyj > jcij (ps < 0) and jcyj < jeij (ps > 0) the amplitudes

satisfy the relationja;j > jayj.

5.1.3 Octant lla

By (5.9), if po > O and p1 < 0 andjpyj > jpij, thenpi+ p, > Oandp; p, < 0 and

$pS3 =1 ands;s3= 1. This entailssy = s3 =  s;.

By summing [(5.2h) and[(5.2b)

+G= Tiz(p1+ P2) (P1 P2)= ! —o[p1(a3  a?)+ pa(ai+ ad)] > 0: (5.8)
1

2a§ 2a2a3
Thus,

0> PLo At A

—
P2 al a;

then; jaij < jayj: (5.9)

In this case, ifia;j & jayj, otherwisep; > 0.
For both jcyj > jc1j (ps < 0) and jcpj < jcij (p3 > 0) the amplitudes satisfy the relation

jaaj < jayj.
5.1.4 Octant lIb

By (5.2), if p» > Oandp; < 0andjpaj > jp2j, then we obtainpy + p, > Oandp; p2 < 0

ands;sz =1 ands;s3 = 1. As aresult, we ges, = s3=  s;. By summing ((5.2h) and

(5-20)

1 1 1
G+ G = ?a%mﬁ P2) Ta%(pl P2) = 20222 2[p1(a2 aj)+ pz(a3+ a3)] > 0: (5.10)
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Therefore,

2 2

0> P2 a1 &
24 a2

p1  a+ aj

then jaij < jayj: (5.11)

Also in this casga;j & jayj, otherwise we have a contradiction. Finally, for bgtpj > jcij

(ps < 0) and jcpj < jcaj (ps > 0) the amplitudes satisfy the relatiomaj < jayj.

5.1.5 Octant llla

By (5.2), if p<p2< O, thenpy+ pp< Oandpy p2< Oandsysz= 1landsisz L
This entailss; = s, = s3.

By subtracting [5.2&) from [(5.2p)

1 1 _ 1 2 .2 2. 22 :
G G= Tii%(pl-l- p2)+ ?a%(pl p2) = Tia%[pl(al a3) Pz(aztap)] < 0 (5.12)
Therefore,
24 2
o< o AYEH oy jaij > jayj: (5.13)

If ja1j = jazj, we have the contradictionp, > 0.
For bothjcyj > jcij (ps < 0) and jcpj < jeij (ps > 0) the amplitudes satisfy the relation

jaa] > jag.
5.1.6 Octant lllb

By (5.2), if pp<p1< 0, thenpi+ pp< Oandpy pz> Oandsys3 1landsisz=1.

Therefore, it turns outs; = s3 =  Sp.

By subctring [5.24) from [(5.2b)

1 1 1
C% (%: Tﬁ(p1+ P2) Tag(pl P2) = T%[ pl(a%*' a%)"‘ pz(a% a%)] < 0: (5.14)

Thus,

24 a2

0< P2 _ a1t &
2 a2

Ppr ar &

=) a> jag: (5.15)

If jaij = jaoj, we have the contradictiop; > 0. For both jcj > jcij (ps < 0) and

jc2j < jcij (ps > Q) the amplitudes satisfy the relatiofaij > jay].
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5.1.7 Octant IVa

By 5.2), if po< Oandpy > Oandjpyj > jp1j =) pr+p2< Oandpy p2> O

SpSs3= landsisz=1 entailss; = s3= s,.

By summing [(5.2) and[(5.2b)
G+ B= L p)t (o P)= poolmi(@ @) pa(ad+ a)] > O (5.16)
ag 2a5 2a7as
Thus,
1 ai+as

0> —=>
2 2
P2 a]_ ag

=) ) a < jag: (5.17)

If jayj = jaoj, then px < 0 8ay;ap. For bothjcyj > jeij (ps < 0) and jcyj < jcij (p3 > 0)

the amplitudes satisfy the relatiofaij | apj.

5.1.8 Octant IVb

By (6.2), if p < O andp; > 0 and jpij > jpoj yieldspy + p, > Oandps pz > O. If

Sps3 =1 ands;sz = 1, thens; = s3 = sp. By summing |(5.2a) and|(5.2b)

1 1 1
C%"‘ ‘% = E(M"‘ P2) + 2761%(p1 P2) = @[pl(a%"' a%)"‘ pZ(a% a%)] > 0. (5.18)

Thus,

a? as L
0>gi>a%+a§ =) &< jag (5.19)

If ja1j = jagj, then p1 > 0 8ay;ay. Finally, for bothjcyj > jcij (ps < 0) and jcj < jcij

(p3 > 0) the amplitudes satisfy the relatiofasj | ayj.

5.1.9 Transformations of the Physical Parameters

In the following we provide the transformations form the parametpis p2, ps and ps to
the velocitiescs, ¢y, to the amplitudesa;, a; and to the signss;, s, and ss.
The velocitiesc; and ¢, can be also written as

_ (1+ p3)pa,

== (5.20a)
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G = %: (5.20b)

In the following we provide the values of the siggs | = 1;2;3, for di erent range of the

parametersp; and po.

ifpp<Oandpy p2:s1= 1,s= 1,s3=1;

ifpp<Oand p2<pi<pa2si= 1,s2=1,s3=

[
=

if pp< Oandp; P2: S1 1,s0= 1,s3=

[
=

if P2 > 0andp1 P2: S1 = 1, s = 1,s3=1;
ifpo>0and p2<pr<pz s1= 1,s2=1,s83=1,;

ifpp>0andps p2:s1= 1,s2= 1,s3= 1,

ifpp=0andp1<0:s1= 1, % 1,s3=1;

ifp2=0 andp1> 0:s1= 1,s,= 1,s3= 1

If pr = p2 =0, thena; = a, =0 and is not considered.

The amplitudes transform as follows

p__
2s583(p1 + P2) |
j1+ pajjpaj

a; = (5.21a)

P
_ 2sp83(p1 P2).
i1 psiipa

(5.21b)

5.2 Numerical Simulations

In this section we show some numerical observations of di erent evolution obtained by
integrating numerically the8WRI system from a perturbed plane wave solution.

We use two kinds of perturbations: a localised perturbation and a random perturtﬁtion

In this respect, it is right to highlight that the linear stability analysis of plane wave solutions of the
scalar NLS equation when these plane waves are perturbed via periodic perturbations was carried out in
[38,139,140,[41 [42[ 48]
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We X p1, p2 and ps and we reconstruct all the physical parametess, ap, i1, C, Si,

S2, Sz, based on the formulae in Section 5.1.9. Using these parameters, we construct the
corresponding plane wave solution. We compute this plane wave solution=a0, we
perturb it spatially and we use it as the initial condition for our numerical simulation. Each

initial condition is perturbed alternatively in two di erent ways:

through a localised perturbation, added to the initial data (individually to eacﬁs),

having the form:

X x 2.
cos oL e ; (5.22)

wherelL is the semi-length of the numerical integration intervaljs the amplitude
of the perturbation (in the following = 10 3, unless speci ed di erently), and
is a chosen parameter, typically set ® (in the following = 2, unless specied

di erently);

through a random perturbation, added as a noise to the initial data (individually to

eachus), having the form:
(x) with ( L)= (L)=0; (5.23)

where (x) forx 2 ( L;L) is a uniform distribution in the interva]0; 1], L is again

the semi-length of the integration interval andis the amplitude of the perturbation;

in the implementation, the random perturbation is smoothened by computingn

a subset of the spatial nodes and then by using a Whittaker-Shannon interpolation

formula [119] over the remaining nodes (see Appemdix N).

As for the numerical scheme applied, we use the method of lines with a pseudospectral,
Fourier discretisation in space and an adaptive Runge-Kutta scheme in time implemented in
MATLAB R2017a (see Append{x]O and Appen(ik P). In order to apply the pseudospectral
method, it is very convenient to have initial conditions independent of the space variable.

Let us provide the following transformation:

8
%Ul = d 1x ey,
Edz = e' 2(x CZt)uz; (524)

thy = e'( 3x+ 1t )ua;
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where
1= 1 + SlS?,aZ% (Cl Cz),' (5253)
%] 2ct 1+ 2
U B 1 Y G (5.25h)
C2 o, 1+ 2
3= (1t 2); (5.25c¢)
| — CiL1+C 2 (525d)
then, it is straightforward to verify thatuq, t, t3 satisfy the following system of PD@
8
% b1t = Cibhix + S1Cothybhy;
§ bot =  Cpbiox + SpCith s (5.26)
“ by = 0 bzt sg(Cr Co)thybhy;

with the following initial conditions

8

2 1(x;0) = & *uy(x; )

gu?(X: 0) = € 2Xuy(x; 0); (5.27)
T uz(x; 0) = € Xuz(x; 0):

We integrate system[ (5.26) with initial condtion$ (5.27) and the we invért (5.24) to obtain
the solutions in terms of thejjos starting from the solutions in terms of therjos.

Observe that, ifu; (x;t) is the plane wave solutior] (3.B0), thes (x;t) does not depend

explicitly on the space variabbe, indeed we have

%ul = gl et

3

© Hg = aee|( 3+! )t;

thy = ayel 2 20t (5.28)

2Although the solutionsty , for j = 1;2;3 may appear simpler than those ones used in the theoretical
part of the Thesis, they satisfy a system (see formul6)) more complicated than that one used for the
analytical computations and dealing with it would result an useless e ort. On the other hand, the system
has been found useful for the numerics in this Chapter.
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with ag asin [3.32),and 3= ( 1+ »2).

In particular, from ), we see thattj (x; 0) does not depend on the spatial variabte
and hence the integration interv[ L; L] can be taken arbitrary for syste6) using
(6.29) att = 0 as initial conditions.

In the following we denote with

juj (x; 0)j
© = mayx WO, (5.29a)
x2[ LiL] q
the ratio between the initial maximum of the absolute value of the perturbed solution and
a (that is the amplitude of the unperturbed wave); we also introduce
jui (X;t)j
j = max Ju (6] (5.29b)
x2[ LiL1;t2[0;T] q

namely, the ratio between the maximum of the absolute value of the perturbed solution on

the whole integration domaif L;L] [0;T] andg.

Before we show some numeric simulations, it is right to provide the following de nition of
rogue wave:

\In the real ocean, rogue waves are waves that are very steep and much higher than
the surrounding waves in a wave record, which is usually of 20-minute length;...There is
currently no consensus on one unigue de nition of a rogue wave, but a common and simple
approach is to de ne a rogue wave as a wave whose wave height or crest height exceeds
some thresholds related to the signi cant wave height. A common de nition is to apply
the criteria (Haver, 2000)

Hmax Cmax
> 2; and=or —= > 1:25
Hs Hs

whereHmax denotes the zero-crossing wave heigltnax is the crest height, andHg is

the signi cant wave height, de ned as four times the standard deviation of the surface,
typically calculated from &0-minute measurement of the surface elevatibfl20].

Because of this de nition, we report the valuenax for each numerical solution and this
value will give us in percentage the ratio between the maximum value obtained by the
numerical simulations and the background. We will state that we have a potential rogue

wave any time the maximum value of the solution exceeds at least of three times the value of

3The range of values ofL is taken as larger as possible to make sure that all the modes with higher

velocities are included as well.
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the background. We will state that we have a potential rogue wave any time the maximum

value of the solution exceeds at least three times the value of the background.

5.21 2G 0SGOB 1L OTL

We investigate the regio2G OB 1L that is located near the origin in the parameter space

(see Figurg 4.77).
We choose the parametey =0:2, p» =0:3, p3 = 0.6 andps = 1 corresponding to the
velocitiesc; = 0:2, ¢, = 0:8, to the amplitudesa; = 2:5, a, = 0:27951and to the choice

of signss; =1, s, =1, s3=1. In particular with the localised perturbation, we observe:

) =0:04%and ; = 0:052206%
® = 0:35777%and , =0:35777%

O = 0:47703%and 3 =0:82379%
By perturbing with random perturbation, we observe:

™ = 0:058176%and 1 = 0:17725%
) = 0:48424%and , = 0:61943%

™ = 0:57518%and 3=1:6717%

5.2.2 0G0SG 2B 1L OTL

We investigate the regioQG 2B 1L that is located near the origin on the parameter space
(see Figure 4.27).

We choose the parametery = 0:2, po = 04, ps= 0:6 andps =1 corresponding to
the velocitiesc; = 0:2, ¢, = 0:8, to the amplitudesa; = 1:5811, a, = 0:68465and to the

choice of signss; = 1, s =1, s3= 1 In particular with the localised perturbation

(6.22), we observe:
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©) = 0:063246%and ; = 333:6069%
O = 0:14606%and , = 598:6718%

O = 0:30792%and 3 = 1014:7219%

By perturbing with random perturbation, we observe:

) =0:082294%and 1 = 239:9949%
® = 0:18711%and , = 407:9717%

O = 0:52058%and 3 = 607:7822%

5.2.3 1G 1SGO0B 1L 1TL

We choose the parameters = 900, p, = 60:0, p3 = 0:6 andps = 1 corresponding
to the velocitiesc; = 0:2, ¢, = 0:8, to the amplitudesa; = 19:3649 a, = 10:8253 and
to the choice of signs; =1, s, =1, s3= 1. In this case we have explosive behaviour
and, in particular, with the localised perturbatiof (5.22), we observe explosion=aD:75

seconds:

©) = 0:005164%and ; = 502961:1987%
O = 0:0092376%and , = 449856:3477%

O - 0:0015901%and 3 = 1341227821%

We do not report the plots fro these simulations because they are all blu coloured. We run
the simulations for the solutiongusj, jusj andjusj in the regionlG 1SGOB 1L 1TL after
localised perturbation and the simulations run over a tifhe t 0:7 and a space 30

x  30. We observe the maximum fdu,j is 974167 on the background with intensity
18.6, the solution ju,j reaches its maximum of intensity at87077 on the background
with intensity 9:2 and the solutionjusj has its maximum of intensity aB43657 on the

background of intensity62:8.
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With the random perturbation [(5.2]3), we observe explosiontat 0:71375seconds:

©) = 0:0072695%and ; = 502961:1987%
O = 0:011944%and , = 478:2925%

O - 0:0022268%and 3 = 140:8017%

We do not report the plots fro these simulations because they are all blu coloured. We have
observed the evolutions of the solutiopsj, jusj andjusj in the region1G 1SGOB 1L 1TL
after random perturbation and the simulations run over a tie t 0:7 and a space

30 x 30. The maximum reached bju,j is 1228 on the background with intensity
0:5, the solutionjuyj reaches its maximum of intensity &1:3 on the background with
intensity 1:9 and the solutionjusj has its maximum of intensity at223 on the background

of intensity 60:7

Conjecture 5.2.1. The presence of a twisted loop (or a split-gap) in a stability spectrum

corresponds to a solution that is explosive in time.

Conjecture 5.2.2. The existence of branches in a stability spectrum is a necessary condition
for the onset of rogue waves ascribable to rational or semi-rational solutions and which can

be obtained by DDT.
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Figure 5.1: Solutionguj, jusj and jusj in the region2G 0SG 0B 1L OTL after localised

perturbation. The simulations run over atim@ t 120and a space 20 x 20.
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Figure 5.2: Zoom of the solutionfusj, juzj and jusj in the region2G 0SG 2B 1L OTL
after localised perturbation. The simulations run over a tiri® t 120 and a space

5 x 15
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Figure 5.3: Solutiongu,j, juzj and jusj in the region2G 0SG 0B 1L OTL after random

perturbation. The simulations run over atim@ t 120and a space 20 x 20.
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Figure 5.4: Zoom of the solutionfusj, juzj and jusj in the region2G 0SG 2B 1L OTL
after random perturbation. The simulations run over a tim®0 t 120and a space

0 x 20
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Figure 5.5: Solutionguj, jusj and jusj in the region0G 0SG 2B 1L OTL after localised
perturbation. The simulations run over atim@ t 60 and a space 30 x 30
These localised structures resemble the breather solutions of the NLS equationh [121]. We
observe a complementarity in the pattern and in the colours between the three solutions
displayed, this suggests a well de ned exchange of energy between the three solutions that

is interesting to be studied deeper in future works.
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Figure 5.6: Zoom of the solutiongij, jusj andjusj in the region0G 0SG2B 1L OTL after
localised perturbation. The simulations run over atile t 30andaspac® x 15
In the plots forju4j and jusj we have localised structures which are breathe-like solutions
with a maximum of intensity o#:2 and 3:2 (red colour) on a background with intensit9

(blu colour).
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Figure 5.7: Solutiongu,j, juzj and jusj in the region0G 0SG 2B 1L OTL after random
perturbation. The simulations run over atim@ t 60and aspace 30 x 30. We
observe a complementarity in the pattern and in the colours between the the three solutions
displayed, this suggests a well de ned exchange of energy between the three solutions that

is interesting to be studied deeper in future works.
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Figure 5.8: Zoom of the solutiongiyj, jusj andjusj in the region0G 0SG2B 1L OTL after
random perturbation. The simulations run over atifle t 30and aspac® x 15

In the plots ofjuij and ju,j we have potential rogue waves with a maximum of intensity
of 2:6 and 2:3 (red colour) on a background witl® intensity (blu colour). These localised
structures resemble the development of \integrable turbulence" studied for the focusing

NLS equation in[]39].



Chapter 6

Conclusions

6.1 Summary of the Results

The aim of this thesis has been the analysis of the spectral stability of plane wave solutions
of the 3WRI model, when such solutions undergo localised perturbations. The approach is
based on a spectral method recently developed_in [64] to carry out the stability analysis of
a nonlinear multi-component system, when the solutions have a non-vanishing background.
The problem of assessing the stability of solutions of the 3WRI system had been already
investigated in the literature. For instance, Kaup's research warks[[57/ 63, 58] had focussed
on the stability analysis of the 3WRI model with soliton solutions on vanishing background,
which can be obtained, in principle, by the IST methad[[81] B0] 29, 53]. It is well known
that the IST machinery, in addition to being technically cumbersome to apply to multi-
component systems, depends on the boundary conditiang (by requiring the solution

and its rst derivative to be in the class of potentials vanishing su ciently fast to in nity).

On the contrary, the method in[64] is independent of the class of the potentials and tailor-

made for the application to multi-component systems. We have obtained several results:

By applying the method in[]64] to the 3WRI model, we have provided for the rst
time, a comprehensive topological classi cation of the spatial stability spectra (as
curves on the complex plane) with respect to the parameters space and the gain

functions associated to any stability spectrum.
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Interestingly, we have found that all the stability spectra of the CNLS system are also
enclosed in those of the 3WRI system. Indeed, the same method has already been
successfully applied to the CNLS systeéml[64]. The topological features of the CNLS
stability spectra are gaps on the real axis, and branches and loops o the real axis:
the gaps correspond to the solutions which are not bounded in space, whereas the
branches and loops correspond to the solutions which are instead bounded in space,

but which can be linearly unstable in time.

Compared to the CNLS system, new topological features exist in the stability sfpectra
of the 3WRI model, for instance, gure-of-eight loops that we have named twisted

loops. Remarkably, the gain function associated to the twisted loops is non-zero in a
whole neighbourhood of the origin (origin enclosed). This fact has been conjecturally

associated to explosive instability: the solutions blow up in a nite time.

We have observed that the gain function associated to the branches is non-zero at
low wave numbers, symmetrically located with respect to the zero-value of the wave
number, but it is anyway zero at the origin of the plot (linear instability of baseband-
type). The gain function associated to the loops is non-zero only away from the origin

(linear instability of passband-type).

We have observed linear instability in time of plane waves for any choice of the physical
parameters, except for those ones associated to the solutions that are explosive and we
observe the subsequent generation of coherent localised structures, such as breather-
like solutions and potential rogue waves. Some of these solutions have been observed
numerically and, to the best of our knowledge, they have never been observed before
in the context of the linear instability of the 3WRI system. Nevertheless, the 3WRI
system is a dispersionless system with only coupling terms between the di erent
wave components [58]. Thus, the observation of localised structures is remarkable,
if one considers that Ml has been observed in the context of nonlinear dispersive
systems, where nonlinearity and dispersion can balance each other (see, for example,
137,145, 71/ 52 17, 49, 50, 51] 9]).

A conclusion is that the mechanism for the onset of localised structures (e.g. potential
rogue waves) in the 3WRI system, as a result of localised perturbations of plane

waves, must be dierent. For this reason, in the context of the 3WRI system, we



Chapter 6. Conclusions 147

have prefered to refer to this physical phenomenorilasar instability”" rather than

as linear stage of Ml.

6.2 Open Problems and Future Directions

There are several open problems related to the subject of this Thesis and to the results

obtained so far. In the following, we provide some possible future directions for the research.

6.2.1 The Onset of Rogue Waves in the 3-Wave Resonant Interaction
Model

We have conjectured that the existence of branches in the stability spectra is a necessary
condition for the onset of rogue waves ascribable to rational or semi-rational solutions
[75, [76,[77] and which can be obtained by DDT [85]. Indeed, the ends of a branch
correspond to the vanishing of at least a di erence between the eigenvalues of the spatial
Lax operator after gauge transformation. Followirig [75], we see that if two eigenvalues are
equal with one another, we have a necessary condition for the existence of semi-rational
solitons whereas, if all the three eigenvalues are equal with one another, we have the
necessary condition for the existence of rational solutions. Moreover, in the paper [72],
it has been found that, for rational solutions in defocusing regime of the CNLS, potential
rogue waves exist if and only if base-band MI exists. We refgudtential rogue waves as

the rogue waves which can be modelled by rational and semi-rational solitons obtainable
by DDT method.

In a future research work, we aim to write a necessary (and, possibly, also a su cient)
condition for the existence of potential rogue waves in terms of the parameters used to
classify the topologies of the stability spectra, namely, we aim to understand for which

values of the parameters the necessary condition is also su cient.
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6.2.2 Spectra of the Lax Operators and Stability Spectra

Following the paper[|64], we have assumed that the perturbatiGh has the integral

representation
Z
Q= dF(xt ); (6.1)

which provides a solutioQ bounded and localised ix at any xed timet. The bounded-
ness condition oF (x;t; ) de nes the spatial stability spectrunsy of the solutionQ(x;t).

As mentioned in[[64], this spectrum depends on the behaviour of the m&(ix) for large

iXj. Indeed, ifQ(x) vanishes su ciently fast asjxj ! 1 , then Sy coincides with the
spectrum of the operatod=dx i Q(x), that is de ned by the spatial Lax equation.
Instead, ifQ(x) is non-vanishsing gxj!1 , as for the case of plane waves, the spectrum
Sx of the solutionQ(x) in general may not coincide with the spectrum of the di erential
operatord=dx i Q(x), whenQ(x) isN N with N > 2.

In [52,[71], it has been provided a spectral criterion for the occurrence of Ml in the CNLS
system. The authors establish a link between the eigenmode of the linearised problem with
the eigenfunctions of the Lax problem which, in turn, can be used to construct the nonlocal
dynamics of the system via Backlund transformations [122]. Nevertheless, they impose that
the solutions satisfy boundary periodic conditions and the criterium for the existence of Ml
refers to the Floquet spectrum of the Lax operators. In the approach developed in [64] is
independent of the boundary conditions for the solutions, so that, in the context of this
new spectral method, one can establish a more general correspondence between the spectra

of the Lax operators and the stability spectra.

6.2.3 Exchange of Energy in the Linear Instability of the 3-Wave Resonant

Interaction Model

In the simulations of all the three solutions of the 3WRI system, we have always observed the
presence of colours and pattern complementarity. We conjecture that this complementarity
is due to the exchange of energy between the waves during their interaction such that,
when one has the maximum values of the intensity, explained as the absorption of energy,

the density of another wave is at its minimum, so the latter has given away its energy.
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Similar investigation on nonlinear dispersive multicomponent systems has been conducted

in [49,(50,/51], both via numerical simulations and perturbative methods.



Appendix A

Transformation Matrix G(x;t) for

the matrix NLS Equation

Let G = G(x;t) be the matrix such that the transformation (2.15) is veried. Let us

suppose that its expression is

0 1

c=a@ ‘a. (A1)

0 ®

whose entries argy = gi1(X;t), g2 = g2(x;t), and its inverse matrix is

0 1
1
0
G l= @ A (A2)
0 gt
such that,
0 1 0 1
0 sa 0 samg,’
G@ TAgl=@ 9% A (A.3)
a o0 ag, ‘o 0

Since [A.3) must be equal t& provided in [2.1F), after the substitution of the relation
dispersion[(2.14) in the plane wavg (2]13), we obtain

91921 = e i(ax (q2+25a2)t); o 1gz — a(ax (q2+25a2)t): (A.4)
By (A.4) we nd a relation between the entrieg; and g,

01 = Qe i(ax (q?+2sa’)t). (A.5)
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With the following ansatz on the expressions of such entries

0 = im (gx  (g?+2sa?)t). % = in(gx (g2+2sa?)t). (A.6)
the equation [(A.%) reads

glm (ax (g?+2sa?)t) — g(n 1)(ax (02+2 sa?)t). (A7)
which gives us the condition

m=n 1 (A.8)
with m and n arbitrary rational numbers.
For the sake of simplicity, we choose= % and, nally, we get

G=e L(ax (g?+2sa?)t) 3 (A.9)

where 3 is the Pauli matrix [2.4).
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Lax Equations of the NLS Equation

By the transformation ) the right-hand sides of the Lax equatiops (3.41) become
X =XG: T =TG; (B.1)

and, on the other hand, the left-hand sides read

x=Gx +G y; t= G +G (B.2)
nally, matching (B.1) and (B.2)

Gy +G y= XG; (B.3a)

G +G (=TG: (B.3h)

Multiplying by G * from the left the equations[(B.3), the PDEs for the solution are

x = IW (B.4a)
t= iZ: (B.4b)
where we have de ned the operators as follows

iW =G IXG G !Gy; (B.5a)

iz =G TG G G (B.5b)
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PDEs for the SE ( x;t) of the NLS

Equation

Since is a solution of the Lax paif (2]2), the squared eigenfunction (SE§le ned in (2.24)
satis es the PDEs|[(2.2p) The transformatior] (2.17) induces the similarity transformation
which introduces another SE, solution of other PDEs that we shall nd in the following

discussion.
By looking at the expression d& in (2.16), one can check that the left-hand sides of the
PDEs (2.25) are

x=Gx G1+G G 1+G G} (C.1a)

=G G'+G G'+G G (C.1b)
by matching the right-hand side and the left-hand side of the PDEs (P.25), it results

XG G! G GIX=6Gy G'+G «Gt+G G} (C.2a)

TGG! 6GlT=G, G'+G G*+G G (C.2b)

Finally, by multiplying byG ! from the left and byG from the right, and considering that
GG = G Gy, the equations[(CR) become the PDEs satis ed by

x = 1[W; ], = [z ] (C.3)
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Similarity Transformation for the
3WRI System

The transformation
U= GUoG 1; (D.1)

in matrix form reads

0 1
0 s1a.€ (@ 1%) S1S,S3a0e (At 2x)
%SlSZS3ale i(qt  1x) 0 Szaze i2qt ( 1+ 2))x =
Szazei(qt 2X) 313233a3ei(2qt (1t 2))x
0 1 (D.2)
0 11019, S1528322010; !
51525381020, * 0 S3aa0205 " %
So8030; 1 1525383030, 0
whereG is
1
g 0 O
G= %)o o og; (D.3)

0 0 o
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and the entriesy;, g» and gz are unknown.

The matrix equation [(D.2) gives us a system of three equations

% o= zei(qt 1X) :
e 1@at ( 1+ 2)x- D.4
E 0= 0

Looking at {D.4), one assumes the general expression of the unkngyns

gle| (at  2x) :

O = i(migt (la 1+ 2)X); % = i(maqt (I2 1+n2 2)X); O = g(msaqat (I3 1+n3 2)X);

(D.5)

with m;, nj andlj, j = 1;2;3, are positive or negative integers or can be zero. The

expression5) substituted in the systei (D.4), gives

8
%mlzm, %Il %nlzn;
my=m 1; lL=1 1; Ny=n; (D.6)
§m3=m+1 -§3—I -§n3:n+1;
so that
o1 = i(mgt (I 2+n z)X); O = i((m L)gt ((I 1) 1+n 2)X) O3 = i(m+1) gt (I 2+(n+1) 2)X);
(D.7)
andform=0,1= f andn= 3, we get
g=e (1 DX g =g i@ 3+ 20, gz gt 31+ 20, (D.8)

By substituting the expressiong (0.8) i (D.3), the matris (D.3) can rewritten as in

formula (3.65).
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Liouville Equations

Let
= G G! (E.1)

be a SE de ned via the solution of the Lax Pair [3.4]) and satisfying the di erential

equations
«x=[X 1 «=[T;]: (E.2)
By di erentiating (E.1) with respect tox andt, we obtain, respectivel{]

«x=Gx G1+G ,G '+ G(G Yy (E.3a)

t=Gt G '+G (G '+G(G Ny (E.3b)
and, on the other hand, by substituting (E.1) in the equatiorjs (E.2)

X;]= XG G ! G G X (E.4a)

[T:]1= TG G! G G 'T: (E.4b)

1We use the fact thatG G = | and (G !G)y = 0 from which

(G HG= G G

The same argument holds for the di erentiation w.r.t.t.
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By matching [E.3) with [E.4) and multiplying from the left byd ! and from the right by

G, we obtain the Liouville equations
x=iWo; 1  t= i[Zoi ], (E.5)
where the operators
iWo=G IXG G Gy; iZo=G TG G Gy (E.6)

are now independent of andt. The equations ) are not simply integrable because
of the dependence ox andt of the matricesX and T. However, after the similarity
transformation via the matrixG, the equations [(E.p) are now simply integrable and the

expression of their solution is well known and it is given[in (8.69).
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Di erential equations for

Let be the solution of the Lax Pair

x = X; =T (F.1)

by the di erential equations [(F.[L), we obtain the identities

Gy +G = XG; (F.3a)

Gt +G (=TG; (F.3b)

and multiplied to right byG 1, give us the di erential equations for

«=(G IXG G 1Gy): (F.4a)
=(G TG G 1Gy): (F.4b)
If we de ne

iWo=G IXG G !Gx; iZo=G TG G G (F.5)



Appendix F. Di erential equations for 159

we have

= iWo ; (F.6a)

<
|

t= iZo: (F.6b)
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Gauges for W and Z

We can check the expressiors (3.75), by looking at the transformation

— al(mgt (I 1+n 2)x)I .

that, di erentiated, say, w.r.t. x gives

W = (ei(mqt (I 1+n 2)x)I )X :( |(| 1+ N 2) X)ei(mqt (I 1+n Z)X)I;

on the other hand, because, = iW
iW =(G IXG G Gy =
=(G IXG G Gy i(l 1+ny) =

iWo (I 1+ nyp) =

=iWo (I 1+n 2))ei(mqt (I 1+n 2)X)1 .

By matching [G.2) with [G.B), we obtain the equation
x = IWo;
with
W=Wy (I 1+n2):

The same argument holds for the operatafsand Z.

(G.1)

(G.2)

(G.3)

(G.4)

(G.5)
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Relation between the Lax Operators

W and Z

Let us consider the matrix

G & 2 2.2 2
= z asc3s;s3  a’cis,s3)l =
2066 (a2¢; 1C1 )
0
iaisici(ci C2)( g cicp ) ia2815283C2(C1 C2)(q CiC2 )
2qc; C; 2qc; c2
i81515253C1(C1 C2)( 9 €iCr ) a3s183Cz(c1 C2) o (e C2)( g iz )? a13,(C1 Cp)
2qcy C2 2qcy 2qc; c; 2q
i8255C2(C1C2)(9 CiCa ) a1828182(C1 C2) aispssci(cs C2) 4 (1 c2)(q cicz )
2qC1C2 2q 2qC2 2qC1C2
(H.1)

Let us focus on the o -diagonal-part of the matrix above. The o -block diagonal terms
ij » which are proportional to the terms;;i, can be handled as follows. For example, the

numerator of the entry 15 is
ia;cisi(cy @)( 9 @G )= iaicisi( g €16 )+ iaiciesi( g g ) (H-2)
whose last term is, by adding and subtractiginto the brackets,
i@a1c1681( q C€iC )= 2igaicicesy + iarciesi(q ¢t ); (H.3)

by substituting [H.3) in [H.2), one gets

ia;s1c3( g ci1c ) 2iarsiccq+ iarsiic(q ey )= )

=W+ Zpa( g €6 ) Zo(g it );
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that is

Wiz a4 €t ) 7 c2(q €1 ).

_ H.5
2 R Y 2qac, (H-5)

12

Similarly, let us consider the termy,. The rst term in the sum is already inN5,, while

the numerator of the second term can be handled as follows

(@ &) g cc )P=cal g ac )® & g ac )=

=a( g cac )® & g ac ) g ac )=

a( g e )® o g e ) g gq+q cc )= (H.6)

a( g ac )2"‘2(102( g cc) c( g ac )(g cc )=

Wao + Z2oC1(  €1C ) Z2C(q €1C2 );

hence,

Wy, c( g cico ) c2(q ¢z )
= + z : H.7
20¢.C2 22 20¢.C2 227 2qac; (H.7)

22

By repeating the same calculations for the other terms of the matfix (H.1), we get the

matrix polynomial
W =Z%c ) Ze q ace )+Zea(d ac ) (o co)(85csiss ajcisyss)l; (H.8)

i.e. the polynomial{(3.883).

Let us consider the matrix
= W? (@3s1S3+ a2s,83)!l; (H.9)
whose entries are

11 = 0; (HlO)

2 °, a3s1s3cx(ci C2)  q
2q 2qq G

a2 2 2.2
22 = A4Q°C2C5  a5s1S3  asa3siSp

2 ° a?spsgci(ci C2) . q
2q 29¢ C

A2 2 2.2
33 = 4G°C2C5 alspS3  @2@551S:



Appendix H. Relation between the Lax Operatafis and Z 163

(H.12)
2 : assiss(cr @)% q
21= S8 12 = 40P iais: > — C ; (H.13)
qc C1
2 - afspsa(cr ©)° | q _
3= $1S3 13=4FGG  iaxs, 5 t— C , (H.14)
qc Co
23= S152 32 =
2
C2 a55153C2(c1 ©2)
= 4qPcic; aiap + aja 2 +
QPCiC; aray + a1ay 2q 205, (H.15)
2
a
Lasessa(a ) g 6 + q o
20¢ c1 C

Let us handle the entry 12, proportional to the entry 1. The part inside the brackets

becomes
agsi83(CL C2)°  afspss(cr C2)® | afspss(cr G2)? _
2q¢ 290 290
_ a3s1s3(C1  C)? N aZspsg(ct C)?  adspsscu(cr  Co) N a2sys3cr(Cr Cp) _
2q¢ 200 290 290
_ ags;ss(c;  C)? N aZsys3(C; C)2  aZspssci(cy C) N a3s,83C(Cy cz)+
2q¢ 200 290 200
N a3sissCi(C1 C)  agsissc(cr C) .
2qq 2qq ’
(H.16)
on the other hand,
2 2
g C2 = q q ﬂ C2 + ﬂ Cl g + Cl =
C1 CC G C C C2 C2
2 2qcc + qa(cp ¢
-4 9, o 9 Zae+q 1(C1 C) o = (H.A7)
ct & . C2 cic(C  C2)
2 C+ C
. T M
ct & . C2 cc(c )

By summing the terms|(H.16) and (H.17), and by putting altogether in the expression of

the entry 1, we have

agsiss(c1 C2)° | afspss(cr G2)®  aBsissci(cy )

12 =20acWap

2q¢ 200 2q9¢
2
L arsesse(ar ¢) 29 4 o+ 9 ¢ (H.18)
290 ciT ©C 1 C2
a3sisz(cr Cp)  afsyss(cr C2) G+ C

+4PcEc3Z
iz 2qa 29¢ (1 ©)
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By following a similar procedure, we get
23 = 20C1C2Wa3: (H.19)

In matrix form, it turns out that

W2 (adsis3+ a2s;s3)l =

a3s183(C1 02)2+ a?spsg(cr )2 assissci(ci C)

=2qgcW +
4ac 2qa 290 2q¢
2 (H.20)
L aisesst(ct ) 29 4 o+ 9 o
29 CC C C C2
2 2 +
+ 47233 ass1ss3(Ct  C2) asess(cr C2) 2+ C :
29 200 cc(c )
and nally,
2 a3sisg(cr )  agspss(cr ) C2+ Cp _
2qa 290 cic(c1  ©C2)
w2 W assis3(cr C)2 N aZsysg(cr Cp)2
4oPcics 296G 200 200 (H.21)
a3s1ssCi(C1 ) N a3syS3Ca(C1 C2) N
29¢ 29¢
2
P q c, + q Ca (a3s1S3 + a3s,S3)l:

CC C C C2
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Relation between the di erences of
the Eigenvalues of the Lax

Operators W and Z

From the polynomial @3) we can write
wi =(c1 €)z7 ¢ g GC )Z+C(d €2 )z (G C2)(a5chsiss aicisess) (1.1)
8] =1;2;3, and the di erence between two eigenvalues is, for example,

wi wo=(c1 )z Z8) al q e Nz z)+ (g e Nz z): (1.2)

Furthermore, becaus@r(Z) = 2cic, andz? z3=(z1 2z)(z1+ 22), we substitute

in the previous expression
21+ 2= 723 206G ; (1.3)
and, as a consequence,
w1 Wp=(c1 e)(z1 22)( 2z 20C ) a( g cC )Nz Z2)+ (g cice )(z1 22):
(1.4)

The di erence of the eigenvalue.4) can be also written in a di erent fashion after adding

and subtracting the termsgjg and qc. Indeed, it reads

Wy Wo=(z1 2z2)( z3(c1 G)+ g(ci+ &) G (€1 C2)): (1.5)
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To compute the di erenceg;  zj+1, we repeat all the calculations above, but we need to
make the substitutionw; + wo = ws  Tr(W), where
2 2
agsyssci(ci ¢ a58153¢2(C1 ¢
THW) = 2 q6.c 1S2s3Ci(cr C2)  a5sissC(Ci C2) g q

c, +— ¢
2q¢ 206 C1 2 C2 !
(1.6)
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Characteristic Polynomial and the
Associated Polynomial of the

Squares of the Di erences

Let W be the diagonalised matrix of the matri/. The eigenvaluesv-, for = = 1;2;3,

are the roots of the characteristic polynomial

P(w)= w? Tr(W)w2+% Tr2(W) Tr(W?) w Det(W): (J.1)

We denote the trace and the determinant of matrix wiffr( ) and Det( ), respectively. In
we have replacedr( W) with Tr( W) by using the property of the trace to be invariant
under cyclic permutations anBet(W) with Det(W) because of the Binet theorem in order
to simplify the computations.

We take advantage from the property of trace and determinant to be invariant under
similarity transformation, and also from the property of the coe cients of the polynomial

(U.1) to be invariants. In this respect, let us introduce the Vandermonde matrix

0 1
1w w?

= %l W, WZE; J3.2)

2
1 wz wg
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whose determinant is
Det() = wi(wz W)+ wi(wi Wa)+ wWi(wz wi)=(wi wp)(wp ws)(ws wi); (J.3)

and we note thalE] (Det()) 2= wP(w), where wP(w) is the discriminant of the
polynomial [J.1) with respect tow. In some computation, we benet from the Cayley-

Hamilton Theorem to write the determinant as
1
Det(W) = 5 Tr3(W) +2Tr( W3 3Tr(W)Tr(W?) : (J.4)

Below, we give some useful formulas

2(WiWp + Wowsz + Wawy) = Tr 2(W)  Tr(W?2); (J.5)
and
(WAW3 + WEW3 + WEW? + 2 W2Wow3 + 2 W1W3W3 + 2 WiWoW3) =
1.6)
1 (
= (W2W3 + WawW2 + waw? + 2wiwowsTr(W)) = 2 Tr2(W) Tr(W?)
or
(WEW3 + Wiw3 + wiwg) =
) 3.7)

=7 TAw)  Tr(w?) i %Tr(W) Tr3(W) +2Tr( W3)  3Tr(W)Tr(W?) ;
where in the last equality we use the formula (J.4).

In the next subsections we shall show the connection between the characteristic polynomial
and the polynomial of the di erences wy and the polynomial of the squares of

the di erences, that is(w: W, )2.

J.0.4 Polynomial of the Di erences

Let

P(k)= k¥ Tr(Wq)k?+ 1

5 Tr2(Wy) Tr(W32) k Det(W); J.8)

be the characteristic polynomial whose roots are the dierenees wy, = k-, with

"6 m,and ;m =1;2;3, so the matrixW; is

0 1
ki O 0
W, = % 0 ks O % : J.9
0 0 ks

When two roots coincideDet() =0 .



Appendix J. Characteristic Polynomial and the Associated Polynomial of the Squares of
the Di erences 169

Proposition J.0.1. Every coe cient of the polynomial ) can be expressed by the
coe cients of the polynomial ) plus the determinant of the Vandermonde matrix In

particular, the polynomial[(J.B) can be written as

PW,; = k3 3Tr(W?) Tr’(W) k Det() : (J.10)

NI =

Proof. By looking at the matrixWy, we have

Tr(Wy) =0; (J.11)
and, as a consequence,

Tr"(Wy)=0; n=1;2,3:: (J.12)
On the other hand,

Tr(W2) = k2, + k35 + k3; = 2Tr( W2)  2(wywa + Wows + Wawy); (3.13)
which becomes, by the relatiofi (J.5),

Tr(W2)=3Tr( W2)  Tr3(W): (J.14)
It is trivial to see that

Det(W) = Det() : (J.15)

]

Proposition J.0.2. The eigenvalues are the roots of the characteristic polynomial (J.1)
if and only ifthe di erencesk-,, are roots of the characteristic polynomial (J)10).

Proof. First of all we prove that ifw- are roots of the polynomia[ (J]1), then the di erences

k'm are roots of the polynomial (J.70).
Let us substitutek = w=  wp, into the polynomial |(J.10), we have

(W Wp)3 %3Tr(\lv2) Tr’(W) (w  wp) Det()=

1
w3 3wlwy + 3w wE + > Tr2(W) Tr(W?) w (J.16)

Tr2(W) T (W?) wyn Tr(WH)w +Tr( W)w, Det() ;
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we can identify the rst and the fth term in the polynomial satis ed byw-, while the
second and the sixth term in the polynomial satis ed ly,. Leaving aside for a moment

Det() , the remaining terms are handled to give

3wy + 3w w2 Tr(W2)w: + Tr( W2)wp, =

WATE (W) + W2 Tr(W) + W3(Wi  Wm) + W2 (W W) + Wo(wWm  we) = (J.17)

W2Tr(W) + w2 Tr(W) + Det( )

The rst two terms to the left-hand side of the equation above correspond to the quadratic
terms of the polynomial fow- and wy,, respectively. The ternDet() cancels out once
substituted into the polynomial (J.J0). However, we can identify the di erence of the known

terms of the polynomials fow- and wy, within the trivial di erence Det() Det()
Det()=  Det(W)+(wi(ws W2)+ Wi(wy Ws)+ Wi(W2  Wi)+ Wiwows); (J.18)

soDet() Det()=Det( W) Det(W). To show that if the di erencew- w, are roots
of the polynomial [(J.1D), therw- are roots of the polynomial (J|1), we need to subtract

the polynomial calculated invy,, from the polynomial calculated imv-

PW) P(wm)=w wy Tr(W)wé+Tr( W)W%+% Tr3(W)  Tr(W?) (W Wp):
(J.19)

By using the formula ) we replace the termsTr( W)w? + Tr( W)w2, and write down
the polynomial |(J.10). O

Note that bothw:  wm = k'y andw:  wy = ke are roots of the polynomial (J.10).

J.0.5 Polynomial of the Squares of the Di erences

Let
1
PWo= ° Ti(Wp) *+ 5 Tri(Wp) Tr(W7)  Det(Wy): (J:20)

be the characteristic polynomial whose roots are the di erenfes wm)?2 = k?m = 'm,

and the matéixwz is

0 O

12
Wy = % 0 23 O g : (J.22)

0O 0 31
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Proposition J.0.3. Every coe cient of the polynomial |(J.2D) can be expressed by the
coe cients of the polynomial ) plus the square of the determinant of the Vandermonde

matrix . In particular, the polynomial[(J.20) can be written as

PW,= 3 3T(W?) Tri(w) 2+% 3T(W?)  Tr2W) ~ (Det()) % (3.22)

Proof. By de nition of trace and by using the formuldg (J]5), it results in

Tr(Wo) = 3Tr( W2 Tr¥(W); (3.23)
that is the coe cient of the second power of in ([J.27). In general,

Tr(Wo) = (3Tr( W2)  Tr3(W))"; n=1;23:: (3.24)
On the other hand, by using the formula (J.6), we have

Tr(W2)=6Tr( W4 4Tr(W)Tr( W3)+

) (J.25)
+g Tr2(W) Tr(w?) 2Tr (W) Tr3(W)+2Tr( W3)  3Tr(W)Tr(W?) :
and since
2

6Tr(WH = 2Trd(W)+3 Tr3(W) Tr(W?) +8Tr( W)Tr(W?3); (J.26)

we have
2\ — 1 2 2 2.

Tr(Wz) = 5 3T(W?5  Tri(w) J.27)
so that the coe cient of the rst power of is

1 2 2 1 2 2 2

5 Tré(Wa) Tr(wj) =7 3Tr(w?) Trw) (J.28)
Finally, the constant term is

(Det()) 2=(w1 w2)’(Wz2 Wwa)’(Ws Wwi1)? (J.29)
i.e. Det(W,). O

Note that (Det()) 2= wP(w) and when two eigenvalues: coincide this term is zero.

Before we move on, we focus on the characteristic polynomial of the mat&k= Y
0 1
yp 0 O

Y:%o Y2 o%: y = w? (J.30)
0 0 Y3
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that is

P(y)=y3 Tr(Y)y2+% Tr2(Y) Tr(Y?) y Det(Y): (3.31)

The polynomial |(J.3[L) can be written in terms of the eigenvalwesas

P(w?) = w® Tr(W?)w*+ %

Tr2(W?)  Tr (W4 w? Det(W?); (J.32)
and, from the Fundamental Theorem of Algebra, we expect six roots of the polynomial
©.32). However, the polynomial[ (J.31) is a third degree polynomial for the varighle
and this means that, for = 1;2;3, we have three rootsv? = y-, but actually they are
corresponding to six rootsv- = pF of the polynomial ). As a direct result, at
rst sight, it looks like that between these six roots, everyone satisfying the polynomials
(©.31) and (J.32), only three roots are solutions of the polynomial {J.1). In particular, we
are interested only on those ones that satisfy the conditions+ w, + w3 = Tr( W) and
w1Wows3 = Det( W), also if all the six solutions of (J.32) satisfy the conditiong + w3 +
w2 = Tr( W2) and w2w3w3 = Det( W?2).
Thus, the roots are of the polynomial (J.22) are the six roots{wi  wp), (w2 Wws),

(w3 wj). One can ask: which of these di erences correspond to those one for the roots
of the polynomial [(J.1)?
Let us consider the following diagonal matrices

0 1 0 1
W1 0 0 Wo 0 0
leéo Wy O§; szgo Wy OE; (J.33)
0 0 ws 0 0 ws

it is simple to check that the two matrices above have the same characteristic polynomial and
they are connected by a similarity transformation. Indeed, V&t be the non-diagonalised

matrix, we have
W= U, 'WiUs;; W = U, tWoly; (J.34)
hence

Wi = Uy 'W,Us; (J.35)
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whereUs = UpU, L. If the matrix of the squares of the di erences associatedw is

0 1
0 0

(W1 Wa)?
lezg 0 (Wo  Wa)? 0 E; (J.36)

0 0 Wz wyp)?

then, by following the same algorithm for the construction of the matrix above, we get the

matrix associated to the matrixV,, that is

0 1
0 0

(wp  wy)?
W22=% 0 Wy wg)? 0 %: (3.37)

0 0 Wz wa)?

The characteristic polynomial for the matri¥/1» has the roots: (w; WwW»), (W2 Ws),

(w3 wiq). The roots of the characteristic polynomial of the matii,, are:  (wz  wy),

(w1 wsg), (wz wpy). Letus suppose, that we are working with the mathki¥;, and the
right triplet is the di erences+(w; wy), +(w>  w3), +(w3 ws) that coincide with the
same di erences of the matrixV,, but with the reversed sign. This means that choosing
the other combinations of signs in front of the di erences corresponds to choose another
eigenspace connected to the rst eigenspace by a similarity transformation. This means
that the polynomial ) encloses all the possible di erences associated to any possible

eigenspace.

Proposition J.0.4. The di erencesw= wy = k, are roots of the characteristic poly-

nomial {J.19) if and only if(w- wm)2 = -y are roots of the characteristic polynomial

©-22).

Proof. Let us compute the square of the polynomiRaWW, )

(PW1)? = (k3 %3Tr(W2) Tr’(W) k Det()) 2=

2
= |<6+%1 3Tr(W?)  Tr3(w) k%+

+(Det()) % k* 3m(W?) Tr3(w) 2Det() k3+Det() 3Tr(W?) Tr3(W) k;
(J.38)
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that can be also written as
(PWq)? =

2
= k6+%1 3Tr(W?2)  Tr3(w) k2
(3.39)

k* 3Tr(W?) Tr3(w) Det() k3 %3Tr(vv2) Tr?(W) k

Det() k3 %BTr(Wz) Tr?(W) k Det() ;

and we note that the term within the parenthesis multiplied Bet() in the last line is
PW, and it is zero when the roots are the eigenvallkeg = w= wp,, and, in the second
line, the term multiplied byDet() is still Det() for the same roots. Moreover, if we do

the substitutionk? = , the last equation iR W,

(PW1)?=PW,= 3 2 3Tr(W?) Tr3(w) +% 3Tr(W?)  Tr3(w) ? (Det()) 2

(J.40)
On the other hand,
q___
PW; = PW,: (J.41)
O

Lemma J.0.5. The rootsw- are solutions of the characteristic polynomi.l) if and only

if the roots (w.  wm)? = -y are solutions of the polynomial (J.22).

Lemma J.0.6. is a consequence of the Propositidns J|0.2 and J.0.4.

Every result obtained in this appendix is general and can be applied to any matrix, and so

to both the matricesW and Z.



Appendix K

Polynomial Sz( ; ) of the sums of

the eigenvalues z;

In this appendix we show the construction of the polynom&al( ; ) of the sums of the
eigenvalueg; .
The characteristic polynomial of the matriX is the polynomial whose roots are the eigen-

valuesz;, with j =1;2;3, and, so, it takes the expression
Pz(z; )=(z z1)(z z2)(z z3): (K1)

On the other hand, we can construct the polynomial of the sums of the eigenvatues

de ned as the polynomial whose roots arg + z,, z, + zz and z3 + z1, that is

Sz(X; )=(x (z1+ z2))(X (Z2+ z3))(X (z1+ Z3)): (K.2)

that is Sy(x; )=x3 2x2Tr(Z)+% 3Tr3(z) Tr(Z? Tr3z) Tr(zd :

Wl

(K.3)

Hence, the coe cients of the polynomiaSz (x; ) in (K.3) can be written in terms of the
coe cients of the polynomialPz(z; ) in (K.I), and, so, we obtain

Sz(; )= 3+4 245 %+pp 1) +pt ( 2+p+2 ?): (K.4)

that is the polynomial of the sums of the eigenvalugs
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Appendix L

Space Stablility Spectra

% Parameters to be assigned

%pl= 0.8; p2=0.4; p3= 0.6; %1G 1B 2L

%pl= 4.0; p2= 3.0; p3= 0.6;%1G 1B 1L

%pl=1.0; p2=3.0; p3= 0.6; %1G 1B OL

pl= 6.2; p2= 6.3; p3= 0.6; %0G 2B 2L

%pl = 4.0; p2 = 4.2; p3 = 0.6; %G 2B 1L
%pl=1.0; p2= 3.0; p3= 0.6; %0G 2B OL

%pl= 70.0; p2=60.0; p3= 0.6; %2G 0B 2L

%pl = 0.2; p2 =0.6; p3 = 0.6; %2G 0B 1L
%pl= 90.0; p2=60.0; p3= 0.6; %1G 1SG OB 1L 1TL
%pl= 1.4; p2= 1.0; p3= 0.6; %0G 1SG 1B 1L 1TL
%pl= 4.0; p2=2.0; p3= 0.6; %0G 1SG 1B OL 1TL
%pl = 2; p2 = 4; p3 = 0.6;

Nx = 2 1le3;

% Saveflag. If 'saveflag=0' no figure is saved. If
=1", all
% figures are saved.

saveflag = 0;

'saveflag
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% Dataflag. If 'dataflag=0'" no data is generated. If 'dataflag
=1', data is
% generated.

dataflag = 1;

% Computation of the curve on the lambdglane, parametrized
as a function

% of x = k3"2;

if dataflag==
[x,lambda] = branchsolverl (pl,p2,p3,Nx);

end

% NB: If the curves are not well centered in the lambdplane,
then the
% instruction for the array AXISLAMBDA below has to be

modified .

%
VS S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8V Y8/ S/ S S S S S S/ S/ 8/ 81818/ 8/8/8/8)

% Roots of Q2(x)
%
O/ S/S/ S/ S/ S/ S8/ 888/ Y8/ S/ S/ S/ S/ 8888/ 8/ 8/ 8/ S/ S/ S/ S/ 8/ 88 8/ 8/ Y8/ S/ S/ S/ S/ 8/ 8/ 88/ 8/ Y8/ 8/ S/ S/ S/ 8/ 8/ 88/ 8/ 8/ 8/ 8/ 8/ 8/ 8/,

% For a given choice of r and p, the roots of the polynomial
Q2(x) are

% evaluated. Let Q(x) be the discriminant of the polynomial
whose roots are

% the squares of the differences of the roots of the
characteristic

% polynomial PW; then Q(x) = Q1(x)"2 Q2(x); thus Q2(x) is

the polynomial
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%

%

%

%

%

%

%

%

that describes the changes of sign of Q(x).

Let X be the set of the real, nonnegative zeros of Q2(x). X
has at most

four elements and it is shown that it has at least one
element. Let Xj be

its elements, where j spans between 1 and the total number
of real

non negative roots of Q2(x), sorted in ascending order.

This values are utilised for plotting the regions of x where
Q is

positive (green color) and where Q is negative (red color).

coeffdiscr = qcoef(pl,p2,p3);

xr = roots(coeffdiscr); % roots of Q2

xr_real = sort( real( xr( (abs(imag(xr)xle 10) & (real(xr)
>=0) ) ) );

xspan = [0 4 max(xr_real)];

disp ([
1

disp ([ 'Roots of Q2(x) for pl = ",num2str(1)," , p2 = ',num2str
(p2)," , p3 = ",num2str(p3)])

xr(:) % displays the roots of Q2

disp ([

%

D

B A s s s s s s e e e e e O T A A A A A TS TS T A A T e
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60 % Columnization of lambda and x
61 %0

B s s s s s i i e e e O T A A A T T T T T A A R e

2 lambdacol = lambda(:) ;

3 lambdacol2 = conj(lambdacol).lambdacol;

ea Xcol = [x(:); x(:); x(:)5 x(:)5 x(2); x(:)1;
65

66 20

B s e s s s s s 0 s s O 0 s A O s s i L I A A A T I T T T Y

v % Stereographic projection

68 20
S S/ S SSS/SS/SS/SS/SSSSSS8S8 S8/ S S8 S8 S/ S S S S/ S/ S/ S8/ S8/ S S8/ S S/ S8/ 88
o9 Sy = 2 real(lambdacol)./(1+lambdacol2);
70 Sz = 2 imag(lambdacol)./(1+lambdacol2);
n SX = (1 lambdacol2)./(1+lambdacol2);

72

73 lambda21 = conj(lambda(:,1)). lambda(:,1);

74 Syl = 2 real(lambda(:,1))./(1+lambda2.1);
s Sz1 = 2 imag(lambda(:,1))./(1+lambda2.1);
7 Sx1 = (1 lambda21l)./(1+lambda2_1);

7

7 lambda22 = conj(lambda(:,2)). lambda(:,2);

79 Sy2 = 2 real(lambda(:,2))./(1+lambda2.2);
g0 Sz2 = 2 imag(lambda(:,2))./(1+lambda2.2);
s Sx2 = (1 lambda22)./(1+lambda2_2);

82

3 lambda23 = conj(lambda(:,3)). lambda(:,3);
s« Sy3 = 2 real(lambda(:,3))./(1+lambda2.3);
s Sz3 = 2 imag(lambda(:,3))./(1+lambda2.3);
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s SX3 = (1 lambda23)./(1+lambda2_3);

87

s lambda24 = conj(lambda(:,4)). lambda(:,4);
o9 Sy4 = 2 real(lambda(:,4))./(1+lambda2.4);
w0 Sz4 = 2 imag(lambda(:,4))./(1+lambda2.4);

s Sx4 = (1 lambda24)./(1+lambda2_4);

%
s lambda25 = conj(lambda(:,5)). lambda(:,5);
s Sy5 = 2 real(lambda(:,5))./(1+lambda2.5);
s Sz5 = 2 imag(lambda(:,5))./(1+lambda2.5);

6 Sx5 = (1 lambda25)./(1+lambda2_.5);

97
s lambda26 = conj(lambda(:,6)). lambda(:,6);
99 Sy6 = 2 real(lambda(:,6))./(1+lambda2.6);

w0 Sz6 = 2 imag(lambda(:,6))./(1+lambda2.6);
o Sx6 = (1 lambda26)./(1+lambda2_6);

102

103 %

VS S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8/ S/ S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8V Y8/ S/ S S S S S S8/ 8/ 81818/ 8/8/8/8)

104 % Omega3d and Gain (gamma)
105 %

B s T s s s s s O s s O s s A O s s A i T I A A A T I T T T Y

s % Omega3d, k3 and the gain are computed only for the values of
lambda (and

17 % the corresponding values of x) for which lambda has a non
zero imaginary

ws % part. k3 = sqrt(x). gain = imag(omega3).

109

1o lambdacom = lambdacol(abs(imag(lambdacol))~=0);

m Xcom = xcol(abs(imag(lambdacol))~=0);
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k3 = sqrt(xcom);
if dataflag==

omega3d = omegaextractor2(pl,p2,p3,k3,lambdacom);
end

gamma = imag(omega3);

kk3 = sqrt(x);
if dataflag==
omega3H = omegaextractorH (pl,p2,p3,kk3);
end
omega3Hcol = omega3H (:) ;

gammaH = imag(omega3Hcol);

%
B A s A T s s s s s i i e e e O O A A A A A T T TS A A B

% Optimizing the axes ranges in order to centre the lambda
cruves for the
% user (AXISLAMBDA)
%
S8/ S8/ S8/ 8/ S/ S8/ S/ S8/ S/ 88/ S/ 88/ 88/ 8/ S/ 8/ 8/ S/ 8/ 8/ S/ 88/ S/ 88/ S/ 88/ S/ 88/ S/ 88/ S/ 8/ 8/ 8/ 8/ 8/ 6/ 8/ S/ 8/ 8/ S/ 8/ 8/ 8/8/8)

lambdacolnonzeroimag = lambdacol ((imag(lambdacol)~=0)&(abs(
real (lambdacol)ple 9));
maxlambdare = max(real(lambdacahonzeroimag));

min(real(lambdacalnonzeroimag));

minlambdare

maxlambdaim = max(imag(lambdacaohonzeroimag));

minlambdaim min(imag(lambdacolnonzeroimag));

maxlambdare = max ([ maxlambdare max(real (lambda(1,:)))]);

minlambdare min ([ minlambdare min(real (lambda(1,:)))]);
if maxlambdaim==

maxlambdaim = 1;
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end

if minlambdaim==
minlambdaim = 1;

end

axislambda = [minlambdare maxlambdare minlambdaim maxlambdaim
] (15/10);

axislambda = 2[ 3.0,3.0, 5.5,5.5];

%
B i s s s s s s 0 s s e O s s A s s A i e I A A A T I T T T 46

% Computation of s1, s2 and al, a2 corresponding to the given
values of r,p
%
B o s sy o s o s e o s 2 i e s s R A 2 A R A A A A R T A T 4

% if (abs(pP=abs(r))&&(r >=0)&&(p >=0)

% sl =1; s2 = 1;

% elseif (abs(p¥abs(r))&&(r>=0)&&(p >=0)
% sl =1; s2 = 1;

% elseif (abs(py=abs(r))&&(r >=0)&&(p <0)
% sl = 1; s2 = 1;

% elseif (abs(p¥abs(r))&&(r>=0)&&({p <0)
% sl =1; s2 = 1;

% elseif (abs(py=abs(r))&&(r <0)&&(p >=0)
% sl =1; s2 =1;

% elseif (abs(p¥abs(r))&&(r <0)&&(p >=0)
% sl = 1, s2 = 1;

% elseif (abs(py=abs(r))&&(r <0)&&(p <0)
% sl = 1; s2 = 1;

% elseif (abs(p¥abs(r))&&(r <0)&&(p <0)
% sl = 1; s2 = 1;
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%
%
%
%

%

%
%

%
%
%
%

%
%
%
%
%
%
%
%
%
%
%

%

end

al = sqrt(sl (ptr)/2); a2 = sqrt(s2 (p r)/2);
disp([sl s2; al a2]);

VS S S S/ S/ S/ S/ 8y 8/ 8/ 8y 8y S S S S S/ S/ S/ S/ S/ 8/ 8/ 8/ 8/ Y8/ S/ S S S S Y S/ S/ 8/ 81818/ 8/8/8/8)

Computation of the two critical curves on the (r,p)plane

B s e U A A A O s s s s s A i A A A A B TS A A A R R

delta2 = 27(2/3); deltad4 = delta2”2;

pden = @(x) (x+sqrt(4+x.72)).7(2/3);

pcurvel = @(x) 5+ 3 (delta2./pden(x) + pden(x)/delta2);

pcurve2 = @(x) sqrt(lé 12 delta2 ((x.72).7(1/3))+3 delta4d
((x.74).7(1/3)));

if r<=4
rmin = 0;
rmax = 4;
else
rmin = 4;

rmax = 2 r 8;
end
dr = (rmax rmin)/1le3;

rvec = [rmin:dr:rmax];

pvecl pcurvel(rvec);

pvec?2 pcurve2(rvec);

VS S S S/ S/ S/ 8/ 8/ 8/ 8/ 8/ S/ S S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8/ 88/ S/ S/ S S S S S S S/ S/ 8/ 81818/ 8/8/8/8)
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%
%

%
%
%
%

%

%

%

%

%

%

%
%

Computation of the critical curves on the (al,a2plane

VS S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ S/ S S S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8V 8V 8/ /S S S S S S S S/ S/ 8/ 818/ 8/8/8/8/8)

rval = linspace( 100,100,1e4);

pvall pcurvel(rval);

pval2 = pcurve2(rval);

alvall = sqrt(sl (pvall+rval)/2); a2vall sqrt(s2 (pvall

rval)/2);

alval2 = sqrt(sl (pval2+rval)/2); a2val2 = sqrt(s2 (pval2
rval)/2);

alvecl = alvall((imag(alvall)==0)&(imag(a2vall)==0));

a2vecl = a2vall((imag(alvall)==0)&(imag(a2vall)==0));
alvec2 = alval2((imag(alval2)==0)&(imag(a2val2)==0));
az2vec2 = a2val2((imag(alval2)==0)&(imag(a2val2)==0));
O/ S/ S8/ 8Y S/ S/ 8Y 8/ S/ S8/ 8/ S/ S/ 8/ S/ S/ S/ S/ 8/ 8/ S/ S/ 88V S/ S/ S/ 8/ 8/ S/ S/ 8/ 8/ 8/ S/ S/ 8/ 8V S/ S/ 8/ 8/ 8/ S/ 8/ 8V 8/ S/ S/ 8/ 8/ 8/ S/ 8/ 8/ 8/8/8/8/8)
PLOTS

VS S S S/ S/ S/ 8/ 8/ 8/ 8/ 8/ S S S S S S S/ S/ S/ 8/ 8/ 8/ 8/ 8/ 8V Y8/ S/ S S S S S S/ S/ 8/ 81818/ 8/8/8/8)

redfac = 0.85;

hfl = figure (1);

clf

subplot(6,9,[1 2 10 11])

%
%
%
%
%

plot(rvec ,pvecl, 'k")

hold on

%plot(rvec ,pvec2,'r")
plot(rvec, pvec2,'r")

plot(rvec ,rvec,'b")
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% plot(rvec, rvec,'b")

% plot(r,p, ko', "Marker','o"', ' MarkerFaceColor','c',"

MarkerEdgeColor ', 'k', 'MarkerSize ',4)
% hold off

% axis ([rmin rmax rmax rmax])

% xlabel ("$r$ ', "interpreter ','latex ')

% ylabel ("$p$', 'interpreter ','latex ')

% title (['$(r,p)$ plane, $r=$',num2str(r),’
p)],"interpreter ', 'latex ")

% tmp = get(gca, 'position ') ;

% set(gca, 'position ',[tmp(1) tmp(2) redfactmp(3)
tmp(4) 1) ;

subplot(6,9,[19 20 28 29])

% plot(rvec ,pvecl, 'k")

% hold on

% %plot(rvec ,pvec2,'r")

% plot(rvec, pvec2,'r")

% plot(rvec ,rvec,'b")

% plot(rvec, rvec,'b")

% plot(r,p,'ko"', "Marker','o', ' MarkerFaceColor"','c

MarkerEdgeColor ', 'k', ' MarkerSize ',4)
% hold off

% axis([rmin 4 4 4])

% xlabel ('$r$', "interpreter ', 'latex ')

% ylabel ('$p$"', ' 'interpreter ', 'latex ')

% %title ("$(r,p)$ plane','interpreter ', 'latex ')

% tmp = get(gca, 'position ') ;

% set(gca, 'position ' ,[tmp(1) tmp(2) redfactmp(3)
tmp(4)1);

subplot(6,9,[37 38 46 47])
% plot(rvec ,pvecl, 'k")
% hold on

redfac

redfac

$p=$', num2str(
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%
%
%
%
%

%
%
%
%
%
%
%

%plot(rvec ,pvec2,'r")

plot(rvec, pvec2,'r")

plot(rvec ,rvec,'b")

plot(rvec, rvec,'b")

plot(r,p, ko', "'Marker','o"', ' MarkerFaceColor','c',"
MarkerEdgeColor ', 'k', ' MarkerSize ',4)

hold off

axis ([4 rmax rmax rmax])

xlabel ("$r$ ', "interpreter ','latex ')

ylabel ("$p$', 'interpreter ','latex ')

%title ('"$(r,p)$ plane','interpreter ', 'latex ')

tmp = get(gca, 'position');

set(gca, 'position ', [tmp(1) tmp(2) redfactmp(3) redfac

tmp(4) 1) ;

subplot(6,9,[3:6])

Nxx = 1e4d4; xx = linspace (x(1),x(end) ,Nxx);

imgc = zeros(2,Nxx,3);

for k=1:Nxx
if polyval(coeffdiscr ,(xx(k))pPO
imgc (:,k,1) = O;
imgc(:,k,2) = 1;
imgc (:,k,3) = 0;
else
imgc(:,k,1) = 1;
imgc (:,k,2) = 0;
imgc (:,k,3) = 0;
end
end

imagesc(xx,[ 1 1],imgc)
hold on
plot(xx,zeros(size(xx)), k', "MarkerSize"',3)

y = linspace( 1,1,10);
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270 for k=1l:length(xr_real)

271 plot(xr_real(k) ones(size(y)),y, k', MarkerSize",3)

272 end

273 %xpl = plot(x(1),0,'0"', ' MarkerFaceColor"', 'k',"'MarkerSize
',5);

274 hold off

275 axis ([x(1) x(end) 1 1])

276 xlabel ('$k f3g”rf2g$', "interpreter', 'latex’')

2717 title ([ 'Sign of $nDelta$ for squares of differences: green
pos, red neg'], 'interpreter ', 'latex")

278 tmp = get(gca, 'position');

279 set(gca, 'position ' ,[tmp(l) tmp(2) redfac tmp(3) redfac tmp
CONE

20 Subplot(6,9,[12:15,21:24,30:33,39:42,48:51])

281 plot(real (lambda(:,1)),imag(lambda(:,1)),'b. "', MarkerSize"
,2)

282 hold on

283 plot(real (lambda(:,2)),imag(lambda(:,2)),'b. ", "MarkerSize"
,2)

284 plot(real(lambda(:,3)),imag(lambda(:,3)),'b. "', "MarkerSize"
,2)

285 plot(real (lambda(:,4)),imag(lambda(:,4)),'b.", "MarkerSize"
,2)

286 plot(real (lambda(:,5)),imag(lambda(:,5)),'b. ", "MarkerSize"
2)

287 plot(real(lambda(:,6)),imag(lambda(:,6)),'b. ", "MarkerSize'
,2)

288 %0 pll = plot(real(lambda(1,1)),imag(lambda(1,1)),'o","'

MarkerFaceColor','red "', ' MarkerSize ',4);
280 %0 pl2 = plot(real(lambda(1,2)),imag(lambda(1,2)),'o","'

MarkerFaceColor','red ', 'MarkerSize ',4);
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%

%

%

%

pl3 = plot(real(lambda(1,3)),imag(lambda(1,3)),
MarkerFaceColor ', 'red "', 'MarkerSize',4);

pl4 = plot(real(lambda(l1,4)),imag(lambda(l1,4)),
MarkerFaceColor ', 'red ', "MarkerSize',4);

pl5 = plot(real(lambda(1,5)),imag(lambda(1,5)),
MarkerFaceColor ', 'red "', 'MarkerSize',4);

pl6 = plot(real(lambda(1,6)),imag(lambda(1,6)),
MarkerFaceColor ', 'red "', 'MarkerSize',4);
hold off
xlabel ("$nmu$’, 'interpreter ', 'latex")

ylabel ('$nrho$ ', "interpreter ', 'latex")

(@]

o

o

(@]

title ([ '$nlambda$, $pl1=$',num2str(pl),’', $p 2=%',num2str(

p2),"', $p._3=%',num2str(p3)], 'interpreter ', 'latex"')

axis (axislambda)

tmp = get(gca, 'position"');

set(gca, 'position ' ,[tmp(1) tmp(2) redfactmp(3) redfac tmp

CONDE

subplot(6,9,[7:9,16:18,25:27])

set(gcf, 'color','w');
[sphl,sph2,sph3] = sphere(64);

hs = surfl(sphl,sph2,sph3);
set(hs, 'FaceAlpha',0.6)

shading interp

colormap(bone)

hold on
plot3(Sx,Sy,Sz, 'k. "', "MarkerSize',2, 'LineWidth",2)
plot3(1,0,0,'r.", " MarkerSize',15)
plot3( 1,0,0,'g."', MarkerSize',15)
axis equal % or square

box off

grid off

axis off
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%

%

%

%

%

%

view (70,5)

spll = plot3(Sx1(1),Sy1(1),Sz1(1),'o"
",'b',"MarkerSize ',3);

spl2 = plot3(Sx2(1),Sy2(1),Sz2(1),'o"
",'b',"MarkerSize ',3);

spl3 = plot3(Sx3(1),Sy3(1),Sz3(1),'o"
",'b',"MarkerSize"',3);

spld = plot3(Sx4(1),Sy4(1),Sz4(1),'o"
','b',"MarkerSize ',3);

spl5 = plot3(Sx5(1),Sy5(1),Sz5(1),'0"
",'b',"MarkerSize ',3);

splé = plot3(Sx6(1),Sy6(1),Sz6(1),'o"
",'b',"MarkerSize"',3);
hold off

"MarkerFaceColor

"MarkerFaceColor

"MarkerFaceColor

"MarkerFaceColor

"MarkerFaceColor

"MarkerFaceColor

title ([ '$nlambda$, $pl1=$',num2str(pl),’', $p 2=%',num2str(

p2),"', $p_3=%',num2str(p3)], 'interpreter ', 'latex"’)

subplot(6,9,[34:36,43:45,52:54])

%

%

%

%

%

plot(k3,abs(gamma),'b. "', MarkerSize"',3)

hold on

plot( k3,abs(gamma),'b."', MarkerSize",f3)

plot(sqrt(xcol),abs(gammaH), 'r."', MarkerSize"',3)

plot( sqrt(xcol),abs(gammaH),'r."', MarkerSize',3)

gpll = plot(sqrt(x(1)),abs(gammal(1)),'o","

MarkerFaceColor ', 'red ', 'MarkerSize ',4);

gpl2 = plot(sqrt(x(1)),abs(gamma2(1)),'o",

MarkerFaceColor ', 'red "', 'MarkerSize ',4);

gpl3 = plot(sqgrt(x(1)),abs(gamma3(1)),'o","

MarkerFaceColor ', 'red ', 'MarkerSize',4);

gpl4 = plot(sqrt(x(1)),abs(gamma4(l)),'o",

MarkerFaceColor ', 'red ', 'MarkerSize ',4);

gpl5 = plot(sqrt(x(1)),abs(gamma5(1)),'o",

MarkerFaceColor ', 'red "', 'MarkerSize ',4);
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%

%

gplé = plot(sqrt(x(1)),abs(gamma6(l)),'o","
MarkerFaceColor','red ', 'MarkerSize ',4);

axis([ k3max k3max 0 gammamax)12/10))

hold off

xlabel ('$k.f3g$', 'interpreter ', 'latex")

ylabel ("$jnGamma(k f3g)j$', "interpreter', 'latex ")

title ([ 'Modulus of Gain $p1=$',num2str(pl),', $p.2=%",
num2str(p2),', $p.3=%',num2str(p3)], 'interpreter’',’
latex ')

tmp = get(gca, 'position');

set(gca, 'position ' [tmp(1l) tmp(2) redfac tmp(3) redfac
tmp(4) 1) ;

%file_name = ['GBL.r=",num2str(r),"' _p=",num2str(p)];

%print (hfl ,[pwd '/Figures/' file_name ‘'.jpeg’'],' djpeg’)

% for j=2:100:length(x)

%

%

%

%

%

%

%

%
%

pll.XData = real (lambda(j,1)); pll.YData = imag(lambda(]
1))

pl2.XData = real (lambda(j,2)); pl2.YData = imag(lambda(]
2));

pl3.XData = real (lambda(j,3)); pl3.YData = imag(lambda(]
3));

pl4 .XData = real (lambda(j,4)); pl4.YData = imag(lambda/(]
4));

pl5.XData = real (lambda(j,5)); pl5.YData = imag(lambda(]
,9));

pl6.XData = real (lambda(j,6)); pl6.YData = imag(lambda(]

.6));
xpl.XData

x(1);
gpll.XData = sqrt(x(j)); gpll.YData

abs(gammal(j));
abs(gamma2(j));

gpl2.XData = sqrt(x(j)); gpl2.YData
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% gpl3.XData

% gpl4 . XData

% gpl5 . XData

% gpl6 . XData

% spll.XData
Sz1(j);

% spl2 . XData
Sz2(j);

% spl3.XData
Sz3(j);

% spl4 . XData
Sz4(j);

% spl5 . XData
Sz5(j);

% spl6 . XData
Sz6());

% drawnow

% end

figure (2)

subplot(1,3,1)

sqrt(x(j)); gpl3.YData
sqrt(x(j)); gpld.YData
sqrt(x(j)); gpl5.YData
sqrt(x(j)); gpl6.YData

Sx1(j); spll.YData = Syl(j);

Sx2(j); spl2

Sx3(j); spl3

Sx4(j); spl4

Sx5(j); spl5

Sx6(j); spl6

.YData

. YData

.YData

.YData

. YData

Sy2(j);

Sy3(i);

Sy4(j);

Sy5(j);

Sy6(j);

plot(k3,abs(gamma),'b."', MarkerSize',3)

hold on

plot( k3,abs(gamma),'b."', MarkerSize"',3)

spll

spl2

spl3

spl4.

spl5

spl6.

abs(gamma3(j));
abs(gamma4(j));
abs(gamma5(j));
abs(gamma6(j));

.ZData =

.ZData =

.ZData =

ZData =

.ZData =

plot(sqrt(xcol),abs(gammaH),'r.", "MarkerSize",3)

plot( sqrt(xcol),abs(gammaH),'r.", MarkerSize"',3)
hold off

xlabel ('$k f3g$', "interpreter’', 'latex")

ylabel ('$jnGamma(k f3g)j$', "interpreter', 'latex ")

title ([ 'Modulus of Gain,
num2str(p2), "',

$p1=%"',num2str(pl),",

$p_2=%",

$p.3=%"',num2str(p3)], "interpreter ',

ZData =
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latex ")

tmp = get(gca, 'position’);

set(gca, 'position’ ,[tmp(1) tmp(2) redfactmp(3) redfac
tmp(4)]) ;

subplot(1,3,2)

plot(k3,abs(gamma),'b. "', MarkerSize',3)

hold on

plot( k3,abs(gamma),'b."', MarkerSize"',3)

hold off

xlabel ('$k f3g$', "interpreter ', 'latex"')

ylabel ('$jnGamma(k f3g)j$', 'interpreter ', 'latex")

title ([ 'Modulus of Gain from numerics, $pl=$',num2str(pl
),', $p_2=%',num2str(p2),"', $p_-3=%',num2str(p3)],"
interpreter ', 'latex")

tmp = get(gca, 'position');

set(gca, 'position ', [tmp(1) tmp(2) redfac tmp(3) redfac
tmp(4) 1)

subplot(1,3,3)

plot(sqrt(xcol),abs(gammaH),'r."', "'MarkerSize',3)

hold on

plot( sqrt(xcol),abs(gammaH),'r."', MarkerSize"',3)

hold off

xlabel ('$k.f3g$', 'interpreter', 'latex")

ylabel ('$jnGamma(k f3g)j$', "interpreter ', 'latex ")

title ([ 'Modulus of Gain from $H$, $pl=$',num2str(pl), ",
$p 2=%',num2str(p2),', $p_3=%',num2str(p3)], "
interpreter’','latex")

tmp = get(gca, 'position');

set(gca, 'position ' ,[tmp(l) tmp(2) redfac tmp(3) redfac
tmp(4) 1) ;
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%

B A s A T s 8 s s s s A A A A A T TS T A A R

% % PLOTS
%

VS S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ S/ S/ S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8/ Y8/ S/ S S/ S S S/ S/ 8/ 818/ 8/8/8/8/8)

fslabels = 28;
fsticks = 24;

% % hfl
% % clf
% % plot(rvec,rvec,'k', 'LineWidth"',2)
% % hold on

% % plot(rvec, rvec,'k', 'LineWidth',2)
% % plot(rvec,pvecl,'r',"'LineWidth',2)
% % plot(rvec,pvec2,'b', 'LineWidth"',2)

figure (1) ;

% % plot(r,p, ko', Marker','o
MarkerEdgeColor ', 'k', 'MarkerSize ',9)

% % hold off

% % axis ([rmin rmax rmax rmax])

% % axis square

% % xlabel ("$r$',"interpreter ', 'latex ', 'fontsize

fontweight ', "bold ")

% % ylabel ("$p$', 'interpreter ','latex ', 'fontsize
fontweight ', "bold ")

% % ax = gca; ax.FontSize = fsticks;

% %

% % hf2 = figure (2);

% % clf

% % if max(al,a2kx3

% % almax = 3; aZ2max = almax;

, 'MarkerFaceColor','g",

,fslabels ,

,fslabels ,
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21 % % else

432 % % almax 5;%1.5max(al,a2);
433 % % azmax = almax;
32 % % end

43 % % if s1=1&&s2==1

a6 % % plot(alvecl ,h a2vecl, 'r','LineWidth',62)
a7 % % hold on

s % % elseif sl=—= 18&s2==1

439 % % plot(alvec2,a2vec2,'b', 'LineWidth",2)
a0 % % hold on

a1 % % plot(alvecl ,h a2vecl, 'r','LineWidth',62)
a2 % % elseif sl=18&s2= 1

a3z % % plot(alvec2,a2vec2,'b', 'LineWidth"',62)
4 % % hold on

as % % elseif s1=1&&s2==

as % % plot(alvec2,a2vec2,'b', 'LineWidth"',2)
a7 % % hold on

as % % plot(alvecl ,h a2vecl, 'r','LineWidth',62)

a9 % % end

0 % % plot(al,a2,'ko', 'Marker','o"', 'MarkerFaceColor','g","
MarkerEdgeColor ', 'k', ' MarkerSize ',9)

1 % % hold off

a2 % % axis ([0 almax 0 a2max])

3 % % axis square

4 % % xlabel ('$aflg$’, 'interpreter','latex ', 'fontsize ', fslabels
, 'fontweight ', "bold ")
a5 % % ylabel ("$af2g$’', 'interpreter ', 'latex ', 'fontsize ', fslabels

, 'fontweight ', "bold ")
6 % % ax = gca; ax.FontSize = fsticks;
as7 % % ax.XTick = [0:almax]; ax.YTick = [0:a2max];
a8 %0

wo hf3 = figure (3);
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clf

plot(real(lambda(:,1)),imag(lambda(: ","MarkerSize"',2)
hold on

plot(real(lambda(:,2)),imag(lambda(:,2)),'b.", MarkerSize",2)
plot(real(lambda(:,3)),imag(lambda(:,3)),'b.", "MarkerSize",2)
plot(real (lambda(:,4)),imag(lambda(:,4)),'b.", MarkerSize"',2)
plot(real (lambda(:,5)),imag(lambda(:,5)),'b.", 'MarkerSize"',2)
plot(real (lambda(:,6)),imag(lambda(:,6)),'b. "', " MarkerSize",2)

%plot(real(lambda(1,1)),imag(lambda(1,1)),'ko", " 'Marker','o","

MarkerFaceColor','r', "' MarkereEdgeColor','k', ' MarkerSize ',5)
%plot(real(lambda(1,2)),imag(lambda(1,2)),'ko"', " 'Marker','o","

MarkerFaceColor','r', MarkeredgeColor ', 'k',"MarkerSize ',5)
%plot(real (lambda(1,3)),imag(lambda(1,3)),'ko", "'Marker','o","

MarkerFaceColor','r', "' MarkeredgeColor"', 'k',"'MarkerSize ',5)
%plot(real(lambda(1,4)) ,imag(lambda(1,4)),'ko"', " 'Marker','o","

MarkerFaceColor','r', MarkerEdgeColor', 'k","MarkerSize ',5)
%plot([r/(2 p),0],'ko', Marker','o"', " MarkerFaceColor','b","

MarkerEdgeColor','k', ' MarkerSize ',5)

hold off

xlabel ("$nmu$’, "interpreter','latex ', 'fontsize ', fslabels ,

fontweight', 'bold")

ylabel ('$nrho$',"interpreter ', 'latex "', 'fontsize ',fslabels ,

fontweight','bold")
axis (axislambda)
ax = gca;
ax.FontSize = fsticks;
ax.FontWeight = 'normal ';
ax.TickLabellnterpreter = 'latex';
outerpos = ax.OuterPosition;
ti = ax.Tightlnset;
left = outerpos (1) + ti(1);
bottom = outerpos(2) + ti(2);



486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

Appendix L. Space Stability Spectra 196

ax_width = outerpos(3) ti (1) ti (3);

ax_height = outerpos(4) ti (2) ti(4);

ax.Position = [left bottom axwidth ax_height];

fig = gcf;

fig.PaperPositionMode = 'auto’;

fig_pos = fig.PaperPosition;

fig.PaperSize = [figpos(3) fig.pos(4)];

% % hfd = figure (4);

% % clf

% % plot(k3,abs(gamma),'b.', ' MarkerSize "', 64)

% % hold on

% % plot( k3,abs(gamma),'b."', 'MarkerSize"',4)

% % hold off

% % xlabel ("$kf3g$', "interpreter ', 'latex ', 'fontsize ', fslabels
, 'fontweight ', "bold ")

% % ylabel ('$§inGamma(k f3g)j$', 'interpreter ', 'latex ', 'fontsize

',fslabels ,'fontweight','bold")
% % axis([ max(k3) max(k3) 0 max(abs(gamma))]1.05)
% % axis square
% % ax = gca; ax.FontSize = fsticks;
% %
% % hf5 = figure (5);
% % clf
% % set(gcf, 'color','w');
% % [sphl,sph2,sph3] = sphere(64);
% % hs = surfl(sphl,sph2,sph3);
% % set(hs,'FaceAlpha',0.6)
% % shading interp
% % colormap(bone)

% % hold on

% % plot3(Sx,Sy,Sz,'k."', 'MarkerSize',1,'LineWidth',1)
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% % plot3(1,0,0,'co', Marker','o", MarkerFaceColor','c',"

MarkerEdgeColor','c', 'MarkerSize ',5)

% % plot3( 1,0,0,'yo’', " 'Marker','o', MarkerFaceColor','y","
MarkereEdgeColor','y"', 'MarkerSize ',5)

% % axis equal % or sqguare

% % box off
% % grid off

% % axis off

% % view(70,5) %view (70,5)

% % hold off

%

ds = 5;

hfé = figure (6);
clf

plot(real (lambda (1:

MarkerSize',2)

hold on

plot(real (lambda (1:

MarkerSize',2)

plot(real (lambda(1:

MarkerSize"',2)

plot(real (lambda(1:

MarkerSize',2)

plot(real (lambda(1:

MarkerSize',2)

plot(real (lambda(1:

MarkerSize',2)

ds

ds:

ds:

ds:

ds

ds:

.end,1)),imag(lambda(1:

end,2)),imag(lambda(1:

end,3)),imag(lambda (1:

end,4)) ,imag(lambda (1:

.end,5)),imag(lambda(1:

end,6)),imag(lambda (1:

ds:

ds:

ds:

ds:

ds:

ds:

end,1)),'b.","
end,2)),'b.","
end,3)),'b.","
end,4)),'b.","
end,5)),'b.","
end,6)),'b.","

%plot(real (lambda(1,1)),imag(lambda(1,1)),'ko", " 'Marker','o","

MarkerFaceColor','r', "' MarkereEdgeColor','k', ' MarkerSize ',5)

%plot(real(lambda(1,2)),imag(lambda(1,2)),'ko"', 'Marker','o","

MarkerFaceColor','r', MarkeredgeColor', 'k',"'MarkerSize ',5)
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sss %oplot(real(lambda(1,3)),imag(lambda(1,3)),'ko', "Marker','o","
MarkerFaceColor','r', " MarkeredgeColor "', 'k',"'MarkerSize ',5)

ss7 Yoplot(real (lambda(l,4)),imag(lambda(1,4)),'ko’', Marker','o","
MarkerFaceColor','r"', " MarkeredgeColor', 'k',"'MarkerSize ',5)

sss %plot ([r/(2 p),0],'ko', Marker','o', " 'MarkerFaceColor','b","
MarkerEdgeColor ', 'k', 'MarkerSize ',5)

ss9 hold off

se0o Xlabel('$nmu$', 'interpreter’,'latex "', 'fontsize ', fslabels ,'
fontweight', 'bold")

s Ylabel ('$nrho$ ', "interpreter','latex "', 'fontsize ', fslabels ,'
fontweight', 'bold")

sz axis (axislambda)

ss3 aX = gca;

se4 ax.FontSize = fsticks;

ss aX.FontWeight = 'normal ';

sa6 ax.TickLabellnterpreter = '"latex';

s7 outerpos = ax.OuterPosition;

s ti = ax.Tightlnset;

sa0 left = outerpos (1) + ti(1);

sso bottom = outerpos(2) + ti(2);

ss1 aXx_width = outerpos(3) ti (1) ti (3);

ss2 ax_height = outerpos (4) ti (2) ti(4);

ss3 ax.Position = [left bottom axwidth ax_height];

ssa fig = gcf;

sss fig.PaperPositionMode = 'auto';

sss fig_pos = fig.PaperPosition;

ss7 fig.PaperSize = [figpos(3) fig.-pos(4)];

558

559

ss0 % % hf7 = figure (7);

s61 % % clf
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% % plot(k3(1:ds:end),abs(gamma(l:ds:end)),'b."', " MarkerSize
1,4)
% % hold on

% % plot( k3(1:ds:end),abs(gamma(l:ds:end)),'b."', " MarkerSize

1 ,4)
% % hold off

% % xlabel ('$kf3g$', "interpreter ', 'latex ', 'fontsize ', fslabels

, 'fontweight ', "bold ")

% % ylabel ("$§inGamma(k f3g)j$', 'interpreter ', 'latex ', 'fontsize

', fslabels ,'fontweight', "bold ")
% % axis([ max(k3) max(k3) 0 max(abs(gamma))]1.05)
% % axis square

% % ax = gca; ax.FontSize = fsticks;

hf7 = figure (7);

clf

plot(sqrt(xcol),abs(gammaH),'b." ", MarkerSize"',2)

hold on

plot( sqrt(xcol),abs(gammaH),'b."', MarkerSize"',2)

hold off

xlabel ('$k f3g$"', "interpreter ', 'latex"', 'fontsize',fslabels ,"
fontweight','bold")

ylabel ('$jnGamma(k f3g)j$', 'interpreter','latex "', 'fontsize "',
fslabels , 'fontweight', "bold")

axis([ max(k3) max(k3) 0 max(abs(gamma))]1.05)

ax = gca;

ax.FontSize = fsticks;

ax.FontWeight = 'normal';

ax.TickLabellnterpreter = 'latex';

outerpos = ax.OuterPosition;

ti = ax.Tightlnset;

left = outerpos (1) + ti(1);
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bottom = outerpos(2) + ti(2);
ax_width = outerpos (3) ti (1)
ax_height = outerpos(4) ti(2)

ax.Position = [left bottom axwidth ax_height];

fig = gcf;
fig.PaperPositionMode = 'auto’;

fig_pos = fig.PaperPosition;

ti(3);
ti (4);

fig.PaperSize = [figpos(3) fig_.pos(4)];

hf8 = figure (8);
clf

plot(sqrt(xcol(l:ds:end)),abs(gammaH(1:ds:end)),'b.",

MarkerSize',2)

hold on

plot( sqrt(xcol(l:ds:end)),abs(gammaH(1l:ds:end)),'b.",

MarkerSize',2)
hold off

xlabel ('$k f3g$"', "interpreter', 'latex "', 'fontsize ', fslabels ,

fontweight', 'bold")

ylabel ('$jnGamma(k f3g)j$', "interpreter ', 'latex"', 'fontsize ',

fslabels , 'fontweight', 'bold")

axis([ max(k3) max(k3) 0 max(abs(gamma))]1.05)

ax = gca;
ax.FontSize = fsticks;
ax.FontWeight = 'normal';
ax.TickLabellnterpreter = 'latex
outerpos = ax.OuterPosition;

ti = ax. Tightlnset;

left = outerpos (1) + ti(1);
bottom = outerpos(2) + ti(2);
ax_width = outerpos(3) ti (1)

ti(3);
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s ax_height = outerpos(4) ti (2) ti(4);

6

=

s7 ax.Position = [left bottom axwidth ax_height];

fig = gcf;

6

s
<]

s9 fig.PaperPositionMode = 'auto’;

=
©

e20 fig_pos = fig.PaperPosition;
en fig.PaperSize = [figpos(3) fig.pos(4)];
622

623
624 %0

B s s s s s s O s s O s s A O s s A i R O A A A T I A T Y

625 % % Saving the figures
626 %0

B s s s s s s O s 8 O s s s A i T I A A A T T T I T Y

ez if saveflag==
628 file_.name = ['spectrumpl=",num2str(pl),’' p2=",num2str(p2)

, ' _p3=",num2str(p3)];

629 print(hf3 ,[pwd '/Figures/' file _name 'lambda.jpeg'],"
djpeg’)
630 print(hfé ,[pwd '/Figures/' file _name 'lambda.eps'],’

depsc',' tiff")

631 print(hf3 ,[pwd '/Figures/' file _name 'lambda.pdf'],' dpdf
N

632 print(hf7 ,[pwd '/Figures/' file _name '_gain.jpeg'],"' djpeg
N

633 print(hf8 ,[pwd '/Figures/' file _name '_gain.eps'],' depsc'
O tiff ")

634 print(hf7 ,[pwd '/Figures/' file _name '_gain.pdf']," dpdf")

635 end
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Gain Function

function omega=omegaextractor2(pl,p2,p3,k,lambda)

omega = zeros(size(k));

jmax = length (k);

for j=1:jmax
kk = k(j); Il = lambda(j);
pw_coeff = fliplr([( 1). pl.72. p3.73+pl. (( 1)+p3. (p3
+2. p2. p3+( 1). [+p3.722. 11))+p2. (I1+( 1). p3. (( 1)
+p2+p3. (p3+I1))) ,...
p2. (1+2. p3.72+( 1). p3. I1)+pl. p3. (( 3)+p3
)+ 1). (( 1)+p3.72). (( 1)+I1.72)
(( 2)+( 1). p2). p3+2. 11 ,1]);
pz_coeff = [1,2 Il ,p2 1+I1172,p2 Il pl];
wroots = roots(pw_coeff);

%zroots = roots(pz.coeff);

13

14

15

16

17

wdiff = wroots wroots ([2,3,1]);
[foo, mind] = min(abs(abs(wdiff) kk));
wrootsO = [wroots; wroots(1)];

wl = wrootsO(mind); w2 = wrootsO(mind+1);
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czl = [p3,1+p3 Il ,p2 p3 wl];

[p3,1+p3 Il ,p2 p3 w2];

cz2
z1lroots = roots(czl);

zlval = abs(polyval(pzcoeff,zlroots));
[foozl,indz1] = min(zlval); z1 = zlroots(indzl);
z2roots = roots(cz2);

z2val = abs(polyval(pzcoeff,z2roots));

[fooz2 ,indz2] = min(z2val); z2 = z2roots(indz2);
theta = z1+z2;

omegal(j) = kk/(1+p3 (theta+ll));

disp ([ 'omegaextraction: pl = ',num2str(pl),', p2 = ',
num2str(p2),', p3 = ',num2str(p3) ,...
diff = '",num2str(foo),' , k3 = ', num2str(kk) ,...
] = ",int2str(j),', final j = ",int2str(jmax)]);
end
return

function omega = omegaextractorH (pl,p2,p3,k)

jmax = length (k);

omega = zeros(jmax,6);

for j=1:jmax

kk = k(j);

A2 (( 24)+kk.~2+12. pl.
p3+( 1). (( 8)+p2. (4+p2)). p3.72),2. kk. (8+( 2).
A2+(( 8)tp2. (

4+p2)). p3.72+pl. p3. (( 6)+( 1). (( 2)+p2). p3.72))

,( 4)+4. pl.
p3+( 1). (( 8)+p2. (4+p2)). p3.72+2. pl. (( 2)+p2).
A3+( 1), (

kk

p3



12

13

Appendix M. Gain Function

204

disp ([ 'omegaextractionH: pl = ',num2str(pl),', p2 ="'
num2str(p2),', p3 = ',num2str(p3) ,...
] = ",int2str(j),', final j = ",int2str(jmax)]);

end

return

4+pl.A2+( 4). p2). p3.0+( 2). kk.A2. (( 3)+p3.72) 4.

kk. (( 1)+ ...

p3.72),(( 1)+p3.72).72]);

omega(j,:) = roots(polH);
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Sinc Interpolation

function y.new = sincinterpr(y.old,x.old ,x.new)
%if nargin==

%dx = x_old(2) x_old(1);

%end

dxold = x_old(2) x_old(1);

dxnew = x_new(2) x_new(1);

size.x_old = size(x_old);

sizex_new = size(xnew);

size.y_old = size(y.old);

% rotates input arrays conveniently
if min(size.x_old)~=1jjmin(size.y_old)~=1jjmin(size.x_new)~=1
error (['sincinterp error: input arguments of sincinterp
mustbe vectors'])
end
if max(sizex_old)~=max(size.y_old)
error (['sincinterp error: dimension mismatch in input
arguments '])
end
if sizex_old(1)~=min(size_x_old)

X_old = x_old . ';
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else

end

X_old = x_old;

if sizex_new(l)~=min(sizex_new)

X_new = x_new.';

else

end

X_new =

X_new;

if size.y_old (1)~=min(size_.y_old)

Y_old = y_old;

rot_flag = 0;

else

end

Y_old = y_old.";

rot_flag = 0;

%shift
%[Y_old (1) Y_.old(end)]

[Y_min_ext,

end))]);

if ind_min_ext==

sig_-min_ext

else

sig_-min_ext =

end

ind_min_ext] =

sign(Y_old(1));

sign(Y_old(end));

Y_old = Y_old sig-min_ext Y_min_ext;

%[Y_old (1) Y_old(end)]

%flip
if y old(1)~=y_old(end)

% flip
if

is needed

ind_min_ext==

min ([abs(Y_old (1)) abs(Y_old(
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end

X_old_.c = X_old + (X _old(end) X_old(1)+dxold);
X_old = [X_old, X_old_c];
%sizeXold = size(Xold)

X_new.c = X_new + (X_new(end) X_new(1)+dxnew);
X_new = [X_new, Xnew.cl];

%sizeXnew = size (Xnew)

Y_old = [Y_old; flipud(Y_old)];
%sizeYold = size(Yold)

else

X_old.c = X_old + (X _old(1) X_old(end) dxold);
X_old = [X_old_.c, X_old];
%sizeXold = size(Xold)

X_new.c = X_new + (X_new(l) X_new(end) dxnew);
X_new = [X_new.c, X_new];

%sizeXnew = size (Xnew)

Y_old = [flipud(Y_old); Y_old];
%sizeYold = size(Yold)

% if Y_old(1l)~=Y _old(end)

%
%
%
%
%
%
%

ind_min_ext==1

Y_old = [Y_old; Y_old(1)];

X_old = [X_old, X_old(end)+dxold];
else

Y_old = [Y_old(end); Y_old];

X_old = [X_old(1) dxold, X.old];

end



83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

107

108

109

110

111

112

Appendix N. Sinc Interpolation 208

% end

%S = @(xold ,xnew) sinc( (pi/dx)xnew pi (floor ((xold xold(1)
)dx)) )

%S = @(xshift ,xnew) sinc( (pi/dx)xnew pi xshift );

%[ Xshift ,Xnew] = meshgrid ([0:N 1],X_new);

[Xnew, Xold] = ndgrid (X.new, X old);

SS = sinc ((Xnew Xold)/dxold);

%[ Xnewshift , Xoldshift] = ndgrid ([0:length(Xnew) 1],[0:length(
X_old) 1]);

%SS = sinc(Xnewshift Xoldshift);

%SSsize = size (SS)

%Yoldsize = size(Yold)

Y_new = SS Y_old;

%reshift
Y_new = Y_new+sig_.min_ext Y_min_ext;
% if Y_old(1)~=Y _old(end)

% if ind_min_ext==1

% Y_new = Y_new(1l:end 1);
% else

% Y_new = Y_new(2:end);
% end

% end

if ind_min_ext==

Y_new = Y_new(1l:length(xnew));
else

Y_new = Y_new(length(xnew)+1l:end);
end
if rot_flag==

y_new = Y_new.';
else

y_new = Y_new,
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1z end

14 return
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Pseudospectral Fourier Discrtization

function [x,t,ul,u2,u3] = twri_solver(c,s,a,eta,u0,L,Nx,T,Nt)

%
%
%
%
%
%
%
%

%

%

%

%

%

%
%

pseudo spectral code for the 3WRI

c = [cl,c2] is the array of the speeds
s = [sl1l,s2,s3] is the array of the signs
a = [al,a2] is the array of the amplitudes

eta = [etal ,eta2] is the array of the frequencies

u0 is the initial condition, which has to be provided as Nx
by 3 array,

with the first column being the values of ul at t=0, the
second column

being the values of u2 at t=0, and the third column being
the values of

u3 at t=0

[ L:dx:L dx] is the range of integration, where dx=2/Nx
and Nx is the

number of spatial nodes
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% T is the time range of the integration, including Nt time
points

%

% x is the vector of the nodes

% t is the time vector

% ul, u2, u3 is the solution in the form of three Nhy 3

arrays

%
B s i s s s s T s s s s O A s T I T A A T I T T T Y

% setting global variables
%
S8/ S8/ S/ S8/ S/ S8/ S/ S8/ S/ 88/ S/ 8B/ S/ 88/ S/ 8/ S/ 8/ 8/ S/ 8/ 8/ S/ 88/ S/ 88/ S/ 88/ S/ 88/ S/ 88/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ S/ 8/ 8/ S/ 8/ 8/ 8/8/8)

global time_start tout

% ridefines the final time as a global variable

tout = T;

%
B s s s s O s s O 0 s A O s s i T I T A A T I T T T Y

% computational grid in Fourier space
%
O/ S/S/ S/ S/ S8/ 88/ S8/ S/ S/ S/ S/ 888/ 8/ S/ S/ S/ S/ S/ S/ S/ 88/ 8/ 8/ Y8/ S/ S/ S/ S/ S/ 8/ 88/ 8/ Y8/ S/ S/ S/ S/ 8/ 88/ 8/ 8/ 8/ 8/ 8/ 8/ 88,

% setup grid
dx = 2 L/NXx;
x = [ L:dx:L dx];
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% fourier wavenumbers

dk = pilL;

k = fftshift([ Nx/2:(Nx/2) 1] dk);
k k."'; %k2 = k."2;

%
B s A A A T s 8 s s 0 A A i A A A A A TS A A R R

% parameters
%
B A s s s s s s s e e e O T A A A A A T T TS I A A A Y

% Given speeds, signs, amplitudes and frequencies, reconstruct
the

% parameters in the equation and in the plane wave solution.

aq = a."2;

r = (c(l) c(2))/(eta(l)+eta(2)):

nul = (eta(l)/c(1))+s(1) s(3) aq(2) (c(2)/c(1)) r;
nu2 = (eta(2)/c(2))+s(2) s(3) aq(l) (c(1l)/c(2)) r;
nu3 = (nul+nu2);

omega = c(1) nul+c(2) nu2;

%
B s s s s s s s O s s O s s A O s s A i T O A A A T I T T T Y

% initial condition
%

B s U A A A T s s s s s A i e e e e e A A A A A T TS TS A A A A R

Ul =u0(:,1); U2=u0(:,2); U3 =u0(:,3);
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V1

V2

V3

VO

%

%
%

%

opts = odeset('OutputFcn', @twrioutput ,...

%

%
%

%

= exp(li (nul x(:))). U1,
= exp(li (nu2 x(:))). U2;
= exp(li (nu3 x(:))). U3;

= [V1(:); V2(:); Vv3() 1

B A s U A A A T s 8 s s s A A A A A A TS A A A A A R R

parameters for the ODE solver

VS S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ S S S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8/ Y8/ S/ S S S S S S8/ 8/ 818/ 8/8/8/8/8)

sets appropriate ODE solver options

'Refine ' ,1,...

'Stats','on' ,...

'"RelTol",1e 9,'AbsTol',1e 6,...

'MaxStep',1le 3,...
"InitialStep ',1e 9,...

"NormControl','on");

VS S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8/ S S S S S S S/ S/ S/ S/ S/ 8/ 8/ 8/ 8V Y8/ S/ S S S S S S/ S/ 81818/ 8/8/8/8/8)

integration

B s s s s s s s i O s s e O s s A O O s A i A I A A A T I A T T Y

starts the clock
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time_start = tic;

disp ([ 'pseudo spectral code for HF: calculation started'])

% performs the integration in time

dt = T/Nt;

[t,y] = oded5(@(tt,yy) twri_rhs(tt,yy,Nx,k,c,s,omega) ,[0:dt:T
1.,VO0, opts);

%
O/ S SSSS/ S S S SSSSS SSS SS/S S/SS/SSS/SSS SSS SS S S8 S S S S/ S/ S8/ 88,

% recovering output solution from integration
%
O/ S/ S/ S8/ 888/ S/ S/ S/ S/ S/ S/ 888/ 8/ 8/ 8/ S/ S/ S/ S/ 8/ 888/ 8/ Y8/ S/ S/ S/ S/ 8/ 8/ 8818/ Y8/ S/ S/ S/ 8/ 8/ 888/ 8/ /88 8/ 8/,

vl = y(:,1:Nx);

v2 = y(:,Nx+1:2 Nx);

v3 = y(:,2 Nx+1:3 Nx);

[MX,MT] = meshgrid(x,t);

ul = exp( 1i nul (MX c(1) MT)). vi;
u2 = exp( 1i nu2 (MX c(2) MI)). v2;
u3 = exp( 1i (nu3 Mxtomega MT)). v3;

disp ([ 'pseudo spectral code for 3WRI: calculation completed'])

% computing the time elapsed since the beginning of the
integration

total _time_elapsed = toc(time. start);

total _days = datenum ([0 0 O O O totaltime_elapsed]);

time_left = datevec(total_days floor(total_days));

disp ([ 'total time taken for the integration = ', ...
int2str(floor(total_days)),'d ',...
int2str(time_left(4)),'h ' ,...
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int2str(time_left(5)), m ' ,...
num2str(time_left(6)),'s"'])

return

%
VS S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ S/ S S S S S S S/ S/ S/ S/ 818/ 8/ 8/ 8/ Y8/ S/ S S S S S S S8/ 8/ 818/ 8/8/8/8/8)

% twri_output function, called at each time step
%
OV S8/ S/ S/ S/ S8/ 8/ 88/ S/ S/ S/ S/ S/ S/ 8888/ 8/ 8/ 8/ S/ S/ S/ S/ 8/ 88 8 8/ Y8/ 8/ S/ S/ S/ 8/ 8/ 888/ Y8/ 8/ S/ S/ S/ 8/ 8/ 88/ 8/ 8/ 8/ 8/ 8/ 8/ 88,

function status = twri_output(tt,yy, flag)
global time._start tout
status = O;
if (strcmp(flag,'"))
time_elapsed = toc(time.start);
secondsleft = ((tout/tt(end)) 1) time_elapsed;
datenum ([0 0 0 O O secondsleft]);

days_ left

time_left = datevec(daysleft floor(days.left));

disp(['3wri_solver: time = ',num2str(tt(end)) ,...
"(',num2str(tout),') computation time left = "', ...
int2str(floor(days_left)),'d ',...
int2str(time_left(4)),'h ' ,...
int2str(time_left(5)),'m ' ,...
num2str(time_left(6)),'s"'])

end

return

%
VS S S S/ S/ S/ S/ 8/ 8/ 8/ S/ S/ S S S S S S S S/ S/ S/ 8/ 8/ 8/ 8/ 8/ 8V Y8/ S/ S S S S S S S8/ 8/ 81818/ 8/8/8/8)
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% twri_rhs ,

%

VS S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ S/ S S S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8V 8V 8/ /S S S S S S S S/ S/ 8/ 818/ 8/8/8/8/8)

the

right hand side of the 3WRI system

function dvdt = twri_rhs(tt,vv,Nx,k,c,s,omega)

%sizevv = size(vv)

v = reshape(vv,Nx,3);

vi=v(:,1); v2 =v(:,2); v3 =vVv(:,3);

vlc = conj(vl); v2c = conj(v2); v3c = conj(v3);
vix = ifft(1i k. fft(vl));

v2x = ifft(1i k. fft(v2));

%v3x = ifft (k.

fft(v3));

vit = c¢(1) vix+c(2) s(1) v2c. v3c;
v2t = c¢(2) v2x+c(1l) s(2) vic. v3c;
v3t = 1i omegav3+(c(1l) c(2)) s(3) vlc. v2c;

dvdt = [vilt;

return

v2t;

v3t];
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Numerical Integration

%
B A s A s s s s s s N e e e e O A A A A A T TS TS A A A A R R

% Flags for saving figures and generating data
%
/S8 S/ 8/ /S 8/ S/ S8/ S/ S8/ S/ 88/ S/ 88/ 88/ 8/ S/ 8/ 8/ S8/ 8/ S/ 8/ 8/ S/ 88/ S/ 88/ S/ 88/ 8/ 88/ S/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ S/ 8/ 8/ S/ 8/ 8/8/8/8)

% Dataflag. If 'dataflag=0' no data is generated. If 'dataflag
=1', data is

% generated .

dataflag = 0;

% Saveflag. If 'saveflag=0' no figure is saved. If 'saveflag
=1", all

% figures are saved.

saveflag = 1;

% Extractionflag. If 'extractionflag=0" no interpolated plot
is extracted.

% If 'extractionflag=1', an interpolated plot is extracted at
the time and

% space specified.

extractionflag = 1;
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%
VS S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ S/ S S S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8V 8V 8/ /S S S S S S S S/ S/ 8/ 818/ 8/8/8/8/8)

% Parameters for the plane wave and perturbation
%
OV 8/ S/ S/ 8888/ S/ S/ S/ S/ S/ S/ 8888/ 8/ 8/ 8/ S/ S/ S/ 8/ 8/ 88 8/ 8/ Y8/ S/ S/ S/ S/ 8/ 8/ 8 818/ Y8/ 8/ S/ S/ 8/ 8/ 8/ 88/ 88/ S/ 8/ 8/ 8188,

% if cl = c2, then use the following syntax:

% epsilon = 1le 3; % epsilon approaches zero

% [c,s,a] = twri_from_p ([pl p2 p3/epsilon epsilon])

% for some values pl, p2, p3

p=1[0.2 0.3 0.6 1];

[c, s, a] = twri_from_p(p);

spectrumtopology = [2 0 0 1 0]; %9 G SG B L TL

experimentnumber = ['01"']; % update with the experiment
number, namely,

% specfy if this is the first, second, third, ... experiment
with the same

% topology of the spectrum.

% do not modify eta

eta = [1,1];

%
B s s s s s s O s s O 0 s A O s s i T I T A A T I A T T Y

% Computational grid
%

B s A A A U s 0 s s 0 A A i A A A A T TS A A A A R

L = 20;
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numx = 27(10) ;%5 (27(7));%2"(9)
dx = 2 L/numx; x = [ L:dx:L dx];
xspan = [x(1) x(end)];

T=120;

numt = 600;

tspan = [0 T];

dt = (tspan(2) tspan(1l))/numt;
t = [tspan(1):dt:tspan(2)];

%[XX,TT] = meshgrid(x,t);

% values of the subgrid from the zoomn
xmin =0; xmax = 20;

tmin =100; tmax = 120;

if tmax>T; tmax=T; end

if xmaxL dx; xmax=L dx; end

if xmink L; xmin= L; end

% value of the time and spatial range for extracting an
interpolated plot

t_extraction = 120;

x_extraction_min = 0; x_extraction.max =20;

num_x_extraction = 1e4; % interpolation points

if t_extraction>T; t_extraction=T; end

if x_extraction.max>L dx; x_extraction.max=L dx; end

if x_extraction.min< L; x_extraction_min= L; end

%
B s s s s s s s O s s e T O s T I T I T T T T T Y

% Perturbation
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%
B A A s s s s s s i e e e e O T A A A A A TS TS T A A A A R R

% amplitude of the perturbation in each component
epsilonl = 1le 3;
le 3;
le 3;

epsilon2

epsilon3

% Pertubration mode. If pertmode=0, then localised
perturbation. |If
% pert.:mode=1, then random pertubration.

pert_mode = 1;

if pert_mode==
pert = @(x) cos(pix/(2 L)). exp( (2 (x).*2));
elseif pertmode==
%pert = @(x) 2 rand(size(x)) 1;
numnod = numx/8; dnod = (2 L dx)/numnod;
pert = @(x) sincinterpr([0,0,0,0,0, 2rand([1,numnod 9])
1, 0,0,0,0,0],[x(1):dnod:x(end)],x).";

end

%
VS S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8/ S S S S S S S/ S/ S/ S/ S/ 8/ 8/ 8/ 8V Y8/ S/ S S S S S S/ S/ 81818/ 8/8/8/8/8)

% Plane wave solution
%
S S/ S/ S SSSSSSS SSS/SYS/SS/S S/ S S/SYSSSS/S S/SS/S S/S S/S S/SS/ S S/ S/ S/ S/ S/ S/ S/ 8/8Y8)

% pl = (cq(l) alphaqg(l) s(1)+cq(2) alphaq(2) s(2))/(s(1) s(2)
s(3));
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% p2 = (cq(l) alphaq(1) s(1) cq(2) alphaq(2) s(2))/(s(1) s(2)

s(3));
% p3 = (c(1) c(2))/(c(1)+c(2));

aq = a."2;

r=(c(l) c(2))/(eta(l)+eta(2));

nul = (eta(l)/c(1))+s(1) s(3) aq(2) (c(2)/c(1)) r;
nu2 = (eta(2)/c(2))+s(2) s(3) aq(l) (c(l)/c(2)) r;
nu3 = (nul+nu2);

eta3 = (eta(1l)+eta(2));

%omega = ¢(1) nul+c(2) nu2;

ulex = @(x,t) a(l) exp(li (eta(1l) t nul x));
u2ex = @(x,t) a(2) exp(li (eta(2) t nu2 x));
udex = @(x,t) 1i s(3) a(l) a(2) r exp(li (eta3 t nu3 x));

U10 = ulex(x,0)+epsilonl pert(x). exp(li ( nul x));
U20 = u2ex(x,0)+epsilon2 pert(x). exp(li ( nu2 x));
U30 = u3ex(x,0)+1i epsilon3 pert(x). exp(li ( nu3 x));

U0 = [U10(:) U20(:) U30(:)];

%
B s s s s s s s s e T I I A i T T T A I I I T T Y

% Numerical integration
%
OBV S/ S/ S/ S/ S/ S/ Sy Sy S8/ 8/ 8/ 8/ 888/ Y S/ S/ S/ S/ S/ SV S/ S/ S/ S/ Sy Sy Sy Sy 8y 8 88 888 8 S/ S/ S/ S/ S/ S/ S/ SV S S/ Sy S8y 8y 8/ 8/8/8)

if dataflag = 1

[xx,tt,ul,u2,u3] = twri_solver(c,s,a,eta,U0,L,numx,T,numt)
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end
%disp (['pl = ',num2str(pl)])
%disp (['p2 = ",num2str(p2)])

%disp (['p3 ,num2str(p3)])

reulmin = floor (10 min(min(real(ul))))/10; reulmax = ceil (10
max(max(real(ul))))/10; reulticks = linspace (reulmin,
reulmax,5);

imulmin = floor (10 min(min(imag(ul))))/10; imulmax = ceil (10
max(max(imag(ul))))/10; imulticks = linspace (imulmin,
imulmax,5);

absulmin = floor (10 min(min(abs(ul))))/10; absulmax = ceil (10
max(max(abs(ul))))/10; absulticks = linspace (absulmin,
absulmax,5);

reu2min = floor (10 min(min(real(u2))))/10; reu2max = ceil (10
max(max(real(u2))))/10; reu2ticks = linspace (reu2min,
reu2max,5);

imu2min = floor (10 min(min(imag(u2))))/10; imu2max = ceil (10
max(max(imag(u2))))/10; imu2ticks = linspace (imu2min,
imu2max,5) ;

absu2min = floor (10 min(min(abs(u2))))/10; absu2max = ceil (10
max(max(abs(u2))))/10; absu2ticks = linspace (absu2min,
absu2max,5);

reudmin = floor (10 min(min(real(u3))))/10; reu3max = ceil (10
max(max(real(u3))))/10; reu3ticks = linspace (reu3min,
reudmax,5);

imu3min = floor (10 min(min(imag(u3))))/10; imu3max = ceil (10
max(max(imag(u3))))/10; imu3ticks = linspace (imu3min,
imu3max,5) ;

absu3min = floor (10 min(min(abs(u3))))/10; absu3max = ceil (10

max(max(abs(u3))))/10; absu3ticks = linspace (absu3min,
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absu3max,5);

%
B U s s s s s s O s s s s s A O s s i T I A A A T I A T T Y

% Exact solution
%
S/ S/ S/ S S S SS SYS SS/SS/SS/SSSSSSSSS/SS/SS/S S/ S S/ S/ S/ S/ S/ S/ S/ S/ S/ S/ 8/8/8

[XX,TT] = meshgrid (xx, tt);
Ul = ulex(XX,TT); U2 = u2ex(XX,TT); U3 = u3ex(XX,TT);

reUlmin = floor (10 min(min(real(U1))))/10; reUlmax = ceil (10
max(max(real(U1))))/10; reUlticks = linspace (reUlmin,
reUlmax,5);

imUlmin = floor (10 min(min(imag(U1))))/10; imUlmax = ceil (10
max(max(imag(Ul1))))/10; imU1lticks = linspace (imUlmin,
imUlmax,5) ;

absUlmin = floor (10 min(min(abs(U1))))/10; absUlmax = ceil (10
max(max(abs(U1))))/10; absUlticks = linspace (absUlmin,
absUlmax,5);

reU2min = floor (10 min(min(real(U2))))/10; reU2max = ceil (10

max(max(real (U2))))/10; reU2ticks = linspace (reU2min,
reU2max,5) ;

imU2min = floor (10 min(min(imag(U2))))/10; imU2max = ceil (10
max(max(imag(U2))))/10; imU2ticks = linspace (imU2min,
imU2max,5) ;

absU2min = floor (10 min(min(abs(U2))))/10; absU2max = ceil (10
max(max(abs(U2))))/10; absUZ2ticks = linspace (absU2min,
absU2max,5) ;
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reU3min = floor (10 min(min(real(U3))))/10; reU3max = ceil (10
max(max(real (U3))))/10; reU3ticks = linspace (reU3min,
reU3max,5) ;

imU3min = floor (10 min(min(imag(U3))))/10; imU3max = ceil (10
max(max(imag(U3))))/10; imU3ticks = linspace (imU3min,
imU3max,5) ;

absU3min = floor (10 min(min(abs(U3))))/10; absU3max = ceil (10
max(max(abs(U3))))/10; absU3ticks = linspace (absU3min,
absU3max,5) ;

%
B A s s s s s s i e e O T A A A A A A T TSI A A A

% Parameters
%
AL L0 L T L L0 20T T 0 20 T 2 0 40 Lo T 2 0 0 T T 0 0 0 T 0 0 40 e L L 0 0 L L 0 0 L L L 0 Lo T L0 o Lo L 2040

disp([" ']

disp ([
R s s s s s s s s i s s i s s i I i I s i T T A T A T A T
1

disp ([ 'parameters: pl=',num2str(p(l)),', p2=",num2str(p(2)), "',
p3=",num2str(p(3))," ', p4=",num2str(p(4))1]);

disp(['velocities: cl=",num2str(c(l)),"', c2=",num2str(c(2))])

disp ([ 'signs: sl=",int2str(s(1)),', s2=",int2str(s(2)),', s3='
,int2str(s(3))1)

disp ([ 'amplitudes: al=',num2str(a(l)),', a2='",num2str(a(2))])

disp([" '])

%
VS S S S/ S/ S/ 8/ 8/ 8/ 8/ 8/ S S S S S S S/ S/ S/ S/ S/ 8/ 8/ 8/ 8/ 88/ S/ S S S S S/ S/ 8/ 81818/ 8/8/8/8)
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% Differences
%
L Lo 0 Lo Lo T 202 02 T Lo T o 2 o L o 20 L0 T Lo 2 T Lo 2 o L o L0 2o L0 T L0 2 2o L o 2 2 o

disp ([
R s s s s L s L s s A s A T A A A A A B R A 2 L A A R A 2 R A A R A T D A R A A,
)
if pert_mode==
disp(['localised pertubration: ',char(pert)])
elseif pertmode==
disp ([ 'random perturbation: ', char(pert)])

end

initrelerrul 100 max(max(abs(U1(1,:)ul(l,:))))/max(max(abs

Ul(1.:))));

initrelerru2 = 100 max(max(abs(U2(1,:) u2(1,:))))/max(max(abs(
U2(1.,:))));

initrelerru3 = 100 max(max(abs(U3(1,:) u3(1,:))))/max(max(abs
Us(1,.:))));

maxrelerrul 100 max(max(abs(Ulul)))/max(max(abs(Ul)));
100 max(max(abs(U2u2)))/max(max(abs(U2)));

100 max(max(abs(U3u3)))/max(max(abs(U3)));

maxrelerru2

maxrelerru3

disp ([ 'deviation from unperturbed solution']);

disp (['U>> initial: '",num2str(initrelerrul), % maximum: ',
num2str(maxrelerrul), '%'])

disp ([ 'U2=> initial: ",num2str(initrelerru2), % maximum: ',
num2str(maxrelerru2), '%'])

disp (['U3> initial: '",num2str(initrelerru3), % maximum: ',

num2str(maxrelerru3), %'])
disp([" '])

%
0SS/ S SSSS/SSSSSSS S S8 S8 S S S S SS/SSS SSS SS/ S S8/ S S S/ S/ S/ 88/ 88
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% Extracting a subplot (zoomin) in the region [xmin xmax tmin
tmax|]
%
B e o s s s o s o s e o s 2 s s A R A 2 R L A T R A T %Y

[Nr, Nc] = size (XX);

YY = (XX>=xmin)&(XX<=xmax)&(TT>=tmin)&(TT <=tmax) ;
colind = ceil (find (YY)/Nr);

rowind = find (YY) (colind 1) Nr;

colind = unique(colind);

rowind = unique (rowind);
sX = XX(rowind, colind);
sT = TT(rowind, colind);

sul = ul(rowind,colind);
su2 = u2(rowind, colind);
su3 = u3(rowind, colind);

%
B s e s s s s e O s s O s s O s s A i T I T A A T I T T T Y

% Extracting a subplot at a given specific time in a given
spatial range
% with interpolation of the result for highdefinition
plotting
%
B 0 s s o s s s s o s e o s 2 A s s A R A 2 R L A T R A T %Y

if extractionflag==
dxinterp = (x_extraction.max x_extraction.min)/

num_x_extraction;
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201 x_interp = x_extraction.min:dxinterp:xextraction.max;
202 [~,ind_extraction] = min(abs(t t_extraction));

203 t_extraction_eff = t(ind _extraction);

204

205 x_extraction = XXx;

206 ul_extraction = ul(ind_extraction ,:);

207 u2_extraction = u2(ind_extraction ,:);

208 u3_extraction = u3(ind_extraction ,:);

209 %sizeul_extraction = size(ulextraction)

210 %size x_extraction = size(x extraction)

211 Xx_extraction_.range = (x_extraction>=x _extraction_min)&(

X_extraction<=x _extraction.max);

212 X_extraction = x_extraction(x_extraction_.range);

213 ul_extraction = ul_extraction(x_extraction.range);

214 u2_extraction = u2_extraction(x_extraction_.range);

215 u3_extraction = u3_extraction(x_extraction_.range);

216 %sizeul_extraction = size(ulextraction)

217 %size x_extraction = size(x extraction)

218 ul_interp = sincinterpr(ul_extraction , x.extraction ,
x_interp);

219 u2_interp = sincinterpr(u2_extraction , x extraction ,
X_interp);

220 u3d_interp = sincinterpr(u3_extraction , x_extraction ,
x_interp);

21 end

222

223 %

VS S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ S S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8/ Y8/ S S S S S S/ S/ 8/ 818/ 8/8/8/8/8)

24 % General plotting parameters
225 %

B s s s s s s s O s s e O s s A O s s i e A A A A T I T T T Y
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% % load colormaps

% load('redblue ')

% load('blueredyellow ')
% load('blueredblue )
% load('redbluered ")

% load('redbluered2 ")

% options for plotting
linwdth = 1.5; % Line Width
fnsztl = 16; % Font Size for Plot Titles

fnwgtl = 'bold'; % Font Weight for Plot Titles
fnszlb = 14; % Font Size for Plot Axis Labels
fnwglb = 'bold'; % Font Weight for Plot Axis Labels
fnsztk = 14; % Font Size for Plot Ticks

fnrwgtk = 'normal'; % Font Weight for Plot Ticks

fnszcb = 14; % Font Size color bar

fnwgch ‘'normal'; % Font Weight color bar

fnnmcb "Serif'; % Font Name color bar
%
e e T e L L L e L e L e e L e o L L L L

% Plotting the output
%
O/ S/S/ S/ S/ S/ S8/ 88/ S/ S/ S/ S/ S/ 888/ 8/ S/ S/ S/ S/ S/ S/ S/ 88/ 88/ Y8/ S/ S/ S/ S/ S/ 8/ 818/ 8/ Y8/ S/ S/ S/ S/ 8/ 888/ 8/ 8/ /8 8/ 8/ 88,

hfl = figure (1);
clf

% colormap(jet) % use this map as an alternative colormap
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3 figla = subplot(2,3,1);

254 pcolor(xx,tt,abs(ul))

255 xlabel('nboldmath$ xg$', 'interpreter','Latex', 'fontsize"',
fnszlb , 'fontweight',fnwglb)

256 ylabel('nboldmath$f tg$','interpreter ', 'Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

257 title (' nboldmath$fj u_f 1gjg$ (numerical)','interpreter',"

Latex', 'fontsize',fnsztl ,'fontweight',fnwgtl)

258 colormap(figla,jet)

259 shading flat

260 axis([ L L tspan(1l) tspan(2)])

261 ax = gca;

262 ax.FontSize = fnsztk;

263 ax.FontWeight = fnwgtk;

264 ax.TickLabellnterpreter = 'latex ';

265 caxis ([absulmin absulmax]);

266 hBarhfla = colorbar('location', 'southoutside ', "xtick ",

absulticks);

267 labelshfla =fabsulmin:(absulmaxabsulmin)/4:absulmax;

268 set(hBarhfla, 'XTickLabel',labelshfla , 'fontsize ',fnszcb,’
fontweight',fnwgcb, 'fontname ' ,fnnmch);

0 hflb = subplot(2,3,2);

270 pcolor(xx,tt,abs(u2))

271 xlabel('nboldmath$f xg$','interpreter ', 'Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

272 ylabel('nboldmath$f tg$','interpreter ', 'Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

2713 title (' nboldmath$fj u_f2gjg$ (numerical)','interpreter',"
Latex ', 'fontsize ', fnsztl, 'fontweight', fnwgtl)

274 colormap (hflb,jet)

275 shading flat

276 axis([ L L tspan(l) tspan(2)])
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ax = gca;

ax.FontSize = fnsztk;

ax.FontWeight = fnwgtk;

ax.TickLabellnterpreter = 'latex';

caxis ([absu2min absu2max]) ;

hBarhflb = colorbar('location’', 'southoutside ', "xtick",
absu2ticks);

labelshflb =fabsu2min:(absu2maxabsu2min)/4:absu2max;

set(hBarhflb, 'XTickLabel',labelshflb , 'fontsize',fnszcb,'
fontweight',fnwgcb, 'fontname ' ,fnnmcb);

figlc = subplot(2,3,3);

pcolor(xx,tt,abs(u3))

xlabel('nboldmath% xg$"', 'interpreter','Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

ylabel('nboldmath$ tg$','interpreter', 'Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

title (' nboldmath$fj u_f3gjg$ (numerical)','interpreter',"
Latex', 'fontsize',fnsztl , 'fontweight',fnwgtl)

colormap(figlc,jet)

shading flat

axis([ L L tspan(l) tspan(2)])

ax = gca;

ax.FontSize = fnsztk;

ax.FontWeight = fnwgtk;

ax.TickLabellnterpreter = '"latex ';

caxis ([absu3min absu3max]);

hBarhflc = colorbar('location', 'southoutside ', "xtick",
absu3ticks);

labelshflc =fabsu3min:(absu3maxabsu3min)/4:absu3may;

set(hBarhflc, 'XTickLabel',labelshflc, 'fontsize',fnszcb,'
fontweight',fnwgcb, 'fontname ', fnnmch);

figld = subplot(2,3,4);
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pcolor(sX,sT,abs(sul))

xlabel('nboldmath$ xg$','interpreter ', 'Latex', 'fontsize",
fnszlb , 'fontweight',fnwglb)

ylabel('nboldmath® tg$','interpreter', 'Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

title (' nboldmath$fj u_f 1gjg$ (numerical)','interpreter"',"
Latex ', 'fontsize ', fnsztl, 'fontweight', fnwgtl)

colormap(figld,jet)

shading flat

axis ([xmin xmax tmin tmax])

ax = gca;

ax.FontSize = fnsztk;

ax.FontWeight = fnwgtk;

ax.TickLabellnterpreter = 'latex';

caxis ([absulmin absulmax]);

hBarhfld = colorbar('location', 'southoutside ', "xtick",
absulticks);

labelshfld =fabsulmin:(absulmaxabsulmin)/4:absulmax;

set(hBarhfld, 'XTickLabel',labelshfld ,h 'fontsize',fnszcb,'
fontweight',fnwgcb, '‘fontname ', fnnmcb) ;

figle = subplot(2,3,5);

pcolor(sX,sT,abs(su2))

xlabel('nboldmath® xg$','interpreter','Latex', 'fontsize"',
fnszlb , 'fontweight',fnwglb)

ylabel('nboldmath$f tg$','interpreter ', 'Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

title (' nboldmath$fj u_f 2gjg$ (numerical)','interpreter’',"
Latex', 'fontsize',fnsztl , 'fontweight',fnwgtl)

colormap(figle ,jet)

shading flat

axis ([xmin xmax tmin tmax])

ax = gca;
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ax.FontSize = fnsztk;

ax.FontWeight = fnwgtk;

ax.TickLabellnterpreter = '"latex ';

caxis ([absu2min absu2max]);

hBarhfle = colorbar('location','southoutside ', "xtick ",
absu2ticks);

labelshfle =fabsu2min:(absu2maxabsu2min)/4:absu2max;

set(hBarhfle, 'XTickLabel',labelshfle , 'fontsize',fnszch,'

fontweight',fnwgcb, 'fontname ' ,fnnmch);

figlf = subplot(2,3,6);

fig
fig

pcolor(sX,sT,abs(su3))

xlabel('nboldmath$f xg$','interpreter ', 'Latex', 'fontsize'

fnszlb , 'fontweight',fnwglb)

ylabel('nboldmath® tg$', 'interpreter','Latex', 'fontsize"

fnszlb , 'fontweight',fnwglb)

title (' nboldmath$fj u_f3gjg$ (numerical)','interpreter’,
Latex ', 'fontsize ', fnsztl , 'fontweight',fnwgtl)

colormap(figlf,jet)

shading flat

axis ([xmin xmax tmin tmax])

ax = gca;

ax.FontSize = fnsztk;

ax.FontWeight = fnwgtk;

ax.TickLabellnterpreter = 'latex ';

caxis ([absu3min absu3max]) ;

hBarhflf = colorbar('location', 'southoutside ', "'xtick",
absu3ticks);

labelshflf =fabsu3min:(absu3maxabsu3min)/4:absu3max;

set(hBarhflf, 'XTickLabel',labelshflf 6 'fontsize',fnszchb
fontweight',fnwgcb, 'fontname ', fnnmch);

= gcf;

.PaperPositionMode = 'auto’';

’
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s fig_pos = fig.PaperPosition;

2 fig.PaperSize = [figpos(3) fig.pos(4)];
353

ssa %

B s s s s e s s s s e T A I A T T T A I T T T T T Y

35
6 hf2 = figure (2);
7 CIf

s jtn = 5;

s for jt = 1:jtn

360 ind = floor(numt jt/(jtn  1)+1 numt/(jtn 1));

361 subplot(jtn,3,3 (jt 1)+1)

362 plot(xx,abs(Ul(ind,:)),'b")

363 hold on

364 plot(xx,abs(ul(ind,:)),'r")

365 hold off

366 xlabel('nboldmath$f xg$', 'interpreter ', 'Latex',"

fontsize ',fnszlb , "fontweight',fnwglb)

367 ylabel ('nboldmath$fj u_f 1gjg$', 'interpreter ', 'Latex’',"
fontsize ',fnszlb , 'fontweight',fnwglb)

368 title ([ 't=",num2str(tt(ind)),"', (ex/b, num/r)'],"

interpreter','Latex', 'fontsize',fnsztl, 'fontweight'

,fnwgtl)
369 %axis([ L L absulmin absulmax])
370 axis tight
371 subplot(jtn,3,3 (jt 1)+2)
372 plot(xx,abs(U2(ind,:)),'b")
373 hold on
374 plot(xx,abs(u2(ind,:)),'r")

375 hold off
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xlabel('nboldmath$f xg$', 'interpreter ', 'Latex',"'
fontsize ',fnszlb , 'fontweight',fnwglb)

ylabel ('nboldmath$fj u_f 2gjg$', 'interpreter ', 'Latex"',"’
fontsize ',fnszlb , "fontweight ', fnwglb)

title ([ 't=",num2str(tt(ind)),", (ex/b, num/r)'],"
interpreter','Latex','fontsize',fnsztl, 'fontweight'
,fnwgtl)

%axis([ L L absu2min absu2max])

axis tight

subplot(jtn,3,3 (jt 1)+3)
plot(xx,abs(U3(ind,:)),'b")

hold on

plot(xx,abs(u3(ind,:)),'r")

hold off
xlabel('nboldmath%$f xg$', 'interpreter ', 'Latex',"

fontsize ',fnszlb , "fontweight"',fnwglb)

ylabel ('nboldmath$fj u_f 3gjg$’', 'interpreter "', 'Latex","’
fontsize ',fnszlb , 'fontweight',fnwglb)

title ([ 't=",num2str(tt(ind)),"', (ex/b, num/r)'],"
interpreter','Latex', 'fontsize',fnsztl, 'fontweight'
,fnwgtl)

%axis([ L L absu3min absu3max])

axis tight
end
fig = gcf;
fig.PaperPositionMode = "auto’;

fig_pos = fig.PaperPosition;
fig.PaperSize = [figpos(3) fig.pos(4)];

%
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if extractionflag==
hf3 = figure (3);
clf
subplot(3,1,1)
hold on
plot(x_extraction ,abs(ulextraction),'r.")
plot(x_interp ,abs(ulinterp),'b")
hold off
xlabel('nboldmath% xg$', 'interpreter','Latex","
fontsize ',fnszlb , 'fontweight',fnwglb)
ylabel ('nboldmath$fj u_f 1gjg$', 'interpreter ', 'Latex"',"
fontsize ',fnszlb , "fontweight',fnwglb)
title ([ 't=",num2str(t _extraction_eff),", (num/r,
interp/b) '], "interpreter ', 'Latex','fontsize ',fnsztl
, fontweight',fnwgtl)
axis tight
subplot(3,1,2)
hold on
plot(x_extraction ,abs(u2extraction),'r.")
plot(x_interp ,abs(u2interp),'b")
hold off
xlabel('nboldmath$ xg$','interpreter ', 'Latex","
fontsize ',fnszlb , 'fontweight',fnwglb)
ylabel ('nboldmath$fj u_f 2gjg$', 'interpreter ', 'Latex"',"’
fontsize ',fnszlb , "fontweight ', fnwglb)
title ([ 't=",num2str(t _extraction_eff),"', (num/r,
interp/b) '], "interpreter ', 'Latex','fontsize ',fnsztl
, ‘fontweight',fnwgtl)
axis tight
subplot(3,1,3)

hold on
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422 plot(x_extraction ,abs(u3extraction),'r.")

423 plot(x_interp ,abs(u3interp),'b")

424 hold off

425 xlabel('nboldmath$f xg$', 'interpreter ', 'Latex',"'

fontsize ',fnszlb , 'fontweight',fnwglb)

426 ylabel ('nboldmath$fj u_f3gjg$', 'interpreter’', 'Latex’',"’
fontsize ',fnszlb , "fontweight',fnwglb)

427 title ([ 't=",num2str(t _extraction_eff),"', (num/r,
interp/b) '], 'interpreter ', 'Latex', 'fontsize',fnsztl

, ‘fontweight',fnwgtl)

428 axis tight

429 fig = gcf;

430 fig.PaperPositionMode = 'auto';

431 fig_pos = fig.PaperPosition;

432 fig.PaperSize = [figpos(3) fig.pos(4)];
a3 end

434

as %

VS S S S/ S/ S/ S/ S/ 8/ 8/ 8/ 8/ S/ S S S S S S/ S/ S/ S/ 8/ 8/ 8/ 8/ 8V Y8/ S/ S S S S S S/ S/ 8/ 81818/ 8/8/8/8)

s % Saving the figures
437 %

B s s s s O s s O 0 s A O s s i T I T A A T I T T T Y

438
w9 If saveflag==

440

441 if pert_mode==

442 pert_.tag = ['localised '];
443 elseif pertmode==

444 pert_tag = [ 'random'];

445 end
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446 file_.name = ["twri_planewave' ,...

a7 int2str(spectrumtopology(1)),'G",...
448 int2str(spectrumtopology(2)),'SG"' ,...
449 int2str(spectrumtopology(3)),'B ",

450 int2str(spectrumtopology(4)),'L"',...
451 int2str(spectrumtopology(5)),'TL " ,...
452 pert_.tag,' ','exp_',experimentnumber];
453

454 figla = figure (4);

455 clf

456 pcolor(xx,tt,abs(ul))

457 xlabel('nboldmath$f xg$','interpreter ', 'Latex', 'fontsize "',

fnszlb , 'fontweight',fnwglb)

458 ylabel('nboldmath$f tg$','interpreter ', 'Latex"', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

459 %title ("nboldmath$fj u_f1gjg$ (numerical) ', "interpreter ',

Latex ', 'fontsize ', fnsztl ,'fontweight', fnwgtl)

460 colormap(figla,jet)

461 shading flat

462 axis([ L L tspan(l) tspan(2)])

463 ax = gca;

464 ax.FontSize = fnsztk;

465 ax.FontWeight = fnwgtk;

466 ax.TickLabellnterpreter = 'latex ';

467 caxis ([absulmin absulmax]);

468 hBarhfla = colorbar('location', 'southoutside ', 'xtick ",

absulticks);

469 labelshfla =fabsulmin:(absulmaxabsulmin)/4:absulmax;

470 set(hBarhfla, 'XTickLabel',labelshfla ,h 'fontsize',fnszch,'
fontweight',fnwgcb, 'fontname ' ,fnnmch);

a71 fig = gcf;

a2 fig.PaperPositionMode = 'auto’;
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fig_pos = fig.PaperPosition;
fig.PaperSize = [figpos(3) fig_.pos(4)];

figlb = figure (5);

clf

pcolor(xx,tt,abs(u2))

xlabel('nboldmath® xg$','interpreter', 'Latex', 'fontsize"
fnszlb , 'fontweight',fnwglb)

ylabel('nboldmath$ftg$','interpreter ', 'Latex', 'fontsize'

fnszlb , 'fontweight',fnwglb)

’

’

%title ('nboldmath$fj u_f 2gjg$ (numerical) ', 'interpreter ',

Latex ', 'fontsize ', fnsztl , ' fontweight ', fnwgtl)

colormap(figlb ,jet)

shading flat

axis([ L L tspan(l) tspan(2)])

ax = gca;

ax.FontSize = fnsztk;

ax.FontWeight = fnwgtk;

ax.TickLabellnterpreter = 'latex';

caxis ([absu2min absu2max]);

hBarhflb = colorbar('location’', 'southoutside ', "xtick",
absu2ticks);

labelshflb =fabsu2min:(absu2maxabsu2min)/4:absu2maxy;

set(hBarhflb, 'XTickLabel',labelshflb , 'fontsize',fnszchb
fontweight',fnwgcb, 'fontname ' ,fnnmch);

fig = gcf;

fig.PaperPositionMode = 'auto';

fig_pos = fig.PaperPosition;

fig.PaperSize = [figpos(3) fig.pos(4)];

figlc = figure (6);
clf
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pcolor(xx,tt,abs(u3))

xlabel('nboldmath$ xg$','interpreter ', 'Latex', 'fontsize",

fnszlb , 'fontweight',fnwglb)

ylabel('nboldmath® tg$','interpreter', 'Latex', 'fontsize "',

fnszlb , 'fontweight',fnwglb)

%title ("nboldmath$fj u_f3gjg$ (numerical) ', 'interpreter

Latex','fontsize
colormap(figlc,jet)
shading flat
axis([ L L tspan(l) tspan(2)])
ax = gca;
ax.FontSize = fnsztk;
ax.FontWeight = fnwgtk;
ax.TickLabellnterpreter = 'latex';

caxis ([absu3min absu3max]);

hBarhflc = colorbar('location','southoutside ', "xtick",

absu3ticks);

labelshflc =fabsu3min:(absu3maxabsu3min)/4:absu3max;

, fnsztl ,"fontweight ', fnwgtl)

set(hBarhflc, 'XTickLabel',labelshflc , 'fontsize',fnszch,'

fontweight',fnwgcb, 'fontname ', fnnmcb) ;
fig = gcf;
fig.PaperPositionMode = 'auto';
fig_pos = fig.PaperPosition;
fig.PaperSize = [figpos(3) fig.pos(4)];

figld = figure (7);
clf
pcolor(sX,sT,abs(sul))

xlabel('nboldmath® xg$','interpreter','Latex', 'fontsize "',

fnszlb , 'fontweight',fnwglb)

ylabel('nboldmath$ftg$','interpreter ', 'Latex', 'fontsize "',

fnszlb , 'fontweight',fnwglb)
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525 %title ('nboldmath$fj u_f 1gjg$ (numerical) ', 'interpreter ',

Latex ', 'fontsize ', fnsztl , 'fontweight ', fnwgtl)

526 colormap(figld, jet)

527 shading flat

528 axis ([xmin xmax tmin tmax])

529 ax = gca;

530 ax.FontSize = fnsztk;

531 ax.FontWeight = fnwgtk;

532 ax.TickLabellnterpreter = 'latex ';

533 caxis ([absulmin absulmax]);

534 hBarhfld = colorbar('location’', 'southoutside ", "xtick ",

absulticks);
535 labelshfld =fabsulmin:(absulmaxabsulmin)/4:absulmax;
536 set(hBarhfld, 'XTickLabel',labelshfld , 'fontsize',fnszcb,"

fontweight',fnwgcb, 'fontname ' ,fnnmch);

537 fig = gcf;

538 fig.PaperPositionMode = 'auto’;

539 fig_pos = fig.PaperPosition;

540 fig.PaperSize = [figpos(3) fig_.pos(4)];

541

542 figle = figure (8);

543 clf

544 pcolor(sX,sT,abs(su2))

545 xlabel('nboldmath$f xg$','interpreter ', 'Latex', 'fontsize "',

fnszlb , 'fontweight',fnwglb)

546 ylabel('nboldmath# tg$','interpreter', 'Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

547 %title (' nboldmath$fj u_f2gjg$ (numerical) ', 'interpreter ',"’

Latex ', 'fontsize ', fnsztl , 'fontweight ', fnwgtl)
548 colormap(figle ,jet)
549 shading flat

550 axis ([xmin xmax tmin tmax])
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ax = gca;

ax.FontSize = fnsztk;

ax.FontWeight = fnwgtk;

ax.TickLabellnterpreter = 'latex';

caxis ([absu2min absu2max]) ;

hBarhfle = colorbar('location','southoutside ', "xtick ",
absu2ticks);

labelshfle =fabsu2min:(absu2maxabsu2min)/4:absu2max;

set(hBarhfle, 'XTickLabel',labelshfle , 'fontsize',fnszcb,'
fontweight',fnwgcb, 'fontname ' ,fnnmcb);

fig = gcf;

fig.PaperPositionMode = 'auto’;

fig_pos = fig.PaperPosition;

fig.PaperSize = [figpos(3) fig.pos(4)];

figlf = figure (9);

clf

pcolor(sX,sT,abs(su3))

xlabel('nboldmath® xg$', 'interpreter','Latex', 'fontsize"',
fnszlb , 'fontweight',fnwglb)

ylabel ('nboldmath$ tg$','interpreter', 'Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

%title ('nboldmath$fj u_f3gjg$ (numerical) ', 'interpreter ',
Latex ', 'fontsize ', fnsztl , ' fontweight ', fnwgtl)

colormap(figlf,jet)

shading flat

axis ([xmin xmax tmin tmax])

ax = gca;

ax.FontSize = fnsztk;

ax.FontWeight = fnwgtk;

ax.TickLabellnterpreter = 'latex ';

caxis ([absu3min absu3max]);
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578 hBarhflf = colorbar('location', 'southoutside ', "'xtick",
absu3ticks);

579 labelshflf =fabsu3min:(absu3maxabsu3min)/4:absu3max;

580 set(hBarhflf , 'XTickLabel',labelshflf 6 'fontsize',fnszchb,'

fontweight',fnwgcb, 'fontname ', fnnmch);

581 fig = gcf;

582 fig.PaperPositionMode = "auto’;

563 fig_pos = fig.PaperPosition;

584 fig.PaperSize = [figpos(3) fig.pos(4)];
585

586 fig3a = figure (10);

587 clf

588 hold on

589 plot(x_extraction ,abs(ulextraction),'r.")
590 plot(x_interp ,abs(ulinterp),'b")

501 hold off

502 xlabel('nboldmath$f xg$','interpreter ', 'Latex"', 'fontsize ',

fnszlb , 'fontweight',fnwglb)
593 ylabel('nboldmath$fj u_f 1gjg$', 'interpreter', 'Latex"',"
fontsize ',fnszlb , "fontweight ', fnwglb)

504 %title (['t=",num2str(t _extraction_eff),', (num/r, interp/b

)'],"interpreter ', 'Latex ', 'fontsize ', fnsztl ,'fontweight

', fnwgtl)
505 axis tight
596 fig = gcf;
597 fig.PaperPositionMode = 'auto’;
508 fig_pos = fig.PaperPosition;
509 fig.PaperSize = [figpos(3) fig_.pos(4)];
600
601 fig3b = figure (11);

602 clf

603 hold on
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plot(x_extraction ,abs(u2extraction),'r.")

plot(x_interp ,abs(u2interp),'b")

hold off

xlabel('nboldmath® xg$','interpreter', 'Latex', 'fontsize "',
fnszlb , 'fontweight',fnwglb)

ylabel ('nboldmath$fj u_f 2gjg$', 'interpreter ', 'Latex","’
fontsize ',fnszlb , 'fontweight"',fnwglb)

%title (['t=",num2str(t _extraction_eff),', (num/r, interp/b

)'],"interpreter ', 'Latex ', 'fontsize ', fnsztl ,'fontweight

', fnwgtl)
axis tight
fig = gcf;
fig.PaperPositionMode = 'auto';

fig_pos = fig.PaperPosition;
fig.PaperSize = [figpos(3) fig.pos(4)];

fig3c = figure (12);

clf

hold on

plot(x_extraction ,abs(u3extraction),'r.")

plot(x_interp ,abs(u3interp),'b")

hold off

xlabel('nboldmath® xg$','interpreter', 'Latex', 'fontsize"',
fnszlb , 'fontweight',fnwglb)

ylabel ('nboldmath$fj u_f3gjg$', 'interpreter ', 'Latex","’
fontsize ',fnszlb , 'fontweight',fnwglb)

%title (['t=",num2str(t _extraction_eff),', (num/r, interp/b

)'],"interpreter ', 'Latex ', 'fontsize ', fnsztl ,'fontweight

', fnwgtl)
axis tight
fig = gcf;

fig.PaperPositionMode = 'auto’;
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fig_pos = fig.PaperPosition;
fig.PaperSize = [figpos(3) fig.pos(4)];
print(figla ,[pwd '/Figures/"' file_name 'ul.jpeg'],"' djpeg
)
print(figlb ,[pwd '/Figures/' file_name ' u2.jpeg'],"' djpeg
)
print(figlc ,[pwd '/Figures/' file_name 'u3.jpeg'],"' djpeg
)
print(figld ,[pwd '/Figures/' file_name '_ul_zoom.jpeg'],"
djpeg’)
print(figle ,[pwd '/Figures/' file_.name 'u2zoom.jpeg'],"’
djipeg’)
print(figlf ,[pwd '/Figures/' file _name 'u3.zoom.jpeg'],"
djpeg’)
print(fig3a ,[pwd '/Figures/' file_name 'ul (t_',num2str(
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