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Abstract

The aim of this thesis is the analysis of the spectral stability of plane wave solutions of the

3-wave resonant interaction (3WRI) model, when such solutions undergo localised pertur-

bations.

For the �rst time, we provide a comprehensive topological classi�cation of the spatial sta-

bility spectra with respect to the parameters space and the gain functions associated to

any stability spectrum. We �nd that all the stability spectra of the coupled nonlinear

Schr•odinger (CNLS) system are enclosed in those of the 3WRI system. The topological

features of the CNLS stability spectra are gaps on the real axis (solutions not bounded in

space), and branches and loops o� the real axis (solutions bounded in space which can be

linearly unstable in time). New topological components exist in the stability spectra of the

3WRI model: we name such components twisted loops. They are associated with explosive

instability (the corresponding solutions blow up in a �nite time) and their gain function

is non-zero in a whole neighbourhood of the origin. We observe that the gain function

associated to the branches is non-zero at low wave numbers, symmetrically located with

respect tto the zero-value of the wave number, but it is zero at the origin of the plot (linear

instability of baseband-type). The gain function associated to the loops is non-zero only

away from the origin (linear instability of passband-type).

We show that the plane wave solutions of the3WRI model are linearly unstable in time

for any choice of the physical parameters, including those ones associated to the solutions

that are explosive. Thus, there is linear instability of the plane wave for any choice of the

physical parameters corresponding to a positive gain-function.

Finally, we conjecture that the existence of branches in the stability spectra is a neces-

sary condition for the onset of rogue waves ascribable to rational or semi-rational solutions

obtained by Darboux Dressing Transformation. Indeed, we observe numerically linear in-

stability of plane waves with the subsequent generation of localised structures whose onset,

as a result of the perturbation of plane waves, must be investigated further due to the

dispersionless nature of the 3WRI system.
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Chapter 1

Introduction

1.1 Background and Current Research

1.1.1 Modulation Instability for Scalar Dispersive Equations

Many phenomena in nature can be explained via instabilities. Hydrodynamic instabilities

can occur if the initial physical features (velocity, pressure and density) of a 
uid 
ow are

exposed to small disturbances. Between all hydrodynamic instabilitiesKelvin-Helmholtz

Instability (KHI) [1, 2] is well-known. It takes place between the interface of two 
uids


owing with di�erent velocities. The most famous examples of the manifestation of KHI

in nature are the red giant vortex in the Jupiter's atmosphere and the generation of clouds

that are "ocean wave-like" in the Earth's atmosphere. If the two 
uids 
ow with di�erent

densityRayleigh-Taylor Instability(RTI) [3] can occur: it is the explanation of the genera-

tion of "mushroom clouds" in the volcanic eruption or atomic explosion. It can be also seen

as the limit of another fascinating phenomenon that is theRichtmyer-Meshkov Instability

(RMI) [4, 5, 6]. In general, it is when a shock wave interacts with the perturbed interface

of two 
uids with di�erent physical properties. At the beginning of the interaction just a

row of vortices with di�erent signs are created, but then the perturbation grows in time and

"mushroom" structures arise. Plasmas exhibit a huge number of magnetohydrodynamics

instabilities, for example "sausage instability" and "kink instability" are observed in solar

corona [7, 8].
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Modulational Instability(MI) is ubiquitous in nature and it was observed in several nonlinear

wave phenomena [9], such as in radio waves in transmission lines [10], in light waves

in dielectric materials [11] and in plasma waves during the nonlinear coupling of plasma

cyclotron waves and magnetohydrodynamic modes [12]. In the context of water waves,

MI is referred to asBenjamin-Feir Instability, so named because Benjamin and Feir �rst

observed it in nonlinear Stokes waves on deep water surface [13, 14].

MI may arise if a plane wave of a scalar nonlinear dispersive equation is perturbed with a

long wave perturbation such that the original waveform is deformed and the wave amplitude

is said to be modulated [15, 16, 17]. Perturbing the amplitude of the plane waveu(x; t ) =

aei (kx � !t ) with real amplitudea, wave numberk and frequency! , by means of the plane

wavesb(x; t ) = b01ei (Kx � 
 t ) + b02e� i (Kx � 
 t ) , one gets the perturbed solution

�u(x; t ) = ( a+ b(x; t ))ei (kx � !t ) = aei (kx � !t ) + b01ei (( k+ K )x� (! +
)) t + b02ei (( k� K )x� (! � 
)) t ;

(1.1)

wherex is space,t is time, b0j are real amplitudes of the perturbations andb0j << a , the

modulation frequency is
 << ! and the wave number of the perturbation isK << k .
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After perturbing, the amplitude of the resulting plane wave is not anymore a constant, being

instead a function of space and time. The perturbed solution readsu(x; t ) + �u 1(x; t ) +

�u 2(x; t ), where�u 1(x; t ) = b01ei (( k+ K )x� (! +
)) t and �u 2(x; t ) = b02ei (( k� K )x� (! � 
)) t are

the so-called sidebands andu(x; t ) is known as the carrier wave.

MI has two stages: a linear and a nonlinear stage. [9]. The linear stage is the mechanism

responsible for the ampli�cation of the perturbation when the approximation�u j << u

remains valid in time. In this limit, the equation for the perturbation is linear, and nonlinear

terms in the perturbation are meant as higher order corrections to the linear dispersive

equation. This approximated linear dispersive equation is named thelinearised equation.

When this approximation is no longer valid because the perturbations�u j are such that

�u j � u, and the order of magnitude of the nonlinear terms becomes comparable to the

order of magnitude of the linear dispersive equation, then the nonlinear stage comes into

play. After the amplitude of the perturbed plane wave reaches its maximum value, it may

vanish by causing the formation of localised energy solutions, and solitons may occur as a

result of the balance between dispersion and nonlinearity [18].

Since the linear stage of MI is a linear instability, it can be studied via the linearisation of

the nonlinear equation around the perturbation. By substituting the explicit expression of

u(x; t )+ �u 1(x; t )+ �u 2(x; t ) into the nonlinear equation, and keeping only the terms at the

�rst order in the perturbation, the linearised equation can be written as a matrix equation

(see, for instance, [19])

A b0 = 0 2� 2; (1.2)

where1 A is a 2 � 2 matrix, 02� 2 is the 2 � 2 zero matrix and the solution is the vector

b0 =
�
b01ei (Kx � 
 t ) b02e� i (Kx � 
 t )

� T
. The condition such thatb0 is solution of (1.2)

is the vanishing of the determinant of the matrixA, i.e. det(A) = 0 , which gives the

dispersion relation for the perturbations.

In 1965 Lighthill [21] obtained the so calledBenjamin-Feir-Lighthill (BFL) criterionto

determine if a scalar system can be linearly unstable or not. Speci�cally, he considered a

weakly nonlinear Stokes wave (i.e. weakly nonlinear periodic progressive wave, see [22])

on deep water and he found that, if the linearised PDE is a hyperbolic equation, then the

Stokes wave is neutrally stable, instead, when the linearised PDE is an elliptic equation,

then MI may occur [17]. However, this result is obtained by considering negligible dispersion
1The explicit expression of the matrixA depends on the equation in study.
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e�ect and, for this reason, the BFL criterion is not a su�cient condition for the existence

of MI. Indeed, when dispersion is negligble, the dispersion relation for the perturbation

is independent of the wave numberK ; on the contrary, when dispersion is present, we

can de�ne a domain for the wave numberK of the perturbation such that MI can occur.

Thus, also in the case in which we have elliptic PDEs, the argument of the square root

can be negative only for certain values ofK . Moreover, for @jIm (K )j
@K = 0 , we obtain the

critical valueK critic = K (a; P; Q) corresponding to the largest growth rate ofjIm(
( K )) j.

The valueK critic depends on the amplitudea of the plane wave solution, but not on its

frequency! and its wave numberk, whereas the modulejIm(
( K )) j is known as thegain

function. Thus, MI occurs for values of the physical parameters for whichjIm(
( K )) j is

not zero2. For instance, the NLS equation can be written3 [15]

ut � iPu xx + iQ juj2u = 0 ; (1.3)

when PQ > 0, by the BFL criterion, we have an hyperbolic equation and there is no

possibility to have MI; whereas ifPQ < 0, we have an elliptic equation and we can have

MI. Thus, the necessary condition to observe MI isPQ < 0 and we need also to compute

for which valuesK the gain functionjIm(
( K )) j takes real values di�erent from zero. In

this particular case, the physical parameters are related one with each other by the formula

(
 � 2PkK )2 = P2K 2
�

K 2 + 2
Q
P

a2
� 2

; (1.4)

such that, if PQ > 0, the imaginary part of
 , that is the gain functionjIm(
( K )) j, does

not exist. Instead, ifPQ < 0, the explicit expression of the gain function is

jIm(
( K )) j = 2PkK � j PK j

r

K 2 + 2
Q
P

a2 (1.5)

and the domain of the wave numberK , at which the gain function is non-zero, reads

K 2 � � 2
Q
P

a2: (1.6)

The maximum value of the functionjIm(
( K )) j is reached at the wave number [15]

K critic = �
q

� Q
P a2.

2That is true also for multicomponent models.
3In the Chapter 2, we will write the NLS equation in a di�erent manner.
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Looking at the expression of the perturbed solution (1.1), the existence of complex mod-

ulation frequency
 entails that, as time goes on, a perturbation grows with the e�ect

of amplifying the amplitude of (1.1). Nevertheless, in general, the amplitude might not

grow up inde�nitely because, at a certain time, the neglected nonlinear terms come into

play to possibly bound such a growth. From the physical point of view, the BFL criterion

corresponds to a necessary condition for the occurrence of the localisation of the energy

due to a balance between dispersion and nonlinearity. This fact is re
ected in the frequency

spectrum of the waves interacting during MI. Indeed, MI can be also explained as a four-

wave resonant interaction between two in�nitesimal sidebands at frequencies! 1;2 = ! � 


with a strong carrier wave at frequency! [23]. A wave at frequency! interacts twice

with a sideband at frequency! 1 to produce another sideband with a di�erent frequency

! 2 = 2 ! � ! 1. Similarly, this last sideband interacts with the carrier wave and reinforces the

�rst sideband. In other words, they interact under resonance conditions for the frequencies

! 1+ ! 2 = 2 ! and also for the wave numbersk1+ k2 = 2k, with k1;2 = k � K . Indeed, if we

consider the perturbed plane wave (1.1) as solution of the NLS equation, the nonlinearity

term becomes proportional to

j �uj2 �u = a3ei (kx � !t ) + a2b01ei ((2k� (k+ K )) x� (2! � (! +
)) t )+

+ a2b02ei ((2k� (k� K )) x� (2! � (! � 
)) t ) + c:c:+ o(a2b0j ); j = 1 ; 2;

(1.7)

where c:c: stands for complex conjugate of the correcting terms and we have neglected

all the terms whose order of magnitude is smaller than the terms multiplied bya2b0j .

Here, the correcting terms to the plane waves have as arguments of the exponentials

2k � (k + K ) = 2 k � k1, 2k � (k � K ) = 2 k � k2 and 2! � (! + 
) = 2 ! � ! 1,

2! � (! � 
) = 2 ! � ! 2. Thus, 2k � k2 = k1, 2k � k1 = k2 and 2! � ! 2 = ! 1,

2! � ! 1 = ! 2

If only dispersion was present, the resonance conditions would not be satis�ed because, in

the linear dispersion relation, frequency would depend only on the wave number. Therefore,

even if the waves would interact with di�erent frequencies, in general, they do not match

the resonant conditions. The interacting waves would propagate with di�erent phase ve-

locities and, as a result, the dispersion e�ect pulls apart the resulting wave. On the other

hand, if also the nonlinearity is present, then the perturbation satis�es a linearised equation

whose dispersion relation involves both the wave number and the amplitude of the carrier
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wave. Although with di�erent phase velocities, they propagate on the background of the

carrier wave and the wave numbers, as well as the frequencies, match the resonant con-

ditions. Indeed, because of the self-interaction term, the sideband, say, with frequency! 1

satis�es a linearised equation plus a forcing correction term proportional to the sideband at

frequency! 2 and to the squared carrier wave, (see, for instance, the second corrective term

in the expression (1.7)). If this forcing term oscillates with the same frequency of the other

sideband, then they resonate4. If nonlinearity and dispersion compensate, the sidebands

grow linearly as time goes on and drive the carrier wave to oscillate around the resonant

frequency! with greater amplitude. In this case, we say that nonlinearity contrasts disper-

sion by compressing the plane wave, namely, MI causes the localisation of the energy. As

already mentioned above, since when nonlinearity and dispersion balance one each other,

we say that the nonlinear stage of MI comes into play and the occurrence of solitons was

observed in this stage [24, 25]. From here it is clear the importance of studying the linear

stability of physical systems undergoing small perturbations and searching for the existence

conditions of localised solutions. In this respect, the interest in mathematical methods to

treat MI has witnessed an explosion during the '70s, after the powerful Inverse Scattering

Transform (IST) method to �nd solutions of nonlinear PDEs was developed [26, 27, 28].

It was applied �rst to the Nonlinear Schr•odinger (NLS) equation [29], and then, after the

development of the Ablowitz, Kaup, Newell and Segur (AKNS) scheme [30], it was ap-

plied to the Kortweg de Vries (KdV) equation [31] and to other physical models. The key

idea is that IST is suitable for the investigation of the asymptotic behaviour of solutions

of nonlinear equations. A pioneering research in this sense was conducted by Kuznetsov

and Mikhailov [32]. Using the Shabat-scheme [33], they studied the stability of periodic

stationary waves of the KdV equation as time goes on. The asymptotic stability of the

system is explained by the vanishing of the continuous spectrum, while the discrete spec-

trum survives in time, that is the existence of a set of stable solitons as asymptotic state.

Later, several other works were conducted using the Shabat-scheme. For instance, the NLS

equation, whose solution goes to the amplitude of the Langmuir wave asjxj ! 1 was

used for the investigation of the parametric instability of solitons in a homogeneous plasma

[34] and the KP equation, whose solution goes to the cnoidal wave asjxj ! 1 was used

4In the case of the NLS equation, we have chosen the frequency and the wave number of the perturbations

so that they resonate with the carrier wave.
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for the analysis of the stability of periodic waves in a weakly dispersive medium [35].

In the framework of the IST method, particular boundary conditions are required, for ex-

ample by imposing that the solution and its �rst derivative are in the class of potentials

vanishing su�ciently fast asymptotically. Indeed, it is di�cult to deal technically with the

IST when solutions have more complicated asymptotic behaviour. Nevertheless, some re-

search works have been conducted to reformulate the IST such that one can work with more

sophisticated asymptotic solutions, for instance, solitons with nonzero boundary conditions

as solutions of the focusing Nonlinear Schr•odinger equation [36, 37], and it has been shown

that combinations of the growing exponential solutions of the inverse problem saturate

the MI leading, then, to the formation of solitons in the nonlinear stage. In recent times,

this subsequent nonlinear stage of MI for the scalar NLS equation has been the subject

of intensive investigation and, using numerical and analytical techniques, the stability of

plane wave solutions with respect to localised and random perturbations has been studied

[38, 39]. Similarly, the stability of plane wave solutions of the scalar NLS equation with

respect to periodic perturbations has attracted much attention, and has been investigated

in [40, 41, 42, 43] using the theory of �nite-gaps and matched asymptotics.

In 1974, Ablowitz developed an alternative and powerful spectral method to lead stability

analysis [44]. The method is based on the fact that the solutions of the linearised equation

can be written in terms of the so called squared eigenfunctions (SE) (see for example [44],

[45, 46] for an introduction to squared eigenfunctions as solutions of the linearised NLS

equation), which in turn can be written in terms of the Lax operators [47]. Once a solution

of a nonlinear equation is perturbed, the problem to investigate the linear stability of the

system is equivalent to investigate the behaviour in time of the SE solutions of the linearised

equation (see, for example, [48]). Indeed, via the construction of the SE, one is able to

compute the corresponding eigenfrequency whose imaginary part, i.e. the gain function,

provides information about the linear stability.

1.1.2 Modulational Instability and Other Linear Instabilities for Multi-

Component Systems

As mentioned above, MI for scalar equations is the deformation of the form of the amplitude

of a plane wave as a result of the balancing of dispersion and nonlinearity. When these
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e�ects are balanced, solitons may appear in the nonlinear stage. In this case, MI arises when

two sidebands are added on the background of the carrier wave with which they interact.

MI is the result of the self-interaction of the perturbed solution, such that there exists a

nonlinear interaction between plane waves linearly superimposed.

When dispersive nonlinear multi-component systems are taken into account, the single

component of a system may exhibit MI, but the entire system can be linearly unstable or

not. In this regard, the MI of two-component system of counter-propagating waves has

been analysed in the research work [49]. The authors considered two-component solutions

of two coupled sine-Gordon equations, which are travelling with di�erent group velocities

and each component is composed by two counter-propagating waves linearly superimposed.

Then, they used a multiple scale approach to obtain three asymptotic models at di�erent

length scales and di�erent timescales, which are systems of four evolution equations, one

for each wave. By considering the models so obtained, �rst, they took into account the two

components composed by only one plane wave. At the super-long length scales, the leading

order in the dispersion relations is represented by a dispersion term, such that dispersion is

considered responsible for the MI. As soon as one considers the long-length scales, a term

coming from the self-interaction is added to the linear dispersion relation, so, dispersion and

nonlinearity compete with one another as described in the previous subsection. However,

without any restriction on the wave number of the perturbation, it has been observed that,

besides the linear instability of the single plane wave arising from the competition between

the terms of dispersion and self-interaction, any wave can be a�ected by the coupling be-

tween the components. Indeed, such coupling can suppress or enhance this linear instability

as a result of the addition of a term coming from the self-interaction. In this way, the

e�ect of nonlinearity becomes stronger or weaker compared to when coupling is absent.

The plane wave can gain or lose energy due to the sharing and the exchange of energy

occurring when the components overlap, and so, �nally, leading to the linear stability or

instability of the system [49, 50]. For these two-component systems, dispersion plays a

key-role in the occurrence of MI, and it has also been shown that coupled dispersionless

nonlinear systems are, indeed, stable with respect to the MI [51]. The linear instability

can occur if the dispersive term is taken into account also if it is a higher order correction

to the transport and nonlinear terms [49, 50]. Furthermore, the presence of an additional

counter-propagating mode in any component cancompletely inhibit or enable the linear
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instability because of the exchange of energy between the counter-propagating plane waves

in each component and between two coupled components as well. Indeed, because of these

couplings, nonlinearity competes with dispersion in a stronger or weaker manner [49, 50].

The classi�cation of the linear instabilities in the parameters5 space was carried out in

the research works for two coupled focusing or for two coupled defocusing NLS equations

[71] and for mixed coupled NLS equations, that is a focusing and a defocusing scalar NLS

equations are coupled [52]. Taking into account the coupling between two plane waves

considered as the two modes of a wave packet and whose perturbations are two Fourier

modes, the classi�cation of the linear instabilities is performed on the basis of the energy

exchange between plane waves undergoing linear perturbations. These works con�rm the

existence of instabilities also in defocusing regime (besides the long-wave instability) when

there is a coupling of two propagating modes. Several scenarios can occur. For instance,

when two focusing NLS equations are coupled, there can be cross-phase instability if one

unstable mode, or both unstable modes, of the perturbation excite each plane wave and

the energy is shared by the two co-propagating plane waves; or there can be self-phase

instability if one mode of the perturbation excites a plane wave more than the other one,

there is less shared energy between the two plane waves, and, so, there is linear instability

of just one plane wave.

Besides to dispersive nonlinear multi-component systems mentioned above, there is a non-

dispersive nonlinear multi-component system which can exhibit linear instability, that is the

3-wave resonant interaction (3WRI) system [53]. The solitons of the3WRI system interact

in a di�erent manner from the solitons of dispersive nonlinear systems, thus one can expect

that the mechanism leading to the linear instability (and then to the possible formation

of solitons) is di�erent for the two kinds of systems. For this reason, we refer to this

phenomenon as linear instability rather than as MI. Indeed, di�erently from the solitons of

dispersive multi-component systems with quadratic coupling, originating from the balance

between dispersion and nonlinearity [54], the solitons of the3WRI system originate from

the mismatch of the group velocities of the interacting wave packets, once provided the

resonant conditions (see formulas (3.1) in Chapter 3) [53]. In order to highlight how special

the 3WRI system is, we remind the reader about the research work [55] where the genera-

tion of dispersive shock waves was observed in absence of dispersion and whose behaviour

5These parameters are the wave numbers of the two component plane waves and of the disturbance.
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resembles the generation of shock waves in dispersive equations, such as the NLS and the

KdV equation. Moreover, the role of the dispersion in the system was investigated in [56].

The authors studied the linear stability in space of a triplet of dark solitons and showed

that the introduction of a quasi-negligible second order dispersion reduces the instability

allowing the three dark solitons propagation.

It is worth pointing out that there is no galilean transformation for which all the three

waves have zero group velocity and the velocities mismatch allows the envelopes to overlap

when the nonlinearity becomes important. Moreover, due to the fact that the3WRI system

is non-dispersive, in the asymptotic limitst ! �1 , the envelopes are well separated and

do not overlap; however, during the interaction, the envelopes can exchange both solitons

and radiation. Thus, "the solitons and radiation (continuos spectrum) are on an equal

footing"[57, 58]. This feature of the3WRI system makes its soliton solutions remarkably

di�erent from those ones of other dispersive systems for which radiation decays as time goes

on [44, 59]. In fact, solitons and radiation interact nonlinearly and radiation never decays

asymptotically [57, 58]. Kaup and collaborators carried out the linear stability analysis of

the 3WRI system when its solutions have a vanishing background, and gave necessary and

su�cient conditions for linear instabilities to occur [57]. The carrier wave and the two

sidebands have �nite and in�nitesimal amplitudes, respectively, and they interact under the

three-wave resonant conditions,! 1+ ! 2+ ! 3 = 0 andk1+ k2+ k3 = 0 , where the frequencies

! i and the wave numberski can take any value, not necessarily in�nitesimally close with

one another. These resonant conditions do not originate as a result of sel�nteraction, but

they must be written together with the3WRI system6 [58]. Under particular conditions,

the carrier wave can exhibit explosive and the decay instability [60, 61], but only if the

carrier wave travels with intermediate group velocity with respect to the group velocities

of the two sidebands and if it possesses solitons. We stress that the solitons in question

move on a vanishing background and can be obtained, in principle, via IST. In this case,

we say that the carrier wave is linearly unstable [57]. Nevertheless, thanks to the lack of

the dispersion, all we need to know is the linear behaviour at timet ! �1 , and then "we

can completely determine how this system evolves, even in nonlinear regime"[57], looking

only at the time evolution of the scattering data. This allows to turn around the matter of

solving the inverse problem in order to see if an envelope possesses solitons in the nonlinear

6We will clarify this concept in Chapter 3.
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regime. Some works on the scalar NLS [36, 37, 29] were carried out via this procedure.

However, obtainingN -soliton solutions, especially for multi-component systems, can be

rather di�cult task to achieve.

Hence, the necessity to develop mathematical tools to investigate the linear stability of

multi-component systems. The application of perturbation theory to the IST can be ex-

tended, in principle, to investigate the linear stability of any integrable system, also those

ones which are multi-component [62, 63]. The starting point is still the Lax Pair. Once the

scattering data are given by thedirect problem, one can construct the associated potential

by the inverse problem. Perturbing the direct and inverse problems, the linear perturbations

of the potential are written in terms of the variations of the scattering data (and vice versa)

by squared combinations of components of eigenfunctions and its adjoints: the so called

squared eigenfunctions(SEs) and theadjoint squared eigenfunctions(ASEs) [62, 63]. Al-

though, the research works by Kaup and collaborators were carried out both on scalar and

multicomponent systems, one needs to use the IST machinery to get a representation of

the perturbation in terms of the SEs, and thus their expression in terms of the eigenmodes.

It is clear that in the framework of the IST method, the stability analysis is cumbersome to

apply to multicomponent systems, in particular for soliton solutions with a non vanishing

background. However, the property of the SEs to be solutions of the linearised equation is

local and it follows directly from the Lax pair without the need to apply the IST machinery

(see Chapters 2 and 3). In this respect, recently a new spectral approach has been devel-

oped in [64]. In this research work, the authors investigate the linear stability of continuous

waves in all regimes in the framework of the integrability and their method can be applied to

other more complicated solutions such as dark-dark, bright-dark, and higher-order solitons

travelling on a continuos wave background.

1.2 Motivations and Purposes

In the recent years MI has been proposed as a possible mechanism for the generation of

rogue waves."In oceanography, rogue waves are de�ned as waves whose height is more

than twice the signi�cant wave height, that is the average height of the highest one-third

of the waves in a wave record"[66, 23].
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From an experimental point of view, researchers are interested on their reproducibility and

observability in wave tank experiments. From a mathematical point of view, this is equiv-

alent to study the linear stability of solutions which can describe the dynamics of rogue

waves.

The dynamics and the physical features of rogue waves can be described by solutions of the

NLS equation, such as the homoclinic orbirts [67] of an unstable Stokes wave. Calini and

collaborators [69] discovered that, beside the mechanism of MI, rogue waves are created

as a result of phase modulation. Using the gauge form of the B•acklund transformation

[68], they constructed the associated solution of the linearised NLS equation, i.e. a squared

eigenfunction and so they explored the stability of Stokes waves. Finally, they stated the

following selection criterion for rogue waves:\among the homoclinic orbits of a Stokes wave

with M unstable modes, the only 'good' candidate for rogue wave is the maximally iterated

homoclinic orbit, with all its spatial modes coalesced through phase modulation"[69].

A similar investigation was performed on the spatially periodic breathers on an unstable

plane wave background, obtaining a similar conclusion [70].

If one considers two coupled NLS equations (CNLS), besides the already mentioned non-

focusing instabilities between two unstable and two stable CNLS �elds [71] or between a

stable and an unstable CNLS �eld [52], baseband MI can exists. It is triggered by zero-

frequency disturbances, and it is believed to be responsible for the formation of rogue waves

[72, 73, 74].

Between all the possible kinds of solutions suitable to model rogue waves, we focus on

rational solutions: they are solutions with a rational, or semi-rational7, dependence on the

variablesx and t, in contrast with the standard solitons whose expression is given in terms

of exponentials only. They are also solutions of multicomponent wave equations such as

the CNLS equation and the 3WRI system [75, 76, 77]. In this thesis we take into account

the system of a resonant triad, not only because it encloses this kind of solitons, but even

because the nonlinearity term is the simplest that can occur between three interacting waves

[78, 79], and the interaction of waves under resonance conditions is of great interest in many

�elds of research (see, for instance, [80, 81] and the literature therein). We investigate the

linear stability of the 3WRI model by considering solutions on �nite background.

7Here, semi-rational solutions are meant to have an expression that is both rational and exponential in

the variablesx and t.



Chapter 1. Introduction 13

Due to the technical mathematical issues already stated in the previous section, the linear

stability of this system and the mechanism leading to its linear instability are less studied

than those of other systems, such as the CNLS equations. However, further outcomes

can be obtained thanks to the approach developed in [64], and we have applies such an

approach to the plane wave solutions of the 3WRI system in order to investigate their

linear stability and to con�rm if linear instability can be considered a necessary condition

to explain the formation of rogue waves mathematically represented by rational solutions.

In order to do that, we take advantage of the integrability of this system [82, 83]. This

fact is not obvious at all, since the stability of a solution is a local phenomenon, while the

integrability is a global characteristic of the equation. As it has already been mentioned

(see [62, 63]), solutions of a linearised equation can be written by squared eigenfunctions,

and, in turn, by means of the associated Lax pair. If an equation is Lax-integrable [84],

the stability of its solutions can be analysed (see, for instance, [71] and [52]). Once the

squared eigenfunctions are obtained, we look at their temporal behaviour: if they have an

exponential growth in time (i.e. the gain function is di�erent from zero), then the provided

solution of the nonlinear equation is (neutrally) linearly unstable. We underline that this

approach allows us to generalise the formalism toN � N matrices. As a consequence, the

solutions of the Lax pair equations are written in matrix form and the squared eigenfunc-

tions are more general than those ones used so far.

In addition, we use the spectral method developed in [64] for a technical reason: IST is al-

gebrically cumbersome and it becomes more and more complicated to apply if one wants to

�nd solutions which are rational, semi-rational or, more generally, with a �nite background.

Indeed, it is necessary to solve the inverse problem to see if localised structures exist asymp-

totically (after the interaction). For the3WRI system, the linear stability analysis which

can lead to the formation of solitons on vanishing background has leaded to the conclusion

that the envelope with intermediate velocity can decay surrounding all itsN solitons and,

after the interaction, the fast and the slow envelopes own additionalN solitons each one.

However, it has been impossible to �nd the �nalN soliton solutions which, instead, were

written only in implicit form and the �ndings were supported by numerical analysis [58].

Instead, this alternative approach [64] allows us to use Darboux Dressing Transformation

(DDT) [85, 86] for envelopes whose background are plane waves interacting resonantly,

and in this respect, it turns out that DDT is potentially more useful and algebrically simpler
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for �nding rational solutions [76]. Another reason for choosing this method is that this

approach does not depend on the functional class of the potential, contrary to the IST,

which requires the imposition of boundary conditions. Therefore, a wider class of solutions

can be taken into account, such as rational or semi-rational solitons, whose dependence

on spacex and time t usually is asymptotically polynomial, but also other solutions such

as breathers. We have numerically observed the generation of potential rogue waves and

breathers generated via the linear instability of such a system. This remarkable observation

would not have been possibile without the application of the approach [64], which is tailor-

made for multi-component systems with solutions on �nite background.

In this thesis, �rst, we carry out a comprehensive topological classi�cation of the stability

spectra of the3WRI system in the parameters space, where the parameters in question are

combinations of the physical parameters involved in the plane waves and in the system.

This classi�cation is topological and we associate a gain function to any topology. We

observe that the stability spectra of the CNLS system are included in this classi�cation and,

indeed, the gain function shows the presence of MI-baseband-like and MI-passband-like for

such spectra. However, the stability analysis for the 3WRI system is richer, because it

presents additional topological features. Indeed, we observe a new gain function associated

to such topological features which can be considered neither a MI-passband type nor a

MI-baseband type, and are, instead, associated to a stronger linear instability around the

zero wave number. In particular, we have observed, via numerical simulations, that this

kind of topology and its gain is associated to explosive instability, i.e. the three interacting

waves blow up in a �nite time [60, 61].

We show that the plane wave solutions of the3WRI system are linearly unstable in time

for any choice of the physical parameters, including those ones associated to the solutions

that are explosive. The linear instability of the plane wave correspond to the observation

of a positive gain-function.

Although the onset of the linear instability of the3WRI system has not been clari�ed, this

thesis is meant to be a prelude for its understanding. Indeed, we aim to investigate the

mechanism leading to this phenomenon in future research works. It is worth highlighting

that, in the research work [87], the authors have analysed the stability of two coupled or-

dinary di�erential equations (instead of three PDEs) whose forcing term is the interaction

with a third wave, with large amplitude, which does not obey the same dynamical equa-
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tions of the other two interacting waves with �nite amplitudes [88]. They speculate that

the third wave is a cosine as a function of the time.The authors claimed that a su�cient

and necessary condition for the onset of instability is that the two interacting waves have

modes of opposite sign.

In this thesis, we perform the linear stability analysis on three coupled PDEs, and after

linearising every equation, the wave solution interacts with the perturbations of the other

two waves. Moreover, every solution propagates with di�erent velocity and we cannot �nd

a reference frame in which they have the same velocity. Instead, we can obtain a system

of three ordinary di�erential equations only in the particular case in which the three waves

propagate at the same velocity [57]. For the3WRI system with wave solutions propagating

at the same velocity, the Hasselmann's criterion [89, 90] states that instability occurs if

the two sidebands modes sum together with the same signs, and in the case they interact

resonantly with the same signs, there is neutral stability.

Hence, we underline the relation between the presence of baseband MI type and the pos-

sible existence of rational solitons which can model rogue waves, and in this regard, we

provide a necessary condition for the existence of rational solutions on a �nite background

constructed by means of the DDT method. For sake of simplicity, we will refer sometimes

to these rational and semi-rational solutions as rational solutions of Darboux type or DT-

FB rational solutions, FB standing for \�nite background". We do that by the stability

analysis of the plane waves which are solutions of the 3WRI system. These plane waves

are meant as the possible background for solitons, namely as the seed solutions for the

algebraic construction of rational solutions of Darboux type. When needed, we will specify

if we deal with semi-rational solutions, instead of purely rational solutions.

The motivation to conduct this research is because, so far, the mechanism which causes

rogue waves formation is unknown, although several hypothesis have been formulated and

MI (like passband and baseband) is one of them [91], we assume that their onset can be

due to the more general phenomenon of the linear instability, that is a phenomenon that

can occur in the 3WRI system. Moreover, rogue waves are ubiquitous in nature and are

observed in several physical settings, such as in water tank [92], in �bre optics [24] and in

plasma [93]. They are also predicted in the atmosphere [94], in super
uids [95], in Bose-

Einstein condensates [96] and in capillary waves [97].
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1.3 Overview of the thesis

In Chapter 2, we describe the spectral method developed in [64] and we use the NLS

equation as a case study.

In Chapter 3, we give the 'set up' of the formalism for the 3WRI system: Lax pair and Lax

operators, construction of the squared eigenfunctions, characteristic polynomials and useful

rescalings of the physical parameters of the problem.

In Chapter 4, we conduct the stability linear analysis through the topological classi�cation

of the stability-spectra in the parameters space and the associated gain functions. Thus,

we state a necessary criterium for the existence of rational and semi-rational solitons on a

�nite background of Darboux type. However, the computations of the expressions of these

solutions is not the aim of this thesis.

In Chapter 5, we show some numerical observations of breathers and potential rogue waves.



Chapter 2

Linear Stability of Plane Waves of

the NLS and CNLS Systems

In this chapter we present the formalism developed in [64] by providing the NLS equation

as an example. Because NLS is a scalar equation, the space stability spectrum coincides

with the spectrum of the spatial part of the Lax pair [64]. This coincidence is not met in

the general case of the multi-component systems. Thus, in order to understand where the

spatial stability spectrum comes from, we provide the CNLS system as a further example

[64]. In this way we are able to write the general de�nition of stability spectra for multi-

component systems.

2.1 Universal Nature of the Nonlinear Schr•odinger Equation

and Modulational Instability

The origin of the Nonlinear Schr•odinger equation is rooted in the theory of self-focusing

waves in electrical �elds. In 1964, R. Y. Chiao et al. wrote a NLS-type equation [98].

They considered the wave equation for an electric �eld plus a nonlinear term and concluded

that an optical beam of a single frequency, whose dynamics is described by such equation,

cannot spread in a nonlinear media, namely the beam is self-focused. Since then, more

investigations were carried out on the self-focusing phenomenon (see, for instance, [99, 100])
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and, in this context, the NLS equation was derived in [99] as we know it today,

ut � iu xx + 2 isjuj2u = 0 ; s2 = 1 ; (2.1)

where the subscripts denote the derivatives with respect to the spacex and the timet, j � j

is the module of the classical �eldu(x; t ), and s is a sign.

The NLS equation with the signs = � 1 is known as focusing NLS equation and was written

for the �rst time in the research paper on the self-focusing optical beams in dispersive and

nonlinear media [99]. Using the IST method, Zakharov and Shabat derived its solutions

classi�ed as bright solitons which decay at zero at the spatial in�nity, and as breathers

which decay at a constant background at the spatial in�nity [29].

For s = 1 , the equation is named defocusing NLS. Its solutions are known as dark solitons

due to their feature to have a nontrivial background intensity and a spatial local dip. They

were obtained by IST in [101].

The universal nature of the NLS equation lies in the fact that it describes the dynamics of

many systems in nature whose behaviour is that one of an envelope of a monochromatic

wave packet in a dispersive and nonlinear media when the dissipation can be neglected [19].

Zakharov was the �rst to derive the NLS equation in the context of water waves [103]. Nev-

ertheless, it can be derived in the limit of weak nonlinearity from several equations via the

multiple scale method, for instance, by the Sine-Gordon equation [15]. The defocusing NLS

equation can also be derived from the KdV equation and the focusing NLS equation from

the modi�ed-KdV (see for example [102]).

After Stokes wrote the approximate solutions of the Laplace problem [22], i.e. the Stokes

waves, Benjamin and Feir discovered that nonlinear Stokes waves are modulationally unsta-

ble [13]. It is well known the pivotal role of the NLS equation in the study of MI and the

NLS equation is one of the most used equation for modelling modulation of waves. In this

regard, we refer the reader to the book [15] for the linear stability analysis of plane waves,

solutions of the NLS equation.

Because the NLS equation had a key role in the understanding of the MI and because it is

a scalar equation, in the next section, we shall describe the spectral method developed in

[64], by using the NLS equation as a case study.



Chapter 2. Linear Stability of Plane Waves of the NLS and CNLS Systems 19

2.2 Matrix Form of the Nonlinear Schr•odinger Equation

Before we proceed with the stability analysis, we make a 'set up' for a new formalism in which

the NLS is meant as a matrix equation, where the matrices involved are2� 2. In order to do

that, we take advantage of mathematical techniques provided by the integrability. Indeed,

since the NLS equation is integrable [29], it admits a representation via two di�erential

equations, which are called Lax equations,

 x = X ;  t = T  ; (2.2)

where the subscripts are the derivatives with respect to the spatial variablex and the time

variable t, X and T are 2 � 2 matrices named Lax operators, being =  (x; t; � ) a

common solution of the two linear di�erential matrix equations (2.2), whileX = X (x; t; � )

andT = T(x; t; � ) depend on the variablesx, t and on a complex quantity� called spectral

parameter, according to the de�nitions

X = i�� 3 + Q; (2.3a)

T = 2 i� 2� 3 + 2 �Q + i� 3(Q2 � Qx ); (2.3b)

where

� 3 =

0

@
1 0

0 � 1

1

A ; (2.4)

is a Pauli matrix. The matrixQ = Q(x; t ) depends on the variablesx and t, contains the

complex dynamical variableu = u(x; t ) and introduces the signs2 = 1

Q =

0

@
0 su�

u 0

1

A ; (2.5)

whereu� is the complex conjugate of the dynamical variableu. We are interested in non-

trivial common solutions of the Lax equations (2.2), which are given by the compatibility

condition

 xt =  tx : (2.6)
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The NLS equation can be obtained by (2.6), because it is integrable. By using both (2.2)

and (2.6), we get an equation for the Lax operatorsX and T

X t � Tx + [ X; T ] = 0 ; (2.7)

where[X; T ] = XT � TX is the commutator of the two matricesX and T 1. Finally, by

the de�nitions of the Lax operators (2.3) and using the fact that

Q2 = sjjQjj2I 2� 2; (2.9)

where I 2� 2 is the 2 � 2 identity matrix and jj � jj denotes2 the spectral norm ofQ, we

obtain the scalar NLS equation in matrix form

Qt + i� 3Qxx � 2is� 3jjQjj2Q = 0 : (2.10)

In computing the equation (2.10), we have used the property of the Pauli matrix� 3 to be

involutory, that is� 2
3 = I 2� 2. Moreover, the anti-commutatorsf � 3; Qg = 0 andf � 3; Qxg =

0. The anti-commutator between two matricesA andB is de�ned asf A; B g = AB + BA .

One can check that (2.10) includes the NLS equation in scalar form. By writing (2.10) as

follows
0

@
0 s(u�

t + iu �
xx � 2isuu � 2)

ut � iu xx + 2 isu � u2 0

1

A = 0 2� 2; (2.11)

where02� 2 denotes the null matrix2 � 2, hence,

u�
t + iu �

xx � 2isuu � 2 = 0 ; (2.12a)

1By (2.2), the left-hand side and the right-hand side of the condition (2.6) are rewritten in the following

way

 xt = ( X ) t = X t  + X t = X t  + XT  ; (2.8a)

and

 tx = ( T  )x = Tx  + T  x = Tx  + T X : (2.8b)

2The spectral norm ofQ is de�ned as

jjQjj =
p

� max ; Qy =

0

@
0 u�

su 0

1

A ;

where� max is the biggest eigenvalue of the matrixQQy , whereQy is the conjugate transpose of the matrix

Q.
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ut � iu xx + 2 isu � u2 = 0 ; (2.12b)

where the equation (2.12a) is the complex conjugate of the equation (2.12b). In particular,

(2.12b) is the NLS equation foru and (2.12a) is the NLS equation foru� .

2.3 Integrability and Linear Stability

In addition to the matrix NLS equation, we need to introduce Lax operators which are

independent of the spatial variablex and of the time variablet. In this way, the resulting

Lax equations are integrable by the separation of variables method and the obtained solution

is mapped into the solution of the original Lax problem [31].

2.3.1 Lax Problem Revisited

Let us consider the simplest solution of the NLS equation (2.12b), namely the plane wave

u0(x; t ) = aei (qx� �t ) ; (2.13)

depending onx andt, wherea is the amplitude,q is the wave number and� is the frequency

of the wave solution. Leta 2 R be independent of the variablesx and t. The frequency

depends ona and q by the relation

� = q2 + 2sa2; (2.14)

that is obtained by substituting (2.13) in the NLS equation (2.12b).

In order to simplify the calculations, we introduce the transformation on the matrix solution

Q0 = Q0(x; t ),

Q0 =

0

@
0 su�

0

u0 0

1

A = G

0

@
0 sa

a 0

1

A G� 1; (2.15)

whereu0 = u0(x; t ) is the plane wave given in (2.13),u�
0 is its complex conjugate,G =

G(x; t ) is a diagonal matrix which contains all the dependence on the variablesx and t,
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and G� 1 = G� 1(x; t ) is its inverse. More in detail, the matrixG can be written as follows

(see Appendix A):

G = e� i
2 [qx� (q2+2 sa2 )t ]� 3 : (2.16)

The transformation (2.15) induces also a transformation on the solution of the Lax pair

(2.2),

 = G�; (2.17)

such that it introduces the function� = � (x; t ).

By putting the transformation (2.17) into the the Lax pair (2.2), we obtain the PDEs (see

Appendix B):

� x = iW �; � t = � iZ�; (2.18)

where the operatorsW = W (� ) and Z = Z (� ) are de�ned as follows

iW = G� 1XG � G� 1Gx ; (2.19a)

� iZ = G� 1TG � G� 1Gt : (2.19b)

The operatorsW andZ in (2.19) are2� 2 matrices independent ofx and t and depending

only on the spectral parameter� , whose expressions, in terms of their entries, are3

W =

0

@
� + q

2 � isa

� ia � � � q
2

1

A ; Z =

0

@
� 2� 2 + q2

2 isa(2� � q)

ia(2� � q) 2� 2 � q2

2

1

A ; (2.20)

and, in addition, they are related with one another is

Z = � 2
�

� �
q
2

�
W: (2.21)

3We have used the formulas

G� 1Gx = �
i
2

q� 3 ; G� 1Gt =
i
2

(q2 + 2 sa2)� 3 ;

and the anti-commutators

f � 3 ; Qg = 0 :
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The advantage of the revisited Lax Pair (2.18) is that we can integrate it by separation of

variables and a solution is

� = ei (W x � Zt ) ; (2.22)

where we have used the fact that[W; Z ] = 0 . In turn, by using the transformation (2.17),

the solution of the Lax Pair (2.2) is

 = e� i
2 [qx� (q2+2 sa2 )t ]� 3 ei (W x � Zt ) : (2.23)

2.4 Investigating Stability via Lax Pair

The perturbations of the NLS equation can be written as combinations of the SEs which

are solutions of the linearised equation [44]. Since the SEs are written starting form the

Lax operators, it turns out that one can characterise the solutions of the linearised equation

by using such operators.

2.4.1 Squared Eigenfunctions

The starting point of our investigation is the Lax problem (2.2) for the NLS equation.

Using the solutions and  � 1 of the Lax problem (2.2), we de�ne the SE	 = 	( x; t )

	 =  M � 1; (2.24)

whereM = M (� ) is a2� 2 matrix dependent only on the spectral parameter� . By (2.2),

	 satis�es the PDEs [64]

	 x = [ X; 	] ; 	 t = [ T; 	] ; (2.25)

which are compatible with one another because of (2.7).

The transformation (2.17) induces the similarity transformation

	 = G� G� 1; (2.26)
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where the matrixG is given in (2.16), and� = �( x; t ), de�ned as

� := �M� � 1; (2.27)

satis�es the PDEs (Appendix C)

� x = i [W; �] ; � t = � i [Z; �] ; (2.28)

whose solution is4

� = ei (W x � Zt ) �(0 ; 0)e� i (W x � Zt ) : (2.29)

where�(0 ; 0) is the initial condition atx = 0 and t = 0 . Because of (2.27) and (2.22),

�(0 ; 0) � M (� ). Finally, because of the transformations (2.26) and (2.17), the SE, solution

of the PDEs (2.25), reads

	 = G � �(0 ; 0) � � 1 G� 1 =  �(0 ; 0)  � 1; (2.30)

where is provided by (2.23).

2.4.2 Solution of the Linearised Equation and its Connection with Integra-

bility

In this section we introduce the linearised equation (LE) obtained perturbing a generic so-

lution of the NLS.
4Let us suppose�( x; t ) = � (x)� (t), by integrating in x the �rst of the equations (2.28)

� (x) = � (0) + i
Z x

0
[W; � (x1)]dx 1 ;

and, via iteration,

� (x) = � (0)+ i
Z x

0
[W; � (0)]dx 1 �

Z x

0

�
W;

Z x 1

0
[W; � (x2)] dx 2

�
dx1 = � (0)+ i [W; � (0)]x�

Z x

0

�
W;

Z x 1

0
[W; � (x2)] dx 2

�
dx1 :

Similarly, by integrating in t the second of the equations (2.25), one gets

� (t) = � (0) � i [Z; � (0)] t �
Z t

0

�
Z;

Z t 1

0
[Z; � (t2)] dt 2

�
dt 1 ;

thus,

�( x; t ) = � (x)� (t) = � (0)� (0) + i [W; � (0)� (0)]x � i [Z; � (0)� (0)] t + :::: ;

and, by setting � (0)� (0) = �(0 ; 0), the solution is (2.29).
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Let us suppose to have a solution of a nonlinear equation and to add to it a small pertur-

bation, so that the perturbed solution isu + �u . As a consequence, the matrix solution is

perturbed

Q ! Q + �Q; (2.31)

and the perturbed Lax operators are

X ! X + �X; T ! T + �T: (2.32)

By substituting (2.32) in the equations (2.7), at the �rst order in the perturbation, we get

the LE

(�X )t � (�T )x + [ �X; T ] + [ X; �T ] = 0 ; (2.33)

which is an evolution equation for the perturbation�Q . Moreover, we stress that the

expression of the linearised equation, as it is written in (2.33), is independent of the model

until one chooses the Lax pair, namely the matrixQ and, for this reason, the LE (2.33) is

written more generally as follows

A t � Bx + [ A; T ] + [ X; B ] = 0 : (2.34)

We are interested in searching for solutionsA = A(x; t; � ) and B = B (x; t; � ) related to

the fundamental matrix solution of the Lax pair. In this respect, we provide the following

propositions, which are also stated in [64].

Proposition 2.4.1. If the pair A, B solves the linearised equation (2.34), then also the

pair F = F (x; t ), H = H (x; t ) de�ned as

F = [ A; 	] ; H = [ B; 	] ; (2.35)

satis�es the linearised equation (2.34), namely

Ft � Hx + [ F; T ] + [ X; H ] = 0 : (2.36)

This is a consequence of the Jacobi identity and of the fact that	 is a solution of (2.25)

[64].
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Proposition 2.4.2. The following expressions

F =
�

@X
@�

; 	
�

; H =
�

@T
@�

; 	
�

; (2.37)

are solutions of the linearised equation (2.36).

The validity of this statement follows from the fact that the matrices

A =
@X
@�

; B =
@T
@�

; (2.38)

are solutions of the equation (2.34) and from the Proposition 2.4.1 [64].

A consequence of the Proposition 2.4.2 is that any sum or integral of F over the spectral

variable � is a solution�Q of the LE (2.33). As in the paper [64], we assume that the

perturbation �Q has the integral representation

�Q =
Z

d� F (x; t; � ); (2.39)

which provides a solution�Q bounded and localised inx at any �xed time t. We require

that the perturbation is localised, so that the absolute value of the perturbed solution goes

to a constant asjxj ! 1 .

The matrix F (x; t; � ) and the perturbation�Q satisfy the same linearised equation (2.33)

provided that only local terms are involved in their expressions [64]. The solutionF plays the

same role as the exponential solution of any linearised equation with constant coe�cients,

namely, by varying� over the spectrum, it provides the set of "Fourier-like" modes of the

linear PDE (2.33) and it takes the general expression [64]

F (x; t; � ) = G(x; t )
NX

j;m =1

� jm (� )ei [(x(wj � wm )� t (zj � zm )]F (jm ) (� )G� 1(x; t ) ; (2.40)

wherewj and zj are the eigenvalues of the matricesW and Z , respectively andN is the

dimension of the matricesW and Z . The coe�cients � jk (� ) are arbitrary functions of the

spectral parameter� , whereasF (jm ) (� ) constitute a basis (we will obtain explicitly the

formula (2.77) in the section 2.5).

If we want�Q to be bounded, then the solutionF must be bounded inx for any �xed t and

� , and the subset of the complex� -plane, over which the integral (2.39) runs, constitutes

the so-called stability x-spectrum of the solutionQ, denoted bySx [64]. The spacial

spectrumSx can be geometrically de�ned as follows:
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De�nition 2.4.3. The x-spectrumSx , namely the spectral curve on the complex� -plane, is

the set of values of the spectral variable� such that at least one of these complex numbers

kj = wj +1 � wj +2 , j = 1 ; 2; :::; N (mod N ) is real.

Similarly, one can de�ne the stability t-spectrum, denoted bySt , for which the perturbation

�Q and the solutionF is bounded and localised in time for any �xedx and � . Here, we

are interested in �nding the values of the spectral parameter� for which the perturbation

�Q is bounded in space but it can grow up in time, such that the solutionQ can even be

linearly unstable in time [64]. In the case of the NLS equation, we will do that by �nding

both the Sx and St spectrum. The values of� belonging to theSx spectrum, but not to

the St spectrum are those ones for which linear instability occurs. We highlight that, for

the scalar NLS equation, the spectrum of the operatord
dx � X and the spectrum of the

operator d
dt � T coincide with the stability spectrumSx and with the stability spectrumSt ,

respectively (see [64] for more details about this point).

In the following, we �nd the general expression ofF for the NLS equation. AlthoughH is

also a solution of the LE, we choose to work withF only for the sake of simplicity. Because

we are in the case of2 � 2 matrices, we use the algebraic basis generated by the Pauli

matrices.

From (2.37), the solutionF can be written as

F = 2 i� 3	 (o) ; (2.41)

where we have used the commutation rules between the Pauli matrices. Therefore, we

are interested only on the computation of the o�-diagonal part of the SE	 ; in particular,

becauseG is a diagonal matrix5, we consider only the following SE:

	 (o) = G� (o)G� 1; (2.42)

where� (o) = ei (W0x� Z0 t ) � (o) (0; 0)e� i (W0x� Z0 t ) (see [64] for more details about the proce-

dure for obtaining this solution after the diagonalisation of the matricesW and Z ), where

W0 and Z0 are the diagonalised matrices ofW and Z , and the latter are simultaneously

5By the de�nition of 	 (2.26), we have

	 = G� G� 1 = G(� ( o) + � ( d) )G� 1 = G� ( o) G� 1 + � ( d) ;

where � ( o) and � ( d) are the o�-diagonal part and the diagonal part of the matrix� , respectively.
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diagonalised because they commute with one another. We cannot have the term propor-

tional to � (d) (0; 0), because, whenx = 0 and t = 0 , the solution must be still o�-diagonal.

Thus, we impose� (o) (0; 0) � �(0 ; 0) and � (d) (0; 0) � 0. Moreover, if the matricesW

and Z were not diagonalised, then�( x; t ) would have also had entries on its diagonal part,

but we want to take only its o�-diagonal entries. Indeed, once put� (o) (0; 0) � �(0 ; 0),

one can check this by assuming that the exponentialei (( W ( d) + W ( o) )x� (Z ( d) + Z ( o) )t ) can be

approximated by the Taylor seriesI 2� 2 + i ((W (d) + W (o) )x � (Z (d) + Z (o) )t) + :::: and,

then, by substituting it into the expression of�( x; t ).

Let us suppose that the expression of the initial condition is

� (o) (0; 0) = �� 1 + �� 2; (2.43)

where� and � are arbitrary constants, and� 1 and � 2 are the Pauli matrices

� 1 =

0

@
0 1

1 0

1

A ; � 2 =

0

@
0 � i

i 0

1

A :

Let W0 and Z0 be proportional to� 3. Indeed, because of the property of the trace to be

invariant under cyclic permutations, it turns out that the trace of the similarity transfor-

mations for diagonalising the matricesW and Z in (2.19) is zero as well asW0 and Z0 are

2 � 2 traceless matrices.

Since the o�-diagonal Pauli matrices,� 1 and � 2, anti-commute with the diagonal Pauli

matrix � 3, we get

	 (o) = �� 1e� 2i (W0x� Z0 t )ei (qx� (q2+2 a2 )t )� 3 ; if s=+1 ; (2.44)

	 (o) = �� 2e� 2i (W0x� Z0 t )ei (qx� (q2 � 2a2 )t )� 3 ; if s=-1: (2.45)

We have supposed� = 0 for the defocusing cases = +1 in (2.44), and � = 0 for the

focusing cases = � 1 in (2.45). This is becauseQ is an o�-diagonal matrix equals to

Q = a� 1ei (qx� (q2+2 a2 )t )� 3 if s=+1, and equals toQ = � ia� 2ei (qx� (q2 � 2a2 )t )� 3 if s = � 1,

and we choose to perturb with a matrix�Q with amplitude proportional to� 1 if s = +1 or

proportional to � 2 if s = � 1. Moreover, sinceF satis�es the same evolution equation of

�Q and they are related with one another in (2.39), then the perturbation�Q and F must

be proportional to the same Pauli matrix. In turn,F is given in (2.41), so that the squared
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eigenfunctions must be those in (2.44) and (2.45). Finally, using the commutation and

anti-commutation rules of the Pauli matrices applied to the expression (2.41), the solution

of the LE is

F = � 2�� 2e� 2i (W0x� Z0 t )ei (qx� (q2+2 a2 )t )� 3 ; if s = +1 ; (2.46)

F = 2 �� 1e� 2i (W0x� Z0 t )ei (qx� (q2 � 2a2 )) t� 3 ; if s = � 1: (2.47)

We observe that, in the case of the NLS equation written via2� 2 matrices, the di�erences

of the egeinvalueswj andzj arewj � wj +1 = 2wj andzj � zj +1 = 2zj for j = 1 ; 2 mod(2),

because of the commutation rules of the Pauli matrices. This does not hold for matrices

W and Z whose dimension isN > 2.

2.4.3 Spectral Stability Analysis

The matricesW and Z are simultaneously diagonalised and are related one with the other

by means of formula (2.21) and thus their eigenvalues are related as well6,

w = �
p

� 2 � sa2; z = � 2�w; (2.48)

where we are considering the plane wave withq = 0 .

In both the focusing and defocusing (s = � 1 and s = +1 ) cases, the eigenvaluesw and

z are reals if and only if� 2 Sx and St , respectively. In the defocusing cases = +1 the

solution u = ae� 2ia 2 t is linearly stable because the x-spectrum

Sx = f�1 < � � � ag � f a � � < + 1g ; (2.49)

is included in the spectrum of the operatorT

St = Sx � f � = i
 : �1 < 
 < + 1g : (2.50)

Both the spectra are shown in the �gure 2.1.

In the focusing cases = � 1, the solution u = ae2ia 2 t is linearly unstable. Indeed, the
6In order to obtain the eigenvaluesw and z, we have solved the equations

Det( W � w I 2� 2) = 0 ; Det( Z � z I 2� 2) = 0 ;

with unknowns w and z, and Det( �) is the determinant.
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Figure 2.1: Defocusing case, a=1.

x-spectrum is

Sx = f�1 < � < + 1g � f � = � i
 : � a � 
 � + ag; (2.51)

while t-spectrum is

St = f�1 < � < + 1g � f � = i
 : 
 < � a or 
 > + ag: (2.52)

In this case the branch� a < 
 < + a belongs toSx but not to St , as shown in the

�gure 2.2. This is related to the MI phenomenon, indeed, in such a case, the squared

Figure 2.2: Focusing case, a=1.

eigenfunctions in (2.46) and (2.47) grow exponentially as time goes on.
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2.5 Wave Coupling and Solution of the Linearised Equation

for the CNLS System

In the following we give an introduction to the linear stability problem of the plane wave

solutions of the CNLS system within the integrability framework to prove that the main

objects to be computed are the eigenmodes' wave numbers and frequencies de�ned on the

stability spectrum. In the presentation, we will follow [64].

For the CNLS system, we start by choosing the Lax operatorsX (x; t; � ) and T(x; t; � ) to

be

X (� ) = i� � + Q ; T(� ) = 2 i� 2� + 2 �Q + i �( Q2 � Qx ) ; (2.53)

where� , Q are matrix-valued functions ofx and t, and � is the spectral parameter, and

� =

0

B
B
B
@

1 0 0

0 � 1 0

0 0 � 1

1

C
C
C
A

; (2.54a)

Q =

0

B
B
B
@

0 v�
1 v�

2

u1 0 0

u2 0 0

1

C
C
C
A

: (2.54b)

Here and below the asterisk denotes complex conjugation and the four �eld variables

u1; u2; v1; v2 are considered as independent functions ofx and t, and are conveniently

arranged as two two-dimensional vectors, that is

u =

0

@
u1

u2

1

A ; v =

0

@
v1

v2

1

A : (2.55)

Then the matrix PDE (2.7) becomes, in this case,

Qt = � i �( Qxx � 2Q3) ; (2.56)

which is equivalent to the two vector PDEs

u t = i [uxx � 2(v yu)u]

v t = i [vxx � 2(uyv)v ] ; (2.57)
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equivalent to the CNLS system upon setting

v1 = s1u1; (2.58a)

v2 = s2u2: (2.58b)

Here the dagger notation denotes the Hermitian conjugation (which takes column-vectors

into row-vectors). In this simpler setting, ifQ(x; t ) is a given solution of the equation

(2.56), the linearised equation (2.33) for a small change�Q (x; t ) reads

�Q t = � i �[ �Q xx � 2(�QQ 2 + Q�QQ + Q2�Q )] : (2.59)

Moreover, the Propositions 2.4.1 and 2.4.2 are still satis�ed for the CNLS system (and

any multi-component system, satisfying certain hypothesis, see [64]), and the fact that the

perturbation �Q and the solutionF are linked by the integral (2.39) guarantees that the

matrix F (x; t; � ) satis�es this same linear PDE, namely

Ft = � i �[ Fxx � 2(FQ2 + QFQ + Q2F )] ; (2.60)

and, for � 2 Sx , these solutions should be considered as eigenmodes of the linearised

equation.

The spectral analysis is based on the following

Proposition 2.5.1. The matrix

F = i [� ; 	] ; (2.61)

de�ned in the Proposition 2.4.2, along with (2.53), in the case of the CNLS system, satis�es

the same linear equation satis�ed by�Q .

The Proposition 2.5.1 has been specialised to the case of the CNLS equation, but it is stated

in a general form in [64] (see Proposition 4 of the paper), in which it is formulated for any

multi-component system provided that each term in the expression of the Lax operators

has a local character.

We can compute analytically the matrixF if the fundamental matrix solution (x; t; � ) of
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the Lax pair corresponding to the solutionQ(x; t ) is explicitly known. Here we devote our

attention to the stability of the plane wave solution of (2.56), or of the equivalent vector

system (2.57),

u(x; t ) = ei (qx� 3 � �t )a ; v (x; t ) = ei (qx� 3 � �t )b ; � = q2 + 2bya : (2.62)

In these expressionsa and b are arbitrary, constant and, with no loss of generality, real

2-dim vectors:

a =

0

@
a1

a2

1

A ; b =

0

@
b1

b2

1

A : (2.63)

The plane wave solution of the CNLS system is obtained by setting

b1 = s1a1; (2.64a)

b2 = s2a2: (2.64b)

The reduced version of this system is the NLS one-component version, foru2 = v2 =

0; v1 = � u1, that turns out to be a good model of the Benjamin-Feir (or modulational)

instability which is of great physical relevance (see Chapter 2).

The main focus of this section is to understand how the spectrumSx changes by varying the

parametersa1, a2, b1, b2 and q. In matrix notation, see (2.54b), this plane wave solution

(2.62) reads

Q = G � G� 1 ; � =

0

B
B
B
@

0 b1 b2

a1 0 0

a2 0 0

1

C
C
C
A

; G(x; t ) = ei (qx� � q2 t� 2+ pt�) ; (2.65)

where the matrix� has the expression (2.54a) while the matrix� is

� =

0

B
B
B
@

0 0 0

0 1 0

0 0 � 1

1

C
C
C
A

; (2.66)

and we conveniently introduce the real parameters

p = b1a1 + b2a2 (2.67a)
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r = b1a1 � b2a2 (2.67b)

which will be handy in the following. Next we observe that a fundamental matrix solution

 (x; t; � ) of the Lax equations has the expression

 (x; t; � ) = G(x; t )ei (xW (� )� tZ (� )) ; (2.68)

where thex, t-independent matricesW and Z are found to be

W (� ) =

0

B
B
B
@

� � ib1 � ib2

� ia1 � � � q 0

� ia2 0 � � + q

1

C
C
C
A

= � � � q� � i � ; (2.69)

Z (� ) =

0

B
B
B
@

� 2� 2 i (2� � q)b1 i (2� + q)b2

i (2� � q)a1 2� 2 � q2 � a2b2 a1b2

i (2� + q)a2 a2b1 2� 2 � q2 � a1b1

1

C
C
C
A

= � 2� 2�W (� )� W 2(� )� p ;

(2.70)

with the property that they commute,[W ; Z ] = 0 , consistently with the compatibility

condition  xt =  tx . We consider here the eigenvalueswj (� ) and zj (� ), j = 1 ; 2; 3, of

W (� ) and, respectively, ofZ (� ) as simple, as indeed they are for generic values of� . In

this case bothW (� ) and Z (� ) are diagonalized by the same matrixU(� ), namely

W (� ) = U(� )WD (� )U � 1(� ) ; WD = diag f w1; w2; w3g

Z (� ) = U(� )ZD (� )U � 1(� ) ; ZD = diag f z1; z2; z3g: (2.71)

Next we construct the matrixF (x; t; � ) via its de�nition, see (2.61), (2.26) and (2.27),

F (x; t; � ) = [� ; � (x; t; � )M (� )� � 1(x; t; � )] ; (2.72)

which, because of the explicit expression (2.68), reads

F (x; t; � ) = G(x; t )
h
� ; ei (xW (� )� tZ (� )) M (� )e� i (xW (� )� tZ (� ))

i
G� 1(x; t ) : (2.73)

As for the matrixM (� ), it lies in a nine-dimensional linear space whose standard basis is

given by the matricesB (jm ) , whose entries are

B (jm )
kn = � jk � mn ; (2.74)
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where� jk is the Kronecker symbol (� jk = 1 if j = k and � jk = 0 otherwise). However the

alternative basisV (jm ) , which is obtained via the similarity transformation

V (jm ) (� ) = U(� )B (jm )U � 1(� ) ; (2.75)

whereU(� ) diagonalizesW andZ (see (2.71)), is more convenient to our purpose. Indeed,

expanding the generic matrixM (� ) in this basis as

M (� ) =
3X

j;m =1

� jm (� )V (jm ) (� ) ; (2.76)

the scalar functions� jm being its components, and inserting this decomposition into the

expression (2.73), leads to the following representation ofF

F (x; t; � ) = G(x; t )
3X

j;m =1

� jm (� )ei [(x(wj � wm )� t (zj � zm )]F (jm ) (� )G� 1(x; t ) ; (2.77)

where we have introduced thex, t-independent matrices

F (jm ) (� ) =
h
� ; V (jm ) (� )

i
: (2.78)

The advantage of expression (2.77) is to explicitly show the dependence of the matrixF

on the six exponentialsei [(x(wj � wm )� t (zj � zm )] .

The elements� jk (� ) are arbitrary because they are the coe�cients on the basisV jk (� )

used to write the matrixM (� ) in (2.76), that is, in turn, arbitrary.

2.6 Eigenmodes' Wave Numbers and Frequencies for Multi-

Components Systems

The Proposition 2.5.1 stated in the previous section guarantees that, for any choice� of

the functions� jm (� ), the expression (2.77) be a solution of the linearized equation (2.59),

see (2.60). The requirement to have�Q bounded is equivalent to requireF bounded.

Looking at the formula (2.77), since� jk are arbitrary, it is su�cient to impose that only

one di�erence, sayk1 � k2, is real and the corresponding� 12 6= 0 , and to impose that the

other coe�cients are � 23 = � 31 = 0 .' The further condition that the solution�Q (x; t ) be

bounded inx at any �xed time t results in integrating expression (2.77) with respect to the
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variable� over the spectral curveSx of the complex� -plane:

�Q (x; t ) =
Z

Sx

d� F (x; t; � ) : (2.79)

The spacial spectrumSx can be geometrically de�ned as follows:

De�nition 2.6.1. The x-spectrumSx , namely the spectral curve on the complex� -plane,

is the set of values of the spectral variable� such that at least one of the three complex

numberskj = wj +1 � wj +2 , j = 1 ; 2; 3 (mod 3), or explicitly

k1(� ) = w2(� ) � w3(� ) ; k2(� ) = w3(� ) � w1(� ) ; k3(� ) = w1(� ) � w2(� ) ; (2.80)

is real.

Observe that thekj 's play the role of eigenmode wave-numbers (see (2.77)).

The requirement to have�Q bounded is equivalent to requireF bounded. Looking at the

formula (2.77), since� jk are arbitrary, it is su�cient to impose that only one di�erence, say

k1 � k2, to be real and the corresponding� 12 6= 0 and to impose that the other coe�cients

are � 23 = � 31 = 0 .

To the purpose of establishing the stability properties of the continuous wave solution (2.62)

we do not need to compute the integral representation (2.79) of the solution�Q of (2.59).

Indeed, it is su�cient to compute the eigenfrequencies

! 1(� ) = z2(� ) � z3(� ) ; ! 2(� ) = z3(� ) � z1(� ) ; ! 3(� ) = z1(� ) � z2(� ) ; (2.81)

as suggested by the exponentials which appear in (2.77). Their expression follows from the

matrix relation (2.70)

zj = � 2 � 2�w j � w2
j � p ; (2.82)

and read

! j = � kj (2� + wj +1 + wj +2 ) ; j = 1 ; 2; 3 (mod 3) : (2.83)

This expression looks even simpler by using the relationw1 + w2 + w3 = � � implied by the

trace of the matrixW (� ) (see (2.69)) and �nally reads

! j = kj (wj � � ) ; j = 1 ; 2; 3 : (2.84)

The consequence of this expression (2.84), which is relevant to our stability analysis, is

given by the following
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Proposition 2.6.2. The continuous wave solution (2.62) isstable against perturbations

�Q whose representation (2.39) is given by an integral which runsonly over those values

of � 2 Sx which are strictlyreal.

The proof of this Proposition is provided in [64].



Chapter 3

The 3-Wave Resonant Interaction

Model

In this Chapter we introduce the 3WRI system and we reformulate it in order to include all

the possible velocity orderings and all the possible choices of signs in just one Lax pair. This

reformulation simpli�es the computations in view of a complete classi�cation of the spatial

stability spectra in the parameters space (see Chapter 4). Then, we apply the formalism

developed in [64] as introduced in the Chapter 2. Finally, we write the di�erences of the

eigenvalues of the matricesW in terms of the di�erences of the eigenvalues of the matrices

Z .

3.1 Linear Stability Analysis of the 3WRI Equations: Histori-

cal Overview and State of the Research

The 3-wave resonant interaction (3WRI) model describes the dynamics of three waves inter-

acting by a quadratic nonlinearity and without dispersion and dissipation. The nonlinearity

term can be considered like a perturbation at the �rst order of the linear dynamics [55, 78].

The weak, quadratic nonlinearity and the neglected dispersion make the system the simplest

model to be analysed in case of resonant interaction. The interaction is called 'resonant'

because it takes place only when the frequencies� j and the wave numbers� j of each wave
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with j = 1 ; 2; 3 satisfy particular relations, namedresonant conditions:

� 1 + � 2 + � 3 = 0 ; � 1 + � 2 + � 3 = 0 : (3.1)

Moreover, the dispertionless dynamics entails that for time going to�1 the solutions are

well separated and do not decay, and the model is integrable [58]. The dynamics with

dispersion can be also described by adding a dispersive term that, in general, makes the

model non-integrable, unless it is a second order correction to the linear dynamics that acts

in a timescale longer than the nonlinearity. However, this correction a�ects substantially

the stability of the system. For instance, in the research work [56], a triplet of dark solitons

with locked velocity has been found to be always unstable. Nevertheless, a quasi-negligible

second order dispersion balances the nonlinearity e�ect so that a stable triplet of dark soli-

tons can propagate.

In this thesis we are interested in the linear stability analysis of the simplest solutions of the

3WRI system, i.e. the plane waves. The stability of a resonant triad was studied �rst in

1967 by Hasselmann for spatially uniform plane waves and he formulated a stability criterion

(namedHasselmann's criterion)[89]:

"the nonlinear coupling between two in�nitesimal components1 and 2 and a �nite compo-

nent 3 whose wave-numbers and frequencies satisfy the resonant-interaction conditions

� 1 � � 2 = � 3; � 1 � � 2 = � 3;

is unstable for the sum interaction and neutrally stable for the di�erence interaction."

In other words, the criterion above states that the wave with highest frequency exhibits

instability [44, 90]. The dynamics of a conservative system of coupled plane waves with

amplitudes modulated in time is described by the ordinary di�erential equations

dA1

dt
= s1A �

2A �
3 ;

dA2

dt
= s2A �

1A �
3 ;

dA3

dt
= s3A �

1A �
2 ;

(3.2)

whereA j = A j (t), with j = 1 ; 2; 3, are complex slowly varying amplitudes,sj are signs

such that s2
j = 1 , and the asterisk denotes the complex conjugation. Let us suppose

that the waveA3 is the 'pump', whose amplitude is initially �nite and it is approximately

constant in time, while the amplitudes of the other two interacting waves are in�nitesimal
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and dependent on time. These assumptions lead the system (3.2) to reduce to [44, 57]

dA1

dt
= s1A �

2A �
3 ;

dA2

dt
= s2A �

1A �
3 ;

dA3

dt
= 0 :

(3.3)

and becauseA3 is constant in time, we obtain

d2A j

dt2 � s1s2A j jA3j2; j = 1 ; 2: (3.4)

If s1 = s2 = 1 and s3 = � 1, then the in�nitesimal amplitudes grow exponentially until the

linear approximation is not longer valid, the amplitudesA1 and A2 become comparable to

the amplitudeA3 which, in turn, depletes. However, this process is periodic, in the sense

that, after an exact period2t0
1, A1 andA2 deplete andA3 grows [57]. Thus,A1 andA2 are

periodic, andA3 is nonlinearly unstable: the linear approximation is not valid anymore when

the in�nitesimal amplitudes reach the value of the �nite one. Ifs1 = s2 = s3, all the three

amplitudes grow inde�nitely and the system exhibits explosive instability [57, 60, 61, 104].

Beside research works on the system of ordinary di�erential equations (3.2), further research

has been carried out on the system (3.2) and on the stability of its solutions. In particular,

if the amplitudesA j depend on both time and space, such that the system (3.2) involves

partial derivatives with respect to both timet and spacex, general solutions are wave

packets [105, 106]. The starting point of the investigation in this thesis is the 3WRI model,

that is written in general form as an integrable system of three PDEs in1 + 1 dimensions

[55]
8
>>>><

>>>>:

q1t + c1q1x = s1q�
2q�

3 ;

q2t + c2q2x = s2q�
1q�

3 ;

q3t + c3q3x = s3q�
1q�

2 ;

(3.5)

whereqj = qj (x; t ) are complex amplitudes,cj is the group velocity of thej th-packet, sj

such that s2
j = 1 . The subscriptsx and t denote the partial derivatives with respect to

spacex and time t, respectively, while the asterisk stands for the complex conjugation.

By assuming that the resonant conditions (3.1) are satis�ed, the system (3.5) describes

1t0 is the time that the in�nitesimal solutions A1 and A2 take to become comparable to the amplitude

A3 .
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several processes that can be classi�ed mainly by the signssj and by the ordering of

the velocitiescj [57]. Indeed, the system (3.5) comes from perturbing the di�erential

equationuT T + 
( � i@X )2u = N (u), where
( � ) is a real nonnegative polynomial, with


 2(0) > 0, and N is twice di�erentiable function, withN (0) = N 0(0) = 0 , enclosing

nonlinear terms [55, 78, 79]. After using the multi-scale method, one gets an equation for

the lower order error term and, in order to avoid that this term grows linearly, we need to

set equal to zero some terms such that, after rescaling, we obtain the system (3.5) with

signssj = sgn(N 00(0)� j ), j = 1 ; 2; 3 [55]. Therefore, the system (3.5), with the resonant

conditions (3.1) and with a signsj di�erent from the other two signs, is associated to

decay instability. On the other hand, the system (3.5) can also be obtained, with the same

procedure described above, by replacing the termN (u) with the term 2 N (ux ), such that

the signs are de�ned assj = � sgn(N00(0)� j � m � l), for j; l; m = 1 ; 2; 3 and all distinct [55].

As a result, the conditions (3.1) are satis�ed fors1 = s2 = s3, provided that the ratios
� j
� j

are all positive. This is the case known as explosive instability. Indeed, by considering

wave packets as solutions, we can individuate the solutions with explosive behaviour via the

analysis of theManley-Rowe relations3 [107]
Z

R
jq1j2 dx � s1s2

Z

R
jq2j2 dx = I 12; (3.6a)

Z

R
jq2j2 dx � s2s3

Z

R
jq3j2 dx = I 23; (3.6b)

Z

R
jq3j2 dx � s1s3

Z

R
jq1j2 dx = I 31; (3.6c)

with qj being a smooth function satisfying the conditionjqj j2 ! 0 for jxj ! 1 , wherej� j is

the modulus4 and I 12, I 23 and I 13 being constants. The equations (3.6) are conservation
2The subscriptx denotes the derivative with respect tox of the solution u.
3If we multiply each equation for the envelopeqj by its complex conjugateq�

j , and if we add to this

equation the equation forq�
j multiplied by qj , we obtain an equation for the action of every envelope [55]

(that is the energy of the wave divided by� j [57])

d
dt

Z

R
jqj j2dx = 2 sj

Z

R
Ref q1q2q3gdx; j = 1 ; 2; 3;

and Ref�g is the real part of the productq1q2q3 . Finally, by summing two by two these equations and by

integrating them with respect to the time, we get the Manley-Rowe relations. [55]
4This is a consequence of the fact that the solutionsqj are wave packets and so they are also square-

integrable
R

R jqj j2 dx < 1 .
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laws of the action exchanged between the interacting envelopes [108, 109].

By looking at the relations (3.6), we deduce that when all the signssj are equal one to

another, the system (3.5) can exhibit solutions with spikes at a �nite time because the

conserved quantityI kj may not bound the action
R

R jqj j2 dx of any packet in the left-hand

side of the equations (3.6). Indeed, the envelope can grow up inde�nitely and blow up

at a �nite time although their mutual exchange of action allowsI kj to remain constant

[60, 55, 110]. If instead one sign is di�erent from the others, the system (3.5) describes

two kind of interactions: decay instability or stimulated backscatter [57]. For example, let

us considers3 = � 1 and s1 = s2 = 1 , then the Manley-Rowe relationsbecome5

Z

R
jq1j2 dx �

Z

R
jq2j2 dx = I 12; (3.7a)

Z

R
jq3j2 dx +

Z

R
jq1j2 dx = I 13; (3.7b)

Z

R
jq2j2 dx +

Z

R
jq3j2 dx = I 23: (3.7c)

With this choice of signs, the constantsI kj are nonnegative and bound any norm of the

envelopes at any time, such that the solutions do not grow up inde�nitely and remain

bounded (see [55] and [110] for more details). This process is interesting because, during

the interaction between the envelopes, linear instability may occur. In this respect, in [111],

by using the IST formalism and numerical techniques, the authors studied the stability of

a �nite amplitude wave interacting with two initially in�nitesimal amplitude waves. In this

way, the system (3.5) reduces to a system of two linear equations for the initial in�nitesimal

waves. Because the small amplitudes can grow up during the interaction, after a certain

time, nonlinearity comes into play and the linear approximation is not valid. However, there

is a connection between the linearisation of the 3WRI model and the Zakharov-Shabat

problem describing its nonlinear evolution. In particluar, after some transformations, the

3WRI model describing the interaction between a 'pump' and two in�nitesimal sidebands,

reduces to three Zhakarov-Shabat problems [57]. This is because the system is disper-

sionless, the envelopes are well separated in the initial and the �nal states, and hence the
5Only two conserved quantitiesI kj are linearly independent. Indeed, forI 12 and I 13 linearly independent,

then I 23 = I 12 � I 13 .
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Zhakarov-Shabat scattering data contain all the information about the �nal state. A con-

clusion about the linear stability analysis of the 3WRI model is that, if the highest-frequency

pump has the middle velocity and contains solitons, then linear instability occurs and in the

�nal state the pump can show a spike at a �nite time (explosive instability) or can deplete

(decay instability) [57]. We highlight that this analysis was conducted by supposing that

the potential of the eigenvalues problem goes to zero asx ! �1 (see also [58]).

Although, the Manley-Rowe relationsare useful to predict if square-integrable solutions

blow up at a �nite time, we can not use them when plane waves solutions are considered.

For this reason, even if we do not exclude the possibility of the existence of solutions with

explosive instability, in our analysis, we need to consider any choice of signs, also that one

in general associated to explosive instability, i.e.s1 = s2 = s3.

Moreover, most of the research works lead so far dealt with wave packets, not with plane

waves as, instead, we shall do. In addition, the linear stability analysis was carried out by

considering the two side-bands and the pump as solutions of the three 3WRI system. The

framework of our research is more general, in the sense that we deal with a system of three

plane waves, we perturb every solution and then every solution interacts with the pertur-

bations of the other two interacting waves. In other words, we are considering a system of

three pumps interacting in resonance one with each other and every pump interacts with

two side-bands.

In the literature, the system (3.5) has been written in di�erent forms, obtained by rede�ning

the variablesqj and the velocitiescj . This is because, from the computational point of

view and depending on the applications, a form may be more convenient than others. For

instance, let us consider the case in which one sign is di�erent from the others. If one puts

q1 = �q1, q2 = �q�
2 and q3 = �q3 and s1 = � p1, s2 = p2 and s3 = � p3, the system (3.5) can

be written in a more general form by introducing a complex coupling constantK [112][56]
8
>>>><

>>>>:

�q1t + c1 �q1x = � p1K � �q2 �q�
3 ;

�q2t + c2 �q2x = p2K �q1 �q3 ;

�q3t + c3 �q3x = � p3K � �q�
1 �q2:

(3.8)

Although the equations (3.8) describe the interactions between three waves in a homoge-

neous medium [58, 111], they can be mapped into a system with a phase factor describing

the interactions in a medium with weak inhomogeneity and an IST problem is formulated

in order to understand the e�ect of inhomogeneities on the three waves interaction [112].
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In this thesis we apply the spectral analysis method developed in [64] to plane waves

only. On the other hand, several other researches were carried out on more complicated

solutions of the 3WRI system. In fact, it is well known that the 3WRI model has so-

lutions that are triplets of solitons travelling together with a common velocity, the so

called simultons. Interesting research works were conducted on simultons in the last

years [82, 113, 114, 115, 116]. Indeed, the system (3.12) has also been used in a co-

variant form [56] obtained transforming the �elds�qj as u1(z; y) = K
q

c2
c1 � c2

�q1(x; t ),

u2(z; y) = K
q

c1
c2 � c1

�q2(x; t ), u3(z; y) = K
p

c1c2 �q3(x; t ) and with 'velocities' of the soli-

tons V1 = 1
c1 � c3

, V2 = 1
c2 � c3

satisfying the condition0 < V1 < V2. After that transfor-

mations, z and y are the temporal and the spatial variable, respectively. The equations

so obtained have a simulton solution constituted by three dark solitons which are always

unstable unless the 3WRI system is perturbed via a weak dispersion. It was observed that

this weak dispersion reduces the MI [56]. Even if the perturbed system should not have

solitons, the dispersion parameters are chosen such that only the shape of the soliton are

slightly modi�ed and at the same time the instability is reduced [56]. In the same work,

the analysis and the classi�cation of the stabilities according to the signs is carried out.

The stability of a simulton composed by two bright and a dark solitons (BBD) was studied

in the paper [114]. Letc1, c2 and c3 be the velocities of the triad solutions of the 3WRI

system andc be the velocity of the simulton. It was found that whenc is brought below a

critical value, that is

cuns =
2c1c2

c1 + c2 � Q(c1 � c2)
; (3.9)

the simulton becomes unstable.Q depends on the parameters involved on the expression

of the simulton, and when� 1 < Q < 1, we havec1 < c uns < c 2. Furthermore, an unstable

simulton decays in a stable one emitting a pulse whenc is brought above the valuecuns and

the simulton becomes a 'boomeron' in the sense that its �nal velocity is di�erent from the

initial one. The stability was also analysed under collision between two stable simultons,

and it was found they can pass through each other maintaining their shape if their velocities

are di�erent, and repulse or attract each other if their velocities are the same. A similar

analysis was carried out on the interaction between a stable or an unstable simulton with

a linear wave [115]. Bearing in mind the outcomes described above, an interesting future

direction of research is the stability analysis of rational triads, whose analytical expressions

were found by Darboux Dressing Transformation in [72, 83].
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3.2 Lax Pair

As explained in Chapter 1, the main aim of this thesis is to individuate values of the physical

parameters for which linear instability occurs. In general, we observe that a change of the

ordering of the velocities is re
ected into a change of the Lax pair associated to the system.

This would be quite impractital in view of a complete classi�cation of the instabilities

(and of the stability spectra that we will introduce later in this work) with respect to the

parameters. For this reason, in the following discussion, �rst we observe some symmetries

in the 3WRI system, and then we use such symmetries to write a general expression for

the Lax operators including all possible orderings of the velocities. This general expression

allows us to compute all the necessary analytic tools and, only in the end, deduce what

happens if we change the velocities ordering without further complicated computations.

3.2.1 Symmetries

The Lax operators associated with the system (3.5) [53, 58] make our computations hard

to carry out because of the square roots in their expressions. In order to write the Lax

operators in the easy form, one can rescale the �eldsqj as follows [55]

qj =

s
� 1� 2� 3

� j
sj uj ; j = 1 ; 2; 3; (3.10)

wheres2
j = 1 and

� 1 = c2 � c3; � 2 = c1 � c3; � 3 = c1 � c2; (3.11)

and the system (3.5) becomes
8
>>>>><

>>>>>:

u1t + c1u1x = s2s3j� 1ju�
2u�

3 ;

u2t + c2u2x = s1s3j� 2ju�
1u�

3 ;

u3t + c3u3x = s1s2j� 3ju�
1u�

2 :

(3.12)

The symbolj � j denotes the absolute value of the di�erences of the velocities which is

de�ned as

jci � cj j =

8
><

>:

ci � cj if ci > c j ;

cj � ci if cj > c i ;
i; j = 1 ; 2; 3: (3.13)
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Thus, once �xed, say, the velocityc3, the system (3.12) takes two di�erent expressions

corresponding to the orderingsc1 > c 2 and c2 > c 1. The same argument holds whenc1, or

c2, is �xed. Therefore, the system (3.12) encloses six systems associated to every velocities

ordering6 and they correspond to six Lax Pairs. We can not write all the six Lax pairs in

one, because the di�erences of the velocities appear only after computing the compatibility

condition for the Lax operators. Every Lax operator contains terms proportional to the

single velocitiescj , but not terms proportional to their di�erences, that, instead, appear

after the computation of the commutator between the two operators. Precisely, the six

3WRI systems are:

C1) c1 > c 2 > c 3

8
>>>>><

>>>>>:

u1t + c1u1x = s2s3(c2 � c3)u�
2u�

3 ;

u2t + c2u2x = s1s3(c1 � c3)u�
1u�

3 ;

u3t + c3u3x = s1s2(c1 � c2)u�
1u�

2 ;

(3.14)

C2) c1 > c 3 > c 2

8
>>>>><

>>>>>:

u1t + c1u1x = � s2s3(c2 � c3)u�
2u�

3 ;

u2t + c2u2x = s1s3(c1 � c3)u�
1u�

3 ;

u3t + c3u3x = s1s2(c1 � c2)u�
1u�

2 ;

(3.15)

C3) c3 > c 1 > c 2

8
>>>>><

>>>>>:

u1t + c1u1x = � s2s3(c2 � c3)u�
2u�

3 ;

u2t + c2u2x = � s1s3(c1 � c3)u�
1u�

3 ;

u3t + c3u3x = s1s2(c1 � c2)u�
1u�

2 ;

(3.16)

C4) c3 > c 2 > c 1

8
>>>>><

>>>>>:

u1t + c1u1x = � s2s3(c2 � c3)u�
2u�

3 ;

u2t + c2u2x = � s1s3(c1 � c3)u�
1u�

3 ;

u3t + c3u3x = � s1s2(c1 � c2)u�
1u�

2 ;

(3.17)

6In this discussion, we are not considering the choices of the signs.
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C5) c2 > c 3 > c 1

8
>>>>><

>>>>>:

u1t + c1u1x = s2s3(c2 � c3)u�
2u�

3 ;

u2t + c2u2x = � s1s3(c1 � c3)u�
1u�

3 ;

u3t + c3u3x = � s1s2(c1 � c2)u�
1u�

2 ;

(3.18)

C6) c2 > c 1 > c 3

8
>>>>><

>>>>>:

u1t + c1u1x = s2s3(c2 � c3)u�
2u�

3 ;

u2t + c2u2x = s1s3(c1 � c3)u�
1u�

3 ;

u3t + c3u3x = � s1s2(c1 � c2)u�
1u�

2 :

(3.19)

Since our aim is to classify the spectra of the Lax operators with regard to the parameters

involved in the3WRI model, we should examine every Lax Pair (3.14)-(3.19) to get a

complete classi�cation. Nevertheless, our analysis can be further simpli�ed because in the

system of equations (3.12) only the product of signs appear. This implies there are only

four possible products of signs, each one corresponding to two di�erent combinations of

the signs7:

S1) for s1 = s2 = � s3

8
>>>>><

>>>>>:

s2s3 = � 1;

s1s3 = � 1;

s1s2 = 1 ;

(3.20)

S2) for s1 = s3 = � s2

8
>>>>><

>>>>>:

s2s3 = � 1;

s1s3 = 1 ;

s1s2 = � 1;

(3.21)

7For example, the cases1 = s2 = � s3 encloses two combinations of signs that ares1 = s2 = � 1 and

s3 = 1 or s1 = s2 = 1 and s3 = � 1.
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S3) for s2 = s3 = � s1

8
>>>>><

>>>>>:

s2s3 = 1 ;

s1s3 = � 1;

s1s2 = � 1;

(3.22)

S4) for s1 = s2 = s3

8
>>>>><

>>>>>:

s2s3 = 1 ;

s1s3 = 1 ;

s1s2 = 1 :

(3.23)

At this point, it is worth reminding that we are including also the "explosive case" (i.e.

the case (3.23)). In fact, as already mentioned, we do not have reason to exclude this

case. A priori, we cannot know if the system with the combination of signs in (3.23) is

actually explosive for the plane wave solutions because we can not predict the possibility

of explosive behaviour via the Manley-Rowe relations, for the plane wave solutions are not

square-integrable.

By combining the systems (3.14)-(3.19) with every possible choice of signs (3.20)-(3.23), we

get in total twenty-four systems of equations, everyone denoted by the letterCj , associated

to a Lax pair, and by the letterSj , associated to the choice of signs. Therefore, for instance,

the system of equationsC1S1 is the one corresponding to the Lax pairC1 with a choice of

signsS1. However, only twelve cases are relevant because the others can be obtained by

the former via symmetry, as will be shown below.

Proposition 3.2.1. For every �xed choice of signs, if the velocities ordering is reversed,

the resulting system is symmetric to the former one by relabelling of the indices, that is

equivalent to exchange the bigger velocity with the smaller velocity.

Proof. Let us consider, say, the velocities orderingsC1, (3.14), andC4, (3.17), and let us

suppose that the signss1s2, s1s3 and s2s3 are �xed and are the same for both systems.

In the system (3.14) the di�erences of the velocities are all positive, while in the system

(3.17) they are all negative. However, there is a minus in front of the negative di�erences

in (3.17), such that the sign in front of the interaction term is the same of the system
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(3.14). In particular, the systems (3.14) and (3.17) are equivalent, in the sense that one

can be obtained from the other by a relabelling. Indeed, after the substitutions1 ! 3,

3 ! 1 and 2 ! 2 in the system (3.17) we get the system (3.14), and vice versa. Thus, if

we consider �rst the system (3.17) in which the solutionu1 has the smaller velocity andu3

has the bigger one, after relabelling,u1 has the bigger velocity andu3 has the smaller one.

This reasoning can be extended to all orderings of velocities.

As a consequence of the Proposition 3.2.1, we may consider only three orderings instead

of six. In particular, the equivalent orderings are:C1 with C4, C2 with C5 and C3 with

C6. We note that once the signs are �xed, for example after choosing the signsS4,

the signs of the interactions are positive in all the systems (3.14)-(3.19), and this is a

consequence of the presence of the modulusj� j j in the system (3.5). Since the choice

s1s2 = s1s3 = s2s3 = � 1 is not allowed, it looks like the negative interactions are not

allowed. Nevertheless, there is another symmetry in the model that makes the interaction

of any sign possible.

Proposition 3.2.2. For any choice of signs and any velocities ordering, the 3WRI system

admits interaction with both positive and negative signs.

Proof. Let us consider the system (3.14) with �xed signs. If we change every solution

uj ! � uj and then we de�ne� uj = �uj , then we get that the solutions�uj satisfy the

same system ofuj with the same interaction, namely,�uj are also solutions of the model.

On the other hand, if we come back touj , we get a 3WRI system foruj , but with the sign

of the interaction opposite to the former, i.e. negative.

Proposition 3.2.1 and Proposition 3.2.2 suggest that we can change the interaction sign

by changing simultaneously the signs of all the amplitudes of the solutionsuj . Below, we

shall show that, once the ordering of the velocities is �xed, the systems for�uj and for uj

describe the same processes.
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3.2.2 A General Expression for the 3WRI System

In order to ful�l the stability analysis, we need to deal with six Lax pairs (or with three Lax

pairs if we want to rediscover the other three orderings by symmetry) and, once �xed the

velocities ordering, we will vary the signs to reproduce the four casesS1, S2, S3 and S4.

However, our analysis can be simpli�ed further because the cases analysed in the previous

section can be rediscovered if the 3WRI model is interpreted and written in a particular

fashion (as explained below).

Let us consider the3WRI model
8
>>>>><

>>>>>:

u1t + c1u1x = s1(c2 � c3)u�
2u�

3 ;

u2t + c2u2x = s2(c1 � c3)u�
1u�

3 ;

u3t + c3u3x = s3(c1 � c2)u�
1u�

2 ;

(3.24)

wheresj are signs such thats2
j = 1 , j = 1 ; 2; 3, and the velocities and their orderings

can be whatever8. Indeed, in some of the systems (3.14)-(3.19), the di�erencescj � cj +1

appear with a minus in front of them. In the system (3.24), the sign minus is included in

the de�nition of sj and, for this reason, there are eight possible choices of signs:

S+
1 ) s1 = s2 = 1 , s3 = � 1;

S�
1 ) s1 = s2 = � 1, s3 = 1 ;

S+
2 ) s1 = s3 = 1 , s2 = � 1;

S�
2 ) s1 = s3 = � 1, s2 = 1 ;

S+
3 ) s2 = s3 = 1 , s1 = � 1;

S�
3 ) s2 = s3 = � 1, s1 = 1 ;

S+
4 ) s1 = s2 = s3 = � 1;

S�
4 ) s1 = s2 = s3 = 1 .

8We are taking into account also the combinations of signs not included in the classi�cation of the

choicesSj .
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The combinationS+
1 is obtained from the combinationS�

1 by a symmetry. To prove that,

let us consider the 3WRI system for the solutionu = u(x; t )
8
>>>>><

>>>>>:

u1t + c1u1x = s1(c2 � c3)u�
2u�

3 ;

u2t + c2u2x = s2(c1 � c3)u�
1u�

3 ;

u3t + c3u3x = s3(c1 � c2)u�
1u�

2:

(3.25)

Proposition 3.2.3. In the system (3.25), the interaction term is left invariant by changing

all the signssj , (see also [57]).

Proof. The system (3.25) admits solutions like�uj = ei� j uj , where� j are arbitrary phases.

We also write�sj = j�sj jei arg(�sj ) , with j �sj j = 1 and

arg(�sj ) =

8
><

>:

0 if �sj = 1 ;

� if �sj = � 1;
j = 1 ; 2; 3; (3.26)

the signs�sj are mapped into the signssj via the following transformation

�sj = ei (arg( sj )+ � j ) ; j = 1 ; 2; 3 (3.27)

and when we come back to the system foruj , we have
8
>>>>><

>>>>>:

u1t + c1u1x = ( c2 � c3)u�
2u�

3e� i (� 1+ � 2+ � 3 � arg(s1 )� � 1 )

u2t + c2u2x = ( c1 � c3)u�
1u�

3e� i (� 1+ � 2+ � 3 � arg(s2 )� � 2 )

u3t + c3u3x = ( c1 � c2)u�
1u�

2e� i (� 1+ � 2+ � 3 � arg(s3 )� � 3 ) :

(3.28)

The system (3.28) is equivalent to the system
8
>>>>><

>>>>>:

�u1t + c1 �u1x = ( c2 � c3)�u�
2 �u�

3ei arg(�s1 )

�u2t + c2 �u2x = ( c1 � c3)�u�
1 �u�

3ei arg(�s2 )

�u3t + c3 �u3x = ( c1 � c2)�u�
1 �u�

2ei arg(�s3 ) ;

(3.29)

only if � 1 = � 2 = � 3 � � and � = � 1 + � 2 + � 3. Becausesj and �sj are just signs,

� has value� or 0. Moreover, looking at the system for the solution�uj , one has also

e� i (� 1+ � 2+ � 3 � arg(�sj )) = e� i (� 1+ � 2+ � 3 � arg(sj )� � ) , with j = 1 ; 2; 3, and soei (arg(�sj )) = ei (arg( sj )+ � ) ,

such that arg(�sj ) = arg( sj ) + � . Let us suppose�s1 = 1 , �s2 = � 1 and �s3 = � 1, there

are two possibilities:� = 0 , and arg(s1) = 0 , arg(s2) = arg( s3) = � , or � = � , and
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Velocities ordering

signssj C1 C2 C3 C4 C5 C6

S+
1 � S1C1 S2C2 � S4C3 S1C4 � S2C5 S4C6

S�
1 S1C1 � S2C2 S4C3 � S1C4 S2C5 � S4C6

S+
2 � S2C1 S1C2 � S3C3 S2C4 � S1C5 S3C6

S�
2 S2C1 � S1C2 S3C3 � S2C4 S1C5 � S3C6

S+
3 � S3C1 S4C2 � S2C3 S3C4 � S4C5 S2C6

S�
3 S3C1 � S4C2 S2C3 � S3C4 S4C5 � S2C6

S+
4 � S4C1 S3C2 � S1C3 S4C4 � S3C5 S1C6

S�
4 S4C1 � S3C2 S1C3 � S4C4 S3C5 � S1C6

Table 3.1: 3WRI cases.

arg(s1) = � , arg(s2) = arg( s3) = 0 .

This means that if we want to leave unchanged the interaction, we need to change both

the signssj and the signs of all the amplitudes, i.e.�uj = � uj . In other words, changing

all the signssj is equivalent to changing all the signs in front of the amplitudes of the

solutionsuj .

As a consequence of the Proposition 3.2.3, we take into account only four possible choices

of signs (instead of eight) that, combined with the six possible velocities orderings, give

twenty-four systems in total, although we expect twelve relevant cases only. This means

there is another symmetry, in fact the Proposition 3.2.1 holds for the system (3.24) as well.

We can associate every case of the3WRI model (3.12) to every case of the model described

by the system (3.24), as shown in the Table 3.1. Let us focus on the choicesS+
1 and S�

1 .

Once the signsS+
1 are �xed, the system 3WRI (3.24) gives us the right casesS2C2, S1C4

andS4C6 for the solutionuj , while the other remaining cases are reversed,� S1C1, � S4C3,

� S2C5 and the sign minus denotes this reversion. Nevertheless, these cases are the right

ones for �uj = � uj , and can be also obtained with the right signs by changing the signs

sj ! � sj . Moreover, by the Proposition 3.2.1, the caseS1C1 is equivalent to the case

S1C4. The same argument holds for the other orderings.

Finally, we observe that with the model (3.12) one would have to deal with three Lax pairs

and then, to obtain the other orderings, we have to swap the bigger velocity with the smaller
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one. As we show in the following, with (3.24) we deal with only one Lax pair and, if we

wish, we can cover all cases by a change of sign or by changing the values of the velocities

without changing Lax pair.

3.3 Plane Wave Solutions

The system (3.24) admits as solutions the plane waves

u1 = a1ei ( � 1 t � � 1x) ; u2 = a2ei ( � 2 t � � 2x) ; u3 = a3ei ( � 3 t � � 3x) ; (3.30)

whereaj are the amplitudes,� j are the frequencies and� j are the wave numbers.

By choosing the reference frame moving with the waveu3, such that the velocityc3 = 0

and by substituting the solutionu3 in the last equation of the system (3.24), we get the

resonant conditions

� 1 + � 2 + � 3 = 0 ; � 1 + � 2 + � 3 = 0 : (3.31)

The amplitudea3 takes the expression

a3 = is3a1a2
c1 � c2

� 1 + � 2
; a1; a2 2 R; (3.32)

thus, the solutionu3 is

u3 = is3a1a2
c1 � c2

� 1 + � 2
e� i (( � 1+ � 2 )t � (� 1+ � 2 )x) : (3.33)

Moreover, by setting the expression (3.33) and the other two plane wavesu1 and u2 in

(3.30) into the �rst two equations of the system (3.24), the nonlineardispersion relations

are obtained

� 1 =
� 1

c1
+ s1s3a2

2
c2(c1 � c2)
c1(� 1 + � 2)

;

� 2 =
� 2

c2
+ s2s3a2

1
c1(c1 � c2)
c2(� 1 + � 2)

:
(3.34)

3.3.1 Galilean Invariance

The system (3.24) is invariant under the substitutions

uj (x; t ) = �uj (�x; �t); (3.35)
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where spacex and time t transform as the Galilei transformations
8
><

>:

x = �x + v�t ;

t = �t ;
(3.36)

and the characteristic, linear velocities are

cj = �cj + v; j = 1 ; 2; 3: (3.37)

Furthermore, by replacing the plane wave solutions in (3.35), we get9

� j = �� j + v�� j ; �� j = � j ; �aj = aj ; 8j = 1 ; 2; 3: (3.38)

By the Galilean transformations for the frequencies and for the wave numbers (3.38), with-

out loss of generality, we choose, for example,� 1 = q and � 2 = � q. However, due to the

resonant conditions (3.31), we can put� 1 = � 2 = q only, otherwise three wave resonance

does not occur.

From now on, we shall choose the reference frame in whichc3 = 0 , and we shall �x

� 1 = � 2 = q and, as a consequence,� 3 = � 2q. In this way, the plane waves (3.30) become

u1 = a1ei (qt� � 1x) ; u2 = a2ei (qt� � 2x) ; u3 = is3a1a2
c1 � c2

2q
e� i (2qt� (� 1+ � 2 )x) ; (3.39)

where the frequencies are

� 1 =
q
c1

+ s1s3a2
2
c2(c1 � c2)

2qc1
;

� 2 =
q
c2

+ s2s3a2
1
c1(c1 � c2)

2qc2
:

(3.40)

9Indeed,

uj (x; t ) = �uj (�x; �t );

entails

aj ei ( � j t � � j x ) = �aj ei ( �� j �t � �� j �x ) ;

and, by substituting (3.36),

aj ei ( � j t � � j x ) = aj ei (( � j � v� j ) �t � � j �x ) ;

from which the formulas (3.38).
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3.4 Lax Pair Formulation

The phenomenon of the linear stability, is analysed using the feature of the 3WRI model

to be Lax-integrable. Indeed, a squared combination of fundamental solutions of the Lax

pair is presented like a combination of the 'eigenmode-solutions' of the linearised equation

[64]. In this respect, the di�erences of the eigenvalues of the Lax operators are necessary

to write a solution of the linearised equation. In this section we give the explicit expressions

of the Lax operators involved in the Lax formulation of the problem. We show how a

similarity transformation allows us to break free the Lax operators from the dependence of

space and time variables, such that the Lax equation is reduced to the Liouville equations,

whose integration is trivial. A further gauge transformation simpli�es our computations and

makes our formula easier to handle. Finally, we �nd out that every Lax operator, obtained

after such transformations, is written as a polynomial expression in the other Lax operator.

Therefore, we obtain the relation between the di�erences of the eigenvalues of the Lax

operators, and the solution of the linearised equation is provided in detail.

In the following, we apply the theory for multi-component systems provided in Chapter 2.

3.4.1 Linearised Equation

In this section we present the Lax pair and the linearised equation, following the research

work [64].

Since the 3WRI is Lax-integrable, we associate to the system (3.24) the Lax operators

~X � ~X (x; t; � ) and ~T � ~T(x; t; � )

~X = � i� ~C + U; ~T = i� ~D + V; (3.41)

wherex and t are the space and time variables, respectively,� is the spectral parameter,

and ~C and ~D are 3 � 3 matrices depending only on the linear velocitiescj

~C =

0

B
B
B
@

� 1
3(c1 + c2) 0 0

0 1
3(2c2 � c1) 0

0 0 1
3(2c1 � c2)

1

C
C
C
A

; (3.42)
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~D =
c1c2

3

0

B
B
B
@

� 2 0 0

0 1 0

0 0 1

1

C
C
C
A

: (3.43)

The matricesU = U(x; t ) andV = V(x; t ) involve the solutions10 uj of the system (3.24),

the signssj and the velocitiescj , and they are de�ned as follows

U =

0

B
B
B
@

0 s1u1 � s1s2s3u�
2

s1s2s3u�
1 0 s3u3

s2u2 s1s2s3u�
3 0

1

C
C
C
A

; (3.44)

V =

0

B
B
B
@

0 � s1c1u1 s1s2s3c2u�
2

� s1s2s3c1u�
1 0 0

� s2c2u2 0 0

1

C
C
C
A

: (3.45)

Let us introduce the Lax pair

~ x = ~X ~ ; ~ t = ~T ~ ; (3.46)

whose solution~ = ~ (x; t; � ) is a 3 � 3 matrix which satis�es the compatibility condition

~ xt = ~ tx ; (3.47)

that is equivalent to the equation for the Lax operators

~X t � ~Tx + [ ~X; ~T] = 0 ; 8 ~ ; (3.48)

or, equivalently,

Ut � Vx + [ U; V] = 0 ; 8 ~ : (3.49)

Here and thereafter the brackets[�; �] denote the commutator between the operators.

Proposition 3.4.1. The following two operators

X = � i�C + U; T = i�D + V; (3.50)

where

C = ~C +
1
3

(c1 + c2)I ; D = ~D +
2
3

c1c2I ; (3.51)

10We remind the reader that the asterisk stands for complex conjugation.
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and I is the identity matrix3 � 3, constitute a Lax pair

 x = X ;  t = T  ; (3.52)

whose solution transforms as

 = ~ e i 2
3 �c 1c2 t � i �

3 (c1+ c2 )x : (3.53)

Proof. Indeed the matrices~C and ~D, involved in (3.41), are

~C = �
1
3

(c1 + c2)I + ( c1 + c2)(� + + � � ); (3.54)

~D = �
2
3

c1c2I + c1c2(� + + � � ); (3.55)

where

� + =

0

B
B
B
@

0 0 0

0 1 0

0 0 0

1

C
C
C
A

; � � =

0

B
B
B
@

0 0 0

0 0 0

0 0 1

1

C
C
C
A

: (3.56)

This means that the Lax operatorsX and T have a diagonal part proportional to� + and

� � , and with entriesX 11 and T11 which are null elements. Looking at the compatibility

conditions (3.48) and (3.49), we see that the terms� i 2
3 �c 1c2I and � i

3 � (c1 + c2)I do not

a�ect the computation of the 3WRI equations and then the stability analysis. Moreover,

by substituting ~X = X + i �
3 (c1 + c2) and ~T = T � i 2

3 �c 1c2 in the Lax pair (3.41), we have

the equations

~ x � i
�
3

(c1 + c2) ~ = X ~ ; (3.57a)

~ t + i
2
3

�c 1c2 ~ = T ~ ; (3.57b)

and, by de�ning  = ~ e i 2
3 �c 1c2 t � i �

3 (c1+ c2 )x , the equations (3.57) become the Lax pair

(3.52).

If we perturb the solutionsuj ! uj + �u j , we have, as a consequence, that also the Lax

operators become perturbedX ! X + �X , T ! T + �T . If we set these perturbed
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operators in the compatibility condition (3.48), at the �rst order in the perturbation, we

get the equation for the perturbations�X and �T [64]

�X t � �T x + [ �X; T ] + [ X; �T ] = 0 ; (3.58)

namedlinearised equation. In order to �nd a solution of the linearised equation related to

the solution of the Lax pair (3.46), we de�ne the squared eigenfunction	 = 	( x; t; � ) by

the following similarity transformation

	 =  M � 1; (3.59)

whereM = M (� ), is a constant matrix, independent onx and t and  � 1 is the inverse of

the matrix  =  (x; t; � ). After that, two propositions, stated in the paper [64], are given

below.

Proposition 3.4.2. If the pair E , J solve the linearised equation (3.58), then also the pair

F = [ E; 	] ; H = [ J; 	] ; (3.60)

is a solution of the linearised equation (3.58), namely

Ft � Hx + [ F; T ] + [ X; H ] = 0 : (3.61)

Proposition 3.4.3. The following expressions,

F =
�

@X
@�

; 	
�

; H =
�

@T
@�

; 	
�

; (3.62)

provide solutions of the linearised equation (3.58).

One notes that, to obtain the solutionF , one needs to know the explicit expression of the

squared eigenfunction (3.59) related to the solution of the Lax pair. This will be the aim

of the next section.

3.4.2 Similarity Transformation of the Lax Pair

Once the Lax operators are provided, we see that only the matricesU and V enclose the

solutionsuj and, so, the dependence on the variablesx and t. Below, we introduce a
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similarity transformation by which the Lax pair becomes a pair of Liouville equations simple

to integrate. In this way, one can obtained the squared eigenfunctions.

Let G = G(x; t; � ) be a matrix such that

U = GU0G� 1; V = GV0G� 1; (3.63)

with G� 1 the inverse ofG = G(x; t; � ) and

U0 =

0

B
B
B
@

0 s1a1 � s1s2s3a2

s1s2s3a1 0 s3a3

s2a2 s1s2s3a�
3 0

1

C
C
C
A

; V0 =

0

B
B
B
@

0 � s1c1a1 s1s2s3c2a2

� s1s2s3c1a1 0 0

� s2c2a2 0 0

1

C
C
C
A

;

(3.64)

so that the Lax operators are independent ofx and t.

More in details, the explicit expression of the matrixG is (Appendix D)

G = e� i
2 (� 1 � � 2 )xI e� i (qt� � 1x)� + ei (qt� � 2x)� � ; (3.65)

and [� + ; � � ] = 0 . In addition, this transformation induces the similarity transformation

 = G� on the solution of the Lax problem11, and, so, on its squared eigenfunctions (see

de�nition in [64])

	 = G� G� 1; (3.66)

11The operator X is

X = G(� i�C + U0)G� 1 ;

this, substituted in  x = X , gives

 x = G(� i�C + U0)G� 1  ;

and, by multiplying to the left by G� 1 ,

G� 1  x = ( � i�C + U0)G� 1  :

SinceG� 1  x = ( G� 1  )x � (G� 1)x  and (G� 1G)x = ( G� 1)x G + G� 1Gx = 0 , we obtain

(G� 1  )x = ( � i�C + U0 � G� 1Gx )(G� 1  );

this, after de�ning � = G� 1  and iW 0 = i�C + U0 � G� 1Gx , becomes

� x = iW 0 �:
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and on the Lax operators (appendix E)

iW 0 = G� 1XG � G� 1Gx ; � iZ 0 = G� 1TG � G� 1Gt : (3.67)

Therefore, the Lax pair becomes

� x = i [W0; �] ; � t = � i [Z0; �] ; (3.68)

whose solution is

� = ei (W0x� Z0 t ) �(0 ; 0)e� i (W0x� Z0 t ) ; (3.69)

with �(0 ; 0) initial condition. Explicitly, we have

W0 =

0

B
B
B
@

� 1 � � 2
2 � is1a1 is1s2s3a2

� is1s2s3a1 � �c 2 � � 1+ � 2
2 � is3a3

� is2a2 � is1s2s3a�
3 � �c 1 + � 1+ � 2

2

1

C
C
C
A

; (3.70a)

Z0 =

0

B
B
B
@

0 � is1c1a1 is1s2s3c2a2

� is1s2s3c1a1 � �c 1c2 � q 0

� is2c2a2 0 � �c 1c2 + q

1

C
C
C
A

; (3.70b)

with wave-numbers� 1 and � 2 given by (3.40) and[W0; Z0] = 0 .

3.4.3 Gauge Transformation

In order to carry out our stability analysis, we need to know the eigenvalues of the matri-

cesW0 and Z0, and so it is necessary to compute the characteristic polynomials of such

matrices. However, the expressions (3.70a) and (3.70b) make the computation of their

characteristic polynomials di�cult. For this reason, we introduce a gauge transformation

simplifyng the form of the polynomials that we will introduce in the next sections.

The matricesG, W0 andZ0 in (3.63) and (3.70) can be generalised as follows (see formulas

(D.7) in the Appendix D),

G =

0

B
B
B
@

ei (mqt � l� 1x� n� 2x) 0 0

0 ei (( m� 1)qt� (l � 1)� 1x� n� 2x) 0

0 0 ei (( m+1) qt� l� 1x� (n+1) � 2x)

1

C
C
C
A

; (3.71)
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or,

G = ei (mqt � (l� 1+ n� 2 )x)I e� i (qt� � 1x)� + ei (qt� � 2x)� � ; (3.72)

W0(� ; l; n ) =

0

B
B
B
@

� 1l + � 2n � is1a1 is1s2s3a2

� is1s2s3a1 � �c 2 + � 1(l � 1) + � 2n � is3a3

� is2a2 � is1s2s3a�
3 � �c 1 + � 1l + � 2(n + 1)

1

C
C
C
A

; (3.73)

Z0(� ; m) =

0

B
B
B
@

mq � is1c1a1 is1s2s3c2a2

� is1s2s3c1a1 � �c 1c2 + q(m � 1) 0

� is2c2a2 0 � �c 1c2 + q(m + 1)

1

C
C
C
A

; (3.74)

wherel , m and n are rational numbers.

They reduce to (3.65), (3.70a) and (3.70b) by settingm = 0 , l = 1
2 and n = � 1

2 .

Let us de�ne the gauge transformation

�G = Ge� i (mqt � (l� 1+ n� 2 )x)I ; (3.75)

such that,

� = �G �� = G� =  ; (3.76)

with �� = ei (mqt � (l� 1+ n� 2 )x)I � . The Lax pair becomes12

8
><

>:

� x = �X � ;

� t = �T � :
(3.77)

By combining the Lax pair (3.77) with (3.76), we get
8
><

>:

�� x = i �W �� ;

�� t = � i �Z �� :
(3.78)

On the other hand (Appendix G)
8
><

>:

� x = iW 0� ;

� t = � iZ 0� ;
(3.79)

12In this case, �X � X and �T � T .
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and therefore,

�W = W0 � (l� 1 + n� 2)I ; �Z = Z0 � mqI ; (3.80)

with l , n and m which are, in general, rational numbers.

By using the gauge transformations (3.75) and (3.80), by settingm = 0 , l = 1
2 , n = � 1

2

and multiplyingW by 2c1c2q, we shall work with the matrices

W = 2c1c2q

0

B
B
B
@

0 � is1a1 is1s2s3a2

� is1s2s3a1 � �c 2 � � 1 � is3a3

� is2a2 � is1s2s3a�
3 � �c 1 + � 2

1

C
C
C
A

; (3.81)

and

Z =

0

B
B
B
@

0 � is1c1a1 is1s2s3c2a2

� is1s2s3c1a1 � �c 1c2 � q 0

� is2c2a2 0 � �c 1c2 + q

1

C
C
C
A

: (3.82)

This choice will prove convenient in the light of the treatment illustrated in the next chapter.

3.4.4 Relations between the Transformed Lax Operators and the Di�er-

ences of their Eigenvalues

The matrix W is expressible as a polynomial of the matrixZ (Appendix H) as follows

W = ( c1 � c2)Z 2 � c1(� q � c1c2� )Z + c2(q � c1c2� )Z � (c1 � c2)(a2
2c2

2s1s3 � a2
1c2

1s2s3)I ;

(3.83)

and vice versa, the matrixZ as function of the matrixW (Appendix H) is

Z
�

a2
2s1s3(c1 � c2)

2c1q
�

a2
1s2s3(c1 � c2)

2c2q
�

(c2 + c1)q
c1c2(c1 � c2)

+ �
�

=
W 2

4c2
1c2

2q2 �

�
W

2c1c2q

�
a2

1s2s3c1(c1 � c2)
2c2q

�
a2

2s1s3c2(c1 � c2)
2c1q

+
q(c1 � c2)

c1c2
� (c1 + c2)� +

2q
c1 � c2

�
�

� (a2
2s1s3 � a2

1s2s3)I :

(3.84)

In addition, if wj and zj , j = 1 ; 2; 3 are the eigenvalues ofW and Z , respectively, then

wj = ( c1� c2)z2
j � c1(� q� c1c2� )zj + c2(q� c1c2� )zj � (c1� c2)(a2

2c2
2s1s3� a2

1c2
1s2s3); j = 1 ; 2; 3;
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(3.85)

and

zj

�
a2

2s1s3(c1 � c2)
2c1q

�
a2

1s2s3(c1 � c2)
2c2q

�
(c2 + c1)q

c1c2(c1 � c2)
+ �

�
=

w2
j

4c2
1c2

2q2 �

�
wj

2c1c2q

�
a2

1s2s3c1(c1 � c2)
2c2q

�
a2

2s1s3c2(c1 � c2)
2c1q

+
q(c1 � c2)

c1c2
� (c1 + c2)� +

2q
c1 � c2

�
�

� (a2
2s1s3 � a2

1s2s3); j = 1 ; 2; 3;

(3.86)

hence, the di�erences of the eigenvalues ofW are (Appendix I)

wj � wj +1 = ( zj � zj +1 )(c1 � c2)
�

� zj +2 � c1c2� + q
c1 + c2

c1 � c2

�
; j = 1 ; 2; 3; mod(3):

(3.87)

and the di�erences between the eigenvalues ofZ are (Appendix I)

(zj � zj +1 )
�

2a2
2s1s3c2(c1 � c2) � 2a2

1s2s3c1(c1 � c2) � 2q2 (c2 + c1)
(c1 � c2)

+ 2c1c2q�
�

=

= � (wj � wj +1 )
�

wj +2

2c1c2q
+

2q
c1 � c2

�
:

(3.88)

3.4.5 Characteristic Polynomials and Rescaled Di�erences of the Eigenval-

ues

Although in the previous sections we use some transformations to greatly simplify the

Lax operators and the Lax pair, the characteristic polynomials are still hard to handle.

However, we can do some further substitutions to obtain a more elegant expression of the

characteristic polynomials.

First of all, we can rescale some parameters byq. Once the characteristic polynomials of

W and Z are denoted with~PW ( ~w; � ) and ~PZ (~z; � ), respectively, then the amplitudes, the

unknowns ~w and ~z, and the spectral parameter can be rescaled as follows:

a1 = q� 1; a2 = q� 2 ; (3.89a)

~w = q2w; ~z = qz; (3.89b)
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� =
q�

c1c2
: (3.89c)

At this point, we rename the characteristic polynomials

PW (w; � ) = �
~P(w; � )

q6 ; PZ (z; � ) = �
~P(z; � )

q3 : (3.90)

The coe�cients of these characteristic polynomials are expressions of the rescaled ampli-

tudes to the second and to the fourth and we bene�t from further substitutions,

p1 =
c2

1s1� 2
1 + c2

2s2� 2
2

s1s2s3
; p2 =

c2
1s1� 2

1 � c2
2s2� 2

2

s1s2s3
; (3.91)

and combinations of the velocities

c1 � c2

c1 + c2
= p3; c1 + c2 = p4; p4 6= 0 : (3.92)

We highlight that later in our analysis we will consider also the limiting casep3 ! 1 (that

is p4 ! 0).

The computations of the characteristic polynomials after the substitutions above show that,

after multiplying the variablew by a factor p4, we can rescale once more the polynomial

PW (w; � ) by a factorp3
4. Finally, the characteristic polynomials become

PW (w; � ) = w3 + [2 � � p3(2 + p2)] w2+

+
�
p2(1 + 2p2

3 � p3� ) + p1p3(� 3 + p3� ) � (p2
3 � 1)(� 2 � 1)

�
w+

+ [ p2(� � p3(� 1 + p2 + p3(p3 + � )))] � p2
1p3

3+

+ p1
�
� 1 + p3(p3 + 2p2p3 � � + p2

3� )
�

;

(3.93)

and

PZ (z; � ) = z3 + 2 �z 2 + ( � 2 + p2 � 1)z + p2� � p1: (3.94)

Moreover, by setting the substitutions above, we rewrite the formulas (3.83) and (3.84)

respectively as follows

W = p3Z 2 + q(1 + p3� )Z + p3p2q2; (3.95)

and

Z = �
p3

1 � p3
�
� + p2

3(p1 � � ) � p2p3 + p3
� W 2 +

�
p2p2

3 � 2�p 2
3 + p2

3 + 1
�

1 � p3
�
� + p2

3(p1 � � ) � p2p3 + p3
� W +

+
2p1p2

3 � p2p3
3 � p2p3

1 � p3
�
� + p2

3(p1 � � ) � p2p3 + p3
� ;
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(3.96)

hence, the di�erences between the eigenvalues become

wj � wj +1 = ( zj � zj +1 ) [( � p3zj +2 + q(1 � �p 3))] ; (3.97)

for j = 1 ; 2; 3, mod(3), and

zj � zj +1 =

�
(w1 � w2)

�
p3

�
� p3(� 2� + p2 + 1) + p4q2((p2 + 2) p3 � 2� ) � w3

�
� 1

�

1 � p3
�
� + p2

3(p1 � � ) � p2p3 + p3
� ;

(3.98)

for j = 1 ; 2; 3; mod(3). Furthermore, we give some useful formulas. Because the trace is

invariant under cyclic permutations, the eigenvalueswj andzj satisfy the following relations

w1 + w2 + w3 = ((2 + p2)p3 � 2� ); (3.99)

z1 + z2 + z3 = � 2�; (3.100)

with p4 = c1 + c2, and by the computation of the determinant of the matricesW and Z ,

we get

z1z2z3 = p1 � �p 2; (3.101)

w1w2w3 = p2
1p3

3 � p1
�
p3

�
� � + 2p2p3 + �p 2

3 + p3
�

� 1
�
+ p2

�
p2p3 +

�
p2

3 � 1
�

(� + p3)
�

:

(3.102)

Obviously, the formulas above are satis�ed for both complex and real� .

Because a solution of the linearised equation can be expressed as combination of the ex-

ponentialsei (x(wj � wj +1 )� t (zj � zj +1 )) [64], we have completed the preliminary calculations in

order to prepare the work for the stability analysis.



Chapter 4

Spectra and Linear Instabilities of

the 3WRI Equations

In this Chapter we will follow the theory for multi-component systems provided in Chapter

2 and we will use all the preliminary computations carried out in Chapter 3.

We provide the de�nition ofSx -spectrum as composed by the values of the spectral pa-

rameter � which are the roots of the polynomialP(�; � ) of the squares of the di�erences

� = ( w1 � w2)2. The analysis of the nature of the� -roots allows us to obtain a full topolog-

ical classi�cation of the stability spectra in the parameters space. Using a numerical routine

implemented in MATLAB R2017a, for any generic choice of the physical parameters, we

plot the stability spectrum and its associated gain function (see de�nition below). The fact

that this function is always di�erent from zero indicates that linear instability occurs for

any generic choice of the parametersp1, p2 and p3.

4.1 Spatial and Temporal Stability Spectra

Given the real parametersp1, p2 and p3 (see formulas (3.91) and (3.92)), we are interested

in �nding the values of the complex spectral parameter� such that the plane waves are

bounded in space and see if they are linearly stable or unstable in time. In other words, let

wj be the eigenvalues of the matrixW and zj the eigenvalues ofZ ; them we aim to search
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those values of the spectral parameter� corresponding to real di�erenceskj = wj +1 � wj +2 ,

whereas the di�erences! j = zj +1 � zj +2 can be real or complex. This latter point can be

understood for the di�erenceskj are linked to the di�erences! j by the formula

kj = ! j (� p3zj + q(1 � �p 3)) ; j = 1 ; 2; 3: (4.1)

Therefore, values of the spectral parameter� corresponding to realkj may correspond to

complex! j and so linear instability may occur.

In the following, we will refer to the eigenvaluesw (resp. z) of the matrix W (resp. Z )

also asw-roots (resp.z-roots) of the characteristic polynomialPW (w; � ) (resp. PZ (z; � )),

namely, the polynomial roots of the equationPW (w; � ) = 0 (resp. PZ (z; � ) = 0 ), solved

with respect tow (resp. z). From here on, we �xq = 1 , without loss of generality, because

of the Galileian invariance (Chapter 3).

De�nition 4.1.1. The spatial stability spectrumSx for the plane wave solutions of the

3WRI system (3.5), is de�ned as the locus of the� -plane identi�ed with C such that,

for �xed values of the physical parametersp1, p2 and p3, the characteristic polynomial

PW (w; � ), admits at least twow-roots such that their di�erence is a real number, namely,

the set of the spectral parameter� for which there exist at least two eigenvaluesw` and

wm for the matrix W , for some` and m, for which (w` � wm ) 2 R.

De�nition 4.1.2. The temporal stability spectrumSt for the plane wave solutions of the

3WRI system (3.5), is de�ned as the locus of the� -plane identi�ed with C such that, for

�xed values of the physical parametersp1, p2 andp3, the characteristic polynomialPZ (z; � )

admits at least twoz-roots such that their di�erence is a real number, namely, the set of

values of the spectral parameter� such that there exist at least two eigenvaluesz` and zm

for the matrix Z , for some` and m, for which (z` � zm ) 2 R.

In the following, we give the de�nition of the components of the stability spectrumSx .

De�nition 4.1.3. Real values of the spectral parameter� , not belonging toSx constitute

a gap (G). A gap, including a single isolated real point within its real endpoints, will be

renamed assplit gap(SG).

Complex values of the spectral parameter� , belonging toSx correspond tobranches(B)

and loops(L), which are open and closed curves, respectively. Figure of eight loops, self-

intersecting on the real axis, will be referred to astwisted loops(TL).
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Once the parameterp3 is �xed, the topological classi�cation of the spacial stability spectra

Sx in the (p1; p2) parameters space, can be obtained by means of the algebraic-geometric

procedure described in the next sections1.

4.1.1 Polynomials of the Squares of the Di�erences

Let us write the characteristic polynomials (3.93) and (3.94) in a general form

PW (w; � ) � PW (w; � ; p1; p2; p3) =
3X

j =0

a(W )
j wj =

3Y

j =1

(w � wj ); a(W )
3 = 1 ; (4.2a)

PZ (z; � ) � PZ (z; � ; p1; p2; p3) =
3X

j =0

a(Z )
j zj =

3Y

j =1

(z � zj ); a(Z )
3 = 1 : (4.2b)

By combinations of the coe�cientsf a(W )
j g3

j =0 , we construct the coe�cients of the poly-

nomialPW (� ; � ) � P W (� ; � ; p1; p2; p3) of degree3 in the variable� , whose� -roots are the

squares of all the possible di�erences of the roots of the polynomialPW (w; � ) (Appendix

J),

PW (� ; � ) � P W (� ; � ; p1; p2; p3) =
3Y

j;h =1
j<h

�
� � (wj � wh)2�

; (4.3)

that is a 2-variate polynomial in� and� . For the sake of simplicity, we will refer toPW (� ; � )

as thepolynomial of the squares of the di�erences. A � -root (resp. � -root) of PW (� ; � ) is

a polynomial root of the equationPW (� ; � ) = 0 , solved with respect to� (resp. � ).

For any �xed p1, p2 and p3 parameters, the spectrumSx is the locus of the� -roots of

PW (� ; � ) for all � 2 R, � � 0. In other words, the spatial spectrumSx can be seen as a

one-parameter algebraic variety over the complex numbers, and it is de�ned as

Sx = f � 2 C j PW (� ; � ) = 0 ; � 2 R; � � 0g : (4.4)

Similarly, by combinations of the coe�cientsf a(Z )
j g3

j =0 , we can construct the coe�cients

of the polynomialPZ (� ; � ) = P(� ; � ; p1; p2; p3), that is a polynomial of degree3 in the

1An analogous procedure can be implemented for deriving the temporal stability spectraSt , starting

from Z instead ofW .
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variable� and whose� -roots are the squares of the di�erences of the roots of the polynomial

PZ (z; � ) (Appendix J),

PZ (� ; � ) � P Z (� ; � ; p1; p2; p3) =
3Y

j;h =1
j 6= h

�
� � (zj � zh)2�

; (4.5)

that is a2-variate polynomial in� and� . A � -root (resp. � -root) of PZ (� ; � ) is a polynomial

root of the equationPZ (� ; � ) = 0 , solved with respect to� (resp. � ).

For any �xed p1, p2 and p3 parameters, the temporal spectrumSt is the locus of the� -

roots of PZ (� ; � ) for all � 2 R, � � 0. In other words, the spectrumSt can be seen as the

one-parameter algebraic variety over the complex numbers, and it is de�ned as

St = f � 2 C j PZ (� ; � ) = 0 ; � 2 R; � � 0g : (4.6)

4.2 Real Spectrum

In this section we take into account only real� -roots. By bearing in mind this assumption,

and becauseP(w; � ) is a cubic polynomial, the existence of a realw-root implies that the

other two w-roots are real too, otherwise there are two complex conjugatew-roots and a

w-real root. Therefore, in the �rst case the di�erenceskj are all real and the corresponding

� values belong to the spectrumSx . In the second case, they are all complex and� values

belong to agap.

By denoting by� y(P(y)) the discriminant with respect toy of the polynomialP(y), we

observe that the polynomial of the squares of the di�erencesPW (0; � ) (resp. PZ (0; � ))

is equal to the discriminant with respect tow (resp. z) of the characteristic polynomial

PW (w; � ) (resp. PZ (z; � )) with the opposite sign,

PW (0; � ) = � � w(PW (w; � )) ; PZ (0; � ) = � � z(PZ (z; � )) ; (4.7)

and they are related as follows

PW (0; � ) = PZ (0; � )R 2(� ); (4.8)

where

�P Z (0; � ) = 4 � 4 � 27p2
1 � 4� 3p1+18�p 1(p2+2)+ � 2((p2 � 20)p2 � 8)� 4(p2 � 1)3; (4.9)
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and

R(� ) =
�
p3

�
� + p2

3(p1 � � ) � p2p3 + p3
�

� 1
�

: (4.10)

Since we imposekj to be real, we consider onlyPW (0; � ) � 0.

Indeed, by assumingR(� ) 6= 0 , PZ (0; � ) � 0 if and only ifPW (0; � ) � 0, that is, by (4.8),

if PZ (0; � ) is negative or zero, thenPW (0; � ) is like that, and vice versa.

There is also the limiting caseR(� ) = 0 , satis�ed for

� =
p2

3(p1p3 � p2 + 1) � 1
p3

�
p2

3 � 1
� ; (4.11)

for which PW (0; � ) = 0 , but PZ (0; � ) can be zero, positive or negative. In the following

proposition we prove that only the real part ofSx contributes to the stability, namely that,

if Sx has an o�-real component, then the solution is expected to be unstable.

Proposition 4.2.1. For a generic choice of the physical parameters, the plane wave solution

of the 3WRI system is stable against perturbations�Q integrated only over values of� in

Sx strictly real, with the exception of the point separating a split gap.

Proof. Let us suppose� 2 R, so that wj and zj are roots of third degree polynomials with

real coe�cients. As a consequence, the characteristic polynomials can have: three real and

distinct w-roots; or a real triplew-root; or a w-real double root and a real simplew-root

or two complex conjugatew-roots and a realw-root. We impose thatwj � wj +1 be real2,

thus we exclude the case in which the characteristic polynomialP(w; � ) has two complex

conjugatew-roots and a realw-root.

Let us assumeR(� ) 6= 0 and letwj be real and all distinct, i.e.PW (0; � ) < 0. Thus, since

p4 2 R, all the di�erenceswj � wj +1 are also real and all distinct

wj � wj +1 = ( zj � zj +1 )( � zj +2 p3 � �p 3 + 1) ; j = 1 ; 2; 3; mod(3); (4.12)

and then the product(zj � zj +1 )( � zj +2 p3 � �p 3+1) is real too. For� 2 R, we cannot have

(zj � zj +1 ) 2 C and (� zj +2 p3 � �p 3 + 1) 2 C so that (zj � zj +1 )( � zj +2 p3 � �p 3 + 1) 2 R

because, by the relation (4.8), we would havePZ (0; � ) > 0, and soPW (0; � ) > 0, in contra-

diction with the hypothesis. Instead, we can have(zj � zj +1 ) 2 R and(� zj +2 p3� �p 3+1) 2

2Sincewj are roots of a third degree polynomial with real coe�cients, then the requerement to have at

least a real di�erence implies that all the di�erenceswj � wj +1 are real too.
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R, so that their product is real, and thenwj � wj +1 2 R, 8j = 1 ; 2; 3.

Moreover, we remind that if also only two roots coincide, thenPZ (0; � ) = 0 , and this

condition pushesPW (0; � ) = 0 to vanish, but we are imposingPW (0; � ) to be strictly

positive.

Therefore we conclude that if� 2 R and R(� ) 6= 0 , then PW (0; � ) < 0 if and only if

PZ (0; � ) < 0.

Let us supposePW (0; � ) = 0 andP(w; � ) has a double real root and a simple real root. For

the sake of simplicity, we imposew1 = w2, while w3 is di�erent from the other two. From

the formula (4.12) and by consideringp3 6= 0 , we distinguish three cases corresponding to

all the possibilities for which we havew1 � w2 = 0 :

1. z1 � z2 = 0 and � z3p3 � �p 3 + 1 = 0 , (PZ (0; � ) = 0 and R(� ) = 0 );

2. z1 � z2 = 0 and � z3p3 � �p 3 + 1 6= 0 , (PZ (0; � ) = 0 and R(� ) 6= 0 );

3. z1 � z2 6= 0 and � z3p3 � �p 3 + 1 = 0 , (PZ (0; � ) 6= 0 and R(� ) = 0 ).

In the following we shall discuss the reverse arguments: starting from the hypothesis 1.,

2., and 3., we show thatw1 = w2, and thew-roots are all real, i.e. ifPZ (0; � ) = 0 , then

PW (0; � ) = 0 .

1. If z1 = z2, then z1 and z2 are real, thenz3 is necessarily real, and for this particular case

we get

z3 =
1
p3

� �; (4.13)

and by (3.100)

z1 = z2 = �
1
2

�
1
p3

+ �
�

: (4.14)

Moreover,

z2 � z3 = �
1
2

�
3
p3

� �
�

; z3 � z1 =
1
2

�
3
p3

� �
�

; (4.15)

so that

z1 � z2 = 0 ; (z2 � z3) = � (z3 � z1): (4.16)
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By keeping in mind formulas (4.13) and (4.12), we compute the di�erenceswj � wj +1 and

get

w1 � w2 = 0 ; w2 � w3 = � (w3 � w1) = �
p4

2

�
3
p3

� �
�

(� z1p3 � �p 3 + 1) ; (4.17)

all real, because all the parameters involved and all the threezj are real.

Thus, we conclude thatPZ (0; � ) = 0 impliesPW (0; � ) = 0 .

Furthermore, the characteristic polynomialP(z3; � ) becomes proportional toR(� ),

P(z3; � ) =
1 � p3

�
� + p2

3(p1 � � ) � p2p3 + p3
�

p3
3

= �
1
p3

3
R(� ): (4.18)

This implies that, if z3 = 1
p3

� � is a zero of the characteristic polynomialP(z; � ), then

R(� ) = 0 and � has the expression (4.11). The reverse argument is also true: ifR(� ) = 0 ,

then z3 = 1
p3

� � is a zero of the characteristic polynomialP(z; � ).

2. We assumez1 = z2 and z1 and z2 are both real. As a consequencez3 is real, but we

impose thatz3 does not satisfy the formula (4.13) any more. Nevertheless, by the formulas

(3.100) and (3.101), we have that

2z3
j + 2 �z 2

j + (1 � � )p2 = 0 ; zj = z1 = z2; (4.19)

and oncezj is obtained3 , we can use (3.100) to getz3 = � 2(zj + � ). Therefore, the

relations (4.17) and (4.16) are still satis�ed, indeed

z1 = z2; z3 � z1 = � (z2 � z3) = � (3zj + 2 � ); zj = z1 = z2; (4.20)

and then,

w1 = w2; w2 � w3 = � (w3 � w1) = (3 zj +2 � )( � p3zj � p3� +1) ; zj = z1 = z2; (4.21)

and all the three di�erences(wj � wj +1 ) are real. Even for this casePZ (0; � ) = 0 implies

PW (0; � ) = 0 . In this caseR(� ) is di�erent from zero.

3. Let us consider the most general case in which all the threezj are di�erent from one

another. PW (0; � ) = 0 whenR(� ) = 0 . We identify two sub-cases:

3It is not the aim of our analysis to �nd the explicit expression of the solutionszj = z1 = z2 .
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3a) PZ (0; � ) < 0, and the characteristic polynomialP(z; � ) has three realz-roots all

distinct;

3b) PZ (0; � ) > 0, and the characteristic polynomialP(z; � ) has two complex conjugate

z-roots and a realz-root.

Furthermore, sinceR(� ) = 0 , then PW (0; � ) = 0 , andP(w; � ) has a) a real doublew-root

and a simplew-root or b) a triple realw-root.

3a) Let us supposezj are all di�erent, but z3 = 1
p3

� � . By substituting � = 1
p3

� z3, into

the other two di�erencesw2 � w3 and w3 � w1, we get

w2 � w3 = � p3(z2 � z3)(z1 � z3); w3 � w1 = p3(z2 � z3)(z1 � z3); (4.22)

that is

w2 � w3 = � (w3 � w1); (4.23)

and in addition

w1 � w2 = 0 : (4.24)

However, this case is impossible. Indeed, by using the formula (4.22) and matching the two

formulas

w2 � w3 = ( z2 � z3)( � p3z1 � p3� + 1) ; (4.25)

w3 � w1 = ( z3 � z1)( � p3z2 � p3� + 1) ; (4.26)

via (4.23), we get the equation

(z2 � z3)( � p3z1 � p3� + 1) = ( z1 � z3)( � p3z2 � p3� + 1) ; (4.27)

that is satis�ed forz1 = z2. However, this is a contradiction to the hypothesisPZ (0; � ) < 0.

Thus, we can not havePZ (0; � ) < 0, and instead we havePZ (0; � ) = 0 . Note that because

of the formula (4.8), we haveR(� ) = 0 .
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The case b) is impossible. Indeed, becausew1 = w2 = w3 has to be veri�ed, we need to

imposez1 = z2 = z3 = 1
p3

� � , that is a contradiction to the hypothesisPZ (0; � ) < 0.

3b) If PZ (0; � ) > 0, the characteristic polynomialP(z; � ) has two complex conjugate

roots, say,z1 and z2, and a real rootz3. In order the case a) to be veri�ed, the relation

z3 = 1
p3

� � has to be satis�ed. We can not have(� zj p3 � �p 3 + 1) = 0 , for j = 1 ; 2,

because this equation would be satis�ed only forz-roots all real, but we are in the hypothesis

PZ (0; � ) > 0. We note that, sinceRe(z1) = Re( z2) and Im( z1) = � Im( z2), then z2 � z3

and z3 � z1 are complex with the same imaginary part andz1 � z2 = 2 i Im( z1). Moreover,

becausew2 � w3 = � (w3 � w1) = � p3(z1 � z3)(z2 � z3), the di�erencesw2 � w3 and

w3 � w1 are real, in particular

w2 � w3 = � (w3 � w1) = � p3
�
(Re(zj ) � z3)2 + (Im( zj ))2�

; zj = z1 = z2; (4.28)

and we have that ifp3p4 > 0, then w2 � w3 < 0 < w 3 � w1, and if p3p4 < 0, then

w3 � w1 < 0 < w 2 � w3.

Moreover,z3 coincides with the solution ofR(� ) and the formula (4.18) is still satis�ed.

The case b) is impossible because, since we require a priori that all the rootszj must be

di�erent from each other, we have to impose(� zj p3 � �p 3 + 1) = 0 , 8j = 1 ; 2; 3 in order

to have all the threewj coinciding and real, which gives us allzj coinciding and real, but

this is a contradiction to the hypothesisPZ (0; � ) > 0.

Let us supposeP(w; � ) has a triple real root, that isPW (0; � ) = 0 . We distinguish two

cases:

1. z1 = z2 = z3, but � p3zj � p3� + 1 6= 0 , (PZ (0; � ) = 0 and R(� ) 6= 0 );

2. z1 = z2 = z3, and � p3zj � p3� + 1 = 0 , (PZ (0; � ) = 0 and R(� ) = 0 ).

All the cases above are trivial to show, but in the case 2., we have that, by making the

sum of all the threezj solutions of the equation� p3zj � p3� + 1 = 0 , 8j = 1 ; 2; 3, we get

z1 + z2 + z3 = 3
�

1
p3

� �
�

with p3 6= 0 , in contrast with the trace (3.100), unless� = 3
p3

.

Finally, we conclude that ifR(� ) = 0 and PZ (0; � ) > 0, then PW (0; � ) = 0 and P(w; � )
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has a double real root and a simple real root.

If PZ (0; � ) > 0, we have that all the three real di�erenceswj � wj +1 correspond to the

three di�erenceszj � zj +1 , all complex.

On the other hand, let us assume now that� is complex,� = � + i� , with nonvanishing

imaginary part,� 6= 0 . Let wj = � j + i� j be the (generically complex) roots ofPW (w; � ).

With this notation, we have that one of the wave numbers, sayk3 = w1 � w2, will be real

only if � 1 = � 2 = � . Then, from (3.98) , we have that! 3 = z1 � z2 will also be real only

if the following equation is satis�ed:

� � 3
�
� 1 + p3(p3 � p2p3 + p2

3(p1 � � ) + � ])
�

+
�
� 1 + p2

3

� �
� 1 + p2

3 � p3� 3
�

�: (4.29)

Writing the polynomialPW (w; � ) asPW (w; � ) =
Q 3

j =1 (w � � j � i � j ), and comparing the

real and imaginary parts of the coe�cients of same powers ofw from this expression with

those obtained from (3.93), we get, in addition to equation (4.29), six further polynomial

equations, constituting overall a system of seven polynomial equations for the seven un-

knowns� 1, � 2, � 3, � , � 3, � , � , each equation being of degree1, 2 or 3 in the unknowns:

p2
2p3 + p2

1p3
3 � � 1� 2� 3 + � 3� 2 + � 1�� 3 + � 2�� 3 + p2(� 1 + p2

3)(p3 + � )�

� p1(� 1 + p3(p3 + 2p2p3 � � + p2
3� )) ;

(4.30a)

� (� 1 + � 2)� 3� + ( � � 1� 2 + � 2)� 3 + ( p2 � p1p3)( � 1 + p2
3)�; (4.30b)

1 + � 1� 2 + ( � 1 + � 2)� 3 � � (� + 2 � 3) � � ]2 + p1p3(3 � p3� )+

p2(� 1 + p3(� 2p3 + � ])) + � ]2 + p2
3(� 1 + � 2 � � 2);

(4.30c)

(� 1 + � 2 + 2 � 3)� + ( � 1 + � 2)� 3 + ( � 2� + p3(p2 � p1p3 + 2p3� )) �; (4.30d)

(2 + p2)p3 � � 1 � � 2 � � 3 � 2�; (4.30e)

� 2� � � 3 � 2�: (4.30f)
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Using an algebraic manipulation software (like Mathematica or Maple), after a long and

tedious work (we apply the method developed in [65]), one shows that, for agenericchoice

of the parametersp1, p2 andp3, system (4.30) either does not have real solutions or features

at most 72 complex solutions. This excludes, for a generic choice of the parametersp1,

p2 and p3, that there exist sets of non-vanishing measure o� the real axis on the� -plane

for which z1 and z2 generate a real di�erence whenw1 and w2 generate a real di�erence,

namely for which either side of (3.98) is real. As the set of exceptional complex values of�

for which either side of (3.98) is real has generically at most vanishing measure, it does not

contribute to the integral in (2.79); therefore, for a generic choice of the parametersp1,

p2, and p3, the plane wave solution is stable against the perturbation�Q integrated only

over values of� in Sx strictly real, with the exception of the isolated points in the split

gaps. The discussion of the non-generic choices of the parametersp1, p2 and p3, possibly

allowing a set of non-vanishing measure o� the real axis on the� -plane providing a stable

contribution to the integral of the perturbation, is left to future investigation.

We stress that for both the cases 1. and 2., ifP(z; � ) has a double real root and a simple

real root, then it is the same also forP(w; � ).

Whatever the labelling is, we have always three real di�erenceswj � wj +1 . Moreover,

the relationszj � zj +1 = 0 and zj +1 � zj +2 = � (zj +3 � zj ) imply wj � wj +1 = 0 and

wj +1 � wj +2 = � (wj +3 � wj ) for j = 1 ; 2; 3, mod(3). In particular, one can prove that,

for real � , there is anorder relationfor the di�erenceszj � zj +1 and wj � wj +1 , and there

exist a bijective relation between the two orderings of the di�erences, but this argument

will not be discussed in this thesis.

4.2.1 Gaps and Branches

In this section we give a topological description of the components of the spectrumSx

which are referred to as gaps and branches. We impose that the eigenvalues ofW are

non-simple and we take into account the polynomialPW (0; � ) and its relation with the

polynomialPZ (0; � ) given by (4.8). In fact, as discussed in the previous section, by (4.8),

the eigenvalueswj are non-simple if and only if the eigenvalueszj are non-simple, with the
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exception of a point on the real axis of theSx spectrum4. Thus, one can study �rst the

discriminant with respect to� of PZ (0; � ) to get the main structure of theSx spectrum5,

but then one needs to introduce a resultant, which will be de�ned later, to know for which

values of the physical parameters a split-gap occurs. Therefore, it is useful to introduce the

discriminant� � PZ (0; � ) which can be factorised as

� � PZ (0; � ) =
Y

j

D j (p1; p2)dj ; 8p3 2 R; (4.31)

and the resultantRes� (PZ (0; � ); R(� )) which can be factorised as

Res� (PZ (0; � ); R(� )) =
Y

j

Rj (p1; p2; p3)r j : (4.32)

Let D j be the real-analytic variety in the parameter space(p1; p2), implicitly de�ned as

D j = f p1; p2; p3 2 R : D j (p1; p2) = 0 ; Rj (p1; p2; p3) = 0 g: (4.33)

Once the value of the parameterp3 is �xed, a �rst topological classi�cation of the possible

curves in the� -plane in terms of the choices of the parameters(p1; p2) can be made by

observing the nature of the� -roots for which the matrixZ (resp. W ) has non-simple

eigenvalues. This corresponds to analysing the sign of (4.31). By imposing (4.31) to be

negative, we obtain a set of regions in the(p1; p2)-plane in whichZ (resp. W ) is not

diagonalisable for two real values of� and for a pair of complex conjugate values of� .

This values of� identify the end-points of a gap and of a branch, respectively. On the

contrary, if (4.31) is positive, we obtain regions in the(p1; p2)-plane in whichZ (resp. W )

is not diagonalisable either for four real values of� corresponding to the end-points of two

gaps, or for two pairs of complex conjugate values of� corresponding to the end-points of

two branches. In addition, besides the� -roots of the polynomialPZ (0; � ), the polynomial

PW (0; � ) has also one real double� -root, that is the � -root of the polynomialR(� ). The

value of this� -root depends on the parametersp1, p2 and p3, and so it varies aspj vary,

and it varies in the(p1; p2)-plane once the value ofp3 is �xed. Interestingly, we have found

that also the sign of the resultant (4.32) is relevant for the classi�cation of gaps and it is

a determining factor for de�ning the so calledsplit-gap. In particular, a split-gap exists in
4We can have at most one split-gap. This is a consequence of the formula (4.8), in whichR (� ) is a �rst

degree polynomial in� , and the only root gives the point between the two endpoints of a gap.
5One observes that the discriminant with respect to� of PW (0; � ) is always zero because the polynomial

PW (0; � ) has a double real� -root for any choice of the parameterspj .
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the regions of the(p1; p2)-plane for which the resultant is negative (see below).

Finally, the curves de�ned by (4.33) are the boundaries of the regions in the(p1; p2)-plane

associated to di�erent topologies of the spectraSx .

In order to de�ne the number of gaps and branches, we compute the discriminant� z(P(z; � )) =

�P Z (0; � ), that is a polynomial in� , with parametersp1, p2, and p3. The polynomial

PZ (0; � ) is negative whenever the three rootszj are real, and it is positive if only one root

zj is real. As a consequence, for �xed values ofp1, p2, and p3, the polynomialPZ (0; � )

is positive (resp. negative) for those values of� inside (resp. outside) the gap, and they

become zero at the end-points of gaps. Gaps and branches appear or disappear at the

multiple-zeros of the polynomialPZ (0; � ) (as discussed more in details later), thus at the

zeros of the discriminant6 � � PZ (0; � ), namely when

� � PZ (0; � ) = � 256(p1 � p2)(p1 + p2)
�
27p2

1 � (p2 � 1)(p2 + 8) 2� 3
= 0 : (4.34)

The three polynomial factors appearing in (4.34) bound the regions in the(p1; p2)-plane

characterised by di�erent numbers of gaps and branches. We denote such curves as follows

D1 = f (p1; p2) 2 R2 : p1 � p2 = 0g; (4.35)

D2 = f (p1; p2) 2 R2 : p1 + p2 = 0g; (4.36)

D3 = f (p1; p2) 2 R2 :
�
27p2

1 � (p2 � 1)(p2 + 8) 2� 3
= 0g: (4.37)

On the curves (4.35)-(4.37), two real values of� -roots collide by closing a gap, or they

separate by opening a gap. Whenever two real� -roots collide to close a gap, they become

two complex conjugate roots, and so they identify the end-points of a gap. Vice versa, if

two complex conjugate� -roots become two real� -roots, we expect that a gap appears. As

a result, the(p1; p2)-plane is divided in domains identi�ed by di�erent number of gaps and

branches.

Proposition 4.2.2. The Sx -spectrum has the gaps and branches structure described in
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Table 4.1: Gaps and branches structure.

Regions in the(p1; p2)-plane # G # B � -roots of Pz (0; � )

0 < p 2 < 
 \ � p2 < p 1 < p 2 2G 0B 4 distinct and real


 < p 2 < p 1 \ 
 < p 1 2G 0B 4 distinct and real


 < p 2 < � p1 \ 
 < � p1 2G 0B 4 distinct and real

p2 > 
 \ � p2 < p 1 < p 2 1G 1B 2 distinct and real,2 complex conjugate

p1 < p 2 < � p1 \ p1 < 0 1G 1B 2 distinct and real,2 complex conjugate

� p1 < p 2 < p 1 \ p1 > 0 1G 1B 2 distinct and real,2 complex conjugate

p2 < 0 \ p2 < p 1 < � p2 0G 2B 2 pairs of complex conjugate roots

table 4.1. where the polynomial
 is de�ned as


 = 27p2
1 � (p2 � 1)(p2 + 8) 2; (4.38)

and the intervals in the parameter space are written in implicit form.

The classi�cation of gaps and branches in the(p1; p2)-plane has been obtained by studying

simultaneously the sign of the discriminant� � (PZ (0; � )) and the signs of the following

polynomials [117]

� 01 = 8a2a4 � 3a2
3; (4.39a)

� 02 = 64a0a3
4 � 16a1a3a2

4 � 16a2
2a2

4 + 16a2a2
3a4 � 3a4

3; (4.39b)

� 03 = 8a1a2
4 � 4a2a3a4 + a3

3; (4.39c)

� 04 = 12a0a4 � 3a1a3 + a2
2; (4.39d)

6Note that the discriminant w.r.t. � of both the discriminant� z (P (z; � )) and of the polynomialPZ (0; � )

is actually the same, although� z (P (z; � )) and PZ (0; � ) have opposite signs.
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whereaj are the coe�cients of 7

PZ (0; � ) = a4� 4 + a3� 3 + a2� 2 + a1� + a0: (4.40)

Let us identify, case by case, the conditions on the polynomials (4.39a)-(4.39d) and on the

discriminant� � (PZ (0; � )) within the regions in the(p1; p2)-plane [117].

� By imposing� � PZ (0; � ) > 0, � 01 < 0 and � 02 < 0, we have4 distinct real � -roots

which identify the four end-points of2 gaps and0 branches.

� When � � PZ (0; � ) < 0, we have2 distinct real � -roots and 2 complex conjugate

� -roots. In this case we have1 gap and1 branch.

� The conditions to obtain the regions in the(p1; p2)-plane corresponding two pairs of

complex conjugate roots, are

1. � � PZ (0; � ) > 0, � 01 > 0 and � 02 > 0;

2. � � PZ (0; � ) > 0, � 01 < 0 and � 02 > � 2
01
4 ;

3. � � PZ (0; � ) > 0, � 01 > 0 and � 02 < 0.

Thus, we have0 gaps and2 branches.

� The condition to have4 real roots all coincident, that is� � PZ (0; � ) = 0 , � 04 = 0

and � 02 = 0 , is never satis�ed.

� There are some extreme points of gaps domains. Indeed, the condition� � PZ (0; � ) =

0 and � 04 = 0 is veri�ed at the points(4; 4) and (� 4; 4) for which we have a triple

real root and a simple real root, thus we have1 gap. The condition� � � zP(z) = 0 ,

� 02 = 0 and� 01 < 0 is veri�ed only at the point(0; 0) for which we have two double

real roots and1 gap.

� Furthermore, there are some exceptional points for which, although they are corre-

sponding to0 gaps, the nature of the roots is di�erent from that in their neighbour-

hood. In more detail, we have two pairs of complex conjugate� -roots at the point
7Strictly speaking, we should have written

�P Z (0; � ) = a4 � 4 + a3 � 3 + a2 � 2 + a1 � + a0 ;

but the sign on front of the polynomial PZ (0; � ) is completely irrelevant after the computation of the

discriminant w.r.t. � .
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(0; � 8), that is when� � PZ (0; � ) = 0 and � 02 > 0, or a real double root and two

complex conjugate roots for 1)� � PZ (0; � ) = 0 and � 02 > 0, or 2) � � PZ (0; � ) = 0 ,

� 01 > 0 and � 03 6= 0 , and the corresponding domains belonging to the curvesD1

and D2, and they are:

� 8 + 4
p

3 < p 2 < 0; f p1 = p2 [ p1 = � p2g; (4.41a)

p2 < � 8 � 4
p

3; f p1 = p2 [ p1 = � p2g; (4.41b)

or,

� 4 < p 2 < � 20 + 8
p

6; f p1 = p2 [ p1 = � p2g; (4.42a)

� 20� 8
p

6 < p 2 < � 4; f p1 = p2 [ p1 = � p2g: (4.42b)

We have also4 real distinct� -roots for� � PZ (0; � ) > 0, � 01 < 0 and0 < � 02 < � 2
01
4

Other limiting cases can be discussed, but this is not the aim of our research work

because we are interested in generic cases only.

The same classi�cation for branches and gaps was obtained in [64] for the CNLS equation.

Split Gaps

Looking at the expressions (4.35), (4.36) and (4.37), we deduce that the gaps structure

described so far can change by varyingp1 and p2 only. Nevertheless, sincePW (0; � ) =

PZ (0; � )R 2(� ), PW (0; � ) can be zero whenR(� ) = 0 also if PZ (0; � ) is negative or

positive. SinceR(� ) is a �rst degree polynomial and it has real coe�cients, the equality

R(� ) = 0 may be veri�ed just at one point of the realSx -spectrum8. Moreover, because

of the expression ofR(� ), for values ofp1 and p2 varying in an interval so that we have

a �xed number of gaps, this point can move inside or can coincide with an endpoint of

gap. SinceR(� ) depends onp3 as well, we expect that the regions in the(p1; p2)-plane

8This point is also a real double-zero of the polynomialR 2(� ).
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in which the zero ofR(� ) is inside a gap move by varyingp3. Moreover, whenR(� ) = 0

then PW (0; � ) = 0 too, and for this reason we have only two possible scenarios:

1. PZ (0; � ) > 0 and the double-zero is within a gap, i.e. a split-gap;

2. PZ (0; � ) = 0 and the double-zero is a triple-zero of the polynomialPW (0; � ), and it

coincides with the end-point of a gap.

We underline that the situation in whichPZ (0; � ) < 0 and PW (0; � ) = 0 never occurs

because of the Proposition 4.2.1.

We de�ne a transition in the evolution of gaps structure, also in the case in which, a

split-gap appears because a point falls within an existent gap (or, vice versa, a split-gap

becomes an e�ective gap because a point shifts from the inside of a gap to the end-point

of the gap). To see for which values of the parameterspj such a transition occurs, we have

to understand for which values of the parametersp1, p2 and p3 the zero ofR(� ) collides

with a zero ofPZ (0; � ), or, in other words, whenPZ (0; � ) has a common root with the

polynomialR(� ). This analysis is conducted by studying the resultant with respect to�

between the two polynomialsPZ (0; � ) andR(� ). The discriminant with respect to� of the

product PZ (0; � )R 2(� ) does not give us further information about this kind of transition,

since the quantity9

� � (PZ (0; � )R 2(� )) = � � (PZ (0; � )R(� ))(Res� (PZ (0; � )R(� ); R(� ))) 2� � (R(� )) =

= � � PZ (0; � )(� � R(� ))2(Res� (PZ (0; � ); R(� ))) 4(Res� (R(� ); R(� ))) 2;

(4.43)

is always zero because of the resultantRes� (R(� ); R(� )) = 0 . However, the other terms

might or might not be zero. Therefore, the useful quantity to analyse is the resultant

Res� (PZ (0; � ); R(� )) : in other words, we are interested to understand for which values of

the parametersp1, p2 and p3 the resultant

Res� (PZ (0; � ); R(� )) =
�
p2

3

�
� 2p1p3 + ( p2 � 1)p2

3 + p2 + 2
�

� 1
� 2

�
p3

�
p3

3

�
p2

1 � 4p2 + 4
�

� 2p1(p2 � 2)p2
3 � 4p1 + ( p2(p2 + 4) � 8)p3

�
+ 4

�
;

(4.44)

is zero or not. In the discussion below, we shall prove that, in (4.44), the polynomial factor

that appears squared does not correspond to any transition, while the other polynomial
9Note that � � R (� ) = 1 .
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factor identi�es a curve bounding the regions in the(p1; p2)-plane where there exist split

gaps; we de�ne such a curve as,

D4 = f p1; p2; p3 2 R : R4(p1; p2; p3) = 0 g; (4.45)

where the polynomialR4(p1; p2; p3) = R4 is

R4 = p3
�
p3

3

�
p2

1 � 4p2 + 4
�

� 2p1(p2 � 2)p2
3 � 4p1 + ( p2(p2 + 4) � 8)p3

�
+ 4 : (4.46)

Proposition 4.2.3. In the (p1; p2)-plane, the curveD4, de�ned in (4.45), identi�es the

transition curve for the existence of split gaps. In particular, once the values ofp3 is �xed,

the values of the parametersp1 and p2 for which the polynomialR4 is negative correspond

to regions where there are split gaps.

Proof. Let us writePZ (0; � ) and R(� ) in a more general form

PZ (0; � ) = a4� 4 + a3� 3 + a2� 2 + a1� + a0; (4.47)

R(� ) = b1� + b0; (4.48)

and let � j and � j be the roots ofPZ (0; � ) andR(� ) respectively, so that the resultant with

respect to� can be written as

Res� (PZ (0; � ); R(� )) = a4b4
1

4Y

k=1

1Y

j =1

(� k � � j ): (4.49)

Let us suppose that, say,� j are all real and distinct, such that we have two gaps. Let us

consider the initial situation in which� 1 = � 1 < � 2 < � 3 < � 4, which corresponds to having

(4.49) equal to zero and the point� 1 coinciding with an end-point of a gap. Then, we vary

the values of the parametersp1 and p2 so that � 1 increases until we have� 1 < � 1 < � 2 <

� 3 < � 4, and we have that (4:49) is negative10 and � 1 is inside the gap. In particular, we

have the so called split-gap11. Thus, the resultant (4.49), and so (4.44), is negative for this

kind of gap structure. Finally, we conclude that the relevant part of the resultant is only

10a4b4
1 is positive, becausea4 = 4 .

11If, per absurdum, it wasR (� ) = 0 also in the case in whichPZ (0; � ) < 0, then (4:49) would be positive

for the ordering � 1 < � 2 < � 1 < � 3 < � 4 .
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the second polynomial. Indeed, by rescaling� by ~� = a� , with a 2 R, in both PZ (0; � ) and

R(� ). In this way, we get the resultantRes� (PZ (0; ~� ); R(~� )) = a4Res� (PZ (0; � ); R(� )) .

Therefore,� can be rescaled to eliminate the squared polynomial, or, in other words, such

a polynomial is arbitrary.

Let us consider another situation in which we have two distinct real roots and two complex

conjugate roots (1G 1B), and we focus only on the product
Q 4

k=1
Q 1

j =1 (� k � � j ). One

can show that the product between the terms(� k � � j ) corresponding to the two complex

conjugate� k is always real and positive. Indeed, let� 1 = c + i d and � 2 = � �
1 = c � i d be

the two complex conjugate roots. Since� is always real, then the following product

(� 1 � � )( � �
1 � � ) = ( c+ id � � )(c� id � � ) = c2 + d2 + � 2 � 2� = d2 + ( � � c)2; (4.50)

is positive. At this point, the proof above on the case for the four distinct real roots can

be repeated also here, by considering only the two factors of the resultant corresponding to

the two distinct real roots� k .

The proof for the other cases, showed in table 4.1, is straightforward.

By taking into account the regions associated to split gaps, a general classi�cation of gaps

structure is given below.

Proposition 4.2.4. Besides the gaps structure described in table 4.1, theSx -spectrum may

feature split gaps for the following choices of the parameters:

1) if � 1 < p 3 < 1, � 1 < p 1 < � 2 and p2 > 1 � 1
p2

3
with 1 � 1

p2
3

< 0;

2) if p3 < � 1 or p3 > 1, � 1 < p 1 < � 2 and p2 > 1 � 1
p2

3
with 1 � 1

p2
3

> 0;

where

� 1 =
2
p3

3
+

p2 � 2
p3

�
2jp2

3 � 1j
p

1 + ( p2 � 1)p2
3

jp3j3
; (4.51)

� 2 =
2
p3

3
+

p2 � 2
p3

+
2jp2

3 � 1j
p

1 + ( p2 � 1)p2
3

jp3j3
; (4.52)

and the intervals in1) and 2) are written in implicit form.
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(a) (p1 ; p2)-plane, p3 = � 0:6.

Figure 4.1: (p1; p2)-plane, whenp3 = � 0:6. Split gaps appear inside the region bounded

by the curveD4.

(a) (p1 ; p2)-plane, p3 = 2 .

Figure 4.2: (p1; p2)-plane, whenp3 = 2 . Split gaps appear inside the region bounded by

the curveD4.
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The Figures 4.1(a) and 4.2(a) show where there exist split gaps. By overlaying the results

of the Table 4.1 to the �ndings of the Proposition 4.2.4, the total number of gaps and split

gaps is predicted. For example, looking at the Figure 4.1(a), we have a total of1G and

1SG in the region between the curvesD3 and D4, while we have1G and1SG in the region

betweenD4 and D3. Instead, in Figure 4.2(a), the region belowD3 has1G and1SG, while

that one aboveD3 has1G and1SG.

Symmetries and Gaps

In the following discussion, we take advantage of the symmetries in the(p1; p2)-plane to

classify gaps asp3 changes. Indeed, since� � PZ (0; � ) is invariant under transformations

p1 ! � p1 and p2 ! p2, the plot of the curvesD1, D2 and D3 are symmetric with respect

to the p2-axis. The curveD4 depends also onp3, and it has symmetriesp1 ! � p1, p2 ! p2

and p3 ! � p3. Nevertheless, for �nite values ofp3, such a curve is not symmetric with

respect top2-axis and moves in the(p1; p2)-plane asp3 varies. In particular, by changing

p3 to � p3, the D4 plot is re
ected with respect top2-axis. The curveD4 can be written

by expressingp2 as a function ofp1 and p3

p2(p1; p3) = � 2 + p3p1 + 2p2
3 �

2jp3 � p3
3j

p
p3p1 + p2

3 � 1
p2

3
; (4.53)

and by changingp3 ! � p3, we get

p2(p1; � p3) = � 2 � p3p1 + 2p2
3 �

2jp3 � p3
3j

p
� p3p1 + p2

3 � 1
p2

3
; (4.54)

that is p2(p1; � p3) = p2(� p1; p3), and one can de�ne

�p2(�p1; p3) = � 2 + p3 �p1 + 2p2
3 �

2jp3 � p3
3j

p
p3 �p1 + p2

3 � 1
p2

3
; (4.55)

where �p1 = � p1 and the bar denotes the parametersp1 and p2 after the transformations.

Thus, �p2(�p1; p3) is the curvep2(p1; p3), re
ected with respect to thep2-axis.

On the other hand, asp3 approaches in�nity,D4 becomes symmetric to thep2-axis. In the

following, we shall discuss the symmetries ofD4 in more detail.

Proposition 4.2.5. For � 1 < p 3 < 1, and for p3 < � 1 or p3 > 1, the curve D4 is

asymmetric with respect to thep2-axis. Forp3 ! �1 , D4 is symmetric with respect to

p2-axis. Forp3 = 0 , D4 disappears. Forp3 = 1 , D4 coincides withD1, while for p3 = � 1,
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D4 coincides withD2. For p3 = 0 , p3 = 1 and p3 = � 1, there are not split gaps and the

gaps structure is described only by table 4.1.

Proof. By looking at the expression ofD4 written as a function ofp1, i.e. (4.53), we see

that p2(p1) is neither even nor odd. Nevertheless, by dividing (4.45) by the maximum power

of p3, after taking the limit p3 ! �1 , we obtain

p2(p1) = 1 �
p2

1

4
; (4.56)

which is clearly an even function, and so it is symmetric with respect to thep2-axis.

Furthermore, the domain of the function (4.53) is
�

8p3 2 R=f 0g; (p1 2 R : p1 �
�

1
p3

� p3

��
: (4.57)

The curveD4 is not de�ned for p3 = 0 . In addition, once we chosep3 = � 1, (4.53) can

be considered as a function ofp1 only, whose explicit expression is

p2(p1) = � p1; (4.58)

that are D1 and D2 for p3 = 1 and p3 = � 1, respectively12. In these cases the curveD4

becomes(p1 � p2)2 or (p1 + p2)2, which are positive and, as a result, there are no split

gaps, and the discussion reduces to Table 4.1 only.

Because of curve symmetries on the(p1; p2)-plane, here and thereafter we consider only

negative values ofp3.

The Figures 4.3 and 4.4 are plots of the(p1; p2)-plane with the entire topological classi�-

cation of gaps and branches components forp3 = � 0:6. We choosep3 = � 0:6 without

loss of generality, indeed forjp3j > 1 the curveD4 moves in the regions with1G and0G

by creating a split-gap, and the discussion is the same.

4.3 Complex Spectrum

In the previous section we have considered the characteristic polynomialP(w; � ) and we

have analysed the situations in which twowj -roots coincide. We can summarise the clas-

si�cation of � -roots at which at least one di�erencewj � wk is zero, i.e.� = 0 :
12The domain of the functionp2(p1) becomesf p1 2 Rg for this case.
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Figure 4.3: (p1; p2)-plane,p3 = � 0:6

1. 4 distinct real roots and/or1 double real root (2G 0SG0B or 1G 1SG0B);

2. 2 distinct real roots,2 complex conjugate roots and/or1 double root (1G 0SG1B or

0G 1SG1B);

3. 2 pairs of complex conjugate roots (0G 0SG2B).

Let us consider the polynomial of the squares of the di�erencesPW (� ; � ), de�ned in (4.3),

which is a sixth degree polynomial in� and a third degree polynomial in� 2. We construct the

polynomialQ(� ) � Q (� ; p1; p2; p3), that is the discriminant with respect to� of PW (� ; � )

Q(� ) � � � PW (� ; � ) : (4.59)

Then, we perform the polynomial factorisation ofQ(� ) with respect to� . This results in

the following form

Q(� ) = � Q2
1(� ) Q2(� ) ; (4.60)
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Figure 4.4: (p1; p2)-plane,p3 = 2

whereQ1(� ) � Q 1(� ; p1; p2; p3) and Q2(� ) � Q 2(� ; p1; p2; p3) are two polynomials in the

variable� , whose degree are four and six respectively, andQ1;2(0) 6= 0 . We will refer to

Q1 and Q2 as theevenand odd parts of Q(� ), respectively.

Proposition 4.3.1. Let �� be the largest positive root ofQ2(� ). Then, for � > �� , all the

� -roots ofPW (� ; � ) are real; therefore, the stability spectra always contains part of the real

axis and never features a gap containing the point at in�nity.

Proof. The polynomial of the squares of the di�erences is written as (Appendix J)

PW (� ; � ) = � 3 � f 1� 2 +
f 2

1

4
� �

f 2

6
; (4.61)

wheref 1 � f 1(� ; p1; p2; p3) and f 2 � f 2(� ; p1; p2; p3) are polynomials whose unknown is

the spectral parameter� and they are depending also by the physical parametersp1, p2

and p3. In particular, for the 3WRI model, these polynomials have the general expressions

f 1 = � 0 + � 1� + � 2� 2; (4.62a)
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f 2 = � 0 + � 1� + � 2� 2 + � 3� 3 + � 4� 4 + � 5� 5 + � 6� 6: (4.62b)

The polynomial of the squares of the di�erences (4.61) vanishes for any� -root

� 3 � f 1� 2 +
f 2

1

4
� �

f 2

6
= 0 (4.63)

and, by diving (4.63) by� 3, we get the equation

1 �
f 1

�
+

f 2
1

4� 2 �
f 2

6� 3 = 0 : (4.64)

Since 1
� ! 0 as � ! + 1 , we de�ne 1

� � � , so that the equation (4.64) becomes

1 � f 1� +
f 2

1

4
� 2 �

f 2

6
� 3 = 0 : (4.65)

At this point, we note that for � = 0 , we have the impossible equality1 = 0, that means

all the three roots approach in�nity as� goes to zero. Thus, we deal with a singular

perturbation problem and, in order to solve the equation (4.65), we set the rescaled variable

� = y
� (� ) into the equation (4.65) and substitutef 1 and f 2, scuh that

1 + � 2
0
� 2

4
� � 0� �

� 0� 3

6
+

y
�

�
� 0� 1

2
� 2 � � 1� �

b1

6
� 3

�
+

y2

2� 2 � 0� 2� 2+

+
y2

4� 2 � 2
1� 2 �

y2

� 2 � 2� �
y2

6� 2 � 2� 3+

+
y3

2� 3 � 1� 2� 2 �
y3

6� 3 � 3� 3 +
y4

4� 4 � 2
2� 2 �

y4

6� 4 � 4� 3 �
y5

6� 5 � 5� 3 �
y6

6� 6 � 6� 3 = 0 :

(4.66)

By using the principle of dominant balance, we require that at least two leading-order terms

have the same order of magnitude. By imposing the condition

� 3

� 5 =
� 3

� 6 ; (4.67)

we get

� = 1 ; (4.68)

that gives us solutions not approaching in�nity as� ! 0, so we have to rule out this choice.

The right expression for� is given by the condition

� 3

� 6 =
� 2

� 4 ; (4.69)
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hence,

� = �
1
2 : (4.70)

By substituting (4.70) in (4.66), we obtain

1 +
� 2

0� 2

4
� � 0� �

� 0� 3

6
+

+ y2
�

� 0� 2�
2

+
� 2

1�
4

� � 2 �
� 2� 2

6

�
+ y

�
1
2

� 0� 1� 3=2 � � 1
p

� �
1
6

� 1� 5=2
�

+

+ y3
�

1
2

� 1� 2
p

� �
1
6

� 3� 3=2
�

+ y4
�

� 2
2

4
�

� 4�
6

�
�

1
6

� 5y5p
� �

� 6y6

6
= 0 :

(4.71)

Therefore, we look for solutions of the kind13

y = y0 + �
1
2 y1 + O(� ) ; (4.72)

and by putting the expansion above into the equation (4.71) and collecting the terms with

respect to equal powers of�

p
�

�
1
2

� 1� 2y3
0 � � 1y0 + � 2

2y3
0y1 � 2� 2y0y1 �

� 5y5
0

6
� � 6y5

0y1

�
+

+
� 2

2y4
0

4
� � 2y2

0 �
� 6y6

0

6
+ 1 + ::: = 0 ;

(4.73)

where we have neglected the termsO(� ).

By expanding and matching the coe�cients of� n to zero, for n = 0 ; 1, we obtain the

equations

1 � � 2y2
0 +

� 2
2y4

0

4
�

� 6y6
0

6
= 0 ; (4.74a)

1
2

� 1� 2y3
0 � � 1y0 + � 2

2y3
0y1 � 2� 2y0y1 �

� 5y5
0

6
� � 6y5

0y1 = 0 ; (4.74b)

whose solutions14 are y0j with j = 1 ; :::; 6. To �nd the order of the correction, we have

to substitute the solutiony0j into the second equations and gety1j . Thus the solutions

are of the kindyj = y0j + O(�
1
2 ), j = 1 ; :::; 6. Moreover,y2

0j are all reals, in fact, if one

13Because of (4.70), the corrections to the roots must be a regular perturbation expansion in powers of

�
1
2 , otherwise we can not match powers of an expansion having only integral powers of� .

14For the aim of this discussion the explicit expressions ofy0j are not necessary.
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considers the polynomial (4.74a) as a third degree polynomial whose unknown isy2
0, the

discriminant is

� y0 =
2
27

� 3
6

�
� 3

2 � 9� 6
� 2

; (4.75)

i.e.

� y0 = 6144p6
3

�
p2

3 � 1
� 6 �

1295p6
3 + 1298p4

3 + 431p2
3 + 48

� 2
; (4.76)

and the condition15 � y0 � 0 is satis�ed 8p3 2 R. In addition, by the Descartes' rule of

signs, it results thaty2
0j are all positive, hencey0j are reals.

However, we are interested in �nding� , i.e.

� j = y0j � � 1
2 + O(1); j = 1 ; :::; 6; (4.77)

and, coming back to the old variables, it turns out that

� j = y0j
p

� j + O(1) ; j = 1 ; :::; 6: (4.78)

Finally, keeping in mind the assumption� j 2 R+ , the roots � j are all reals. Furthermore,

since y0j are solutions of the polynomial (4.74a) and since� 2 = 2
�
3p2

3 + 1
�

> 0 and

� 6 = (4 p6
3 � 8p4

3 + 4p2
3) > 0, 8p3 2 R, by using the Descarte's rule for such a polynomial,

we see there are exactly3 positive and3 negative roots.

Let us impose a di�erencewj � wk to be real and strictly positive, i.e.� > 0. By the

formula (4.59), the values of� for which two� -roots collide are those ones for whichQ2(� )

vanishes. After that,Q2(� ) may change sign, that is, after a collision, two� -roots may

change their nature. In more detail, two real� -roots may become complex and vice versa.

Indeed, if the polynomial of the squares of the di�erences is regarded as a polynomial in� ,

for any �xed � , we expect one of these scenarios:

a) 6 distinct real � -roots;

b) 4 distinct real � -roots and2 complex conjugate� -roots;

c) 2 distinct real � -roots and2 pairs of complex conjugate� -roots;

15That is the condition for which y2
0j are three distinct real roots or multiple real roots.
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d) 3 pairs of complex conjugate� -roots.

As � varies, two or more of the above scenarios can coexist. However, the case d) never

occurs. There is no interval of� in which all the roots are complex. In other words,8� > 0,

there are at least two real roots. This is a consequence of the fact that the polynomial

of the squares of the di�erencesPW (� ; � ) is equal to the square of the polynomial of the

di�erences w` � wm (Appendix J). Since the polynomial of the di�erences has only real

coe�cients, it can have a pair of complex conjugated� -roots at most. As a result, we

expect two pairs of complex conjugate� -roots at most for the polynomial of the squares

of the di�erences.

In this section we focus on the complex subset of theSx -spectrum which may lead to

instability in time (besides the point separating a split-gap). This part of the spectrum

consists of open and closed continuous curves named branches and loops respectively. To

understand how these curves appear, we have to imagine an initial situation in which

the values of the spectral parameters� are roots of the polynomialPW (0; � ). Then, we

impose the condition� > 0, so that the values of the spectral parameters� are roots of the

polynomialPW (� ; � ) 8� 2 R. After that, one or more of the scenariosa), b) or c) occur

as � varies. For example, at� = 0 , let us consider the initial condition for which we have2

distinct real � -roots and2 complex conjugate� -roots. Let us suppose that the polynomial

PW (� ; � ) has 2 distinct real � -roots and 2 complex conjugate� -roots for some� 2 R.

This means that all the real roots remain on the real axis and the2 complex conjugate

roots collide at some point on the real axis and then go to in�nity necessarily on the real

axis (see Proposition 4.3.1). In this case, the spectrum would be composed by1G and1B

and 0L. However, several other situations can occur as� varies. For instance, letb) be the

next situation. We have that2 real � -roots become a pair of complex conjugate� -roots.

Since8� > 0 these couple of complex roots must remain conjugate (they are the roots of

a polynomial with real coe�cients) and, in addition, all the roots must be real as� ! 1 ,

instead of having a branch we have a loop. In this case, the spectrum would be composed

by 1G 1B 1L.

A loop can be regarded as a branch closed on the real axis. Sometimes, the di�erence with

a branch is that it is created by� -roots not corresponding to� = 0 . In any case, a loop

comes from two initial real� -roots, instead of two complex conjugate� -roots, unlike a
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branch. Nevertheless, there are some situations in which a loop is created by starting from

real � -roots associated to� = 0 . As � varies, two real� -roots cannot travel in a branch

because, if that happens, they are forced to travel it again in order to come back on the

real axis when� ! 1 (see Proposition 4.3.1). For the same reason, two initial complex

conjugate roots, starting form the ends of a branch, travel such a branch but never come

back on it. Therefore, they collide on the real axis and, after that, approach in�nity.

Proposition 4.3.2. The � -roots cannot be periodic functions of� .

Proof. Since� -roots are solutions of a polynomial, they can not be periodic. In particular,

once the other parameters are �xed, let us suppose, that the� -roots are periodic functions

of � . Then the limit of � (� ) as � ! 1 is not convergent, because they are oscillating.

Thus, the � (� ) must be monotonic function of� .

4.3.1 Loops Classi�cation

In this subsection we give the loops classi�cation and so the complete spectra classi�cation.

The (p1; p2)-plane is divided in regions in which the spectra have the same topology and

the number of gaps and the number of branches are known in every region. After choosing

the values of the parametersp1, p2 andp3 in any of such regions, we use MATLAB codes in

order to �nd the � -roots of the polynomialQ2(� ). Between these roots we select only the

real and positive� -roots. If we �nd �� 1,..., �� N real and positive roots, we have to consider

N + 1 intervals: from0 to �� 1, from �� 1 to �� 2, etc... , until the last interval from�� N to

+ 1 . In this way, if the polynomial of the squares of the di�erencesPW (� ; � ) is meant

like a polynomial in the� variable, every coe�cient of such a polynomial is a function

of the � variable. Then, we require every coe�cient to be positive within every interval

f �� j ; �� j +1 g, with j = 1 ; :::; N � 1. After that, we see that the coe�cients can change their

sign inside intervals whose endpoints do not coincide with the� -roots of Q2(� ), we denote

them as� 1; :::; � M , and so further intervals appear in the� domain. We apply the Descartes

rule of signs in all the intervalsf � j ; � j +1 g, with j = 1 ; :::; M � 1, and we see how many

real positive, real negative and complex conjugate roots there are. Nevertheless, di�erent

cases may be present. For example, if we have three sign changes for the polynomial in

� and for the polynomial in� � , then we may have3 positive roots,3 negative roots, or
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3 positive roots,1 negative root and2 complex conjugate roots, or3 positive roots,1

negative root and2 complex conjugate roots, or1 positive root,1 negative root and2 pairs

of complex conjugate roots. However, only one of these options is the real one. Therefore,

we choose a generic point in every intervalf � j ; � j +1 g, j = 1 ; ::; M � 1, and compute again

the coe�cients of the polynomial of the squares of the di�erences. We count the number

of sign changes in every interval. Thus, we exclude all the options not corresponding to

the real one. By this method, as� varies, we can imagine the dynamic of the� -roots on

the Sx spectrum, and so suppose the creation of a new spectrum component, or when two

� -roots collide to return to the real axis.

Moreover, we write down a formula linking the number of branches, loops and twisted

loops:

# TL + 2# L + # B = # � + ; (4.79)

where� + stands for the positive roots ofQ2(� ).

4.3.2 Spectra Classi�cation: Descartes Rule of Signs and Sturm Chains

Here we give a detailed, but general, description of the procedure used to obtain the

topological classi�cation of the spectra in the(p1; p2)-plane. Then, we will apply this

procedure to any region in the parameter space with a particular number of gaps and

branches.

Let P(x) be a polynomial inx with real coe�cients, and let deg(P) be its degree. Let us

supposeP(x) is ordered by descending variable exponent, then the number of positive roots

of the polynomial is equal to the number of sign di�erences between consecutive nonzero

coe�cients, or is less than it by en even number. Multiple roots are counted separately.

In order to obtain the number of negative roots, we substitute� x into the polynomial

P(x) to get Q(x) � P(� x), and we apply the Descartes rule of sign toQ(x). If, for

instance,P(x) is a third degree polynomial, and the sequence of successive signs forP(x)

is f + + � �g , we expect1 positive root. On the other hand, let us supposeQ(x) has the

sequence of successive signsf� + + �g . Then, the polynomialQ(x) has2 positive roots

and the polynomialP(x) has 2 negative roots. Since the number of complex roots must

be equal todeg(P), the minimum number of strictly complex roots isdeg(P) � (p + n),
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wherep denotes the number of positive roots, andn denotes the number of negative roots.

Thus, if we apply the Descartes rule of signs to bothP(x) and Q(x), and the sum of the

number of their positive roots does not matchdeg(P), we expect the polynomialP(x) to

have complex roots.

We apply the Descartes rule of signs to the polynomial of the squares of the di�erences

PW (� ; � ), regarded as polynomial in� , for any choice of the parametersp1, p2 and p3.

The polynomialPW (� ; � ) is a sixth degree polynomial and the coe�cients of� 6 and of

� 5 are constants and so independent on� . In other words, their signs are the same as�

varies. However, the other coe�cients are depending on� , and so their sign can change as

� varies. Thus, after choosing the values ofp1, p2 and p3, we get

PW (� ; � ) = g6� 6 + g5� 5 + g4(� )� 4 + g3(� )� 3 + g2(� )� 2 + g1(� )� + g0(� ); (4.80)

whereg6 and g5 are numbers, whilegj (� ),with j = 0 ; 1; 2; 3; 4, are polynomials in� .

The trick is to require some coe�cients to be positive and see for which value of� this

condition is satis�ed. For instance, let�� 1 and �� 2 be the two values of� at which Q(� ),

i.e. Q2(� ), changes sign. We impose the conditionsgj (� ) > 0, 8j = 1 ; 2; 3; 4, in every

interval 0 < � < �� 1, �� 1 < � < �� 2 and �� 2 < � < + 1 . Sometimes, it will happen that

some polynomial coe�cient is negative, for example, for0 < � < � 1 < �� 1 and instead

positive for � 1 < � < �� 1. In such case, we will split the� -domain in intervals as[0; � 1],

[� 1; � 2], [� 2; � 3], [� 3; + 1 ), where we have rede�ned�� 1 = � 2 and �� 2 = � 3. Then, in every

of this interval we apply the Descartes rule of sign. We choose a particular value of� ,

say, into the intervalf 0; � 1g, substitute it in the polynomialPW (� ; � ) and count the sign

changes. For example, we could have the sequence of signsf + + � � � + �g , that is

associated to the possibilities:3 positive and1 complex conjugate� -roots, or 1 positive

and 2 complex conjugate� -roots. Whereas, for the polynomialPW (� ; � ) after substituting

� ! � � , we have the sequence of signsf + + � + � � �g associated to the possibilities:

3 negative and0 complex conjugate� -roots, or1 negative and2 complex conjugate� -root.

By combining altogether the sequences of signs we obtain the possibilities:3 positive and3

negatives� -roots, 3 positive (resp.3 negative),1 negative (resp.1 positive) and2 complex

conjugate� -roots. After that, we will repeat the same procedure by choosing a particular

value of� into the other intervals.

Once we have the intervals in which the structure of the algebraic curves in the� -plane

may change, we will apply the Sturm chains method to the polynomialPW (� ; � ). First
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of all, we choose a value of� in every interval[0; � 1],[� 1; � 2], [� 2; � 3] and [� 3; + 1 ), and

substitute this value of� in the polynomial of the squares of the di�erences which be-

comes dependent only on� , i.e. PW (� ). From here, we construct the Sturm chain

fP (j )
W g6

j =0 = fP (0)
W ; P (1)

W ; P (2)
W ; P (3)

W ; P (4)
W ; P (5)

W ; P (6)
W g for every �xed� in any interval[0; � 1],

[� 1; � 2], [� 2; � 3] and [� 3; + 1 ):

P (0)
W (� ) = PW (� );

P (1)
W (� ) =

d
d�

P (0)
W (� );

P (2)
W (� ) = � Remainder

�
P (0)

W (� ); P (1)
W (� )

�
;

P (3)
W (� ) = � Remainder

�
P (1)

W (� ); P (2)
W (� )

�
;

P (4)
W (� ) = � Remainder

�
P (2)

W (� ); P (3)
W (� )

�
;

P (5)
W (� ) = � Remainder

�
P (3)

W (� ); P (4)
W (� )

�
;

P (6)
W (� ) = � Remainder

�
P (4)

W (� ); P (5)
W (� )

�
:

The result of this computation is a sequence of numbers changing as� changes, and we

write down only the sign of every number in the sequence and, from such a sequence, we

extract the sequence of the corresponding signs. This sequence of signs changes only if we

choose values of� from intervals di�erent from to each other.

4.4 Gain Function

In this section, we present the functionH(!; k ) as an implicit function of the eigenwavenum-

berk = wi � wj and of the eigenfrequency! = zi � zj . The vanishing of the this polynomial,

i.e. H (!; k ) = 0 , for �xed k, provides! as a function ofH and of the other parameters of

the systemp1, p2 and p3, whose imaginary part is the gain function. However, we do not

solve this polynomial because it is sixth degree polynomial in! , instead, we will compute

numerically (via a MATLAB 2018a routine) and we will display an example of the gain

function for any spectrum in the classi�cation in the next section.

In the following, we show how the functionH(!; k ) is obtained.

Let us consider the two characteristic polynomialsPZ (z; � ) and PW (w; � ). Because the
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two associate matrices commute, i.e.[Z; W ] = 0 , they have roots in common, such that

their resultant must be zero for values of the parameters involved in their expressions. The

resultants with respect top1 and p2 read, respectively,

Resp1 (PZ (z; � ); PW (w; � )) = ( � p3(p2 + z(� + z)) + w � z)
�
� 2 + p2(p3(� + z) � 1)2+

+ p2
3(� + z � 1)(� + z + 1)( z(� + z) � 1) + p3

�
w(z(� + z) � 2) � z(� + z)2 + z

�
+ w2+

+2 � (w + z) + wz + z2 � 1
�

;

(4.82)

Resp2 (PZ (z; � ); PW (w; � )) = ( � p1p3 � p3z + ( w � z)( � + z))
�
� � + p1(p3(� + z) � 1)2+

+( � + z)(p2
3(� (� + z � 1))( � + z + 1) + p3(w(z(� + z) � 2) + z(� + z � 1)(� + z + 1))+

+( � + w)( � + w + z))) :

(4.83)

Because the resultants (4.82) and (4.83) are the product of two polynomials, for each one

of them, we equal to zero the polynomial with the simplest expression, in this way we obtain

two maps between the eigenvaluew and z,

w !
p3(p1 + z)

� + z
+ z; (4.84)

and

w ! p3(p2 + z(� + z)) + z: (4.85)

Using the two maps (4.84) and (4.85), we de�ne the two polynomials by taking the numer-

ators of the following expressions

J1(z1; z2; � ) = (4 (( � + z1)( � + z2)(k � z1 � z2) � p3(p1 + z1)( � + z2) � p3(p1 + z2)( � + z1))) ;

(4.86)

and

J2(z1; z2; � ) = 4 ( k � (p3(p2 + z1(� + z1)) + z1 � p3(p2 + z2(� + z2)) + z2)) ; (4.87)

and, after the substitutions! = z1 � z2 and � = z1 + z2, they become

J1(� ; � ) = k
�
(� + 2 � )2 � ! 2�

+ !
�
� � 2 + 4p1p3 � 4� (� + � + p3) + ! 2�

; (4.88)
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J2(� ; � ) = k � ! (p3(� + � ) + 1) : (4.89)

Moreover, we introduce another polynomial, that is the polynomial of the sums of the

eigenvalueszj (Appendix K)

SZ (�; � ) = � 3 + 4 �� 2 + (5 � 2 + p2 � 1)� + p1 + � (� 2 + p2 + 2 � 2): (4.90)

Then, the Groebner basis of the three polynomialJ1(� ; � ), J2(� ; � ) and SZ (�; � ) yields a

list of polynomials of which only the �rst is independent on� and � and provides the gain

function

H(!; k ) = k4 �
! 2 � 4

�
� 4k3!

�
p1p3 + ! 2 � 4

�
�

� k2! 2 �
� 12p1p3 + p2

3

�
p2

2 + 4p2 + 2 ! 2 � 8
�

� 6
�
! 2 � 4

��
+

+ 2k! 3 �
p1p3

�
� (p2 � 2)p2

3 � 6
�

+ p2
3

�
p2

2 + 4p2 + 2 ! 2 � 8
�

� 2! 2 + 8
�

+

+ ! 4 �
p4

3

�
�

�
p2

1 � 4p2 + 4
��

+ 2p1(p2 � 2)p3
3 + 4p1p3 � (p2(p2 + 4) � 8)p2

3 � 4
�

+
�
p2

3 � 1
� 2

! 6:

(4.91)

4.5 Description of the x-Stability Spectra

In this section we provide an analytical description of the spatial stability spectra obtained

for any generic choice of the parameters in the(p1; p2)-plane and we display both theSx -

spectrum and its associated gain function! 3 = �( k3) in any region of the(p1; p2)-plane

(see Appendices M and L).

Regions with 1 Gap and 1 Branch

In the regions with1 gap and1 branch, we note the following correspondence between the

number of loops and the number of positive� -roots:

� 2L: 5 positive� -roots;
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� 1L: 3 positive� -roots;

� 0L: 1 positive� -roots.

If we choosep1 = � 0:8, p2 = 0 :4 andp3 = � 0:6, we have thatQ2(� ) changes sign5 times

at any of the following values of� : �� 1 = 0 :028, �� 2 = 1 :887, �� 3 = 2 :115, �� 4 = 3 :146 and

�� 5 = 33:419. After applying the Descartes rule of signs to the polynomial of the squares of

the di�erences multiplied by minus, further intervals must be considered whose end-points

are: � 1 = 0 :028, � 2 = 0 :152, � 3 = 1 :887, � 4 = 2 :115, � 5 = 3 :146, � 6 = 6 :517, � 7 = 15:021

and � 8 = 33:419. Then, we apply the Sturm chains technique by substituting a generic�

value on every interval[� j ; � j +1 ] into the expression of the coe�cients and we count the

sign changes. Finally, we can classify the nature of the� -roots and so we can describe the

whole spectrum. In particular:

� 0 < � < � 1: 4 � -roots on the real axis and2 � -roots are travelling along the branch;

� � 1 < � < � 2: 2 � -roots on the real axis,2 � -roots on the branch and2 � -roots on a

loop;

� � 2 < � < � 3: 4 � -roots on the real axis, and2 � -roots on a loop or on the branch;

� � 3 < � < � 4: 6 � -roots on the real axis;

� � 4 < � < � 5: 6 � -roots on the real axis;

� � 5 < � < � 6: 4 � -roots on the real axis,2 � -roots on the second loop;

� � 6 < � < � 7: 4 � -roots on the real axis,2 � -roots on the second loop;

� � 7 < � < � 8: 4 � -roots on the real axis,2 � -roots on the second loop.

� � > � 8: 6 � -roots on the real axis.

We conclude that2 loops exist for these choices of the physical parameters.
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Figure 4.5: Stability spectrum forp1 = � 0:8, p2 = 0 :4, p3 = � 0:6. � = Re( � ) and

� = Im( � ).

Figure 4.6: Gain function�( k3) wherek3 = w1 � w2 associated to the stability spectrum

obtained atp1 = � 0:8, p2 = 0 :4, p3 = � 0:6.

By setting p1 = � 4:0, p2 = � 3:0 and p3 = � 0:6, we have thatQ2(� ) changes sign3

times at any of the following values of� : �� 1 = 0 :030, �� 2 = 31:959 and �� 3 = 49:660. By

applying the Descartes rule of signs, further intervals must be considered whose end-points

are: � 1 = 0 :026, � 2 = 0 :030, � 3 = 0 :525, � 4 = 31:959, � 5 = 38:834, � 6 = 49:660 and

� 7 = 52:214. Then, we apply the Sturm chains technique and we obtain the classi�cation

of the nature of the� -roots:

� 0 < � < � 1: 4 � -roots on the real axis and2 � -roots on the branch;
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� � 1 < � < � 2: 4 � -roots on the real axis and2 � -roots on the branch;

� � 2 < � < � 3: 2 � -roots on the real axis, and2 � -roots on the loop and2 � -roots on

the branch;

� � 3 < � < � 4: 2 � -roots on the real axis and2 � -roots on the branch and2 � -roots

on the loop;

� � 4 < � < � 5: 2 � -roots on the real axis and2 � -roots on the branch and2 � -roots

on the loop;

� � 5 < � < � 6: 6 � -roots on the real axis;

� � > � 7: 6 � -roots on the real axis.

Therefore,1 loop is present in this spectrum.

Figure 4.7: Stability spectrum atp1 = � 4:0, p2 = � 3:0, p3 = � 0:6. � = Re( � ) and

� = Im( � ).



Chapter 4. Spectra and Linear Instabilities of the 3WRI Equations 103

Figure 4.8: Gain function�( k3) with k3 = w1 � w2 associated to the spectrum obtained

at p1 = � 4:0, p2 = � 3:0, p3 = � 0:6.

By setting p1 = 1 :0, p2 = 3 :0 and p3 = � 0:6, we have thatQ2(� ) changes sign1 time in

the point �� 1 = 36:911. After applying the Descartes rule of signs, further intervals must

be considered whose end-points are:� 1 = 0 :079, � 2 = 3 :664, � 3 = 36:911. Then, we apply

the Sturm chains technique and we get the following classi�cation:

� 0 < � < � 1: 4 real � -roots and2 � -roots on the branch;

� � 1 < � < � 2: 4 real � -roots and2 � -roots on the branch;

� � 2 < � < � 3: 4 real � -roots and2 � -roots on the branch;

� � > � 3: 6 � -roots on the real axis.

No loops exist into the spectrum for these choices of the physical parameters.
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Figure 4.9: Stability spectrum atp1 = 1 :0, p2 = 3 :0, p3 = � 0:6. � = Re( � ) and

� = Im( � ).

Figure 4.10: Gain function�( k3) wherek3 = w1 � w2 associated to the spectrum obtained

at p1 = 1 :0, p2 = 3 :0, p3 = � 0:6.

4.5.1 Regions with 0 Gap and 2 Branches

In the regions with0 gap and2 branches, there is the following correspondence between

the number of loops and the number of positive� -roots:

� 2L: 6 positive� -roots;

� 1L: 4 positive� -roots;
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� 0L: 2 positive� -roots.

Let us setp1 = � 6:2, p2 = � 6:3 and p3 = � 0:6. For these values of the parameters

the polynomialQ2(� ) change sign6 times at the values of� : �� 1 = 0 :168, �� 2 = 1 :219,

a
�
r� 3 = 63:296, �� 4 = 63:549, �� 5 = 64:132, �� 6 = 70:732. Then, we apply the Descartes

rule of signs and we �nd further intervals whose end-points are:� 1 = 0 :168, � 2 = 0 :451,

� 3 = 0 :839, � 4 = 1 :015, � 5 = 1 :219, � 6 = 2 :746, � 7 = 63:296, � 8 = 64:132, � 9 = 66:267,

� 10 = 70:732, � 11 = 71:817, � 12 = 82:022, � 13 = 87:860. In this way, by the Sturm chains

method, we have the classi�cation of the� -roots:

� 0 < � < � 1: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on the

other branch;

� � 1 < � < � 2: 4 � -roots on the real axis and2 � -roots on a branch;

� � 2 < � < � 3: 4 � -roots on the real axis and2 � -roots on a branch;

� � 3 < � < � 4: 4 � -roots on the real axis and2 � -roots on a branch;

� � 4 < � < � 5: 4 � -roots on the real axis and2 � -roots on a branch;

� � 5 < � < � 6: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop;

� � 6 < � < � 7: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop;

� � 7 < � < � 8: 6 � -roots on the real axis;

� � 8 < � < � 9: 4 � -roots on the real axis and2 � -roots on a loop;

� � 9 < � < � 10: 4 � -roots on the real axis and2 � -roots on a loop;

� � 10 < � < � 11: 6 � -roots on the real axis;

� � 11 < � < � 12: 6 � -roots on the real axis;

� � 12 < � < � 13: 6 � -roots on the real axis;

� � > � 13: 6 � -roots on the real axis.
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Thus, we see2 loops in this spectrum.

Figure 4.11: Stability spectrum withp1 = � 6:2, p2 = � 6:3, p3 = � 0:6. � = Re( � ) and

� = Im( � ).

Figure 4.12: Gain function�( k3) wherek3 = w1 � w2 associated to the spectrum obtained

at p1 = � 6:2, p2 = � 6:3, p3 = � 0:6.

If we choosep1 = � 4:0, p2 = � 4:2 and p3 = � 0:6, the polynomialQ2(� ) vanishes4 times

in these points: �� 1 = 0 :129, �� 2 = 0 :240, �� 3 = 36:370 and �� 4 = 44:444. By using the

Descartes rule of signs we have:� 1 = 0 :129, � 2 = 0 :179, � 3 = 0 :240, � 4 = 0 :380, � 5 =

0:495, � 6 = 1 :047, � 7 = 36:370, � 8 = 43:943, � 9 = 44:444, � 10 = 46:439, � 11 = 49:745,

� 12 = 57:025. By constructing the Sturm chains method, we obtain the following� -roots

classi�cation:
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� 0 < � < � 1: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on the

other branch;

� � 1 < � < � 2: 4 � -roots on the real axis and2 � -roots on a branch;

� � 2 < � < � 3: 4 � -roots on the real axis and2 � -roots on a branch;

� � 3 < � < � 4: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop;

� � 4 < � < � 5: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop;

� � 5 < � < � 6: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop;

� � 6 < � < � 7: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop;

� � 7 < � < � 8: 4 � -roots on the real axis and2 � -roots on a branch or on a loop;

� � 8 < � < � 9: 4 � -roots on the real axis and2 � -roots on a branch or on a loop;

� � 9 < � < � 10: 6 � -roots on the real axis;

� � 10 < � < � 11: 6 � -roots on the real axis;

� � 11 < � < � 12: 6 � -roots on the real axis;

� � > � 12: 6 � -roots on the real axis.

Only one loop is present in the spectrum.
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Figure 4.13: Stability spectrum withp1 = � 4:0, p2 = � 4:2, p3 = � 0:6. � = Re( � ) and

� = Im( � ).

Figure 4.14: Gain function�( k3) wherek3 = w1 � w2 associated to the spectrum obtained

at p1 = � 4:0, p2 = � 4:2, p3 = � 0:6.

If we choosep1 = 1 :0, p2 = � 3:0 and p3 = � 0:6, the polynomialQ2(� ) vanishes2 times

in these two points: �� 1 = 8 :421 and �� 2 = 13:280. By using the Descartes rule of signs

we have: � 1 = 0 :076, � 2 = 0 :769, � 3 = 2 :284, � 4 = 8 :421, � 5 = 11:354, � 6 = 12:477,

� 7 = 13:157, � 8 = 13:280, � 9 = 13:289. By using Sturm chains we get the following� -roots

classi�cation:

� 0 < � < � 1: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on the

other branch;
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� � 1 < � < � 2: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on the

other branch;

� � 2 < � < � 3: 4 � -roots on the real axis,2 � -roots on a branch and2 � -roots on the

other branch;

� � 3 < � < � 4: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on the

other branch;

� � 4 < � < � 5: 4 � -roots on the real axis,2 � -roots on a branch;

� � 5 < � < � 6: 4 � -roots on the real axis,2 � -roots on a branch;

� � 6 < � < � 7: 4 � -roots on the real axis,2 � -roots on a branch;

� � 7 < � < � 8: 4 � -roots on the real axis,2 � -roots on a branch;

� � 8 < � < � 9: 6 � -roots on the real axis;

� � > � 9: 6 � -roots on the real axis.

No loop is present in the spectrum.

Figure 4.15: Stability spectrum withp1 = 1 :0, p2 = � 3:0, p3 = � 0:6. � = Re( � ) and

� = Im( � ).
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Figure 4.16: Gain function�( k3) wherek3 = w1 � w2 associated to the spectrum obtained

at p1 = 1 :0, p2 = � 3:0, p3 = � 0:6.

4.5.2 Regions with 2 Gaps and 0 Branch

In the regions with2 gaps and0 branch, there is the following correspondence between the

number of loops and the number of positive� -roots:

� 2L: 4 positive� -roots;

� 1L: 2 positive� -roots.

The region with2 gaps,0 branch and0 loop does not exist. This is because the� -roots

which start to move in the interval between the2 gaps would be trapped inside such interval

and never would go to in�nity: this is in contradiction of the Proposition 4.3.1.

Let us setp1 = � 70:0, p2 = 60:0 and p3 = � 0:6. The polynomialQ2(� ) changes sign4

times in the points�� 1 = 1 :596, �� 2 = 218:582, �� 3 = 968:174, �� 4 = 3944:396. After applying

the Descartes rule of signs, the end-point of the intervals become:� 1 = 1 :596, � 2 = 32:536,

� 3 = 218:582, � 4 = 482:289, � 5 = 968:174, � 6 = 1480:780, � 7 = 3944:396, � 8 = 4733:800.

By using Sturm chains method, we get the following� -roots classi�cation:

� 0 < � < � 1: 6 � -roots on the real axis;
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� � 1 < � < � 2: 4 � -roots on the real axis,2 � -roots on a loop;

� � 2 < � < � 3: 4 � -roots on the real axis,2 � -roots on a loop;

� � 3 < � < � 4: 2 � -roots on the real axis,2 � -roots on a loop and2 � -roots on another

loop;

� � 4 < � < � 5: 2 � -roots on the real axis,2 � -roots on a loop and2 � -roots on another

loop;

� � 5 < � < � 6: 4 � -roots on the real axis,2 � -roots on a loop;

� � 6 < � < � 7: 4 � -roots on the real axis,2 � -roots on a loop;

� � 7 < � < � 8: 6 � -roots on the real axis;

� � > � 8: 6 � -roots on the real axis.

Therefore, we see2 loops in this spectrum.

Figure 4.17: Stability spectrum withp1 = � 70:0, p2 = 60:0, p3 = � 0:6. � = Re( � ) and

� = Im( � ).
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Figure 4.18: Gain function�( k3) wherek3 = w1 � w2 associated to the spectrum obtained

at p1 = � 70:0, p2 = 60:0, p3 = � 0:6.

Let us setp1 = 0 :2, p2 = 0 :6 and p3 = � 0:6. The polynomialQ2(� ) changes sign2

times in the points�� 1 = 2 :348 and �� 2 = 18:989. After applying the Descartes rule of signs

,the end-point of the intervals become:� 1 = 2 :348, � 2 = 6 :410 and � 3 = 18:989. After

constructing the Sturm chains, the� -roots classi�cation is:

� 0 < � < � 1: 6 � -roots on the real axis;

� � 1 < � < � 2: 4 � -roots on the real axis,2 � -roots on a loop;

� � 2 < � < � 3: 4 � -roots on the real axis,2 � -roots on a loop;

� � > � 3: 6 � -roots on the real axis.

Therefore, there is only1 loop in this spectrum.
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Figure 4.19: Stability spectrum withp1 = 0 :2, p2 = 0 :6, p3 = � 0:6. � = Re( � ) and

� = Im( � ).

Figure 4.20: Gain function�( k3) wherek3 = w1 � w2 associated to the spectrum obtained

at p1 = 0 :2, p2 = 0 :6, p3 = � 0:6.

4.5.3 Region with 1 Gap, 1 Split Gap and 0 Branches

There is only one possibility:

� 1L 1TL: 3 positive� -roots.

By choosingp1 = � 90:0, p2 = 60:0 and p3 = � 0:6, the polynomialQ2(� ) vanishes in

the points �� 1 = 63:032, �� 2 = 2891:269 and � 3 = 4474:552. By the Descartes rule, the� -
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domain is split by these points:� 1 = 63:032, � 2 = 267:710, � 3 = 1569:140, � 4 = 2891:269,

� 5 = 4474:552, � 6 = 6153:740. The � -roots classi�cation is obtained by the Sturm chains

construction:

� 0 < � < � 1: 4 � -roots on the real axis and2 � -roots on a loop;

� � 1 < � < � 2: 2 � -roots on the real axis,2 � -roots on a loop and2 � -roots on another

loop;

� � 2 < � < � 3: 2 � -roots on the real axis,2 � -roots on a loop and2 � -roots on another

loop;

� � 3 < � < � 4: 2 � -roots on the real axis,2 � -roots on a loop and2 � -roots on another

loop;

� � 4 < � < � 5: 4 � -roots on the real axis and2 � -roots on a loop;

� � 5 < � < � 6: 6 � -roots on the real axis;

� � > � 6: 6 � -roots on the real axis.

In this spectrum it looks like there are only two loops, but actually there are1 loop and

1 twisted loop. Therefore, the second loop that we have found has to be counted twice.

Indeed, we cannot individuate the exact value of� in which the two� -roots collide on the

real axis to become again two complex conjugate roots travelling the second part of the

twisted loop.



Chapter 4. Spectra and Linear Instabilities of the 3WRI Equations 115

Figure 4.21: Stability spectrum withp1 = � 90:0, p2 = 60:0, p3 = � 0:6. � = Re( � ) and

� = Im( � ).

Figure 4.22: Gain function�( k3) wherek3 = w1 � w2 associated to the spectrum obtained

at p1 = � 90:0, p2 = 60:0, p3 = � 0:6.

4.5.4 Region with 1 Split Gap and 1 Branch

In this region we have:

� 1L 1TL: 4 positive� -roots;

� 1TL: 2 positive� -roots.
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Let us �x p1 = � 1:4, p2 = � 1:0 and p3 = � 0:6. The polynomialQ2(� ) changes sign

4 times in the points �� 1 = 9 :216, �� 2 = 11:823, �� 3 = 12:195 and �� 4 = 27:053. By the

Descartes rule of signs, we get:� 1 = 0 :002, � 2 = 0 :421, � 3 = 9 :216, � 4 = 11:823,

� 5 = 12:195, � 6 = 27:053, so that, by using the Sturm chains technique, the� -roots are

classi�ed as follows:

� 0 < � < � 1: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop;

� � 1 < � < � 2: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop

� � 2 < � < � 3: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop

� � 3 < � < � 4: 4 � -roots on the real axis,2 � -roots on a branch or on a loop;

� � 4 < � < � 5: 6 � -roots on the real axis;

� � 5 < � < � 6: 4 � -roots on the real axis,2 � -roots on a loop;

� � > � 6: 6 � -roots on the real axis.

In this spectrum there is1 loop and1 twisted loop. Also in this case it is not possible

distinguish the exact value of� in which two � -roots collide in the point separating a split

gap and then they become again two complex conjugate roots.
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Figure 4.23: Stability spectrum withp1 = � 1:4, p2 = � 1:0, p3 = � 0:6. � = Re( � ) and

� = Im( � ).

Figure 4.24: Gain function�( k3) where k3 = w1 � w2 associated to the spectrum at

p1 = � 1:4, p2 = � 1:0, p3 = � 0:6.

If we choosep1 = � 4, p2 = 2 and p3 = � 0:6, the polynomialQ2(� ) vanishes2 times in

�� 1 = 9 :591 and �� 2 = 98:262. By the Descartes rule of signs, we get the points� 1 = 0 :136,

� 2 = 9 :591, � 3 = 19:547, � 4 = 45:537, � 5 = 98:262. The classi�cation of the� -roots is:

� 0 < � < � 1: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop;

� � 1 < � < � 2: 2 � -roots on the real axis,2 � -roots on a branch and2 � -roots on a

loop;
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� � 2 < � < � 3: 4 � -roots on the real axis,2 � -roots on a loop;

� � 3 < � < � 4: 4 � -roots on the real axis,2 � -roots on a loop;

� � 4 < � < � 5: 4 � -roots on the real axis,2 � -roots on a loop;

� � > � 5: 6 � -roots on the real axis.

It looks like we have only one loop, but actually this is a twisted loop.

Figure 4.25: Stability spectrum withp1 = � 4:0, p2 = 2 :0, p3 = � 0:6. � = Re( � ) and

� = Im( � ).

Figure 4.26: Gain function�( k3) wherek3 = w1 � w2 associated to the spectrum obtained

at p1 = � 4:0, p2 = 2 :0, p3 = � 0:6.

Summarising, all the possibile topologies in the(p1; p2)-plane are:
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� 1G 0SG1B 2L 0TL;

� 1G 0SG1B 1L 0TL;

� 1G 0SG1B 0L 0TL;

� 0G 0SG2B 2L 0TL;

� 0G 0SG2B 1L 0TL;

� 0G 0SG2B 0L 0TL;

� 2G 0SG0B 2L 0TL;

� 2G 0SG0B 1L 0TL;

� 1G 1SG0B 1L 1TL;

� 0G 1SG1B 1L 1TL;

� 0G 1SG1B 0L 1TL.

4.6 Topological Classi�cation of the Spectra in the Parameter

Space

At this point, we can obtain the entire topological classi�cation of the spectra in the

parameter space. In order to do that, we need to describe the curves in the(p1; p2)-plane

separating the regions with di�erent number of gaps, branches and loops. First of all, we

compute and factorise the polynomialQ2(� ) at � = 0 ,

Q2(0) =
4Y

j =1

D j (p1; p2; p3)dj ; (4.92a)

whose corresponding curves are given by (4.33), as well as the discriminant ofQ2(� ) with

respect to� ,

� � Q2(� ) =
4Y

j =0

E j (p1; p2; p3)ej ; (4.92b)



Chapter 4. Spectra and Linear Instabilities of the 3WRI Equations 120

where the functionsE j depend on the parametersp1, p2 and p3.

Similarly to the de�nition (4.33), letEj be the real-analytic variety in the parameter space,

implicitly de�ned as

Ej =
�

p1; p2 ; p3 2 R 9 (p1; p2) 2 R1� 1 j E j (p1; p2; p3) = 0
	

: (4.93a)

The curves (4.93a) de�ne transition regions with di�erent topological structures. In partic-

ular, we �nd again the curves (4.93a), which areD1, D2, D3 and D4 coinciding withE1,

E2, E3 and E4, respectively, plus another curve that we denote asE0.

If the matrix W features the parametersp1, p2 and p3 only in polynomial form, thenD j ,

with j = 1 ; 2; 3; 4, and E0 are algebraic varieties over the reals.

De�nition 4.6.1. Let

C =

0

@
[

j =1 ;2;3;4

D j

1

A
[

E0; (4.94)

be the set of all the varietiesD j joined with E0. The set C de�nes the boundaries of the

regions in the(p1; p2)-parameters space associated to di�erent topologies of the spectra

Sx .

For instance, if the (e�ective16) parameter space is 2-dimensional, thenC is a set of curves

on the real plane.

Finally, in the �gures 4.27 and 4.28, we show the curvesC in the parameters space and the

entire topological classi�cation of the spectra in this space.

16The parametersp1 and p2 may appear in the de�nition of the varietiesD j and E combined in a certain

number of functions, whose total number can be less than the original number of parameters; then, these

functions of the parameters, on which the varieties depend, play the role of \e�ective" parameters.
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Figure 4.27:(p1; p2)-plane,p3 = � 0:6.
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Figure 4.28:(p1; p2)-plane,p3 = � 0:6.



Chapter 5

Classi�cation of the Stability

Spectra on the Physical Parameters

Space and Numerical Simulations

Based on the results obtained in the previous chapter, in the following we discuss the

classi�cation of the stability spectra in terms of the physical parameters space. We divide

the parameters space in octants and in every octant we provide the values of the physical

parameters. Then, we provide some examples of numerical solutions of the original3WRI

system to show that the plane wave solution is everywhere linearly unstable and that the

presence of a branch into the stability spectrum can be associated, depending on the class

of the perturbation, to the onset of localised structures such as breather-like solutions and

potential rogue waves.

These numerical simulations have been included manly for the sake of complementing the

analytical results: although the theory presented herein cannot quantitatively explain these

numerical experiments, it is interesting to observe that perturbing plane waves associated to

di�erent spectra and integrating numerically (over a short time) the3WRI system using the

di�erent perturbing waves yields di�erent time evolutions and behaviours, hence suggesting

a potential link, in the spirit of what has been done for the NLS system in [72]. This link

may be the subject of future investigation.
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5.1 Classi�cation of the Stability Spectra on the Physical Pa-

rameters Space

The formulas (3.91) can be written as follows

s1s2s3p1 = c2
1s1a2

1 + c2
2s2a2

2; (5.1a)

s1s2s3p2 = c2
1s1a2

1 � c2
2s2a2

2; (5.1b)

by summing and subtracting (5.1) and (5.1b) we get, respectively,

c2
1 =

s2s3

2a2
1

(p1 + p2); (5.2a)

c2
2 =

s1s3

2a2
2

(p1 � p2): (5.2b)

Moreover, we know that

p3 =
c1 � c2

c1 + c2
: (5.3)

Let us separate the parameters space(p1; p2) in quadrants and let us enumerate clockwise

the quadrants with the roman numbers I, II, III, IV. Then, let us separate further every

quadrant in two parts or octants according to the following scheme:

In every octant, we have the following relation between the parametersp1 and p2:



Chapter 5. Classi�cation of the Stability Spectra in the Physical Parameters Space and
Numerical Simulations 125

� Octant Ia: jp1j > jp2j, p1 > 0 and p2 > 0;

� Octant Ib: jp1j < jp2j, p1 > 0 and p2 > 0;

� Octant IIa: jp1j < jp2j, p1 < 0 and p2 > 0;

� Octant IIb: jp1j > jp2j, p1 < 0 and p2 > 0;

� Octant IIIa: jp1j > jp2j, p1 < 0 and p2 < 0;

� Octant IIIb: jp1j < jp2j, p1 < 0 and p2 < 0;

� Octant IVa: jp1j < jp2j, p1 > 0 and p2 < 0;

� Octant IVb: jp1j > jp2j, p1 > 0 and p2 < 0.

In order to see which choice of signs exists in any octant, let us take into account the

formulas (5.2a) and (5.2b).

In the quadrant I, we havep1 > 0 and p2 > 0, then, by the formula (5.2a), it results

in s2s3 = 1 , and so s2 = s3 = � 1. In the octant Ia, we havep1 > p 2, then, by

the formula (5.2b), s1s3 = 1 . This yields that the choice of signs isS+
4 or S�

4 , that is

s1 = s2 = s3 = � 1. In the octant Ib, we havep1 < p 2, thus, by the relation (5.2b), the

choice of signs isS+
3 or S�

3 , that is s1 = � 1 and s2 = s3 = 1 or s1 = 1 and s2 = s3 = � 1,

respectively.

In the quadrant II, we havep1 < 0 and p2 > 0, and by the formula (5.2b), it results

s1s3 = � 1, and sos1 = � s3. In the octant IIa,p1 > � p2, as a consequence of the relation

(5.2a), we haves2s3 = 1 . Therefore, the choice of signs isS+
3 or S�

3 , corresponding to

s1 = � 1 and s2 = s3 = 1 or s1 = � and s2 = s3 = � 1, respectively. On the other hand

in the octant IIb, we havep1 < � p2. By the formula (5.2a), we obtains2s3 = � 1. Thus

we have the choices of signss1 = s2 = 1 and s3 = � 1 or s1 = s2 = � 1 and s3 = 1 which

are denoted asS+
1 and S�

1 , respectively.

In the quadrant III, we havep1 < 0 and p2 < 0. By the relation (5.2a), we obtain

s2s3 = � 1, that is s2 = � 1 ands3 = 1 or s2 = 1 ands3 = � 1. In the octant IIIa,p1 < p 2,

and as consequence of the formula (5.2b) we gets1s3 = � 1. Therefore, the combinations

of signs ares1 = s2 = 1 and s3 = � 1 or s1 = s2 = � 1 and s3 = 1 corresponding to the

choicesS+
1 and S�

1 , respectively. In the octant IIIb, we havep1 > p 2, then s1s3 = 1 , that
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is s1 = s3 = 1 and s3 = � 1 or s1 = s3 = � 1 and s3 = 1 . They correspond to the choices

S+
2 and S�

2 , respectively.

In the quadrant IV, we have the relationsp1 > 0 and p2 < 0. By the relation (5.2b),

it results in s1s3 = 1 , and sos1 = s3 = 1 or s1 = s3 = � 1. Moreover, in the octant

IVa, p1 < � p2, then, by (5.2a) s2s3 = � 1, we obtain s1 = s3 = 1 and s2 = � 1 or

s1 = s3 = � 1 and s2 = 1 . These combinations of signs are denoted asS+
2 and S�

2 ,

respectively. In the octant IVb,p1 > � p2 and, by the formula (5.2a), this yieldss2s3 = 1 .

Thus, we haves1 = s2 = s3 = 1 or s2 = s2 = s3 = � 1, corresponding to te choicesS+
4 or

S�
4 , respectively.

In the following subsection we will provide the mapping from the parametersp1, p2, p3 into

the parametersc1, c2, a1 and a2.

5.1.1 Octant Ia

By looking at the formulas (5.2), ifp1 > p 2 > 0, then p1 + p2 > 0 and p1 � p2 > 0. As a

consequence,s1s3 = 1 and s2s3 = 1 and, so,s1 = s2 = s3.

By subctracting (5.2a) from (5.2b)

c2
1 � c2

2 =
1

2a2
1
(p1 + p2) �

1
2a2

2
(p1 � p2) =

1
2a2

1a2
2
[p1(a2

2 � a2
1) + p2(a2

1 + a2
2)]: (5.4)

For p3 < 0, we havejc2j > jc1j, so c2
1 � c2

2 < 0, and

0 <
p1

p2
<

a2
2 + a2

1

a2
1 � a2

2
then ja1j > ja2j: (5.5)

Similarly, for p3 > 0, we havejc2j < jc1j, the equationc2
1 � c2

2 > 0 gives us the condition

ja1j > ja2j. We haveja1j 6= ja2j, otherwisep2 < 0.

In conclusion, for both the casesjc2j > jc1j (p3 < 0) and jc2j < jc1j (p3 > 0) the amplitudes

satisfy the relationja1j > ja2j.

5.1.2 Octant Ib

By (5.2), if p2 > p 1 > 0, then p1 + p2 > 0 and p1 � p2 < 0 and also we haves2s3 = 1 and

s1s3 = � 1. Thus, it results ins2 = s3 = � s1.
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By subtracting (5.2a) from (5.2b)

c2
1 � c2

2 =
1

2a2
1
(p1 + p2) +

1
2a2

2
(p1 � p2) =

1
2a2

1a2
2
[p1(a2

1 + a2
2) + p2(a2

2 � a2
1]) < 0: (5.6)

For p3 < 0, we havejc2j > jc1j. Thus,

0 <
p1

p2
<

a2
1 � a2

2

a2
2 + a2

1
then ja1j > ja2j: (5.7)

It must be ja1j 6= ja2j, although we have the contradictionp1 < 0.

One can show that for bothjc2j > jc1j (p3 < 0) and jc2j < jc1j (p3 > 0) the amplitudes

satisfy the relationja1j > ja2j.

5.1.3 Octant IIa

By (5.2), if p2 > 0 and p1 < 0 and jp2j > jp1j, then p1 + p2 > 0 and p1 � p2 < 0 and

s2s3 = 1 and s1s3 = � 1. This entailss2 = s3 = � s1.

By summing (5.2a) and (5.2b)

c2
1 + c2

2 =
1

2a2
1
(p1 + p2) �

1
2a2

2
(p1 � p2) =

1
2a2

1a2
2
[p1(a2

2 � a2
1) + p2(a2

2 + a2
1)] > 0: (5.8)

Thus,

0 >
p1

p2
>

a2
1 + a2

2

a2
1 � a2

2
; then; ja1j < ja2j: (5.9)

In this case, ifja1j 6= ja2j, otherwisep1 > 0.

For both jc2j > jc1j (p3 < 0) and jc2j < jc1j (p3 > 0) the amplitudes satisfy the relation

ja1j < ja2j.

5.1.4 Octant IIb

By (5.2), if p2 > 0 and p1 < 0 and jp1j > jp2j, then we obtainp1 + p2 > 0 and p1 � p2 < 0

and s2s3 = 1 and s1s3 = � 1. As a result, we gets2 = s3 = � s1. By summing (5.2a) and

(5.2b)

c2
1 + c2

2 =
1

2a2
1
(p1 + p2) �

1
2a2

2
(p1 � p2) =

1
2a2

1a2
2
[p1(a2

2 � a2
1) + p2(a2

2 + a2
1)] > 0: (5.10)
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Therefore,

0 >
p2

p1
>

a2
1 � a2

2

a2
2 + a2

1
then ja1j < ja2j: (5.11)

Also in this caseja1j 6= ja2j, otherwise we have a contradiction. Finally, for bothjc2j > jc1j

(p3 < 0) and jc2j < jc1j (p3 > 0) the amplitudes satisfy the relationja1j < ja2j.

5.1.5 Octant IIIa

By (5.2), if p1 < p 2 < 0, then p1 + p2 < 0 and p1 � p2 < 0 and s2s3 = � 1 and s1s3 � 1.

This entailss1 = s2 = � s3.

By subtracting (5.2a) from (5.2b)

c2
1 � c2

2 = �
1

2a2
1
(p1 + p2)+

1
2a2

2
(p1 � p2) =

1
2a2

1a2
2
[p1(a2

1 � a2
2) � p2(a2

2 + a2
1)] < 0: (5.12)

Therefore,

0 <
p1

p2
<

a2
1 + a2

2

a2
1 � a2

2
then ja1j > ja2j: (5.13)

If ja1j = ja2j, we have the contradictionp2 > 0.

For both jc2j > jc1j (p3 < 0) and jc2j < jc1j (p3 > 0) the amplitudes satisfy the relation

ja1j > ja2j.

5.1.6 Octant IIIb

By (5.2), if p2 < p 1 < 0, then p1 + p2 < 0 and p1 � p2 > 0 and s2s3 � 1 and s1s3 = 1 .

Therefore, it turns outs1 = s3 = � s2.

By subctring (5.2a) from (5.2b)

c2
1 � c2

2 = �
1

2a2
1
(p1+ p2) �

1
2a2

2
(p1 � p2) =

1
2a2

1a2
2
[� p1(a2

2+ a2
1)+ p2(a2

1 � a2
2)] < 0: (5.14)

Thus,

0 <
p2

p1
<

a2
1 + a2

2

a2
1 � a2

2
=) j a1j > ja2j: (5.15)

If ja1j = ja2j, we have the contradictionp1 > 0. For both jc2j > jc1j (p3 < 0) and

jc2j < jc1j (p3 > 0) the amplitudes satisfy the relationja1j > ja2j.
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5.1.7 Octant IVa

By (5.2), if p2 < 0 and p1 > 0 and jp2j > jp1j =) p1 + p2 < 0 and p1 � p2 > 0.

s2s3 = � 1 and s1s3 = 1 entailss1 = s3 = � s2.

By summing (5.2a) and (5.2b)

c2
1 + c2

2 = �
1

2a2
1
(p1 + p2)+

1
2a2

2
(p1 � p2) =

1
2a2

1a2
2
[p1(a2

1 � a2
2) � p2(a2

2 + a2
1)] > 0: (5.16)

Thus,

0 >
p1

p2
>

a2
1 + a2

2

a2
1 � a2

2
=) j a1j < ja2j: (5.17)

If ja1j = ja2j, then p2 < 0 8a1; a2. For both jc2j > jc1j (p3 < 0) and jc2j < jc1j (p3 > 0)

the amplitudes satisfy the relationja1j � j a2j.

5.1.8 Octant IVb

By (5.2), if p2 < 0 and p1 > 0 and jp1j > jp2j yieldsp1 + p2 > 0 and p1 � p2 > 0. If

s2s3 = 1 and s1s3 = 1 , then s1 = s3 = s2. By summing (5.2a) and (5.2b)

c2
1 + c2

2 =
1

2a2
1
(p1 + p2) +

1
2a2

2
(p1 � p2) =

1
2a2

1a2
2
[p1(a2

1 + a2
2) + p2(a2

2 � a2
1)] > 0: (5.18)

Thus,

0 >
p1

p2
>

a2
1 � a2

2

a2
1 + a2

2
=) j a1j < ja2j: (5.19)

If ja1j = ja2j, then p1 > 0 8a1; a2. Finally, for both jc2j > jc1j (p3 < 0) and jc2j < jc1j

(p3 > 0) the amplitudes satisfy the relationja1j � j a2j.

5.1.9 Transformations of the Physical Parameters

In the following we provide the transformations form the parametersp1, p2, p3 and p4 to

the velocitiesc1, c2, to the amplitudesa1, a2 and to the signss1, s2 and s3.

The velocitiesc1 and c2 can be also written as

c1 =
(1 + p3)p4

2
; (5.20a)
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c2 =
(1 � p3)p4

2
: (5.20b)

In the following we provide the values of the signssj , j = 1 ; 2; 3, for di�erent range of the

parametersp1 and p2.

� if p2 < 0 and p1 � p2: s1 = � 1, s2 = � 1, s3 = 1 ;

� if p2 < 0 and � p2 < p 1 < p 2: s1 = � 1, s2 = 1 , s3 = � 1;

� if p2 < 0 and p1 � � p2: s1 = � 1, s2 = � 1, s3 = � 1;

� if p2 > 0 and p1 � � p2: s1 = � 1, s2 = � 1, s3 = 1 ;

� if p2 > 0 and � p2 < p 1 < p 2: s1 = � 1, s2 = 1 , s3 = 1 ;

� if p2 > 0 and p1 � p2: s1 = � 1, s2 = � 1, s3 = � 1;

� if p2 = 0 and p1 < 0: s1 = � 1, s2 = � 1, s3 = 1 ;

� if p2 = 0 and p1 > 0: s1 = � 1, s2 = � 1, s3 = � 1.

If p1 = p2 = 0 , then a1 = a2 = 0 and is not considered.

The amplitudes transform as follows

a1 =

p
2s2s3(p1 + p2)
j1 + p3jjp4j

; (5.21a)

a2 =

p
2s2s3(p1 � p2)
j1 � p3jjp4j

: (5.21b)

5.2 Numerical Simulations

In this section we show some numerical observations of di�erent evolution obtained by

integrating numerically the3WRI system from a perturbed plane wave solution.

We use two kinds of perturbations: a localised perturbation and a random perturbation1.
1In this respect, it is right to highlight that the linear stability analysis of plane wave solutions of the

scalar NLS equation when these plane waves are perturbed via periodic perturbations was carried out in

[38, 39, 40, 41, 42, 43]
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We �x p1, p2 and p3 and we reconstruct all the physical parameters,a1, a2, c1, c2, s1,

s2, s3, based on the formulae in Section 5.1.9. Using these parameters, we construct the

corresponding plane wave solution. We compute this plane wave solution att = 0 , we

perturb it spatially and we use it as the initial condition for our numerical simulation. Each

initial condition is perturbed alternatively in two di�erent ways:

� through a localised perturbation, added to the initial data (individually to eachu0
j s),

having the form:

� cos
� �x

2L

�
e� �x 2

; (5.22)

whereL is the semi-length of the numerical integration interval,� is the amplitude

of the perturbation (in the following� = 10 � 3, unless speci�ed di�erently), and�

is a chosen parameter, typically set to2 (in the following � = 2 , unless speci�ed

di�erently);

� through a random perturbation, added as a noise to the initial data (individually to

eachu0
j s), having the form:

� (x) with  (� L ) =  (L ) = 0 ; (5.23)

where (x) for x 2 (� L; L ) is a uniform distribution in the interval[0; 1], L is again

the semi-length of the integration interval and� is the amplitude of the perturbation;

in the implementation, the random perturbation is smoothened by computing on

a subset of the spatial nodes and then by using a Whittaker-Shannon interpolation

formula [119] over the remaining nodes (see Appendix N).

As for the numerical scheme applied, we use the method of lines with a pseudospectral,

Fourier discretisation in space and an adaptive Runge-Kutta scheme in time implemented in

MATLAB R2017a (see Appendix O and Appendix P). In order to apply the pseudospectral

method, it is very convenient to have initial conditions independent of the space variable.

Let us provide the following transformation:
8
>>>>><

>>>>>:

~u1 = ei� 1 (x� c1 t )u1;

~u2 = ei� 2 (x� c2 t )u2;

~u3 = ei ( � 3x+ !t )u3;

(5.24)
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where

� 1 =
� 1

c1
+ s1s3a2

2
c2

c1

(c1 � c2)
� 1 + � 2

; (5.25a)

� 2 =
� 2

c2
+ s2s3a2

1
c1

c2

(c1 � c2)
� 1 + � 2

; (5.25b)

� 3 = � (� 1 + � 2); (5.25c)

! = c1� 1 + c2� 2 (5.25d)

then, it is straightforward to verify that~u1, ~u2, ~u3 satisfy the following system of PDEs2

8
>>>>><

>>>>>:

~u1t = � c1~u1x + s1c2~u�
2~u�

3 ;

~u2t = � c2~u2x + s2c1~u�
1~u�

3 ;

~u3t = i! ~u3 + s3(c1 � c2)~u�
1~u�

2 ;

(5.26)

with the following initial conditions
8
>>>>><

>>>>>:

~u1(x; 0) = ei� 1xu1(x; 0);

~u2(x; 0) = ei� 2xu2(x; 0);

~u3(x; 0) = ei� 3xu3(x; 0):

(5.27)

We integrate system (5.26) with initial condtions (5.27) and the we invert (5.24) to obtain

the solutions in terms of theu0
j s starting from the solutions in terms of the~u0

j s.

Observe that, ifuj (x; t ) is the plane wave solution (3.30), then~uj (x; t ) does not depend

explicitly on the space variablex, indeed we have
8
>>>>><

>>>>>:

~u1 = a1ei ( � 1 � � 1c1 )t ;

~u2 = a2ei ( � 2 � � 2c2 )t ;

~u3 = a3ei ( � 3+ ! )t ;

(5.28)

2Although the solutions ~uj , for j = 1 ; 2; 3 may appear simpler than those ones used in the theoretical

part of the Thesis, they satisfy a system (see formula (5.26)) more complicated than that one used for the

analytical computations and dealing with it would result an useless e�ort. On the other hand, the system

(5.26) has been found useful for the numerics in this Chapter.
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with a3 as in (3.32), and� 3 = � (� 1 + � 2).

In particular, from (5.28), we see that~uj (x; 0) does not depend on the spatial variablex,

and hence the integration interval3 [� L; L ] can be taken arbitrary for system (5.26) using

(5.28) at t = 0 as initial conditions.

In the following we denote with

� (0)
j = max

x2 [� L;L ]

juj (x; 0)j
aj

; (5.29a)

the ratio between the initial maximum of the absolute value of the perturbed solution and

aj (that is the amplitude of the unperturbed wave); we also introduce

�� j = max
x2 [� L;L ];t2 [0;T ]

juj (x; t )j
aj

; (5.29b)

namely, the ratio between the maximum of the absolute value of the perturbed solution on

the whole integration domain[� L; L ] � [0; T] and aj .

Before we show some numeric simulations, it is right to provide the following de�nition of

rogue wave:

\ In the real ocean, rogue waves are waves that are very steep and much higher than

the surrounding waves in a wave record, which is usually of 20-minute length;...There is

currently no consensus on one unique de�nition of a rogue wave, but a common and simple

approach is to de�ne a rogue wave as a wave whose wave height or crest height exceeds

some thresholds related to the signi�cant wave height. A common de�nition is to apply

the criteria (Haver, 2000):

Hmax

Hs
> 2; and=or

Cmax

Hs
> 1:25;

whereHmax denotes the zero-crossing wave height,Cmax is the crest height, andHs is

the signi�cant wave height, de�ned as four times the standard deviation of the surface,

typically calculated from a20-minute measurement of the surface elevation." [120].

Because of this de�nition, we report the value�� max for each numerical solution and this

value will give us in percentage the ratio between the maximum value obtained by the

numerical simulations and the background. We will state that we have a potential rogue

wave any time the maximum value of the solution exceeds at least of three times the value of

3The range of values ofL is taken as larger as possible to make sure that all the modes with higher

velocities are included as well.
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the background. We will state that we have a potential rogue wave any time the maximum

value of the solution exceeds at least three times the value of the background.

5.2.1 2G 0SG 0B 1L 0TL

We investigate the region2G 0B 1L that is located near the origin in the parameter space

(see Figure 4.27).

We choose the parametersp1 = 0 :2, p2 = 0 :3, p3 = � 0:6 and p4 = 1 corresponding to the

velocitiesc1 = 0 :2, c2 = 0 :8, to the amplitudesa1 = 2 :5, a2 = 0 :27951and to the choice

of signss1 = 1 , s2 = 1 , s3 = 1 . In particular with the localised perturbation, we observe:

� � (0)
1 = 0 :04% and �� 1 = 0 :052206%;

� � (0)
2 = 0 :35777%and �� 2 = 0 :35777%;

� � (0)
3 = 0 :47703%and �� 3 = 0 :82379%.

By perturbing with random perturbation, we observe:

� � (0)
1 = 0 :058176%and �� 1 = 0 :17725%;

� � (0)
1 = 0 :48424%and �� 2 = 0 :61943%;

� � (0)
1 = 0 :57518%and �� 3 = 1 :6717%.

5.2.2 0G 0SG 2B 1L 0TL

We investigate the region0G 2B 1L that is located near the origin on the parameter space

(see Figure 4.27).

We choose the parametersp1 = 0 :2, p2 = � 0:4, p3 = � 0:6 and p4 = 1 corresponding to

the velocitiesc1 = 0 :2, c2 = 0 :8, to the amplitudesa1 = 1 :5811;, a2 = 0 :68465and to the

choice of signss1 = � 1, s2 = 1 , s3 = � 1. In particular with the localised perturbation

(5.22), we observe:
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� � (0)
1 = 0 :063246%and �� 1 = 333:6069%;

� � (0)
2 = 0 :14606%and �� 2 = 598:6718%;

� � (0)
3 = 0 :30792%and �� 3 = 1014:7219%.

By perturbing with random perturbation, we observe:

� � (0)
1 = 0 :082294%and �� 1 = 239:9949%;

� � (0)
2 = 0 :18711%and �� 2 = 407:9717%;

� � (0)
3 = 0 :52058%and �� 3 = 607:7822%.

5.2.3 1G 1SG 0B 1L 1TL

We choose the parametersp1 = � 90:0, p2 = 60:0, p3 = � 0:6 and p4 = 1 corresponding

to the velocitiesc1 = 0 :2, c2 = 0 :8, to the amplitudesa1 = 19:3649, a2 = 10:8253 and

to the choice of signss1 = 1 , s2 = 1 , s3 = � 1. In this case we have explosive behaviour

and, in particular, with the localised perturbation (5.22), we observe explosion att = 0 :75

seconds:

� � (0)
1 = 0 :005164%and �� 1 = 502961:1987%;

� � (0)
2 = 0 :0092376%and �� 2 = 449856:3477%;

� � (0)
3 = 0 :0015901%and �� 3 = 134122:7821%.

We do not report the plots fro these simulations because they are all blu coloured. We run

the simulations for the solutionsju1j, ju2j and ju3j in the region1G 1SG0B 1L 1TL after

localised perturbation and the simulations run over a time0 � t � 0:7 and a space� 30 �

x � 30. We observe the maximum forju1j is 97416:7 on the background with intensity

18:6, the solution ju2j reaches its maximum of intensity at48707:7 on the background

with intensity 9:2 and the solutionju3j has its maximum of intensity at84365:7 on the

background of intensity62:8.
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With the random perturbation (5.23), we observe explosion att = 0 :71375seconds:

� � (0)
1 = 0 :0072695%and �� 1 = 502961:1987%;

� � (0)
2 = 0 :011944%and �� 2 = 478:2925%;

� � (0)
3 = 0 :0022268%and �� 3 = 140:8017%.

We do not report the plots fro these simulations because they are all blu coloured. We have

observed the evolutions of the solutionsju1j, ju2j and ju3j in the region1G 1SG0B 1L 1TL

after random perturbation and the simulations run over a time0 � t � 0:7 and a space

� 30 � x � 30. The maximum reached byju1j is 122:8 on the background with intensity

0:5, the solution ju2j reaches its maximum of intensity at61:3 on the background with

intensity1:9 and the solutionju3j has its maximum of intensity at122:3 on the background

of intensity 60:7

Conjecture 5.2.1. The presence of a twisted loop (or a split-gap) in a stability spectrum

corresponds to a solution that is explosive in time.

Conjecture 5.2.2. The existence of branches in a stability spectrum is a necessary condition

for the onset of rogue waves ascribable to rational or semi-rational solutions and which can

be obtained by DDT.
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Figure 5.1: Solutionsju1j, ju2j and ju3j in the region2G 0SG 0B 1L 0TL after localised

perturbation. The simulations run over a time0 � t � 120 and a space� 20 � x � 20.
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Figure 5.2: Zoom of the solutionsju1j, ju2j and ju3j in the region2G 0SG 2B 1L 0TL

after localised perturbation. The simulations run over a time80 � t � 120 and a space

5 � x � 15.
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Figure 5.3: Solutionsju1j, ju2j and ju3j in the region2G 0SG 0B 1L 0TL after random

perturbation. The simulations run over a time0 � t � 120 and a space� 20 � x � 20.
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Figure 5.4: Zoom of the solutionsju1j, ju2j and ju3j in the region2G 0SG 2B 1L 0TL

after random perturbation. The simulations run over a time100 � t � 120 and a space

0 � x � 20.
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Figure 5.5: Solutionsju1j, ju2j and ju3j in the region0G 0SG 2B 1L 0TL after localised

perturbation. The simulations run over a time0 � t � 60 and a space� 30 � x � 30.

These localised structures resemble the breather solutions of the NLS equation [121]. We

observe a complementarity in the pattern and in the colours between the three solutions

displayed, this suggests a well de�ned exchange of energy between the three solutions that

is interesting to be studied deeper in future works.
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Figure 5.6: Zoom of the solutionsju1j, ju2j and ju3j in the region0G 0SG2B 1L 0TL after

localised perturbation. The simulations run over a time0 � t � 30and a space0 � x � 15.

In the plots for ju1j and ju3j we have localised structures which are breathe-like solutions

with a maximum of intensity of4:2 and 3:2 (red colour) on a background with intensity0

(blu colour).
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Figure 5.7: Solutionsju1j, ju2j and ju3j in the region0G 0SG 2B 1L 0TL after random

perturbation. The simulations run over a time0 � t � 60 and a space� 30 � x � 30. We

observe a complementarity in the pattern and in the colours between the the three solutions

displayed, this suggests a well de�ned exchange of energy between the three solutions that

is interesting to be studied deeper in future works.
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Figure 5.8: Zoom of the solutionsju1j, ju2j and ju3j in the region0G 0SG2B 1L 0TL after

random perturbation. The simulations run over a time0 � t � 30 and a space0 � x � 15.

In the plots of ju1j and ju2j we have potential rogue waves with a maximum of intensity

of 2:6 and 2:3 (red colour) on a background with0 intensity (blu colour). These localised

structures resemble the development of \integrable turbulence" studied for the focusing

NLS equation in [39].
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Conclusions

6.1 Summary of the Results

The aim of this thesis has been the analysis of the spectral stability of plane wave solutions

of the 3WRI model, when such solutions undergo localised perturbations. The approach is

based on a spectral method recently developed in [64] to carry out the stability analysis of

a nonlinear multi-component system, when the solutions have a non-vanishing background.

The problem of assessing the stability of solutions of the 3WRI system had been already

investigated in the literature. For instance, Kaup's research works [57, 63, 58] had focussed

on the stability analysis of the 3WRI model with soliton solutions on vanishing background,

which can be obtained, in principle, by the IST method [31, 30, 29, 53]. It is well known

that the IST machinery, in addition to being technically cumbersome to apply to multi-

component systems, depends on the boundary conditions (e.g. by requiring the solution

and its �rst derivative to be in the class of potentials vanishing su�ciently fast to in�nity).

On the contrary, the method in [64] is independent of the class of the potentials and tailor-

made for the application to multi-component systems. We have obtained several results:

� By applying the method in [64] to the 3WRI model, we have provided for the �rst

time, a comprehensive topological classi�cation of the spatial stability spectra (as

curves on the complex plane) with respect to the parameters space and the gain

functions associated to any stability spectrum.
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� Interestingly, we have found that all the stability spectra of the CNLS system are also

enclosed in those of the 3WRI system. Indeed, the same method has already been

successfully applied to the CNLS system [64]. The topological features of the CNLS

stability spectra are gaps on the real axis, and branches and loops o� the real axis:

the gaps correspond to the solutions which are not bounded in space, whereas the

branches and loops correspond to the solutions which are instead bounded in space,

but which can be linearly unstable in time.

� Compared to the CNLS system, new topological features exist in the stability sfpectra

of the 3WRI model, for instance, �gure-of-eight loops that we have named twisted

loops. Remarkably, the gain function associated to the twisted loops is non-zero in a

whole neighbourhood of the origin (origin enclosed). This fact has been conjecturally

associated to explosive instability: the solutions blow up in a �nite time.

� We have observed that the gain function associated to the branches is non-zero at

low wave numbers, symmetrically located with respect to the zero-value of the wave

number, but it is anyway zero at the origin of the plot (linear instability of baseband-

type). The gain function associated to the loops is non-zero only away from the origin

(linear instability of passband-type).

� We have observed linear instability in time of plane waves for any choice of the physical

parameters, except for those ones associated to the solutions that are explosive and we

observe the subsequent generation of coherent localised structures, such as breather-

like solutions and potential rogue waves. Some of these solutions have been observed

numerically and, to the best of our knowledge, they have never been observed before

in the context of the linear instability of the 3WRI system. Nevertheless, the 3WRI

system is a dispersionless system with only coupling terms between the di�erent

wave components [58]. Thus, the observation of localised structures is remarkable,

if one considers that MI has been observed in the context of nonlinear dispersive

systems, where nonlinearity and dispersion can balance each other (see, for example,

[37, 45, 71, 52, 17, 49, 50, 51, 9]).

A conclusion is that the mechanism for the onset of localised structures (e.g. potential

rogue waves) in the 3WRI system, as a result of localised perturbations of plane

waves, must be di�erent. For this reason, in the context of the 3WRI system, we
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have prefered to refer to this physical phenomenon as"linear instability" rather than

as linear stage of MI.

6.2 Open Problems and Future Directions

There are several open problems related to the subject of this Thesis and to the results

obtained so far. In the following, we provide some possible future directions for the research.

6.2.1 The Onset of Rogue Waves in the 3-Wave Resonant Interaction

Model

We have conjectured that the existence of branches in the stability spectra is a necessary

condition for the onset of rogue waves ascribable to rational or semi-rational solutions

[75, 76, 77] and which can be obtained by DDT [85]. Indeed, the ends of a branch

correspond to the vanishing of at least a di�erence between the eigenvalues of the spatial

Lax operator after gauge transformation. Following [75], we see that if two eigenvalues are

equal with one another, we have a necessary condition for the existence of semi-rational

solitons whereas, if all the three eigenvalues are equal with one another, we have the

necessary condition for the existence of rational solutions. Moreover, in the paper [72],

it has been found that, for rational solutions in defocusing regime of the CNLS, potential

rogue waves exist if and only if base-band MI exists. We refer topotential rogue waves as

the rogue waves which can be modelled by rational and semi-rational solitons obtainable

by DDT method.

In a future research work, we aim to write a necessary (and, possibly, also a su�cient)

condition for the existence of potential rogue waves in terms of the parameters used to

classify the topologies of the stability spectra, namely, we aim to understand for which

values of the parameters the necessary condition is also su�cient.
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6.2.2 Spectra of the Lax Operators and Stability Spectra

Following the paper [64], we have assumed that the perturbation�Q has the integral

representation

�Q =
Z

d� F (x; t; � ); (6.1)

which provides a solution�Q bounded and localised inx at any �xed time t. The bounded-

ness condition ofF (x; t; � ) de�nes the spatial stability spectrumSx of the solutionQ(x; t ).

As mentioned in [64], this spectrum depends on the behaviour of the matrixQ(x) for large

jxj. Indeed, if Q(x) vanishes su�ciently fast asjxj ! 1 , then Sx coincides with the

spectrum of the operatord=dx � i� � � Q(x), that is de�ned by the spatial Lax equation.

Instead, ifQ(x) is non-vanishsing asjxj ! 1 , as for the case of plane waves, the spectrum

Sx of the solutionQ(x) in general may not coincide with the spectrum of the di�erential

operatord=dx � i� � � Q(x), whenQ(x) is N � N with N > 2.

In [52, 71], it has been provided a spectral criterion for the occurrence of MI in the CNLS

system. The authors establish a link between the eigenmode of the linearised problem with

the eigenfunctions of the Lax problem which, in turn, can be used to construct the nonlocal

dynamics of the system via B•acklund transformations [122]. Nevertheless, they impose that

the solutions satisfy boundary periodic conditions and the criterium for the existence of MI

refers to the Floquet spectrum of the Lax operators. In the approach developed in [64] is

independent of the boundary conditions for the solutions, so that, in the context of this

new spectral method, one can establish a more general correspondence between the spectra

of the Lax operators and the stability spectra.

6.2.3 Exchange of Energy in the Linear Instability of the 3-Wave Resonant

Interaction Model

In the simulations of all the three solutions of the 3WRI system, we have always observed the

presence of colours and pattern complementarity. We conjecture that this complementarity

is due to the exchange of energy between the waves during their interaction such that,

when one has the maximum values of the intensity, explained as the absorption of energy,

the density of another wave is at its minimum, so the latter has given away its energy.
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Similar investigation on nonlinear dispersive multicomponent systems has been conducted

in [49, 50, 51], both via numerical simulations and perturbative methods.



Appendix A

Transformation Matrix G(x; t ) for

the matrix NLS Equation

Let G = G(x; t ) be the matrix such that the transformation (2.15) is veri�ed. Let us

suppose that its expression is

G =

0

@
g1 0

0 g2

1

A ; (A.1)

whose entries areg1 = g1(x; t ), g2 = g2(x; t ), and its inverse matrix is

G� 1 =

0

@
g� 1

1 0

0 g� 1
2

1

A ; (A.2)

such that,

G

0

@
0 sa

a 0

1

A G� 1 =

0

@
0 sag1g� 1

2

ag� 1
1 g2 0

1

A : (A.3)

Since (A.3) must be equal toQ0 provided in (2.15), after the substitution of the relation

dispersion (2.14) in the plane wave (2.13), we obtain

g1g� 1
2 = e� i (qx� (q2+2 sa2 )t ) ; g� 1

1 g2 = ei (qx� (q2+2 sa2 )t ) : (A.4)

By (A.4) we �nd a relation between the entriesg1 and g2

g1 = g2e� i (qx� (q2+2 sa2 )t ) : (A.5)
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With the following ansatz on the expressions of such entries

g1 = eim (qx� (q2+2 sa2 )t ) ; g2 = ein (qx� (q2+2 sa2 )t ) ; (A.6)

the equation (A.5) reads

eim (qx� (q2+2 sa2 )t ) = ei (n� 1)(qx� (q2+2 sa2 )t ) ; (A.7)

which gives us the condition

m = n � 1; (A.8)

with m and n arbitrary rational numbers.

For the sake of simplicity, we choosen = 1
2 and, �nally, we get

G = e� i
2 (qx� (q2+2 sa2 )t )� 3 ; (A.9)

where� 3 is the Pauli matrix (2.4).
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Lax Equations of the NLS Equation

By the transformation (2.17) the right-hand sides of the Lax equations (3.41) become

X = XG�; T  = TG�; (B.1)

and, on the other hand, the left-hand sides read

 x = Gx � + G� x ;  t = Gt � + G� t ; (B.2)

�nally, matching (B.1) and (B.2)

Gx � + G� x = XG�; (B.3a)

Gt � + G� t = TG�: (B.3b)

Multiplying by G� 1 from the left the equations (B.3), the PDEs for the solution� are

� x = iW �; (B.4a)

� t = � iZ�: (B.4b)

where we have de�ned the operators as follows

iW = G� 1XG � G� 1Gx ; (B.5a)

� iZ = G� 1TG � G� 1Gt : (B.5b)
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PDEs for the SE �( x; t ) of the NLS

Equation

Since is a solution of the Lax pair (2.2), the squared eigenfunction (SE)	 de�ned in (2.24)

satis�es the PDEs (2.25) The transformation (2.17) induces the similarity transformation

which introduces another SE� , solution of other PDEs that we shall �nd in the following

discussion.

By looking at the expression ofG in (2.16), one can check that the left-hand sides of the

PDEs (2.25) are

	 x = Gx � G� 1 + G� xG� 1 + G� G� 1
x ; (C.1a)

	 t = Gt � G� 1 + G� t G� 1 + G� G� 1
t ; (C.1b)

by matching the right-hand side and the left-hand side of the PDEs (2.25), it results

XG � G� 1 � G� G� 1X = Gx � G� 1 + G� xG� 1 + G� G� 1
x ; (C.2a)

TG� G� 1 � G� G� 1T = Gt � G� 1 + G� t G� 1 + G� G� 1
t : (C.2b)

Finally, by multiplying byG� 1 from the left and byG from the right, and considering that

G� 1
x G = � G� 1Gx , the equations (C.2) become the PDEs satis�ed by�

� x = i [W; �] ; � t = � i [Z; �] : (C.3)



Appendix D

Similarity Transformation for the

3WRI System

The transformation

U = GU0G� 1; (D.1)

in matrix form reads
0

B
B
B
@

0 s1a1ei (qt� � 1x) � s1s2s3a2e� i (qt� � 2x)

s1s2s3a1e� i (qt� � 1x) 0 s3a3e� i (2qt� (� 1+ � 2 )) x

s2a2ei (qt� � 2x) s1s2s3a�
3ei (2qt� (� 1+ � 2 )) x

1

C
C
C
A

=

0

B
B
B
@

0 s1a1g1g� 1
2 � s1s2s3a2g1g� 1

3

s1s2s3a1g2g� 1
1 0 s3a3g2g� 1

3

s2a2g3g� 1
1 s1s2s3a�

3g3g� 1
2 0

1

C
C
C
A

;

(D.2)

whereG is

G =

0

B
B
B
@

g1 0 0

0 g2 0

0 0 g3

1

C
C
C
A

; (D.3)
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and the entriesg1, g2 and g3 are unknown.

The matrix equation (D.2) gives us a system of three equations
8
>>>>><

>>>>>:

g1 = g2ei (qt� � 1x) ;

g2 = g3e� i (2qt� (� 1+ � 2 )) x ;

g3 = g1ei (qt� � 2x) :

(D.4)

Looking at (D.4), one assumes the general expression of the unknownsgj

g1 = ei (m1qt� (l1 � 1+ n1 � 2 )x) ; g2 = ei (m2qt� (l2 � 1+ n2 � 2 )x) ; g3 = ei (m3qt� (l3 � 1+ n3 � 2 )x) ;

(D.5)

with mj , nj and l j , j = 1 ; 2; 3, are positive or negative integers or can be zero. The

expressions (D.5), substituted in the system (D.4), gives
8
>>>>><

>>>>>:

m1 = m ;

m2 = m � 1;

m3 = m + 1 ;

8
>>>>><

>>>>>:

l1 = l ;

l2 = l � 1 ;

l3 = l ;

8
>>>>><

>>>>>:

n1 = n ;

n2 = n ;

n3 = n + 1 ;

(D.6)

so that

g1 = ei (mqt � (l� 1+ n� 2 )x) ; g2 = ei (( m� 1)qt� (( l � 1)� 1+ n� 2 )x) ; g3 = ei (( m+1) qt� (l� 1+( n+1) � 2 )x) ;

(D.7)

and for m = 0 , l = 1
2 and n = � 1

2 , we get

g1 = e� i
2 (� 1 � � 2 )x ; g2 = e� i (qt� 1

2 (� 1+ � 2 )x) ; g3 = ei (qt� 1
2 (� 1+ � 2 )x) : (D.8)

By substituting the expressions (D.8) in (D.3), the matrixG (D.3) can rewritten as in

formula (3.65).



Appendix E

Liouville Equations

Let

	 = G� G� 1 (E.1)

be a SE de�ned via the solution of the Lax Pair (3.41) and satisfying the di�erential

equations

	 x = [ X; 	] ; 	 t = [ T; 	] : (E.2)

By di�erentiating (E.1) with respect tox and t, we obtain, respectively,1

	 x = Gx � G� 1 + G� xG� 1 + G�( G� 1)x ; (E.3a)

	 t = Gt � G� 1 + G� t G� 1 + G�( G� 1)t ; (E.3b)

and, on the other hand, by substituting (E.1) in the equations (E.2)

[X; 	] = XG � G� 1 � G� G� 1X; (E.4a)

[T; 	] = TG� G� 1 � G� G� 1T: (E.4b)

1We use the fact thatG� 1G = I and (G� 1G)x = 0 from which

(G� 1)x G = � G� 1Gx :

The same argument holds for the di�erentiation w.r.t. t .
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By matching (E.3) with (E.4) and multiplying from the left byG� 1 and from the right by

G, we obtain the Liouville equations

� x = i [W0; �] ; � t = � i [Z0; �] ; (E.5)

where the operators

iW 0 = G� 1XG � G� 1Gx ; � iZ 0 = G� 1TG � G� 1Gt ; (E.6)

are now independent ofx and t. The equations (E.2) are not simply integrable because

of the dependence onx and t of the matricesX and T. However, after the similarity

transformation via the matrixG, the equations (E.6) are now simply integrable and the

expression of their solution is well known and it is given in (3.69).



Appendix F

Di�erential equations for �

Let  be the solution of the Lax Pair

 x = X ;  t = T  : (F.1)

If we make the transformation

 = G�; (F.2)

by the di�erential equations (F.1), we obtain the identities

Gx � + G� x = XG�; (F.3a)

Gt � + G� t = TG�; (F.3b)

and multiplied to right byG� 1, give us the di�erential equations for�

� x = ( G� 1XG � G� 1Gx )�; (F.4a)

� t = ( G� 1TG � G� 1Gt )�: (F.4b)

If we de�ne

iW 0 = G� 1XG � G� 1Gx ; � iZ 0 = G� 1TG � G� 1Gt (F.5)
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we have

� x = iW 0�; (F.6a)

� t = � iZ 0�: (F.6b)



Appendix G

Gauges for W and Z

We can check the expressions (3.75), by looking at the transformation

�� = ei (mqt � (l� 1+ n� 2 )x)I �; (G.1)

that, di�erentiated, say, w.r.t. x gives

�� x = ( ei (mqt � (l� 1+ n� 2 )x)I � )x = ( � i (l� 1 + n� 2)� � � x )ei (mqt � (l� 1+ n� 2 )x)I ; (G.2)

on the other hand, because�� x = i �W �� ,

i �W �� = ( �G� 1 �X �G � �G� 1 �Gx ) �� =

= ( G� 1XG � G� 1Gx � i (l� 1 + n� 2)) �� =

= i (W0 � (l� 1 + n� 2)) �� =

= i (W0 � (l� 1 + n� 2))ei (mqt � (l� 1+ n� 2 )x)I � :

(G.3)

By matching (G.2) with (G.3), we obtain the equation

� x = iW 0�; (G.4)

with

�W = W0 � (l� 1 + n� 2): (G.5)

The same argument holds for the operators�Z and Z0.



Appendix H

Relation between the Lax Operators

W and Z

Let us consider the matrix

� =
�

c1 � c2

2qc1c2

�
�
Z 2 � (a2

2c2
2s1s3 � a2

1c2
1s2s3)I

�
=

=

0

B
B
B
@

0 � ia 1 s1 c1 (c1 � c2 )( � q� c1 c2 � )
2qc1 c2

ia 2 s1 s2 s3 c2 (c1 � c2 )( q� c1 c2 � )
2qc1 c2

� ia 1 s1 s2 s3 c1 (c1 � c2 )( � q� c1 c2 � )
2qc1 c2

� a2
2 s1 s3 c2 (c1 � c2 )

2qc1
+ (c1 � c2 )( � q� c1 c2 � )2

2qc1 c2

a1 a2 (c1 � c2 )
2q

� ia 2 s2 c2 (c1 � c2 )( q� c1 c2 � )
2qc1 c2

� a1 a2 s1 s2 (c1 � c2 )
2q

a2
1 s2 s3 c1 (c1 � c2 )

2qc2
+ (c1 � c2 )( q� c1 c2 � )2

2qc1 c2

1

C
C
C
A

:

(H.1)

Let us focus on the o�-diagonal-part of the matrix above. The o�-block diagonal terms

� ij , which are proportional to the terms� ji , can be handled as follows. For example, the

numerator of the entry� 12 is

� ia1c1s1(c1 � c2)( � q � c1c2� ) = � ia1c2
1s1(� q � c1c2� ) + ia1c1c2s1(� q � c1c2� ) (H.2)

whose last term is, by adding and subtractingq into the brackets,

ia1c1c2s1(� q � c1c2� ) = � 2iqa1c1c2s1 + ia1c1c2s1(q � c1c2� ); (H.3)

by substituting (H.3) in (H.2), one gets

� ia1s1c2
1(� q � c1c2� ) � 2ia1s1c1c2q + ia1s1c1c2(q � c1c2� ) =

= W12 + Z12c1(� q � c1c2� ) � Z12c2(q � c1c2� );
(H.4)
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that is

� 12 =
W12

2qc1c2
+ Z12

c1(� q � c1c2� )
2qc1c2

� Z12
c2(q � c1c2� )

2qc1c2
: (H.5)

Similarly, let us consider the term� 22. The �rst term in the sum is already inW22, while

the numerator of the second term can be handled as follows

(c1 � c2)( � q � c1c2� )2 = c1(� q � c1c2� )2 � c2(� q � c1c2� )2 =

= c1(� q � c1c2� )2 � c2(� q � c1c2� )( � q � c1c2� ) =

= c1(� q � c1c2� )2 � c2(� q � c1c2� )( � q � q + q � c1c2� ) =

= c1(� q � c1c2� )2 + 2qc2(� q � c1c2� ) � c2(� q � c1c2� )(q � c1c2� ) =

= W22 + Z22c1(� q � c1c2� ) � Z22c2(q � c1c2� );

(H.6)

hence,

� 22 =
W22

2qc1c2
+ Z22

c1(� q � c1c2� )
2qc1c2

� Z22
c2(q � c1c2� )

2qc1c2
: (H.7)

By repeating the same calculations for the other terms of the matrix (H.1), we get the

matrix polynomial

W = Z 2(c1� c2)� Zc1(� q� c1c2� )+ Zc2(q� c1c2� )� (c1� c2)(a2
2c2

2s1s3� a2
1c2

1s2s3)I ; (H.8)

i.e. the polynomial (3.83).

Let us consider the matrix

� = W 2 � (a2
2s1s3 + a2

1s2s3)I ; (H.9)

whose entries are

� 11 = 0 ; (H.10)

� 22 = 4q2c2
1c2

2

 

� a2
2s1s3 � a2

1a2
2s1s2

�
c1 � c2

2q

� 2

+
�

�
a2

2s1s3c2(c1 � c2)
2qc1

�
q
c1

� c2�
� 2

!

;

(H.11)

� 33 = 4q2c2
1c2

2

 

a2
1s2s3 � a2

1a2
2s1s2

�
c1 � c2

2q

� 2

+
�

a2
1s2s3c1(c1 � c2)

2qc2
+

q
c2

� c1�
� 2

!

;



Appendix H. Relation between the Lax OperatorsW and Z 163

(H.12)

� 21 = s2s3� 12 = 4q2c2
1c2

2

�
� ia1s1

�
a2

2s1s3(c1 � c2)2

2qc1
�

q
c1

� c2�
��

; (H.13)

� 31 = � s1s3� 13 = 4q2c2
1c2

2

�
� ia2s2

�
a2

1s2s3(c1 � c2)2

2qc2
+

q
c2

� c1�
��

; (H.14)

� 23 = � s1s2� 32 =

= 4q2c2
1c2

2

�
a1a2 + a1a2

�
c1 � c2

2q

� �
�

a2
2s1s3c2(c1 � c2)

2qc1
+

+
a2

1s2s3c1(c1 � c2)
2qc2

�
q
c1

� c2� +
q
c2

� c1�
� �

:

(H.15)

Let us handle the entry� 12, proportional to the entry� 21. The part inside the brackets

becomes

a2
2s1s3(c1 � c2)2

2qc1
�

a2
1s2s3(c1 � c2)2

2qc2
+

a2
1s2s3(c1 � c2)2

2qc2
=

=
a2

2s1s3(c1 � c2)2

2qc1
+

a2
1s2s3(c1 � c2)2

2qc2
�

a2
1s2s3c1(c1 � c2)

2qc2
+

a2
1s2s3c2(c1 � c2)

2qc2
=

=
a2

2s1s3(c1 � c2)2

2qc1
+

a2
1s2s3(c1 � c2)2

2qc2
�

a2
1s2s3c1(c1 � c2)

2qc2
+

a2
1s2s3c2(c1 � c2)

2qc2
+

+
a2

2s1s3c1(c1 � c2)
2qc1

�
a2

2s1s3c1(c1 � c2)
2qc1

;

(H.16)

on the other hand,

�
q
c1

� c2� =
2q

c1 � c2
�

2q
c1 � c2

�
q
c1

� c2� +
q
c2

� c1� �
q
c2

+ c1� =

=
2q

c1 � c2
�

q
c1

� c2� � c1� �
q
c2

�
2qc1c2 + qc1(c1 � c2)

c1c2(c1 � c2)
+ c1� =

=
2q

c1 � c2
�

q
c1

� c2� � c1� �
q
c2

� c1

�
q

c2 + c1

c1c2(c1 � c2)
� �

�
:

(H.17)

By summing the terms (H.16) and (H.17), and by putting altogether in the expression of

the entry � 12, we have

� 12 = 2qc1c2W12

�
a2

2s1s3(c1 � c2)2

2qc1
+

a2
1s2s3(c1 � c2)2

2qc2
�

a2
2s1s3c1(c1 � c2)

2qc1
+

+
a2

1s2s3c2(c1 � c2)
2qc2

+
2q

c1 � c2
�

q
c1

� c2� +
q
c2

� c1�
�

+

+ 4q2c2
1c2

2Z12

�
a2

2s1s3(c1 � c2)
2qc1

�
a2

1s2s3(c1 � c2)
2qc2

� q
c2 + c1

c1c2(c1 � c2)
+ �

�
:

(H.18)
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By following a similar procedure, we get

� 23 = 2qc1c2W23: (H.19)

In matrix form, it turns out that

W 2 � (a2
2s1s3 + a2

1s2s3)I =

= 2qc1c2W
�

a2
2s1s3(c1 � c2)2

2qc1
+

a2
1s2s3(c1 � c2)2

2qc2
�

a2
2s1s3c1(c1 � c2)

2qc1
+

+
a2

1s2s3c2(c1 � c2)
2qc2

+
2q

c1 � c2
�

q
c1

� c2� +
q
c2

� c1�
�

+

+ 4Zq2c2
1c2

2

�
a2

2s1s3(c1 � c2)
2qc1

�
a2

1s2s3(c1 � c2)
2qc2

� q
c2 + c1

c1c2(c1 � c2)
+ �

�
;

(H.20)

and �nally,

Z
�

a2
2s1s3(c1 � c2)

2qc1
�

a2
1s2s3(c1 � c2)

2qc2
� q

c2 + c1

c1c2(c1 � c2)
+ �

�
=

W 2

4q2c2
1c2

2
�

W
2qc1c2

�
a2

2s1s3(c1 � c2)2

2qc1
+

a2
1s2s3(c1 � c2)2

2qc2
�

�
a2

2s1s3c1(c1 � c2)
2qc1

+
a2

1s2s3c2(c1 � c2)
2qc2

+

+
2q

c1 � c2
�

q
c1

� c2� +
q
c2

� c1�
�

� (a2
2s1s3 + a2

1s2s3)I :

(H.21)



Appendix I

Relation between the di�erences of

the Eigenvalues of the Lax

Operators W and Z

From the polynomial (3.83) we can write

wj = ( c1� c2)z2
j � c1(� q� c1c2� )zj + c2(q� c1c2� )zj � (c1� c2)(a2

2c2
2s1s3� a2

1c2
1s2s3) (I.1)

8j = 1 ; 2; 3, and the di�erence between two eigenvalues is, for example,

w1 � w2 = ( c1 � c2)(z2
1 � z2

2) � c1(� q� c1c2� )(z1 � z2) + c2(q� c1c2� )(z1 � z2): (I.2)

Furthermore, becauseTr( Z ) = � 2c1c2� and z2
1 � z2

2 = ( z1 � z2)(z1 + z2), we substitute

in the previous expression

z1 + z2 = � z3 � 2c1c2�; (I.3)

and, as a consequence,

w1� w2 = ( c1� c2)(z1� z2)( � z3� 2c1c2� ) � c1(� q� c1c2� )(z1� z2)+ c2(q� c1c2� )(z1� z2):

(I.4)

The di�erence of the eigenvalues (I.4) can be also written in a di�erent fashion after adding

and subtracting the termsqc1 and qc2. Indeed, it reads

w1 � w2 = ( z1 � z2)( � z3(c1 � c2) + q(c1 + c2) � c1c2� (c1 � c2)) : (I.5)
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To compute the di�erenceszj � zj +1 , we repeat all the calculations above, but we need to

make the substitutionw1 + w2 = � w3 � Tr( W ), where

Tr( W ) = 2 qc1c2

�
a2

1s2s3c1(c1 � c2)
2qc2

�
a2

2s1s3c2(c1 � c2)
2qc1

�
q
c1

� c2� +
q
c2

� c1�
�

:

(I.6)



Appendix J

Characteristic Polynomial and the

Associated Polynomial of the

Squares of the Di�erences

Let ~W be the diagonalised matrix of the matrixW . The eigenvaluesw` , for ` = 1 ; 2; 3,

are the roots of the characteristic polynomial

P(w) = w3 � Tr( ~W )w2 +
1
2

�
Tr 2( ~W ) � Tr( ~W 2)

�
w � Det( ~W ): (J.1)

We denote the trace and the determinant of matrix withTr( �) and Det( �), respectively. In

(J.1) we have replacedTr( W ) with Tr( ~W ) by using the property of the trace to be invariant

under cyclic permutations andDet(W ) with Det( ~W ) because of the Binet theorem in order

to simplify the computations.

We take advantage from the property of trace and determinant to be invariant under

similarity transformation, and also from the property of the coe�cients of the polynomial

(J.1) to be invariants. In this respect, let us introduce the Vandermonde matrix

� =

0

B
B
B
@

1 w1 w2
1

1 w2 w2
2

1 w3 w2
3

1

C
C
C
A

; (J.2)
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whose determinant is

Det(�) = w2
1(w3� w2)+ w2

2(w1� w3)+ w2
3(w2� w1) = ( w1� w2)(w2� w3)(w3� w1); (J.3)

and we note that1 (Det(�)) 2 = � W P(w), where � W P(w) is the discriminant of the

polynomial (J.1) with respect tow. In some computation, we bene�t from the Cayley-

Hamilton Theorem to write the determinant as

Det( ~W ) =
1
6

�
Tr 3( ~W ) + 2Tr( ~W 3) � 3Tr( ~W )Tr( ~W 2)

�
: (J.4)

Below, we give some useful formulas

2(w1w2 + w2w3 + w3w1) = Tr 2( ~W ) � Tr( ~W 2); (J.5)

and

(w2
1w2

2 + w2
2w2

3 + w2
3w2

1 + 2w2
1w2w3 + 2w1w2

2w3 + 2w1w2w2
3) =

= ( w2
1w2

2 + w2
2w2

3 + w2
3w2

1 + 2w1w2w3Tr( ~W )) =
1
4

�
Tr 2( ~W ) � Tr( ~W 2)

� 2
;

(J.6)

or

(w2
1w2

2 + w2
2w2

3 + w2
3w2

1) =

=
1
4

�
Tr 2( ~W ) � Tr( ~W 2)

� 2
�

1
3

Tr( ~W )
�

Tr 3( ~W ) + 2Tr( ~W 3) � 3Tr( ~W )Tr( ~W 2)
�

;
(J.7)

where in the last equality we use the formula (J.4).

In the next subsections we shall show the connection between the characteristic polynomial

(J.1) and the polynomial of the di�erencesw` � wm and the polynomial of the squares of

the di�erences, that is(w` � wm )2.

J.0.4 Polynomial of the Di�erences

Let

P(k) = k3 � Tr( ~W1)k2 +
1
2

�
Tr 2( ~W1) � Tr( ~W 2

1 )
�

k � Det( ~W1); (J.8)

be the characteristic polynomial whose roots are the di�erencesw` � wm = k`m , with

` 6= m, and `; m = 1 ; 2; 3, so the matrix ~W1 is

~W1 =

0

B
B
B
@

k12 0 0

0 k23 0

0 0 k31

1

C
C
C
A

: (J.9)

1When two roots coincideDet(�) = 0 .
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Proposition J.0.1. Every coe�cient of the polynomial (J.8) can be expressed by the

coe�cients of the polynomial (J.1) plus the determinant of the Vandermonde matrix� . In

particular, the polynomial (J.8) can be written as

P ~W1 = k3 �
1
2

�
3Tr( ~W 2) � Tr 2( ~W )

�
k � Det(�) : (J.10)

Proof. By looking at the matrix ~W1, we have

Tr( ~W1) = 0 ; (J.11)

and, as a consequence,

Tr n ( ~W1) = 0 ; n = 1 ; 2; 3::: : (J.12)

On the other hand,

Tr( ~W 2
1 ) = k2

12 + k2
23 + k2

31 = 2Tr( ~W 2) � 2(w1w2 + w2w3 + w3w1); (J.13)

which becomes, by the relation (J.5),

Tr( ~W 2
1 ) = 3Tr( ~W 2) � Tr 2( ~W ): (J.14)

It is trivial to see that

Det( ~W1) = Det(�) : (J.15)

Proposition J.0.2. The eigenvaluesw` are the roots of the characteristic polynomial (J.1)

if and only if the di�erencesk`m are roots of the characteristic polynomial (J.10).

Proof. First of all we prove that ifw` are roots of the polynomial (J.1), then the di�erences

k`m are roots of the polynomial (J.10).

Let us substitutek = w` � wm into the polynomial (J.10), we have

(w` � wm )3 �
1
2

�
3Tr( ~W 2) � Tr 2( ~W )

�
(w` � wm ) � Det(�) =

= w3
` � w3

m � 3w2
` wm + 3w`w2

m +
1
2

�
Tr 2( ~W ) � Tr( ~W 2)

�
w` �

�
1
2

�
Tr 2( ~W ) � Tr( ~W 2)

�
wm � Tr( ~W 2)w` + Tr( ~W 2)wm � Det(�) ;

(J.16)
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we can identify the �rst and the �fth term in the polynomial satis�ed byw` , while the

second and the sixth term in the polynomial satis�ed bywm . Leaving aside for a moment

Det(�) , the remaining terms are handled to give

� 3w2
` wm + 3w`w2

m � Tr( ~W 2)w` + Tr( ~W 2)wm =

= � w2
` Tr( ~W ) + w2

m Tr( ~W ) + w2
` (wk � wm ) + w2

m (w` � wk ) + w2
k (wm � w` ) =

= � w2
` Tr( ~W ) + w2

m Tr( ~W ) + Det(�) :

(J.17)

The �rst two terms to the left-hand side of the equation above correspond to the quadratic

terms of the polynomial forw` and wm , respectively. The termDet(�) cancels out once

substituted into the polynomial (J.10). However, we can identify the di�erence of the known

terms of the polynomials forw` and wm within the trivial di�erence Det(�) � Det(�)

Det(�) = � Det( ~W )+( w2
1(w3 � w2)+ w2

2(w1 � w3)+ w2
3(w2 � w1)+ w1w2w3); (J.18)

soDet(�) � Det(�) = Det( ~W )� Det( ~W ). To show that if the di�erencew` � wm are roots

of the polynomial (J.10), thenw` are roots of the polynomial (J.1), we need to subtract

the polynomial calculated inwm from the polynomial calculated inw`

P(w` ) � P(wm ) = w3
` � w3

m � Tr( ~W )w2
` +Tr( ~W )w2

m +
1
2

�
Tr 2( ~W ) � Tr( ~W 2)

�
(w` � wm ):

(J.19)

By using the formula (J.17) we replace the terms� Tr( ~W )w2
` + Tr( ~W )w2

m and write down

the polynomial (J.10).

Note that both w` � wm = k`m and w` � wm = km` are roots of the polynomial (J.10).

J.0.5 Polynomial of the Squares of the Di�erences

Let

P ~W2 = � 3 � Tr( ~W2)� 2 +
1
2

�
Tr 2( ~W2) � Tr( ~W 2

2 )
�

� � Det( ~W2): (J.20)

be the characteristic polynomial whose roots are the di�erences(w` � wm )2 = k2
`m = � `m ,

and the matrix ~W2 is

~W2 =

0

B
B
B
@

� 12 0 0

0 � 23 0

0 0 � 31

1

C
C
C
A

: (J.21)
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Proposition J.0.3. Every coe�cient of the polynomial (J.20) can be expressed by the

coe�cients of the polynomial (J.1) plus the square of the determinant of the Vandermonde

matrix � . In particular, the polynomial (J.20) can be written as

P ~W2 = � 3 �
�

3Tr( ~W 2) � Tr 2( ~W )
�

� 2+
1
4

�
3Tr( ~W 2) � Tr 2(W )

� 2
� � (Det(�)) 2: (J.22)

Proof. By de�nition of trace and by using the formula (J.5), it results in

Tr( ~W2) = 3Tr( ~W 2) � Tr 2( ~W ); (J.23)

that is the coe�cient of the second power of� in (J.22). In general,

Tr n ( ~W2) = (3Tr( ~W 2) � Tr 2( ~W ))n ; n = 1 ; 2; 3:::: (J.24)

On the other hand, by using the formula (J.6), we have

Tr( ~W 2
2 ) = 6Tr( ~W 4) � 4Tr( ~W )Tr( ~W 3)+

+
3
2

�
Tr 2( ~W ) � Tr( ~W 2)

� 2
� 2Tr( ~W )

�
Tr 3( ~W ) + 2Tr( ~W 3) � 3Tr( ~W )Tr( ~W 2)

�
:

(J.25)

and since

6Tr( ~W 4) = � 2Tr4( ~W ) + 3
�

Tr 2( ~W ) � Tr( ~W 2)
� 2

+ 8Tr( ~W )Tr( ~W 3); (J.26)

we have

Tr( ~W 2
2 ) =

1
2

�
3Tr( ~W 2) � Tr 2( ~W )

� 2
; (J.27)

so that the coe�cient of the �rst power of � is

1
2

�
T r2( ~W2) � T r ( ~W 2

2 )
�

=
1
4

�
3T r ( ~W 2) � T r2(W )

� 2
: (J.28)

Finally, the constant term is

(Det(�)) 2 = ( w1 � w2)2(w2 � w3)2(w3 � w1)2; (J.29)

i.e. Det( ~W2).

Note that (Det(�)) 2 = � W P(w) and when two eigenvaluesw` coincide this term is zero.

Before we move on, we focus on the characteristic polynomial of the matrix~W 2 = Y

Y =

0

B
B
B
@

y1 0 0

0 y2 0

0 0 y3

1

C
C
C
A

; y` = w2
` (J.30)
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that is

P(y) = y3 � Tr( Y )y2 +
1
2

�
Tr 2(Y ) � Tr( Y 2)

�
y � Det(Y ): (J.31)

The polynomial (J.31) can be written in terms of the eigenvaluesw` as

P(w2) = w6 � Tr( ~W 2)w4 +
1
2

�
Tr 2( ~W 2) � Tr( ~W 4)

�
w2 � Det( ~W 2); (J.32)

and, from the Fundamental Theorem of Algebra, we expect six roots of the polynomial

(J.32). However, the polynomial (J.31) is a third degree polynomial for the variabley,

and this means that, for̀ = 1 ; 2; 3, we have three rootsw2
` = y` , but actually they are

corresponding to six rootsw` = �
p

y` of the polynomial (J.32). As a direct result, at

�rst sight, it looks like that between these six roots, everyone satisfying the polynomials

(J.31) and (J.32), only three roots are solutions of the polynomial (J.1). In particular, we

are interested only on those ones that satisfy the conditionsw1 + w2 + w3 = Tr( ~W ) and

w1w2w3 = Det( ~W ), also if all the six solutions of (J.32) satisfy the conditionsw2
1 + w2

2 +

w2
3 = Tr( ~W 2) and w2

1w2
2w2

3 = Det( ~W 2).

Thus, the roots are of the polynomial (J.22) are the six roots:� (w1 � w2), � (w2 � w3),

� (w3 � w1). One can ask: which of these di�erences correspond to those one for the roots

of the polynomial (J.1)?

Let us consider the following diagonal matrices

W1 =

0

B
B
B
@

w1 0 0

0 w2 0

0 0 w3

1

C
C
C
A

; W2 =

0

B
B
B
@

w2 0 0

0 w1 0

0 0 w3

1

C
C
C
A

; (J.33)

it is simple to check that the two matrices above have the same characteristic polynomial and

they are connected by a similarity transformation. Indeed, letW be the non-diagonalised

matrix, we have

W = U � 1
1 W1U1; W = U � 1

2 W2U2; (J.34)

hence

W1 = U � 1
3 W2U3; (J.35)
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whereU3 = U2U � 1
1 . If the matrix of the squares of the di�erences associated toW1 is

W12 =

0

B
B
B
@

(w1 � w2)2 0 0

0 (w2 � w3)2 0

0 0 (w3 � w1)2

1

C
C
C
A

; (J.36)

then, by following the same algorithm for the construction of the matrix above, we get the

matrix associated to the matrixW2, that is

W22 =

0

B
B
B
@

(w2 � w1)2 0 0

0 (w1 � w3)2 0

0 0 (w3 � w2)2

1

C
C
C
A

: (J.37)

The characteristic polynomial for the matrixW12 has the roots:� (w1 � w2), � (w2 � w3),

� (w3 � w1). The roots of the characteristic polynomial of the matrixW22 are: � (w2 � w1),

� (w1 � w3), � (w3 � w2). Let us suppose, that we are working with the matrixW12 and the

right triplet is the di�erences+( w1 � w2), +( w2 � w3), +( w3 � w1) that coincide with the

same di�erences of the matrixW22 but with the reversed sign. This means that choosing

the other combinations of signs in front of the di�erences corresponds to choose another

eigenspace connected to the �rst eigenspace by a similarity transformation. This means

that the polynomial (J.22) encloses all the possible di�erences associated to any possible

eigenspace.

Proposition J.0.4. The di�erencesw` � wm = k`m are roots of the characteristic poly-

nomial (J.10) if and only if(w` � wm )2 = � `m are roots of the characteristic polynomial

(J.22).

Proof. Let us compute the square of the polynomialP ~W1 (J.10)

(P ~W1)2 = ( k3 �
1
2

�
3Tr( ~W 2) � Tr 2( ~W )

�
k � Det(�)) 2 =

= k6 +
1
4

�
3Tr( ~W 2) � Tr 2( ~W )

� 2
k2+

+ (Det(�)) 2 � k4
�

3Tr( ~W 2) � Tr 2( ~W )
�

� 2Det(�) k3 + Det(�)
�

3Tr( ~W 2) � Tr 2( ~W )
�

k;

(J.38)
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that can be also written as

(P ~W1)2 =

= k6 +
1
4

�
3Tr( ~W 2) � Tr 2( ~W )

� 2
k2�

� k4
�

3Tr( ~W 2) � Tr 2( ~W )
�

� Det(�)
�

k3 �
1
2

�
3Tr( ~W 2) � Tr 2( ~W )

�
k
�

�

� Det(�)
�

k3 �
1
2

�
3Tr( ~W 2) � Tr 2( ~W )

�
k � Det(�)

�
;

(J.39)

and we note that the term within the parenthesis multiplied byDet(�) in the last line is

P ~W1 and it is zero when the roots are the eigenvaluesk`m = w` � wm , and, in the second

line, the term multiplied byDet(�) is still Det(�) for the same roots. Moreover, if we do

the substitutionk2 = � , the last equation isP ~W2

(P ~W1)2 = P ~W2 = � 3� � 2
�

3Tr( ~W 2) � Tr 2( ~W )
�

+
1
4

�
3Tr( ~W 2) � Tr 2( ~W )

� 2
� � (Det(�)) 2:

(J.40)

On the other hand,

P ~W1 = �
q

P ~W2: (J.41)

Lemma J.0.5. The rootsw` are solutions of the characteristic polynomial (J.1) if and only

if the roots (w` � wm )2 = � `m are solutions of the polynomial (J.22).

Lemma J.0.6. is a consequence of the Propositions J.0.2 and J.0.4.

Every result obtained in this appendix is general and can be applied to any matrix, and so

to both the matricesW and Z .



Appendix K

Polynomial SZ (� ; � ) of the sums of

the eigenvalues zj

In this appendix we show the construction of the polynomialSZ (� ; � ) of the sums of the

eigenvalueszj .

The characteristic polynomial of the matrixZ is the polynomial whose roots are the eigen-

valueszj , with j = 1 ; 2; 3, and, so, it takes the expression

PZ (z; � ) = ( z � z1)(z � z2)(z � z3): (K.1)

On the other hand, we can construct the polynomial of the sums of the eigenvalueszj ,

de�ned as the polynomial whose roots arez1 + z2, z2 + z3 and z3 + z1, that is

SZ (x; � ) = ( x � (z1 + z2))( x � (z2 + z3))( x � (z1 + z3)) : (K.2)

that is SZ (x; � ) = x3 � 2x2Tr(Z ) +
x
2

�
3T r2(Z ) � T r (Z 2)

�
�

1
3

�
T r3(Z ) � T r (Z 3)

�
:

(K.3)

Hence, the coe�cients of the polynomialSZ (x; � ) in (K.3) can be written in terms of the

coe�cients of the polynomialPZ (z; � ) in (K.1), and, so, we obtain

SZ (� ; � ) = � 3 + 4 �� 2 + (5 � 2 + p2 � 1)� + p1 + � (� 2 + p2 + 2 � 2): (K.4)

that is the polynomial of the sums of the eigenvalueszj .
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Space Stability Spectra

1 % Parameters to be a s s i g n e d

2 %p1= � 0.8; p2 =0.4; p3=� 0.6; %1G 1B 2L

3 %p1= � 4.0; p2=� 3.0; p3=� 0.6;%1G 1B 1L

4 %p1 =1.0; p2 =3.0; p3= � 0.6; %1G 1B 0L

5 p1= � 6.2; p2=� 6.3; p3=� 0.6; %0G 2B 2L

6 %p1 = � 4.0; p2 = � 4.2; p3 = � 0.6; %0G 2B 1L

7 %p1 =1.0; p2= � 3.0; p3=� 0.6; %0G 2B 0L

8 %p1= � 70.0; p2 =60.0; p3=� 0.6; %2G 0B 2L

9 %p1 = 0 . 2 ; p2 =0.6; p3 = � 0.6; %2G 0B 1L

10 %p1= � 90.0; p2 =60.0; p3=� 0.6; %1G 1SG 0B 1L 1TL

11 %p1= � 1.4; p2=� 1.0; p3=� 0.6; %0G 1SG 1B 1L 1TL

12 %p1= � 4.0; p2 =2.0; p3=� 0.6; %0G 1SG 1B 0L 1TL

13 %p1 = 2 ; p2 = � 4; p3 = � 0.6;

14 Nx = 2 � 1 e3 ;

15

16 % S a v e f l a g . I f ' s a v e f l a g =0' no f i g u r e i s saved . I f ' s a v e f l a g

=1 ' , a l l

17 % f i g u r e s a re saved .

18 s a v e f l a g = 0 ;

19
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20 % Data f l ag . I f ' d a t a f l a g =0' no data i s gene ra ted . I f ' d a t a f l a g

=1 ' , data i s

21 % genera ted .

22 d a t a f l a g = 1 ;

23

24 % Computat ion o f the cu rve on the lambda� p lane , pa rame t r i zed

as a f u n c t i o n

25 % of x = k3 ^2 ;

26 i f d a t a f l a g==1

27 [ x , lambda ] = b r a n c h s o l v e r 1 ( p1 , p2 , p3 , Nx) ;

28 end

29

30 % NB: I f the c u r v e s a re not w e l l c e n t e r e d i n the lambda� p lane ,

then the

31 % i n s t r u c t i o n f o r the a r r a y AXISLAMBDA below has to be

mod i f i ed .

32

33 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34 % Roots o f Q2( x )

35 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

36 % For a g i v e n c h o i c e o f r and p , the r o o t s o f the po l ynom ia l

Q2( x ) a re

37 % e v a l u a t e d . Let Q( x ) be the d i s c r i m i n a n t o f the po l ynom ia l

whose r o o t s a re

38 % the s q u a r e s o f the d i f f e r e n c e s o f the r o o t s o f the

c h a r a c t e r i s t i c

39 % po lynom ia l PW; then Q( x ) = Q1( x ) ^2 � Q2( x ) ; thus Q2( x ) i s

the po l ynom ia l
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40 % tha t d e s c r i b e s the changes o f s i g n o f Q( x ) .

41

42 % Let X be the s e t o f the r e a l , non� n e g a t i v e z e r o s o f Q2( x ) . X

has at most

43 % f o u r e lemen ts and i t i s shown tha t i t has at l e a s t one

e lement . Let Xj be

44 % i t s e lements , where j spans between 1 and the t o t a l number

o f r e a l

45 % non� n e g a t i v e r o o t s o f Q2( x ) , s o r t e d i n ascend ing o r d e r .

46 %

47 % This v a l u e s a re u t i l i s e d f o r p l o t t i n g the r e g i o n s o f x where

Q i s

48 % p o s i t i v e ( g reen c o l o r ) and where Q i s n e g a t i v e ( red c o l o r ) .

49

50 c o e f f d i s c r = qcoe f ( p1 , p2 , p3 ) ;

51 x r = r o o t s ( c o e f f d i s c r ) ; % r o o t s o f Q2

52 x r r e a l = s o r t ( r e a l ( x r ( ( abs ( imag ( x r ) )< 1e� 10) & ( r e a l ( x r )

> =0) ) ) ) ;

53 xspan = [0 4� max( x r r e a l ) ] ;

54 d i s p ( [ '

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

' ] )

55 d i s p ( [ ' Roots o f Q2( x ) f o r p1 = ' , num2str (1 ) , ' , p2 = ' , num2str

( p2 ) , ' , p3 = ' , num2str ( p3 ) ] )

56 x r ( : ) % d i s p l a y s the r o o t s o f Q2

57 d i s p ( [ '

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

' ] )

58

59 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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60 % Column iza t i on o f lambda and x

61 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62 l ambdaco l = lambda ( : ) ;

63 l ambdaco l2 = con j ( lambdaco l ) .� lambdaco l ;

64 x c o l = [ x ( : ) ; x ( : ) ; x ( : ) ; x ( : ) ; x ( : ) ; x ( : ) ] ;

65

66 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

67 % S t e r e o g r a p h i c p r o j e c t i o n

68 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69 Sy = 2� r e a l ( lambdaco l ) . /(1+ lambdaco l2 ) ;

70 Sz = 2� imag ( lambdaco l ) . /(1+ lambdaco l2 ) ;

71 Sx = (1� lambdaco l2 ) . /(1+ lambdaco l2 ) ;

72

73 lambda2 1 = con j ( lambda ( : , 1 ) ) . � lambda ( : , 1 ) ;

74 Sy1 = 2� r e a l ( lambda ( : , 1 ) ) . /(1+ lambda2 1 ) ;

75 Sz1 = 2� imag ( lambda ( : , 1 ) ) . /(1+ lambda2 1 ) ;

76 Sx1 = (1� lambda2 1 ) ./(1+ lambda2 1 ) ;

77

78 lambda2 2 = con j ( lambda ( : , 2 ) ) . � lambda ( : , 2 ) ;

79 Sy2 = 2� r e a l ( lambda ( : , 2 ) ) . /(1+ lambda2 2 ) ;

80 Sz2 = 2� imag ( lambda ( : , 2 ) ) . /(1+ lambda2 2 ) ;

81 Sx2 = (1� lambda2 2 ) ./(1+ lambda2 2 ) ;

82

83 lambda2 3 = con j ( lambda ( : , 3 ) ) . � lambda ( : , 3 ) ;

84 Sy3 = 2� r e a l ( lambda ( : , 3 ) ) . /(1+ lambda2 3 ) ;

85 Sz3 = 2� imag ( lambda ( : , 3 ) ) . /(1+ lambda2 3 ) ;
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86 Sx3 = (1� lambda2 3 ) ./(1+ lambda2 3 ) ;

87

88 lambda2 4 = con j ( lambda ( : , 4 ) ) . � lambda ( : , 4 ) ;

89 Sy4 = 2� r e a l ( lambda ( : , 4 ) ) . /(1+ lambda2 4 ) ;

90 Sz4 = 2� imag ( lambda ( : , 4 ) ) . /(1+ lambda2 4 ) ;

91 Sx4 = (1� lambda2 4 ) ./(1+ lambda2 4 ) ;

92

93 lambda2 5 = con j ( lambda ( : , 5 ) ) . � lambda ( : , 5 ) ;

94 Sy5 = 2� r e a l ( lambda ( : , 5 ) ) . /(1+ lambda2 5 ) ;

95 Sz5 = 2� imag ( lambda ( : , 5 ) ) . /(1+ lambda2 5 ) ;

96 Sx5 = (1� lambda2 5 ) ./(1+ lambda2 5 ) ;

97

98 lambda2 6 = con j ( lambda ( : , 6 ) ) . � lambda ( : , 6 ) ;

99 Sy6 = 2� r e a l ( lambda ( : , 6 ) ) . /(1+ lambda2 6 ) ;

100 Sz6 = 2� imag ( lambda ( : , 6 ) ) . /(1+ lambda2 6 ) ;

101 Sx6 = (1� lambda2 6 ) ./(1+ lambda2 6 ) ;

102

103 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

104 % Omega3 and Gain (gamma)

105 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

106 % Omega3 , k3 and the ga in a re computed on l y f o r the v a l u e s o f

lambda ( and

107 % the c o r r e s p o n d i n g v a l u e s o f x ) f o r which lambda has a non�

ze ro imag ina ry

108 % p a r t . k3 = s q r t ( x ) . ga in = imag ( omega3 ) .

109

110 lambdacom = lambdaco l ( abs ( imag ( lambdaco l ) ) ~=0) ;

111 xcom = x c o l ( abs ( imag ( lambdaco l ) ) ~=0) ;
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112 k3 = s q r t ( xcom ) ;

113 i f d a t a f l a g==1

114 omega3 = omegaex t rac to r2 ( p1 , p2 , p3 , k3 , lambdacom ) ;

115 end

116 gamma = imag ( omega3 ) ;

117

118 kk3 = s q r t ( x ) ;

119 i f d a t a f l a g==1

120 omega3H = omegaext rac torH ( p1 , p2 , p3 , kk3 ) ;

121 end

122 omega3Hcol = omega3H ( : ) ;

123 gammaH = imag ( omega3Hcol ) ;

124

125 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

126 % Opt im iz ing the axes ranges i n o r d e r to c e n t r e the lambda�

c r u v e s f o r the

127 % u s e r (AXISLAMBDA)

128 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

129 l ambdaco l nonzero imag = lambdaco l ( ( imag ( lambdaco l ) ~=0)&(abs (

r e a l ( lambdaco l ) )> 1e� 9) ) ;

130 maxlambdare = max( r e a l ( lambdaco lnonzero imag ) ) ;

131 minlambdare = min ( r e a l ( lambdaco lnonzero imag ) ) ;

132 maxlambdaim = max( imag ( lambdaco lnonzero imag ) ) ;

133 minlambdaim = min ( imag ( lambdaco lnonzero imag ) ) ;

134 maxlambdare = max ( [ maxlambdare max( r e a l ( lambda ( 1 , : ) ) ) ] ) ;

135 minlambdare = min ( [ minlambdare min ( r e a l ( lambda ( 1 , : ) ) ) ] ) ;

136 i f maxlambdaim==0

137 maxlambdaim = 1 ;
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138 end

139 i f minlambdaim==0

140 minlambdaim = � 1;

141 end

142 ax is lambda = [ minlambdare maxlambdare minlambdaim maxlambdaim

] � (15 /10 ) ;

143 ax is lambda = 2� [ � 3 . 0 ,3 .0 ,� 5 . 5 ,5 .5 ] ;

144

145 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

146 % Computat ion o f s1 , s2 and a1 , a2 c o r r e s p o n d i n g to the g i ve n

v a l u e s o f r , p

147 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

148 % i f ( abs ( p )>=abs ( r ) )&&(r > =0)&&(p > =0)

149 % s1 = 1 ; s2 = 1 ;

150 % e l s e i f ( abs ( p )< abs ( r ) )&&(r > =0)&&(p > =0)

151 % s1 = 1 ; s2 = � 1;

152 % e l s e i f ( abs ( p )>=abs ( r ) )&&(r > =0)&&(p < 0)

153 % s1 = � 1; s2 = � 1;

154 % e l s e i f ( abs ( p )< abs ( r ) )&&(r > =0)&&(p < 0)

155 % s1 = 1 ; s2 = � 1;

156 % e l s e i f ( abs ( p )>=abs ( r ) )&&(r < 0)&&(p > =0)

157 % s1 = 1 ; s2 = 1 ;

158 % e l s e i f ( abs ( p )< abs ( r ) )&&(r < 0)&&(p > =0)

159 % s1 = � 1; s2 = 1 ;

160 % e l s e i f ( abs ( p )>=abs ( r ) )&&(r < 0)&&(p < 0)

161 % s1 = � 1; s2 = � 1;

162 % e l s e i f ( abs ( p )< abs ( r ) )&&(r < 0)&&(p < 0)

163 % s1 = � 1; s2 = 1 ;
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164 % end

165 %

166 % a1 = s q r t ( s1� ( p+r ) /2) ; a2 = s q r t ( s2 � (p� r ) /2) ;

167 % d i s p ( [ s1 s2 ; a1 a2 ] ) ;

168

169 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

170 % Computat ion o f the two c r i t i c a l c u r v e s on the ( r , p )� p l ane

171 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

172 % d e l t a 2 = 2^(2/3) ; d e l t a 4 = d e l t a 2 ^2 ;

173 % pden = @( x ) ( x+s q r t (4+x . ^ 2 ) ) . ^ ( 2 / 3 ) ;

174 % pcurve1 = @( x ) � 5 + 3 � ( d e l t a 2 . / pden ( x ) + pden ( x ) / d e l t a 2 ) ;

175 % pcurve2 = @( x ) � s q r t (16� 12� d e l t a 2� ( ( x . ^ 2 ) . ^ ( 1 / 3 ) )+3 � d e l t a 4

� ( ( x . ^ 4 ) . ^ ( 1 / 3 ) ) ) ;

176 % i f r<=4

177 % rmin = 0 ;

178 % rmax = 4 ;

179 % e l s e

180 % rmin = 4 ;

181 % rmax = 2� r � 8;

182 % end

183 % dr = ( rmax� rmin ) /1 e3 ;

184 % r v e c = [ rmin : dr : rmax ] ;

185 % pvec1 = pcurve1 ( r v e c ) ;

186 % pvec2 = pcurve2 ( r v e c ) ;

187

188 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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189 % Computat ion o f the c r i t i c a l c u r v e s on the ( a1 , a2 )� p l ane

190 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

191 % r v a l = l i n s p a c e (� 100 ,100 ,1 e4 ) ;

192 % pva l1 = pcurve1 ( r v a l ) ;

193 % pva l2 = pcurve2 ( r v a l ) ;

194 % a1va l1 = s q r t ( s1� ( pva l1+r v a l ) /2) ; a2va l1 = s q r t ( s2 � ( pva l1�

r v a l ) /2) ;

195 % a1va l2 = s q r t ( s1� ( pva l2+r v a l ) /2) ; a2va l2 = s q r t ( s2 � ( pva l2�

r v a l ) /2) ;

196 % a1vec1 = a1va l1 ( ( imag ( a1va l1 )==0)&(imag ( a2va l1 )==0)) ;

197 % a2vec1 = a2va l1 ( ( imag ( a1va l1 )==0)&(imag ( a2va l1 )==0)) ;

198 % a1vec2 = a1va l2 ( ( imag ( a1va l2 )==0)&(imag ( a2va l2 )==0)) ;

199 % a2vec2 = a2va l2 ( ( imag ( a1va l2 )==0)&(imag ( a2va l2 )==0)) ;

200

201 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

202 % PLOTS

203 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

204 r e d f a c = 0 . 8 5 ;

205 hf1 = f i g u r e (1 ) ;

206 c l f

207 s u b p l o t ( 6 , 9 , [ 1 2 10 1 1 ] )

208 % p l o t ( rvec , pvec1 , ' k ' )

209 % hold on

210 % %p l o t ( rvec , pvec2 , ' r ' )

211 % p l o t ( rvec ,� pvec2 , ' r ' )

212 % p l o t ( rvec , rvec , ' b ' )
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213 % p l o t ( rvec ,� rvec , ' b ' )

214 % p l o t ( r , p , ' ko ' , ' Marker ' , ' o ' , ' MarkerFaceColor ' , ' c ' , '

MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 4 )

215 % hold o f f

216 % a x i s ( [ rmin rmax � rmax rmax ] )

217 % x l a b e l ( ' $r$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

218 % y l a b e l ( ' $p$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

219 % t i t l e ( [ ' $ ( r , p )$ � p lane , $r=$ ' , num2str ( r ) , ' $p=$ ' , num2str (

p ) ] , ' i n t e r p r e t e r ' , ' l a t e x ' )

220 % tmp = get ( gca , ' p o s i t i o n ' ) ;

221 % s e t ( gca , ' p o s i t i o n ' , [ tmp (1 ) tmp (2 ) r e d f a c� tmp (3 ) r e d f a c�

tmp (4 ) ] ) ;

222 s u b p l o t ( 6 , 9 , [ 1 9 20 28 2 9 ] )

223 % p l o t ( rvec , pvec1 , ' k ' )

224 % hold on

225 % %p l o t ( rvec , pvec2 , ' r ' )

226 % p l o t ( rvec ,� pvec2 , ' r ' )

227 % p l o t ( rvec , rvec , ' b ' )

228 % p l o t ( rvec ,� rvec , ' b ' )

229 % p l o t ( r , p , ' ko ' , ' Marker ' , ' o ' , ' MarkerFaceColor ' , ' c ' , '

MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 4 )

230 % hold o f f

231 % a x i s ( [ rmin 4 � 4 4 ] )

232 % x l a b e l ( ' $r$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

233 % y l a b e l ( ' $p$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

234 % %t i t l e ( ' $ ( r , p )$� p lane ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

235 % tmp = get ( gca , ' p o s i t i o n ' ) ;

236 % s e t ( gca , ' p o s i t i o n ' , [ tmp (1 ) tmp (2 ) r e d f a c� tmp (3 ) r e d f a c�

tmp (4 ) ] ) ;

237 s u b p l o t ( 6 , 9 , [ 3 7 38 46 4 7 ] )

238 % p l o t ( rvec , pvec1 , ' k ' )

239 % hold on
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240 % %p l o t ( rvec , pvec2 , ' r ' )

241 % p l o t ( rvec ,� pvec2 , ' r ' )

242 % p l o t ( rvec , rvec , ' b ' )

243 % p l o t ( rvec ,� rvec , ' b ' )

244 % p l o t ( r , p , ' ko ' , ' Marker ' , ' o ' , ' MarkerFaceColor ' , ' c ' , '

MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 4 )

245 % hold o f f

246 % a x i s ( [ 4 rmax � rmax rmax ] )

247 % x l a b e l ( ' $r$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

248 % y l a b e l ( ' $p$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

249 % %t i t l e ( ' $ ( r , p )$� p lane ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

250 % tmp = get ( gca , ' p o s i t i o n ' ) ;

251 % s e t ( gca , ' p o s i t i o n ' , [ tmp (1 ) tmp (2 ) r e d f a c� tmp (3 ) r e d f a c�

tmp (4 ) ] ) ;

252 s u b p l o t ( 6 , 9 , [ 3 : 6 ] )

253 Nxx = 1e4 ; xx = l i n s p a c e ( x (1 ) , x ( end ) , Nxx ) ;

254 imgc = z e r o s (2 , Nxx , 3 ) ;

255 f o r k=1:Nxx

256 i f p o l y v a l ( c o e f f d i s c r , ( xx ( k ) ) )> 0

257 imgc ( : , k , 1 ) = 0 ;

258 imgc ( : , k , 2 ) = 1 ;

259 imgc ( : , k , 3 ) = 0 ;

260 e l s e

261 imgc ( : , k , 1 ) = 1 ;

262 imgc ( : , k , 2 ) = 0 ;

263 imgc ( : , k , 3 ) = 0 ;

264 end

265 end

266 imagesc ( xx ,[� 1 1 ] , imgc )

267 ho ld on

268 p l o t ( xx , z e r o s ( s i z e ( xx ) ) , ' k ' , ' MarkerS ize ' ,3 )

269 y = l i n s p a c e (� 1 ,1 ,10) ;
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270 f o r k=1: l e n g t h ( x r r e a l )

271 p l o t ( x r r e a l ( k ) � ones ( s i z e ( y ) ) , y , ' k ' , ' MarkerS ize ' ,3 )

272 end

273 %x p l = p l o t ( x (1 ) ,0 , ' o ' , ' MarkerFaceColor ' , ' k ' , ' MarkerSize

' , 5 ) ;

274 ho ld o f f

275 a x i s ( [ x (1 ) x ( end ) � 1 1 ] )

276 x l a b e l ( ' $k f 3g^ f 2g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

277 t i t l e ( [ ' S ign o f $nDe l ta$ f o r s q u a r e s o f d i f f e r e n c e s : green

� pos , red� neg ' ] , ' i n t e r p r e t e r ' , ' l a t e x ' )

278 tmp = get ( gca , ' p o s i t i o n ' ) ;

279 s e t ( gca , ' p o s i t i o n ' , [ tmp (1 ) tmp (2 ) r e d f a c� tmp (3 ) r e d f a c� tmp

(4 ) ] ) ;

280 s u b p l o t ( 6 , 9 , [ 1 2 : 1 5 , 2 1 : 2 4 , 3 0 : 3 3 , 3 9 : 4 2 , 4 8 : 5 1 ] )

281 p l o t ( r e a l ( lambda ( : , 1 ) ) , imag ( lambda ( : , 1 ) ) , ' b . ' , ' MarkerS ize '

,2 )

282 ho ld on

283 p l o t ( r e a l ( lambda ( : , 2 ) ) , imag ( lambda ( : , 2 ) ) , ' b . ' , ' MarkerS ize '

,2 )

284 p l o t ( r e a l ( lambda ( : , 3 ) ) , imag ( lambda ( : , 3 ) ) , ' b . ' , ' MarkerS ize '

,2 )

285 p l o t ( r e a l ( lambda ( : , 4 ) ) , imag ( lambda ( : , 4 ) ) , ' b . ' , ' MarkerS ize '

,2 )

286 p l o t ( r e a l ( lambda ( : , 5 ) ) , imag ( lambda ( : , 5 ) ) , ' b . ' , ' MarkerS ize '

,2 )

287 p l o t ( r e a l ( lambda ( : , 6 ) ) , imag ( lambda ( : , 6 ) ) , ' b . ' , ' MarkerS ize '

,2 )

288 % pl1 = p l o t ( r e a l ( lambda (1 ,1 ) ) , imag ( lambda (1 ,1 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

289 % pl2 = p l o t ( r e a l ( lambda (1 ,2 ) ) , imag ( lambda (1 ,2 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;
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290 % pl3 = p l o t ( r e a l ( lambda (1 ,3 ) ) , imag ( lambda (1 ,3 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

291 % pl4 = p l o t ( r e a l ( lambda (1 ,4 ) ) , imag ( lambda (1 ,4 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

292 % pl5 = p l o t ( r e a l ( lambda (1 ,5 ) ) , imag ( lambda (1 ,5 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

293 % pl6 = p l o t ( r e a l ( lambda (1 ,6 ) ) , imag ( lambda (1 ,6 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

294 ho ld o f f

295 x l a b e l ( ' $nmu$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

296 y l a b e l ( ' $nrho$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

297 t i t l e ( [ ' $ nlambda$ , $p 1=$ ' , num2str ( p1 ) , ' , $p 2=$ ' , num2str (

p2 ) , ' , $p 3=$ ' , num2str ( p3 ) ] , ' i n t e r p r e t e r ' , ' l a t e x ' )

298 a x i s ( ax is lambda )

299 tmp = get ( gca , ' p o s i t i o n ' ) ;

300 s e t ( gca , ' p o s i t i o n ' , [ tmp (1 ) tmp (2 ) r e d f a c� tmp (3 ) r e d f a c� tmp

(4 ) ] ) ;

301 s u b p l o t ( 6 , 9 , [ 7 : 9 , 1 6 : 1 8 , 2 5 : 2 7 ] )

302 s e t ( gcf , ' c o l o r ' , 'w ' ) ;

303 [ sph1 , sph2 , sph3 ] = sphe re (64) ;

304 hs = s u r f l ( sph1 , sph2 , sph3 ) ;

305 s e t ( hs , ' FaceAlpha ' , 0 . 6 )

306 shad ing i n t e r p

307 colormap ( bone )

308 ho ld on

309 p l o t 3 ( Sx , Sy , Sz , ' k . ' , ' MarkerS ize ' ,2 , ' L ineWidth ' ,2 )

310 p l o t 3 (1 ,0 ,0 , ' r . ' , ' MarkerS ize ' ,15)

311 p l o t 3 ( � 1 ,0 ,0 , ' g . ' , ' MarkerS ize ' ,15)

312 a x i s equa l % or square

313 box o f f

314 g r i d o f f

315 a x i s o f f
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316 v iew (70 ,5 )

317 % s p l 1 = p l o t 3 ( Sx1 (1 ) , Sy1 (1 ) , Sz1 (1 ) , ' o ' , ' MarkerFaceColor

' , ' b ' , ' MarkerSize ' , 3 ) ;

318 % s p l 2 = p l o t 3 ( Sx2 (1 ) , Sy2 (1 ) , Sz2 (1 ) , ' o ' , ' MarkerFaceColor

' , ' b ' , ' MarkerSize ' , 3 ) ;

319 % s p l 3 = p l o t 3 ( Sx3 (1 ) , Sy3 (1 ) , Sz3 (1 ) , ' o ' , ' MarkerFaceColor

' , ' b ' , ' MarkerSize ' , 3 ) ;

320 % s p l 4 = p l o t 3 ( Sx4 (1 ) , Sy4 (1 ) , Sz4 (1 ) , ' o ' , ' MarkerFaceColor

' , ' b ' , ' MarkerSize ' , 3 ) ;

321 % s p l 5 = p l o t 3 ( Sx5 (1 ) , Sy5 (1 ) , Sz5 (1 ) , ' o ' , ' MarkerFaceColor

' , ' b ' , ' MarkerSize ' , 3 ) ;

322 % s p l 6 = p l o t 3 ( Sx6 (1 ) , Sy6 (1 ) , Sz6 (1 ) , ' o ' , ' MarkerFaceColor

' , ' b ' , ' MarkerSize ' , 3 ) ;

323 ho ld o f f

324 t i t l e ( [ ' $ nlambda$ , $p 1=$ ' , num2str ( p1 ) , ' , $p 2=$ ' , num2str (

p2 ) , ' , $p 3=$ ' , num2str ( p3 ) ] , ' i n t e r p r e t e r ' , ' l a t e x ' )

325 s u b p l o t ( 6 , 9 , [ 3 4 : 3 6 , 4 3 : 4 5 , 5 2 : 5 4 ] )

326 p l o t ( k3 , abs (gamma) , ' b . ' , ' MarkerS ize ' ,3 )

327 ho ld on

328 p l o t (� k3 , abs (gamma) , ' b . ' , ' MarkerS ize ' ,3 )

329 p l o t ( s q r t ( x c o l ) , abs (gammaH) , ' r . ' , ' MarkerS ize ' ,3 )

330 p l o t (� s q r t ( x c o l ) , abs (gammaH) , ' r . ' , ' MarkerS ize ' ,3 )

331 % gpl1 = p l o t ( s q r t ( x (1 ) ) , abs (gamma1(1 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

332 % gpl2 = p l o t ( s q r t ( x (1 ) ) , abs (gamma2(1 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

333 % gpl3 = p l o t ( s q r t ( x (1 ) ) , abs (gamma3(1 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

334 % gpl4 = p l o t ( s q r t ( x (1 ) ) , abs (gamma4(1 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

335 % gpl5 = p l o t ( s q r t ( x (1 ) ) , abs (gamma5(1 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;
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336 % gpl6 = p l o t ( s q r t ( x (1 ) ) , abs (gamma6(1 ) ) , ' o ' , '

MarkerFaceColor ' , ' red ' , ' MarkerSize ' , 4 ) ;

337 % a x i s ([� k3max k3max 0 gammamax ]� (12 /10 ) )

338 ho ld o f f

339 x l a b e l ( ' $k f 3g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

340 y l a b e l ( ' $j nGamma( k f 3g) j $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

341 t i t l e ( [ ' Modulus o f Gain $p 1=$ ' , num2str ( p1 ) , ' , $p 2=$ ' ,

num2str ( p2 ) , ' , $p 3=$ ' , num2str ( p3 ) ] , ' i n t e r p r e t e r ' , '

l a t e x ' )

342 tmp = get ( gca , ' p o s i t i o n ' ) ;

343 s e t ( gca , ' p o s i t i o n ' , [ tmp (1 ) tmp (2 ) r e d f a c� tmp (3 ) r e d f a c�

tmp (4 ) ] ) ;

344

345 %f i l e n a m e = [ ' GBL r = ' , num2str ( r ) , ' p = ' , num2str ( p ) ] ;

346 %p r i n t ( hf1 , [ pwd ' / F i g u r e s / ' f i l e n a m e ' . jpeg ' ] , ' � d jpeg ' )

347

348 % f o r j =2:100: l e n g t h ( x )

349 % pl1 . XData = r e a l ( lambda ( j , 1 ) ) ; p l 1 . YData = imag ( lambda ( j

, 1 ) ) ;

350 % pl2 . XData = r e a l ( lambda ( j , 2 ) ) ; p l 2 . YData = imag ( lambda ( j

, 2 ) ) ;

351 % pl3 . XData = r e a l ( lambda ( j , 3 ) ) ; p l 3 . YData = imag ( lambda ( j

, 3 ) ) ;

352 % pl4 . XData = r e a l ( lambda ( j , 4 ) ) ; p l 4 . YData = imag ( lambda ( j

, 4 ) ) ;

353 % pl5 . XData = r e a l ( lambda ( j , 5 ) ) ; p l 5 . YData = imag ( lambda ( j

, 5 ) ) ;

354 % pl6 . XData = r e a l ( lambda ( j , 6 ) ) ; p l 6 . YData = imag ( lambda ( j

, 6 ) ) ;

355 % x p l . XData = x ( j ) ;

356 % gpl1 . XData = s q r t ( x ( j ) ) ; gp l1 . YData = abs (gamma1( j ) ) ;

357 % gpl2 . XData = s q r t ( x ( j ) ) ; gp l2 . YData = abs (gamma2( j ) ) ;
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358 % gpl3 . XData = s q r t ( x ( j ) ) ; gp l3 . YData = abs (gamma3( j ) ) ;

359 % gpl4 . XData = s q r t ( x ( j ) ) ; gp l4 . YData = abs (gamma4( j ) ) ;

360 % gpl5 . XData = s q r t ( x ( j ) ) ; gp l5 . YData = abs (gamma5( j ) ) ;

361 % gpl6 . XData = s q r t ( x ( j ) ) ; gp l6 . YData = abs (gamma6( j ) ) ;

362 % s p l 1 . XData = Sx1 ( j ) ; s p l 1 . YData = Sy1 ( j ) ; s p l 1 . ZData =

Sz1 ( j ) ;

363 % s p l 2 . XData = Sx2 ( j ) ; s p l 2 . YData = Sy2 ( j ) ; s p l 2 . ZData =

Sz2 ( j ) ;

364 % s p l 3 . XData = Sx3 ( j ) ; s p l 3 . YData = Sy3 ( j ) ; s p l 3 . ZData =

Sz3 ( j ) ;

365 % s p l 4 . XData = Sx4 ( j ) ; s p l 4 . YData = Sy4 ( j ) ; s p l 4 . ZData =

Sz4 ( j ) ;

366 % s p l 5 . XData = Sx5 ( j ) ; s p l 5 . YData = Sy5 ( j ) ; s p l 5 . ZData =

Sz5 ( j ) ;

367 % s p l 6 . XData = Sx6 ( j ) ; s p l 6 . YData = Sy6 ( j ) ; s p l 6 . ZData =

Sz6 ( j ) ;

368 % drawnow

369 % end

370

371

372 f i g u r e (2 )

373 s u b p l o t ( 1 ,3 ,1 )

374 p l o t ( k3 , abs (gamma) , ' b . ' , ' MarkerS ize ' ,3 )

375 ho ld on

376 p l o t (� k3 , abs (gamma) , ' b . ' , ' MarkerS ize ' ,3 )

377 p l o t ( s q r t ( x c o l ) , abs (gammaH) , ' r . ' , ' MarkerS ize ' ,3 )

378 p l o t (� s q r t ( x c o l ) , abs (gammaH) , ' r . ' , ' MarkerS ize ' ,3 )

379 ho ld o f f

380 x l a b e l ( ' $k f 3g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

381 y l a b e l ( ' $j nGamma( k f 3g) j $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

382 t i t l e ( [ ' Modulus o f Gain , $p 1=$ ' , num2str ( p1 ) , ' , $p 2=$ ' ,

num2str ( p2 ) , ' , $p 3=$ ' , num2str ( p3 ) ] , ' i n t e r p r e t e r ' , '
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l a t e x ' )

383 tmp = get ( gca , ' p o s i t i o n ' ) ;

384 s e t ( gca , ' p o s i t i o n ' , [ tmp (1 ) tmp (2 ) r e d f a c� tmp (3 ) r e d f a c�

tmp (4 ) ] ) ;

385 s u b p l o t ( 1 ,3 ,2 )

386 p l o t ( k3 , abs (gamma) , ' b . ' , ' MarkerS ize ' ,3 )

387 ho ld on

388 p l o t (� k3 , abs (gamma) , ' b . ' , ' MarkerS ize ' ,3 )

389 ho ld o f f

390 x l a b e l ( ' $k f 3g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

391 y l a b e l ( ' $j nGamma( k f 3g) j $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

392 t i t l e ( [ ' Modulus o f Gain from numer ics , $p1=$ ' , num2str ( p1

) , ' , $p 2=$ ' , num2str ( p2 ) , ' , $p 3=$ ' , num2str ( p3 ) ] , '

i n t e r p r e t e r ' , ' l a t e x ' )

393 tmp = get ( gca , ' p o s i t i o n ' ) ;

394 s e t ( gca , ' p o s i t i o n ' , [ tmp (1 ) tmp (2 ) r e d f a c� tmp (3 ) r e d f a c�

tmp (4 ) ] ) ;

395 s u b p l o t ( 1 ,3 ,3 )

396 p l o t ( s q r t ( x c o l ) , abs (gammaH) , ' r . ' , ' MarkerS ize ' ,3 )

397 ho ld on

398 p l o t (� s q r t ( x c o l ) , abs (gammaH) , ' r . ' , ' MarkerS ize ' ,3 )

399 ho ld o f f

400 x l a b e l ( ' $k f 3g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

401 y l a b e l ( ' $j nGamma( k f 3g) j $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' )

402 t i t l e ( [ ' Modulus o f Gain from $H$ , $p1=$ ' , num2str ( p1 ) , ' ,

$p 2=$ ' , num2str ( p2 ) , ' , $p 3=$ ' , num2str ( p3 ) ] , '

i n t e r p r e t e r ' , ' l a t e x ' )

403 tmp = get ( gca , ' p o s i t i o n ' ) ;

404 s e t ( gca , ' p o s i t i o n ' , [ tmp (1 ) tmp (2 ) r e d f a c� tmp (3 ) r e d f a c�

tmp (4 ) ] ) ;

405
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406 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

407 % % PLOTS

408 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

409 f s l a b e l s = 28 ;

410 f s t i c k s = 24 ;

411

412 % % hf1 = f i g u r e (1 ) ;

413 % % c l f

414 % % p l o t ( rvec , rvec , ' k ' , ' L ineWidth ' , 2 )

415 % % hold on

416 % % p l o t ( rvec ,� rvec , ' k ' , ' L ineWidth ' , 2 )

417 % % p l o t ( rvec , pvec1 , ' r ' , ' L ineWidth ' , 2 )

418 % % p l o t ( rvec , pvec2 , ' b ' , ' L ineWidth ' , 2 )

419 % % p l o t ( r , p , ' ko ' , ' Marker ' , ' o ' , ' MarkerFaceColor ' , ' g ' , '

MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 9 )

420 % % hold o f f

421 % % a x i s ( [ rmin rmax� rmax rmax ] )

422 % % a x i s square

423 % % x l a b e l ( ' $r$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s , '

f on twe igh t ' , ' bo ld ' )

424 % % y l a b e l ( ' $p$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s , '

f on twe igh t ' , ' bo ld ' )

425 % % ax = gca ; ax . Fon tS ize = f s t i c k s ;

426 % %

427 % % hf2 = f i g u r e (2 ) ;

428 % % c l f

429 % % i f max( a1 , a2 )< 3

430 % % a1max = 3 ; a2max = a1max ;
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431 % % e l s e

432 % % a1max = 5;%1.5� max( a1 , a2 ) ;

433 % % a2max = a1max ;

434 % % end

435 % % i f s1==1&&s2==1

436 % % p l o t ( a1vec1 , a2vec1 , ' r ' , ' L ineWidth ' , 2 )

437 % % hold on

438 % % e l s e i f s1==� 1&&s2==1

439 % % p l o t ( a1vec2 , a2vec2 , ' b ' , ' L ineWidth ' , 2 )

440 % % hold on

441 % % p l o t ( a1vec1 , a2vec1 , ' r ' , ' L ineWidth ' , 2 )

442 % % e l s e i f s1==� 1&&s2== � 1

443 % % p l o t ( a1vec2 , a2vec2 , ' b ' , ' L ineWidth ' , 2 )

444 % % hold on

445 % % e l s e i f s1==1&&s2==� 1

446 % % p l o t ( a1vec2 , a2vec2 , ' b ' , ' L ineWidth ' , 2 )

447 % % hold on

448 % % p l o t ( a1vec1 , a2vec1 , ' r ' , ' L ineWidth ' , 2 )

449 % % end

450 % % p l o t ( a1 , a2 , ' ko ' , ' Marker ' , ' o ' , ' MarkerFaceColor ' , ' g ' , '

MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 9 )

451 % % hold o f f

452 % % a x i s ( [ 0 a1max 0 a2max ] )

453 % % a x i s square

454 % % x l a b e l ( ' $a f 1g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s

, ' f on twe igh t ' , ' bo ld ' )

455 % % y l a b e l ( ' $a f 2g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s

, ' f on twe igh t ' , ' bo ld ' )

456 % % ax = gca ; ax . Fon tS ize = f s t i c k s ;

457 % % ax . XTick = [ 0 : a1max ] ; ax . YTick = [ 0 : a2max ] ;

458 %

459 hf3 = f i g u r e (3 ) ;
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460 c l f

461 p l o t ( r e a l ( lambda ( : , 1 ) ) , imag ( lambda ( : , 1 ) ) , ' b . ' , ' MarkerS ize ' ,2 )

462 ho ld on

463 p l o t ( r e a l ( lambda ( : , 2 ) ) , imag ( lambda ( : , 2 ) ) , ' b . ' , ' MarkerS ize ' ,2 )

464 p l o t ( r e a l ( lambda ( : , 3 ) ) , imag ( lambda ( : , 3 ) ) , ' b . ' , ' MarkerS ize ' ,2 )

465 p l o t ( r e a l ( lambda ( : , 4 ) ) , imag ( lambda ( : , 4 ) ) , ' b . ' , ' MarkerS ize ' ,2 )

466 p l o t ( r e a l ( lambda ( : , 5 ) ) , imag ( lambda ( : , 5 ) ) , ' b . ' , ' MarkerS ize ' ,2 )

467 p l o t ( r e a l ( lambda ( : , 6 ) ) , imag ( lambda ( : , 6 ) ) , ' b . ' , ' MarkerS ize ' ,2 )

468 %p l o t ( r e a l ( lambda (1 ,1 ) ) , imag ( lambda (1 ,1 ) ) , ' ko ' , ' Marker ' , ' o ' , '

MarkerFaceColor ' , ' r ' , ' MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )

469 %p l o t ( r e a l ( lambda (1 ,2 ) ) , imag ( lambda (1 ,2 ) ) , ' ko ' , ' Marker ' , ' o ' , '

MarkerFaceColor ' , ' r ' , ' MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )

470 %p l o t ( r e a l ( lambda (1 ,3 ) ) , imag ( lambda (1 ,3 ) ) , ' ko ' , ' Marker ' , ' o ' , '

MarkerFaceColor ' , ' r ' , ' MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )

471 %p l o t ( r e a l ( lambda (1 ,4 ) ) , imag ( lambda (1 ,4 ) ) , ' ko ' , ' Marker ' , ' o ' , '

MarkerFaceColor ' , ' r ' , ' MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )

472 %p l o t ( [ r / (2 � p ) , 0 ] , ' ko ' , ' Marker ' , ' o ' , ' MarkerFaceColor ' , ' b ' , '

MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )

473 ho ld o f f

474 x l a b e l ( ' $nmu$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s , '

f o n t w e i g h t ' , ' bo ld ' )

475 y l a b e l ( ' $nrho$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s , '

f o n t w e i g h t ' , ' bo ld ' )

476 a x i s ( ax is lambda )

477 ax = gca ;

478 ax . Fon tS ize = f s t i c k s ;

479 ax . FontWeight = ' normal ' ;

480 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

481 ou te rpos = ax . O u t e r P o s i t i o n ;

482 t i = ax . T i g h t I n s e t ;

483 l e f t = ou te rpos (1 ) + t i (1 ) ;

484 bottom = ou te rpos (2 ) + t i (2 ) ;
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485 ax w id th = ou te rpos (3 ) � t i ( 1 ) � t i ( 3 ) ;

486 a x h e i g h t = ou te rpos (4 ) � t i ( 2 ) � t i ( 4 ) ;

487 ax . P o s i t i o n = [ l e f t bottom ax w id th a x h e i g h t ] ;

488 f i g = gc f ;

489 f i g . PaperPos i t ionMode = ' auto ' ;

490 f i g p o s = f i g . P a p e r P o s i t i o n ;

491 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

492

493 % % hf4 = f i g u r e (4 ) ;

494 % % c l f

495 % % p l o t ( k3 , abs (gamma) , ' b . ' , ' MarkerSize ' , 4 )

496 % % hold on

497 % % p l o t (� k3 , abs (gamma) , ' b . ' , ' MarkerSize ' , 4 )

498 % % hold o f f

499 % % x l a b e l ( ' $k f 3g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s

, ' f on twe igh t ' , ' bo ld ' )

500 % % y l a b e l ( ' $j nGamma( k f 3g) j $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e

' , f s l a b e l s , ' f on twe igh t ' , ' bo ld ' )

501 % % a x i s ([� max( k3 ) max( k3 ) 0 max( abs (gamma) ) ]� 1 . 0 5 )

502 % % a x i s square

503 % % ax = gca ; ax . Fon tS ize = f s t i c k s ;

504 % %

505 % % hf5 = f i g u r e (5 ) ;

506 % % c l f

507 % % s e t ( gcf , ' co l o r ' , 'w ' ) ;

508 % % [ sph1 , sph2 , sph3 ] = sphe re (64) ;

509 % % hs = s u r f l ( sph1 , sph2 , sph3 ) ;

510 % % s e t ( hs , ' FaceAlpha ' , 0 . 6 )

511 % % shad ing i n t e r p

512 % % colormap ( bone )

513 % % hold on

514 % % p l o t 3 ( Sx , Sy , Sz , ' k . ' , ' MarkerSize ' , 1 , ' L ineWidth ' , 1 )
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515 % % p l o t 3 (1 ,0 ,0 , ' co ' , ' Marker ' , ' o ' , ' MarkerFaceColor ' , ' c ' , '

MarkerEdgeColor ' , ' c ' , ' MarkerSize ' , 5 )

516 % % p l o t 3 ( � 1 ,0 ,0 , ' yo ' , ' Marker ' , ' o ' , ' MarkerFaceColor ' , ' y ' , '

MarkerEdgeColor ' , ' y ' , ' MarkerSize ' , 5 )

517 % % a x i s equa l % or square

518 % % box o f f

519 % % g r i d o f f

520 % % a x i s o f f

521 % % view (70 ,5 ) %view (70 ,5 )

522 % % hold o f f

523 %

524 ds = 5 ;

525 hf6 = f i g u r e (6 ) ;

526 c l f

527 p l o t ( r e a l ( lambda ( 1 : ds : end , 1 ) ) , imag ( lambda ( 1 : ds : end , 1 ) ) , ' b . ' , '

MarkerS ize ' ,2 )

528 ho ld on

529 p l o t ( r e a l ( lambda ( 1 : ds : end , 2 ) ) , imag ( lambda ( 1 : ds : end , 2 ) ) , ' b . ' , '

MarkerS ize ' ,2 )

530 p l o t ( r e a l ( lambda ( 1 : ds : end , 3 ) ) , imag ( lambda ( 1 : ds : end , 3 ) ) , ' b . ' , '

MarkerS ize ' ,2 )

531 p l o t ( r e a l ( lambda ( 1 : ds : end , 4 ) ) , imag ( lambda ( 1 : ds : end , 4 ) ) , ' b . ' , '

MarkerS ize ' ,2 )

532 p l o t ( r e a l ( lambda ( 1 : ds : end , 5 ) ) , imag ( lambda ( 1 : ds : end , 5 ) ) , ' b . ' , '

MarkerS ize ' ,2 )

533 p l o t ( r e a l ( lambda ( 1 : ds : end , 6 ) ) , imag ( lambda ( 1 : ds : end , 6 ) ) , ' b . ' , '

MarkerS ize ' ,2 )

534 %p l o t ( r e a l ( lambda (1 ,1 ) ) , imag ( lambda (1 ,1 ) ) , ' ko ' , ' Marker ' , ' o ' , '

MarkerFaceColor ' , ' r ' , ' MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )

535 %p l o t ( r e a l ( lambda (1 ,2 ) ) , imag ( lambda (1 ,2 ) ) , ' ko ' , ' Marker ' , ' o ' , '

MarkerFaceColor ' , ' r ' , ' MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )
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536 %p l o t ( r e a l ( lambda (1 ,3 ) ) , imag ( lambda (1 ,3 ) ) , ' ko ' , ' Marker ' , ' o ' , '

MarkerFaceColor ' , ' r ' , ' MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )

537 %p l o t ( r e a l ( lambda (1 ,4 ) ) , imag ( lambda (1 ,4 ) ) , ' ko ' , ' Marker ' , ' o ' , '

MarkerFaceColor ' , ' r ' , ' MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )

538 %p l o t ( [ r / (2 � p ) , 0 ] , ' ko ' , ' Marker ' , ' o ' , ' MarkerFaceColor ' , ' b ' , '

MarkerEdgeColor ' , ' k ' , ' MarkerSize ' , 5 )

539 ho ld o f f

540 x l a b e l ( ' $nmu$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s , '

f o n t w e i g h t ' , ' bo ld ' )

541 y l a b e l ( ' $nrho$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s , '

f o n t w e i g h t ' , ' bo ld ' )

542 a x i s ( ax is lambda )

543 ax = gca ;

544 ax . Fon tS ize = f s t i c k s ;

545 ax . FontWeight = ' normal ' ;

546 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

547 ou te rpos = ax . O u t e r P o s i t i o n ;

548 t i = ax . T i g h t I n s e t ;

549 l e f t = ou te rpos (1 ) + t i (1 ) ;

550 bottom = ou te rpos (2 ) + t i (2 ) ;

551 ax w id th = ou te rpos (3 ) � t i ( 1 ) � t i ( 3 ) ;

552 a x h e i g h t = ou te rpos (4 ) � t i ( 2 ) � t i ( 4 ) ;

553 ax . P o s i t i o n = [ l e f t bottom ax w id th a x h e i g h t ] ;

554 f i g = gc f ;

555 f i g . PaperPos i t ionMode = ' auto ' ;

556 f i g p o s = f i g . P a p e r P o s i t i o n ;

557 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

558

559

560 % % hf7 = f i g u r e (7 ) ;

561 % % c l f
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562 % % p l o t ( k3 ( 1 : ds : end ) , abs (gamma ( 1 : ds : end ) ) , ' b . ' , ' MarkerSize

' , 4 )

563 % % hold on

564 % % p l o t (� k3 ( 1 : ds : end ) , abs (gamma ( 1 : ds : end ) ) , ' b . ' , ' MarkerSize

' , 4 )

565 % % hold o f f

566 % % x l a b e l ( ' $k f 3g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s

, ' f on twe igh t ' , ' bo ld ' )

567 % % y l a b e l ( ' $j nGamma( k f 3g) j $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e

' , f s l a b e l s , ' f on twe igh t ' , ' bo ld ' )

568 % % a x i s ([� max( k3 ) max( k3 ) 0 max( abs (gamma) ) ]� 1 . 0 5 )

569 % % a x i s square

570 % % ax = gca ; ax . Fon tS ize = f s t i c k s ;

571

572 hf7 = f i g u r e (7 ) ;

573 c l f

574 p l o t ( s q r t ( x c o l ) , abs (gammaH) , ' b . ' , ' MarkerS ize ' ,2 )

575 ho ld on

576 p l o t (� s q r t ( x c o l ) , abs (gammaH) , ' b . ' , ' MarkerS ize ' ,2 )

577 ho ld o f f

578 x l a b e l ( ' $k f 3g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s , '

f o n t w e i g h t ' , ' bo ld ' )

579 y l a b e l ( ' $j nGamma( k f 3g) j $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' ,

f s l a b e l s , ' f o n t w e i g h t ' , ' bo ld ' )

580 a x i s ([� max( k3 ) max( k3 ) 0 max( abs (gamma) ) ]� 1 . 0 5 )

581 ax = gca ;

582 ax . Fon tS ize = f s t i c k s ;

583 ax . FontWeight = ' normal ' ;

584 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

585 ou te rpos = ax . O u t e r P o s i t i o n ;

586 t i = ax . T i g h t I n s e t ;

587 l e f t = ou te rpos (1 ) + t i (1 ) ;
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588 bottom = ou te rpos (2 ) + t i (2 ) ;

589 ax w id th = ou te rpos (3 ) � t i ( 1 ) � t i ( 3 ) ;

590 a x h e i g h t = ou te rpos (4 ) � t i ( 2 ) � t i ( 4 ) ;

591 ax . P o s i t i o n = [ l e f t bottom ax w id th a x h e i g h t ] ;

592 f i g = gc f ;

593 f i g . PaperPos i t ionMode = ' auto ' ;

594 f i g p o s = f i g . P a p e r P o s i t i o n ;

595 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

596

597

598 hf8 = f i g u r e (8 ) ;

599 c l f

600 p l o t ( s q r t ( x c o l ( 1 : ds : end ) ) , abs (gammaH( 1 : ds : end ) ) , ' b . ' , '

MarkerS ize ' ,2 )

601 ho ld on

602 p l o t (� s q r t ( x c o l ( 1 : ds : end ) ) , abs (gammaH( 1 : ds : end ) ) , ' b . ' , '

MarkerS ize ' ,2 )

603 ho ld o f f

604 x l a b e l ( ' $k f 3g$ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , f s l a b e l s , '

f o n t w e i g h t ' , ' bo ld ' )

605 y l a b e l ( ' $j nGamma( k f 3g) j $ ' , ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' ,

f s l a b e l s , ' f o n t w e i g h t ' , ' bo ld ' )

606 a x i s ([� max( k3 ) max( k3 ) 0 max( abs (gamma) ) ]� 1 . 0 5 )

607 ax = gca ;

608 ax . Fon tS ize = f s t i c k s ;

609 ax . FontWeight = ' normal ' ;

610 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

611 ou te rpos = ax . O u t e r P o s i t i o n ;

612 t i = ax . T i g h t I n s e t ;

613 l e f t = ou te rpos (1 ) + t i (1 ) ;

614 bottom = ou te rpos (2 ) + t i (2 ) ;

615 ax w id th = ou te rpos (3 ) � t i ( 1 ) � t i ( 3 ) ;
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616 a x h e i g h t = ou te rpos (4 ) � t i ( 2 ) � t i ( 4 ) ;

617 ax . P o s i t i o n = [ l e f t bottom ax w id th a x h e i g h t ] ;

618 f i g = gc f ;

619 f i g . PaperPos i t ionMode = ' auto ' ;

620 f i g p o s = f i g . P a p e r P o s i t i o n ;

621 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

622

623

624 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

625 % % Sav ing the f i g u r e s

626 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

627 i f s a v e f l a g==1

628 f i l e n a m e = [ ' spect rum p1= ' , num2str ( p1 ) , ' p2= ' , num2str ( p2 )

, ' p3= ' , num2str ( p3 ) ] ;

629 p r i n t ( hf3 , [ pwd ' / F i g u r e s / ' f i l e n a m e ' lambda . j peg ' ] , '�

d jpeg ' )

630 p r i n t ( hf6 , [ pwd ' / F i g u r e s / ' f i l e n a m e ' lambda . eps ' ] , '�

depsc ' , '� t i f f ' )

631 p r i n t ( hf3 , [ pwd ' / F i g u r e s / ' f i l e n a m e ' lambda . pdf ' ] , '� dpdf

' )

632 p r i n t ( hf7 , [ pwd ' / F i g u r e s / ' f i l e n a m e ' g a i n . j peg ' ] , '� d jpeg

' )

633 p r i n t ( hf8 , [ pwd ' / F i g u r e s / ' f i l e n a m e ' g a i n . eps ' ] , '� depsc '

, ' � t i f f ' )

634 p r i n t ( hf7 , [ pwd ' / F i g u r e s / ' f i l e n a m e ' g a i n . pdf ' ] , '� dpdf ' )

635 end
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Gain Function

1 f u n c t i o n omega=omegaex t rac to r2 ( p1 , p2 , p3 , k , lambda )

2

3 omega = z e r o s ( s i z e ( k ) ) ;

4 jmax = l e n g t h ( k ) ;

5

6 f o r j =1: jmax

7 kk = k ( j ) ; l l = lambda ( j ) ;

8 pw coe f f = f l i p l r ( [ ( � 1) . � p1 . ^ 2 .� p3 .^3+p1 .� ( ( � 1)+p3 . � ( p3

+2. � p2 .� p3+( � 1) . � l l +p3 . ^ 2 . � l l ) )+p2 . � ( l l +( � 1) . � p3 .� ( ( � 1)

+p2+p3 . � ( p3+ l l ) ) ) , . . .

9 p2 .� (1+2. � p3 .^2+( � 1) . � p3 .� l l )+p1 . � p3 .� ( ( � 3)+p3

. � l l )+( � 1) . � ( ( � 1)+p3 . ^ 2 ) . � ( ( � 1)+ l l . ^ 2 )

,(( � 2)+( � 1) . � p2 ) . � p3+2. � l l , 1 ] ) ;

10 p z c o e f f = [1 ,2� l l , p2� 1+ l l ^2 , p2 � l l � p1 ] ;

11 wroots = r o o t s ( pw coe f f ) ;

12 %z r o o t s = r o o t s ( p z c o e f f ) ;

13

14 w d i f f = wroots � wroots ( [ 2 , 3 , 1 ] ) ;

15 [ foo , mind ] = min ( abs ( abs ( w d i f f )� kk ) ) ;

16 wroots0 = [ wroots ; wroots (1 ) ] ;

17 w1 = wroots0 ( mind ) ; w2 = wroots0 ( mind+1) ;
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18 cz1 = [ p3 ,1+p3� l l , p2� p3� w1 ] ;

19 cz2 = [ p3 ,1+p3� l l , p2� p3� w2 ] ;

20 z 1 r o o t s = r o o t s ( cz1 ) ;

21 z 1 v a l = abs ( p o l y v a l ( p z c o e f f , z 1 r o o t s ) ) ;

22 [ fooz1 , i ndz1 ] = min ( z 1 v a l ) ; z1 = z 1 r o o t s ( i ndz1 ) ;

23 z 2 r o o t s = r o o t s ( cz2 ) ;

24 z 2 v a l = abs ( p o l y v a l ( p z c o e f f , z 2 r o o t s ) ) ;

25 [ fooz2 , i ndz2 ] = min ( z 2 v a l ) ; z2 = z 2 r o o t s ( i ndz2 ) ;

26 t h e ta = z1+z2 ;

27 omega ( j ) = kk /(1+p3 � ( t h e t a+ l l ) ) ;

28 d i s p ( [ ' omegaex t rac t i on : p1 = ' , num2str ( p1 ) , ' , p2 = ' ,

num2str ( p2 ) , ' , p3 = ' , num2str ( p3 ) , . . .

29 ' d i f f = ' , num2str ( foo ) , ' , k3 = ' , num2str ( kk ) , . . .

30 ' : j = ' , i n t 2 s t r ( j ) , ' , f i n a l j = ' , i n t 2 s t r ( jmax ) ] ) ;

31 end

32 r e t u r n

1 f u n c t i o n omega = omegaext rac torH ( p1 , p2 , p3 , k )

2

3 jmax = l e n g t h ( k ) ;

4 omega = z e r o s ( jmax , 6 ) ;

5

6 f o r j =1: jmax

7 kk = k ( j ) ;

8 polH = f l i p l r ( [ ( � 4) . � kk .^4 , ( � 4) . � kk . ^3 .� ( ( � 4 )+p1 . � p3 ) , kk

.^2 . � ( ( � 24)+kk .^2+12. � p1 .� . . .

9 p3+( � 1) . � ( ( � 8)+p2 . � (4+ p2 ) ) . � p3 . ^ 2 ) , 2 .� kk .� (8+( � 2) . � kk

.^2+(( � 8)+p2 . � ( . . .

10 4+p2 ) ) . � p3 .^2+p1 . � p3 .� ( ( � 6)+( � 1) . � ( ( � 2)+p2 ) . � p3 . ^ 2 ) )

,( � 4) +4. � p1 .� . . .

11 p3+( � 1) . � ( ( � 8)+p2 . � (4+ p2 ) ) . � p3 .^2+2. � p1 .� ( ( � 2)+p2 ) . � p3

.^3+( � 1) . � ( . . .
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12 4+p1 .^2+( � 4) . � p2 ) . � p3 .^4+( � 2) . � kk . ^2 .� ( ( � 3 )+p3 . ^ 2 ) , 4 . �

kk .� ( ( � 1)+ . . .

13 p3 . ^ 2 ) ,(( � 1)+p3 . ^ 2 ) . ^ 2 ] ) ;

14 omega ( j , : ) = r o o t s ( polH ) ;

15 d i s p ( [ ' omegaext rac t ionH : p1 = ' , num2str ( p1 ) , ' , p2 = ' ,

num2str ( p2 ) , ' , p3 = ' , num2str ( p3 ) , . . .

16 ' : j = ' , i n t 2 s t r ( j ) , ' , f i n a l j = ' , i n t 2 s t r ( jmax ) ] ) ;

17 end

18 r e t u r n
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Sinc Interpolation

1 f u n c t i o n y new = s i n c i n t e r p r ( y o ld , x o ld , x new )

2 %i f n a r g i n==3

3 %dx = x o l d (2 )� x o l d (1 ) ;

4 %end

5 dxo ld = x o l d (2 )� x o l d (1 ) ;

6 dxnew = x new (2 )� x new (1 ) ;

7 s i z e x o l d = s i z e ( x o l d ) ;

8 s i z e x n e w = s i z e ( x new ) ;

9 s i z e y o l d = s i z e ( y o l d ) ;

10

11 % r o t a t e s i n p u t a r r a y s c o n v e n i e n t l y

12 i f min ( s i z e x o l d ) ~=1 j j min ( s i z e y o l d ) ~=1 j j min ( s i z e x n e w )~=1

13 e r r o r ( [ ' s i n c i n t e r p e r r o r : i n p u t arguments o f s i n c i n t e r p

mustbe v e c t o r s ' ] )

14 end

15 i f max( s i z e x o l d )~=max( s i z e y o l d )

16 e r r o r ( [ ' s i n c i n t e r p e r r o r : d imens ion mismatch i n i n p u t

arguments ' ] )

17 end

18 i f s i z e x o l d (1 )~=min ( s i z e x o l d )

19 X old = x o l d . ' ;
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20 e l s e

21 X old = x o l d ;

22 end

23 i f s i z e x n e w (1 )~=min ( s i z e x n e w )

24 X new = x new . ' ;

25 e l s e

26 X new = x new ;

27 end

28 i f s i z e y o l d (1 )~=min ( s i z e y o l d )

29 Y old = y o l d ;

30 r o t f l a g = 0 ;

31 e l s e

32 Y old = y o l d . ' ;

33 r o t f l a g = 0 ;

34 end

35

36 %s h i f t

37 %[ Y old (1 ) Y o ld ( end ) ]

38 [ Y min ext , i n d m i n e x t ] = min ( [ abs ( Y o ld (1 ) ) abs ( Y o ld (

end ) ) ] ) ;

39 i f i n d m i n e x t==1

40 s i g m i n e x t = s i g n ( Y o ld (1 ) ) ;

41 e l s e

42 s i g m i n e x t = s i g n ( Y o ld ( end ) ) ;

43 end

44 Y old = Y old� s i g m i n e x t � Y min ex t ;

45 %[ Y old (1 ) Y o ld ( end ) ]

46

47 %f l i p

48 i f y o l d (1 )~=y o l d ( end )

49 % f l i p i s needed

50 i f i n d m i n e x t==1
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51 X o ld c = X old + ( X o ld ( end )� X o ld (1 )+dxo ld ) ;

52 X old = [ X old , X o ld c ] ;

53 %s i z e X o l d = s i z e ( X o ld )

54

55 X new c = X new + ( X new ( end )� X new (1 )+dxnew ) ;

56 X new = [ X new , X new c ] ;

57 %sizeXnew = s i z e ( Xnew )

58

59 Y old = [ Y o ld ; f l i p u d ( Y o ld ) ] ;

60 %s i z e Y o l d = s i z e ( Y o ld )

61 e l s e

62 X o ld c = X old + ( X o ld (1 )� X o ld ( end )� dxo ld ) ;

63 X old = [ X o ld c , X o ld ] ;

64 %s i z e X o l d = s i z e ( X o ld )

65

66 X new c = X new + ( X new (1 )� X new ( end )� dxnew ) ;

67 X new = [ X new c , X new ] ;

68 %sizeXnew = s i z e ( Xnew )

69

70 Y old = [ f l i p u d ( Y o ld ) ; Y o ld ] ;

71 %s i z e Y o l d = s i z e ( Y o ld )

72 end

73 end

74

75 % i f Y o ld (1 )~=Y old ( end )

76 % i f i n d m i n e x t==1

77 % Y old = [ Y o ld ; Y o ld (1 ) ] ;

78 % X old = [ X old , X o ld ( end )+dxo ld ] ;

79 % e l s e

80 % Y old = [ Y o ld ( end ) ; Y o ld ] ;

81 % X old = [ X o ld (1 )� dxold , X o ld ] ;

82 % end



Appendix N. Sinc Interpolation 208

83 % end

84 %S = @( xold , xnew ) s i n c ( ( p i /dx )� xnew � p i � ( f l o o r ( ( xo ld � xo l d (1 )

) /dx ) ) ) ;

85 %S = @( x s h i f t , xnew ) s i n c ( ( p i /dx )� xnew � p i � x s h i f t ) ;

86 %[ X s h i f t , Xnew ] = meshgr id ( [ 0 : N� 1] , X new ) ;

87 [ Xnew , Xold ] = ndg r i d ( X new , X o ld ) ;

88 SS = s i n c ( ( Xnew� Xold ) / dxo ld ) ;

89 %[ Xnewshi f t , X o l d s h i f t ] = ndg r i d ( [ 0 : l e n g t h ( Xnew ) � 1 ] , [0 : l e n g t h (

X o ld ) � 1]) ;

90 %SS = s i n c ( Xnewshi f t� X o l d s h i f t ) ;

91 %S S s i z e = s i z e (SS)

92 %Y o l d s i z e = s i z e ( Y o ld )

93 Y new = SS� Y o ld ;

94

95 %r e s h i f t

96 Y new = Y new+s i g m i n e x t � Y min ex t ;

97 % i f Y o ld (1 )~=Y old ( end )

98 % i f i n d m i n e x t==1

99 % Y new = Y new ( 1 : end� 1) ;

100 % e l s e

101 % Y new = Y new ( 2 : end ) ;

102 % end

103 % end

104 i f i n d m i n e x t==1

105 Y new = Y new ( 1 : l e n g t h ( x new ) ) ;

106 e l s e

107 Y new = Y new ( l e n g t h ( x new ) +1: end ) ;

108 end

109 i f r o t f l a g==1

110 y new = Y new . ' ;

111 e l s e

112 y new = Y new ;
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113 end

114 r e t u r n



Appendix O

Pseudospectral Fourier Discrtization

1 f u n c t i o n [ x , t , u1 , u2 , u3 ] = t w r i s o l v e r ( c , s , a , eta , u0 , L , Nx ,T, Nt )

2 % pseudo� s p e c t r a l code f o r the 3WRI

3 %

4 % c = [ c1 , c2 ] i s the a r r a y o f the speeds

5 % s = [ s1 , s2 , s3 ] i s the a r r a y o f the s i g n s

6 % a = [ a1 , a2 ] i s the a r r a y o f the amp l i t udes

7 % eta = [ eta1 , e ta2 ] i s the a r r a y o f the f r e q u e n c i e s

8 %

9 % u0 i s the i n i t i a l c o n d i t i o n , which has to be p r o v i d e d as Nx�

by� 3 a r ray ,

10 % wi th the f i r s t column be ing the v a l u e s o f u1 at t =0, the

second column

11 % be ing the v a l u e s o f u2 at t =0, and the t h i r d column be ing

the v a l u e s o f

12 % u3 at t=0

13 %

14 % [� L : dx : L� dx ] i s the range o f i n t e g r a t i o n , where dx=2� L/Nx

and Nx i s the

15 % number o f s p a t i a l nodes

16 %
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17 % T i s the t ime range o f the i n t e g r a t i o n , i n c l u d i n g Nt t ime

p o i n t s

18 %

19 % x i s the v e c t o r o f the nodes

20 % t i s the t ime v e c t o r

21 % u1 , u2 , u3 i s the s o l u t i o n i n the form o f t h r e e Nx� by� 3

a r r a y s

22

23

24 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 % s e t t i n g g l o b a l v a r i a b l e s

26 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27 g l o b a l t i m e s t a r t t ou t

28

29 % r i d e f i n e s the f i n a l t ime as a g l o b a l v a r i a b l e

30 t ou t = T;

31

32 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 % compu ta t i ona l g r i d i n F o u r i e r space

34 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35

36 % setup g r i d

37 dx = 2 � L/Nx ;

38 x = [ � L : dx : L� dx ] ;
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39

40 % f o u r i e r wavenumbers

41 dk = p i /L ;

42 k = f f t s h i f t ([ � Nx / 2 : ( Nx/2) � 1]� dk ) ;

43 k = k . ' ; %k2 = k . ^ 2 ;

44

45 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46 % paramete rs

47 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

48

49 % Given speeds , s i g n s , amp l i t udes and f r e q u e n c i e s , r e c o n s t r u c t

the

50 % paramete rs i n the equa t i on and i n the p lane wave s o l u t i o n .

51 aq = a . ^ 2 ;

52 r = ( c (1 ) � c (2 ) ) / ( e ta (1 )+e ta (2 ) ) ;

53 nu1 = ( e ta (1 ) / c (1 ) )+s (1 ) � s (3 ) � aq (2 ) � ( c (2 ) / c (1 ) ) � r ;

54 nu2 = ( e ta (2 ) / c (2 ) )+s (2 ) � s (3 ) � aq (1 ) � ( c (1 ) / c (2 ) ) � r ;

55 nu3 = � (nu1+nu2 ) ;

56 omega = c (1 )� nu1+c (2 ) � nu2 ;

57

58 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59 % i n i t i a l c o n d i t i o n

60 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 U1 = u0 ( : , 1 ) ; U2 = u0 ( : , 2 ) ; U3 = u0 ( : , 3 ) ;
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62 V1 = exp (1 i � ( nu1� x ( : ) ) ) . � U1 ;

63 V2 = exp (1 i � ( nu2� x ( : ) ) ) . � U2 ;

64 V3 = exp (1 i � ( nu3� x ( : ) ) ) . � U3 ;

65

66 V0 = [ V1 ( : ) ; V2 ( : ) ; V3 ( : ) ] ;

67

68 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69 % paramete rs f o r the ODE s o l v e r

70 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

71

72 % s e t s a p p r o p r i a t e ODE s o l v e r o p t i o n s

73 op ts = odese t ( ' OutputFcn ' , @twr i ou tpu t , . . .

74 ' R e f i n e ' , 1 , . . .

75 ' S t a t s ' , ' on ' , . . .

76 ' Re lTo l ' ,1 e� 9, ' AbsTol ' ,1 e� 6 , . . .

77 ' MaxStep ' ,1 e� 3 , . . .

78 ' I n i t i a l S t e p ' ,1 e� 9 , . . .

79 ' NormControl ' , ' on ' ) ;

80

81 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

82 % i n t e g r a t i o n

83 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

84

85 % s t a r t s the c l o c k
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86 t i m e s t a r t = t i c ;

87 d i s p ( [ ' pseudo� s p e c t r a l code f o r HF : c a l c u l a t i o n s t a r t e d ' ] )

88

89 % per fo rms the i n t e g r a t i o n i n t ime

90 dt = T/Nt ;

91 [ t , y ] = ode45 (@( t t , yy ) t w r i r h s ( t t , yy , Nx , k , c , s , omega ) , [ 0 : dt :T

] , V0 , op ts ) ;

92

93 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

94 % r e c o v e r i n g output s o l u t i o n from i n t e g r a t i o n

95 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

96 v1 = y ( : , 1 : Nx) ;

97 v2 = y ( : , Nx+1:2 � Nx) ;

98 v3 = y ( : , 2 � Nx+1:3� Nx) ;

99 [MX,MT] = meshgr id ( x , t ) ;

100 u1 = exp(� 1 i � nu1� (MX� c (1 ) � MT) ) . � v1 ;

101 u2 = exp(� 1 i � nu2� (MX� c (2 ) � MT) ) . � v2 ;

102 u3 = exp(� 1 i � ( nu3� MX+omega� MT) ) . � v3 ;

103 d i s p ( [ ' pseudo� s p e c t r a l code f o r 3WRI : c a l c u l a t i o n completed ' ] )

104

105 % comput ing the t ime e l a p s e d s i n c e the b e g i n n i n g o f the

i n t e g r a t i o n

106 t o t a l t i m e e l a p s e d = toc ( t i m e s t a r t ) ;

107 t o t a l d a y s = datenum ( [ 0 0 0 0 0 t o t a l t i m e e l a p s e d ] ) ;

108 t i m e l e f t = da tevec ( t o t a l d a y s � f l o o r ( t o t a l d a y s ) ) ;

109 d i s p ( [ ' t o t a l t ime taken f o r the i n t e g r a t i o n = ' , . . .

110 i n t 2 s t r ( f l o o r ( t o t a l d a y s ) ) , ' d ' , . . .

111 i n t 2 s t r ( t i m e l e f t (4 ) ) , ' h ' , . . .
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112 i n t 2 s t r ( t i m e l e f t (5 ) ) , 'm ' , . . .

113 num2str ( t i m e l e f t (6 ) ) , ' s ' ] )

114 r e t u r n

115

116 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

117 % t w r i o u t p u t f u n c t i o n , c a l l e d at each t ime s tep

118 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119

120 f u n c t i o n s t a t u s = t w r i o u t p u t ( t t , yy , f l a g )

121 g l o b a l t i m e s t a r t t ou t

122 s t a t u s = 0 ;

123 i f ( s t rcmp ( f l a g , ' ' ) )

124 t i m e e l a p s e d = toc ( t i m e s t a r t ) ;

125 s e c o n d s l e f t = ( ( t ou t / t t ( end ) ) � 1)� t i m e e l a p s e d ;

126 d a y s l e f t = datenum ( [ 0 0 0 0 0 s e c o n d sl e f t ] ) ;

127 t i m e l e f t = da tevec ( d a y s l e f t � f l o o r ( d a y s l e f t ) ) ;

128 d i s p ( [ ' 3 w r i s o l v e r : t ime = ' , num2str ( t t ( end ) ) , . . .

129 ' ( ' , num2str ( t ou t ) , ' ) computat ion t ime l e f t = ' , . . .

130 i n t 2 s t r ( f l o o r ( d a y s l e f t ) ) , ' d ' , . . .

131 i n t 2 s t r ( t i m e l e f t (4 ) ) , ' h ' , . . .

132 i n t 2 s t r ( t i m e l e f t (5 ) ) , 'm ' , . . .

133 num2str ( t i m e l e f t (6 ) ) , ' s ' ] )

134 end

135 r e t u r n

136

137 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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138 % t w r i r h s , the r i g h t� hand s i d e o f the 3WRI system

139 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

140

141 f u n c t i o n dvdt = t w r i r h s ( t t , vv , Nx , k , c , s , omega )

142 %s i z e v v = s i z e ( vv )

143 v = reshape ( vv , Nx , 3 ) ;

144 v1 = v ( : , 1 ) ; v2 = v ( : , 2 ) ; v3 = v ( : , 3 ) ;

145 v1c = con j ( v1 ) ; v2c = con j ( v2 ) ; v3c = con j ( v3 ) ;

146 v1x = i f f t (1 i � k . � f f t ( v1 ) ) ;

147 v2x = i f f t (1 i � k . � f f t ( v2 ) ) ;

148 %v3x = i f f t ( k . � f f t ( v3 ) ) ;

149

150 v1t = � c (1 ) � v1x+c (2 ) � s (1 ) � v2c .� v3c ;

151 v2t = � c (2 ) � v2x+c (1 ) � s (2 ) � v1c .� v3c ;

152 v3t = 1 i � omega� v3+(c (1 ) � c (2 ) ) � s (3 ) � v1c .� v2c ;

153

154 dvdt = [ v1 t ; v2 t ; v3 t ] ;

155 r e t u r n
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Numerical Integration

1 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Flags f o r s a v i n g f i g u r e s and g e n e r a t i n g data

3 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Data f l ag . I f ' d a t a f l a g =0' no data i s gene ra ted . I f ' d a t a f l a g

=1 ' , data i s

5 % genera ted .

6 d a t a f l a g = 0 ;

7 % S a v e f l a g . I f ' s a v e f l a g =0' no f i g u r e i s saved . I f ' s a v e f l a g

=1 ' , a l l

8 % f i g u r e s a re saved .

9 s a v e f l a g = 1 ;

10 % E x t r a c t i o n f l a g . I f ' e x t r a c t i o n f l a g =0' no i n t e r p o l a t e d p l o t

i s e x t r a c t e d .

11 % I f ' e x t r a c t i o n f l a g =1 ' , an i n t e r p o l a t e d p l o t i s e x t r a c t e d at

the t ime and

12 % space s p e c i f i e d .

13 e x t r a c t i o n f l a g = 1 ;
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14

15 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % Parameters f o r the p lane wave and p e r t u r b a t i o n

17 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 % i f c1 = � c2 , then use the f o l l o w i n g syn tax :

19 % e p s i l o n = 1e� 3; % e p s i l o n approaches ze ro

20 % [ c , s , a ] = t w r i f r o m p ( [ p1 p2 p3/ e p s i l o n e p s i l o n ] )

21 % f o r some v a l u e s p1 , p2 , p3

22 p = [ 0 . 2 0 .3 � 0.6 1 ] ;

23 [ c , s , a ] = t w r i f r o m p ( p ) ;

24 spec t rumtopo logy = [2 0 0 1 0 ] ; % G SG B L TL

25 exper iment number = [ ' 01 ' ] ; % update wi th the exper imen t

number , namely ,

26 % s p e c f y i f t h i s i s the f i r s t , second , t h i r d , . . . expe r imen t

w i th the same

27 % topo logy o f the spect rum .

28

29 % do not modi fy e ta

30 e ta = [ 1 , 1 ] ;

31

32 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 % Computa t iona l g r i d

34 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35 L = 20 ;
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36 numx = 2^(10) ;%5� (2^ (7 ) ) ;%2^(9)

37 dx = 2 � L/numx ; x = [ � L : dx : L� dx ] ;

38 xspan = [ x (1 ) x ( end ) ] ;

39

40 T = 120;

41 numt = 600 ;

42 t span = [0 T ] ;

43 dt = ( tspan (2 ) � t span (1 ) ) /numt ;

44 t = [ t span (1 ) : dt : t span (2 ) ] ;

45

46 %[XX,TT] = meshgr id ( x , t ) ;

47

48 % v a l u e s o f the s u b g r i d from the zoom� i n

49 xmin =0; xmax = 20 ;

50 tmin =100; tmax = 120;

51 i f tmax>T; tmax=T; end

52 i f xmax>L� dx ; xmax=L� dx ; end

53 i f xmin<� L ; xmin=� L ; end

54

55 % v a l u e o f the t ime and s p a t i a l range f o r e x t r a c t i n g an

i n t e r p o l a t e d p l o t

56 t e x t r a c t i o n = 120 ;

57 x e x t r a c t i o n m i n = 0 ; x e x t r a c t i o n m a x =20;

58 n u m x e x t r a c t i o n = 1e4 ; % i n t e r p o l a t i o n p o i n t s

59 i f t e x t r a c t i o n>T; t e x t r a c t i o n=T; end

60 i f x e x t r a c t i o n m a x>L� dx ; x e x t r a c t i o n m a x=L� dx ; end

61 i f x e x t r a c t i o n m i n <� L ; x e x t r a c t i o n m i n=� L ; end

62

63 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

64 % P e r t u r b a t i o n
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65 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

66

67 % ampl i t ude o f the p e r t u r b a t i o n i n each component

68 e p s i l o n 1 = 1e� 3;

69 e p s i l o n 2 = 1e� 3;

70 e p s i l o n 3 = 1e� 3;

71

72 % P e r t u b r a t i o n mode . I f per tmode =0, then l o c a l i s e d

p e r t u r b a t i o n . I f

73 % pert mode =1, then random p e r t u b r a t i o n .

74 per t mode = 1 ;

75

76 i f per t mode==0

77 p e r t = @( x ) cos ( p i� x / (2 � L ) ) . � exp (� (2� ( x ) . ^ 2 ) ) ;

78 e l s e i f per t mode==1

79 %p e r t = @( x ) 2� rand ( s i z e ( x ) )� 1;

80 numnod = numx /8 ; dnod = (2� L� dx ) /numnod ;

81 p e r t = @( x ) s i n c i n t e r p r ( [ 0 , 0 , 0 , 0 , 0 , 2� rand ( [ 1 , numnod� 9])

� 1, 0 , 0 , 0 , 0 , 0 ] , [ x (1 ) : dnod : x ( end ) ] , x ) . ' ;

82 end

83

84 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

85 % Plane wave s o l u t i o n

86 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

87 % p1 = ( cq (1 ) � a lphaq (1 )� s (1 )+cq (2 ) � a lphaq (2 )� s (2 ) ) / ( s (1 ) � s (2 ) �

s (3 ) ) ;
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88 % p2 = ( cq (1 ) � a lphaq (1 )� s (1 )� cq (2 ) � a lphaq (2 )� s (2 ) ) / ( s (1 ) � s (2 ) �

s (3 ) ) ;

89 % p3 = ( c (1 ) � c (2 ) ) / ( c (1 )+c (2 ) ) ;

90

91 aq = a . ^ 2 ;

92 r = ( c (1 ) � c (2 ) ) / ( e ta (1 )+e ta (2 ) ) ;

93 nu1 = ( e ta (1 ) / c (1 ) )+s (1 ) � s (3 ) � aq (2 ) � ( c (2 ) / c (1 ) ) � r ;

94 nu2 = ( e ta (2 ) / c (2 ) )+s (2 ) � s (3 ) � aq (1 ) � ( c (1 ) / c (2 ) ) � r ;

95 nu3 = � (nu1+nu2 ) ;

96 eta3 = � (e ta (1 )+e ta (2 ) ) ;

97 %omega = c (1 )� nu1+c (2 ) � nu2 ;

98

99 u1ex = @( x , t ) a (1 )� exp (1 i � ( e ta (1 ) � t � nu1� x ) ) ;

100 u2ex = @( x , t ) a (2 )� exp (1 i � ( e ta (2 ) � t � nu2� x ) ) ;

101 u3ex = @( x , t ) 1 i� s (3 ) � a (1 ) � a (2 ) � r � exp (1 i � ( e ta3� t � nu3� x ) ) ;

102

103 U10 = u1ex ( x , 0 )+e p s i l o n 1� p e r t ( x ) . � exp (1 i� ( � nu1� x ) ) ;

104 U20 = u2ex ( x , 0 )+e p s i l o n 2� p e r t ( x ) . � exp (1 i� ( � nu2� x ) ) ;

105 U30 = u3ex ( x , 0 )+1 i � e p s i l o n 3� p e r t ( x ) . � exp (1 i� ( � nu3� x ) ) ;

106

107 U0 = [ U10 ( : ) U20 ( : ) U30 ( : ) ] ;

108

109 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

110 % Numer ica l i n t e g r a t i o n

111 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

112 i f d a t a f l a g == 1

113 [ xx , t t , u1 , u2 , u3 ] = t w r i s o l v e r ( c , s , a , eta , U0 , L , numx ,T, numt )

;
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114 end

115

116 %d i s p ( [ ' p1 = ' , num2str ( p1 ) ] )

117 %d i s p ( [ ' p2 = ' , num2str ( p2 ) ] )

118 %d i s p ( [ ' p3 = ' , num2str ( p3 ) ] )

119

120 reu1min = f l o o r (10� min ( min ( r e a l ( u1 ) ) ) ) /10 ; reu1max = c e i l (10�

max(max( r e a l ( u1 ) ) ) ) /10 ; r e u 1 t i c k s = l i n s p a c e ( reu1min ,

reu1max , 5 ) ;

121 imu1min = f l o o r (10� min ( min ( imag ( u1 ) ) ) ) /10 ; imu1max = c e i l (10�

max(max( imag ( u1 ) ) ) ) /10 ; i m u 1 t i c k s = l i n s p a c e ( imu1min ,

imu1max , 5 ) ;

122 absu1min = f l o o r (10� min ( min ( abs ( u1 ) ) ) ) /10 ; absu1max = c e i l (10�

max(max( abs ( u1 ) ) ) ) /10 ; a b s u 1 t i c k s = l i n s p a c e ( absu1min ,

absu1max , 5 ) ;

123 reu2min = f l o o r (10� min ( min ( r e a l ( u2 ) ) ) ) /10 ; reu2max = c e i l (10�

max(max( r e a l ( u2 ) ) ) ) /10 ; r e u 2 t i c k s = l i n s p a c e ( reu2min ,

reu2max , 5 ) ;

124 imu2min = f l o o r (10� min ( min ( imag ( u2 ) ) ) ) /10 ; imu2max = c e i l (10�

max(max( imag ( u2 ) ) ) ) /10 ; i m u 2 t i c k s = l i n s p a c e ( imu2min ,

imu2max , 5 ) ;

125 absu2min = f l o o r (10� min ( min ( abs ( u2 ) ) ) ) /10 ; absu2max = c e i l (10�

max(max( abs ( u2 ) ) ) ) /10 ; a b s u 2 t i c k s = l i n s p a c e ( absu2min ,

absu2max , 5 ) ;

126 reu3min = f l o o r (10� min ( min ( r e a l ( u3 ) ) ) ) /10 ; reu3max = c e i l (10�

max(max( r e a l ( u3 ) ) ) ) /10 ; r e u 3 t i c k s = l i n s p a c e ( reu3min ,

reu3max , 5 ) ;

127 imu3min = f l o o r (10� min ( min ( imag ( u3 ) ) ) ) /10 ; imu3max = c e i l (10�

max(max( imag ( u3 ) ) ) ) /10 ; i m u 3 t i c k s = l i n s p a c e ( imu3min ,

imu3max , 5 ) ;

128 absu3min = f l o o r (10� min ( min ( abs ( u3 ) ) ) ) /10 ; absu3max = c e i l (10�

max(max( abs ( u3 ) ) ) ) /10 ; a b s u 3 t i c k s = l i n s p a c e ( absu3min ,
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absu3max , 5 ) ;

129

130 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

131 % Exact s o l u t i o n

132 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

133

134 [XX,TT] = meshgr id ( xx , t t ) ;

135 U1 = u1ex (XX,TT) ; U2 = u2ex (XX,TT) ; U3 = u3ex (XX,TT) ;

136

137 reU1min = f l o o r (10� min ( min ( r e a l (U1) ) ) ) /10 ; reU1max = c e i l (10�

max(max( r e a l (U1) ) ) ) /10 ; r e U 1 t i c k s = l i n s p a c e ( reU1min ,

reU1max , 5 ) ;

138 imU1min = f l o o r (10� min ( min ( imag (U1) ) ) ) /10 ; imU1max = c e i l (10�

max(max( imag (U1) ) ) ) /10 ; imU1t i cks = l i n s p a c e ( imU1min ,

imU1max , 5 ) ;

139 absU1min = f l o o r (10� min ( min ( abs (U1) ) ) ) /10 ; absU1max = c e i l (10�

max(max( abs (U1) ) ) ) /10 ; absU1 t i c ks = l i n s p a c e ( absU1min ,

absU1max , 5 ) ;

140 reU2min = f l o o r (10� min ( min ( r e a l (U2) ) ) ) /10 ; reU2max = c e i l (10�

max(max( r e a l (U2) ) ) ) /10 ; r e U 2 t i c k s = l i n s p a c e ( reU2min ,

reU2max , 5 ) ;

141 imU2min = f l o o r (10� min ( min ( imag (U2) ) ) ) /10 ; imU2max = c e i l (10�

max(max( imag (U2) ) ) ) /10 ; imU2t i cks = l i n s p a c e ( imU2min ,

imU2max , 5 ) ;

142 absU2min = f l o o r (10� min ( min ( abs (U2) ) ) ) /10 ; absU2max = c e i l (10�

max(max( abs (U2) ) ) ) /10 ; absU2 t i c ks = l i n s p a c e ( absU2min ,

absU2max , 5 ) ;
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143 reU3min = f l o o r (10� min ( min ( r e a l (U3) ) ) ) /10 ; reU3max = c e i l (10�

max(max( r e a l (U3) ) ) ) /10 ; r e U 3 t i c k s = l i n s p a c e ( reU3min ,

reU3max , 5 ) ;

144 imU3min = f l o o r (10� min ( min ( imag (U3) ) ) ) /10 ; imU3max = c e i l (10�

max(max( imag (U3) ) ) ) /10 ; imU3t i cks = l i n s p a c e ( imU3min ,

imU3max , 5 ) ;

145 absU3min = f l o o r (10� min ( min ( abs (U3) ) ) ) /10 ; absU3max = c e i l (10�

max(max( abs (U3) ) ) ) /10 ; absU3 t i c ks = l i n s p a c e ( absU3min ,

absU3max , 5 ) ;

146

147 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

148 % Parameters

149 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

150 d i s p ( [ ' ' ] )

151 d i s p ( [ '

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

' ] )

152 d i s p ( [ ' pa ramete rs : p1= ' , num2str ( p (1 ) ) , ' , p2= ' , num2str ( p (2 ) ) , ' ,

p3= ' , num2str ( p (3 ) ) , ' , p4= ' , num2str ( p (4 ) ) ] ) ;

153 d i s p ( [ ' v e l o c i t i e s : c1= ' , num2str ( c (1 ) ) , ' , c2= ' , num2str ( c (2 ) ) ] )

154 d i s p ( [ ' s i g n s : s1= ' , i n t 2 s t r ( s (1 ) ) , ' , s2= ' , i n t 2 s t r ( s (2 ) ) , ' , s3= '

, i n t 2 s t r ( s (3 ) ) ] )

155 d i s p ( [ ' amp l i t udes : a1= ' , num2str ( a (1 ) ) , ' , a2= ' , num2str ( a (2 ) ) ] )

156 d i s p ( [ ' ' ] )

157

158 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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159 % D i f f e r e n c e s

160 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

161 d i s p ( [ '

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

' ] )

162 i f per t mode==0

163 d i s p ( [ ' l o c a l i s e d p e r t u b r a t i o n : ' , char ( p e r t ) ] )

164 e l s e i f per t mode==1

165 d i s p ( [ ' random p e r t u r b a t i o n : ' , char ( p e r t ) ] )

166 end

167 i n i t r e l e r r u 1 = 100� max(max( abs (U1 ( 1 , : )� u1 ( 1 , : ) ) ) ) /max(max( abs (

U1 ( 1 , : ) ) ) ) ;

168 i n i t r e l e r r u 2 = 100� max(max( abs (U2 ( 1 , : )� u2 ( 1 , : ) ) ) ) /max(max( abs (

U2 ( 1 , : ) ) ) ) ;

169 i n i t r e l e r r u 3 = 100� max(max( abs (U3 ( 1 , : )� u3 ( 1 , : ) ) ) ) /max(max( abs (

U3 ( 1 , : ) ) ) ) ;

170 m a x r e l e r r u 1 = 100� max(max( abs (U1� u1 ) ) ) /max(max( abs (U1) ) ) ;

171 m a x r e l e r r u 2 = 100� max(max( abs (U2� u2 ) ) ) /max(max( abs (U2) ) ) ;

172 m a x r e l e r r u 3 = 100� max(max( abs (U3� u3 ) ) ) /max(max( abs (U3) ) ) ;

173 d i s p ( [ ' d e v i a t i o n from unper tu rbed s o l u t i o n ' ] ) ;

174 d i s p ( [ 'U1>> i n i t i a l : ' , num2str ( i n i t r e l e r r u 1 ) , '% ��� maximum : ' ,

num2str ( m a x r e l e r r u 1 ) , '%' ] )

175 d i s p ( [ 'U2>> i n i t i a l : ' , num2str ( i n i t r e l e r r u 2 ) , '% ��� maximum : ' ,

num2str ( m a x r e l e r r u 2 ) , '%' ] )

176 d i s p ( [ 'U3>> i n i t i a l : ' , num2str ( i n i t r e l e r r u 3 ) , '% ��� maximum : ' ,

num2str ( m a x r e l e r r u 3 ) , '%' ] )

177 d i s p ( [ ' ' ] )

178

179 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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180 % E x t r a c t i n g a s u b p l o t ( zoom� i n ) i n the r e g i o n [ xmin xmax tmin

tmax ]

181 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

182 [ Nr , Nc ] = s i z e (XX) ;

183 YY = (XX>=xmin )&(XX<=xmax )&(TT >=tmin )&(TT <=tmax ) ;

184 c o l i n d = c e i l ( f i n d (YY) /Nr ) ;

185 rowind = f i n d (YY) � ( c o l i n d � 1)� Nr ;

186 c o l i n d = un ique ( c o l i n d ) ;

187 rowind = un ique ( rowind ) ;

188 sX = XX( rowind , c o l i n d ) ;

189 sT = TT( rowind , c o l i n d ) ;

190 su1 = u1 ( rowind , c o l i n d ) ;

191 su2 = u2 ( rowind , c o l i n d ) ;

192 su3 = u3 ( rowind , c o l i n d ) ;

193

194 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

195 % E x t r a c t i n g a s u b p l o t a t a g i v e n s p e c i f i c t ime i n a g i v e n

s p a t i a l range

196 % wi th i n t e r p o l a t i o n o f the r e s u l t f o r h igh� d e f i n i t i o n

p l o t t i n g

197 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

198

199 i f e x t r a c t i o n f l a g==1

200 d x i n t e r p = ( x e x t r a c t i o n m a x� x e x t r a c t i o n m i n ) /

n u m x e x t r a c t i o n ;
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201 x i n t e r p = x e x t r a c t i o n m i n : d x i n t e r p : x e x t r a c t i o n m a x ;

202 [ ~ , i n d e x t r a c t i o n ] = min ( abs ( t� t e x t r a c t i o n ) ) ;

203 t e x t r a c t i o n e f f = t ( i n d e x t r a c t i o n ) ;

204

205 x e x t r a c t i o n = xx ;

206 u 1 e x t r a c t i o n = u1 ( i n d e x t r a c t i o n , : ) ;

207 u 2 e x t r a c t i o n = u2 ( i n d e x t r a c t i o n , : ) ;

208 u 3 e x t r a c t i o n = u3 ( i n d e x t r a c t i o n , : ) ;

209 %s i z e u 1 e x t r a c t i o n = s i z e ( u 1 e x t r a c t i o n )

210 %s i z e x e x t r a c t i o n = s i z e ( x e x t r a c t i o n )

211 x e x t r a c t i o n r a n g e = ( x e x t r a c t i o n>=x e x t r a c t i o n m i n )&(

x e x t r a c t i o n<=x e x t r a c t i o n m a x ) ;

212 x e x t r a c t i o n = x e x t r a c t i o n ( x e x t r a c t i o n r a n g e ) ;

213 u 1 e x t r a c t i o n = u 1 e x t r a c t i o n ( x e x t r a c t i o n r a n g e ) ;

214 u 2 e x t r a c t i o n = u 2 e x t r a c t i o n ( x e x t r a c t i o n r a n g e ) ;

215 u 3 e x t r a c t i o n = u 3 e x t r a c t i o n ( x e x t r a c t i o n r a n g e ) ;

216 %s i z e u 1 e x t r a c t i o n = s i z e ( u 1 e x t r a c t i o n )

217 %s i z e x e x t r a c t i o n = s i z e ( x e x t r a c t i o n )

218 u 1 i n t e r p = s i n c i n t e r p r ( u 1 e x t r a c t i o n , x e x t r a c t i o n ,

x i n t e r p ) ;

219 u 2 i n t e r p = s i n c i n t e r p r ( u 2 e x t r a c t i o n , x e x t r a c t i o n ,

x i n t e r p ) ;

220 u 3 i n t e r p = s i n c i n t e r p r ( u 3 e x t r a c t i o n , x e x t r a c t i o n ,

x i n t e r p ) ;

221 end

222

223 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

224 % Genera l p l o t t i n g paramete rs

225 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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226

227 % % load co lormaps

228 % load ( ' redb lue ' )

229 % load ( ' b l u e r e d y e l l o w ' )

230 % load ( ' b l u e r e d b l u e ' )

231 % load ( ' r e d b lu e r e d ' )

232 % load ( ' r edb lue red2 ' )

233

234 % o p t i o n s f o r p l o t t i n g

235 l i n w d t h = 1 . 5 ; % L ine Width

236 f n s z t l = 16 ; % Font S i z e f o r P lo t T i t l e s

237 f n w g t l = ' bo ld ' ; % Font Weight f o r P lo t T i t l e s

238 f n s z l b = 14 ; % Font S i z e f o r P lo t Ax i s L a b e l s

239 fnwg lb = ' bo ld ' ; % Font Weight f o r P lo t Ax i s L a b e l s

240 f n s z t k = 14 ; % Font S i z e f o r P lo t T icks

241 fnwgtk = ' normal ' ; % Font Weight f o r P lo t T icks

242 f n s z c b = 14 ; % Font S i z e c o l o r bar

243 fnwgcb = ' normal ' ; % Font Weight c o l o r bar

244 fnnmcb = ' S e r i f ' ; % Font Name c o l o r bar

245

246 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

247 % P l o t t i n g the output

248 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

249

250 hf1 = f i g u r e (1 ) ;

251 c l f

252 % colormap ( j e t ) % use t h i s map as an a l t e r n a t i v e colormap
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253 f i g 1 a = s u b p l o t ( 2 ,3 ,1 ) ;

254 p c o l o r ( xx , t t , abs ( u1 ) )

255 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

256 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

257 t i t l e ( ' nboldmath$f j u f 1g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

La tex ' , ' f o n t s i z e ' , f n s z t l , ' f o n t w e i g h t ' , f n w g t l )

258 colormap ( f i g1 a , j e t )

259 shad ing f l a t

260 a x i s ([� L L tspan (1 ) tspan (2 ) ] )

261 ax = gca ;

262 ax . Fon tS ize = f n s z t k ;

263 ax . FontWeight = fnwgtk ;

264 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

265 c a x i s ( [ absu1min absu1max ] ) ;

266 hBarhf1a = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 1 t i c k s ) ;

267 l a b e l s h f 1 a = f absu1min : ( absu1max� absu1min ) /4 : absu1maxg;

268 s e t ( hBarhf1a , ' XTickLabel ' , l a b e l s h f 1 a , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

269 hf1b = s u b p l o t ( 2 ,3 ,2 ) ;

270 p c o l o r ( xx , t t , abs ( u2 ) )

271 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

272 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

273 t i t l e ( ' nboldmath$f j u f 2g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

La tex ' , ' f o n t s i z e ' , f n s z t l , ' f o n t w e i g h t ' , f n w g t l )

274 colormap ( hf1b , j e t )

275 shad ing f l a t

276 a x i s ([� L L tspan (1 ) tspan (2 ) ] )
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277 ax = gca ;

278 ax . Fon tS ize = f n s z t k ;

279 ax . FontWeight = fnwgtk ;

280 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

281 c a x i s ( [ absu2min absu2max ] ) ;

282 hBarhf1b = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 2 t i c k s ) ;

283 l a b e l s h f 1 b = f absu2min : ( absu2max� absu2min ) /4 : absu2maxg;

284 s e t ( hBarhf1b , ' XTickLabel ' , l a b e l s h f 1 b , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

285 f i g 1 c = s u b p l o t ( 2 ,3 ,3 ) ;

286 p c o l o r ( xx , t t , abs ( u3 ) )

287 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

288 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

289 t i t l e ( ' nboldmath$f j u f 3g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

La tex ' , ' f o n t s i z e ' , f n s z t l , ' f o n t w e i g h t ' , f n w g t l )

290 colormap ( f i g 1 c , j e t )

291 shad ing f l a t

292 a x i s ([� L L tspan (1 ) tspan (2 ) ] )

293 ax = gca ;

294 ax . Fon tS ize = f n s z t k ;

295 ax . FontWeight = fnwgtk ;

296 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

297 c a x i s ( [ absu3min absu3max ] ) ;

298 hBarhf1c = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 3 t i c k s ) ;

299 l a b e l s h f 1 c = f absu3min : ( absu3max� absu3min ) /4 : absu3maxg;

300 s e t ( hBarhf1c , ' XT ickLabel ' , l a b e l s h f 1 c , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

301 f i g 1 d = s u b p l o t ( 2 ,3 ,4 ) ;
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302 p c o l o r ( sX , sT , abs ( su1 ) )

303 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

304 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

305 t i t l e ( ' nboldmath$f j u f 1g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

La tex ' , ' f o n t s i z e ' , f n s z t l , ' f o n t w e i g h t ' , f n w g t l )

306 colormap ( f i g1d , j e t )

307 shad ing f l a t

308 a x i s ( [ xmin xmax tmin tmax ] )

309 ax = gca ;

310 ax . Fon tS ize = f n s z t k ;

311 ax . FontWeight = fnwgtk ;

312 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

313 c a x i s ( [ absu1min absu1max ] ) ;

314 hBarhf1d = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 1 t i c k s ) ;

315 l a b e l s h f 1 d = f absu1min : ( absu1max� absu1min ) /4 : absu1maxg;

316 s e t ( hBarhf1d , ' XTickLabel ' , l a b e l s h f 1 d , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

317 f i g 1 e = s u b p l o t ( 2 ,3 ,5 ) ;

318 p c o l o r ( sX , sT , abs ( su2 ) )

319 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

320 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

321 t i t l e ( ' nboldmath$f j u f 2g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

La tex ' , ' f o n t s i z e ' , f n s z t l , ' f o n t w e i g h t ' , f n w g t l )

322 colormap ( f i g 1 e , j e t )

323 shad ing f l a t

324 a x i s ( [ xmin xmax tmin tmax ] )

325 ax = gca ;
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326 ax . Fon tS ize = f n s z t k ;

327 ax . FontWeight = fnwgtk ;

328 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

329 c a x i s ( [ absu2min absu2max ] ) ;

330 hBarhf1e = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 2 t i c k s ) ;

331 l a b e l s h f 1 e = f absu2min : ( absu2max� absu2min ) /4 : absu2maxg;

332 s e t ( hBarhf1e , ' XTickLabel ' , l a b e l s h f 1 e , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

333 f i g 1 f = s u b p l o t (2 ,3 ,6 ) ;

334 p c o l o r ( sX , sT , abs ( su3 ) )

335 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

336 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

337 t i t l e ( ' nboldmath$f j u f 3g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

La tex ' , ' f o n t s i z e ' , f n s z t l , ' f o n t w e i g h t ' , f n w g t l )

338 colormap ( f i g 1 f , j e t )

339 shad ing f l a t

340 a x i s ( [ xmin xmax tmin tmax ] )

341 ax = gca ;

342 ax . Fon tS ize = f n s z t k ;

343 ax . FontWeight = fnwgtk ;

344 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

345 c a x i s ( [ absu3min absu3max ] ) ;

346 hBarh f1 f = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 3 t i c k s ) ;

347 l a b e l s h f 1 f = f absu3min : ( absu3max� absu3min ) /4 : absu3maxg;

348 s e t ( hBarhf1 f , ' XT ickLabel ' , l a b e l s h f 1 f , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

349 f i g = gc f ;

350 f i g . PaperPos i t ionMode = ' auto ' ;
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351 f i g p o s = f i g . P a p e r P o s i t i o n ;

352 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

353

354 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

355

356 hf2 = f i g u r e (2 ) ;

357 c l f

358 j t n = 5 ;

359 f o r j t = 1 : j t n

360 i nd = f l o o r ( numt � j t / ( j t n � 1)+1� numt /( j t n � 1) ) ;

361 s u b p l o t ( j t n , 3 , 3� ( j t � 1)+1)

362 p l o t ( xx , abs (U1( ind , : ) ) , ' b ' )

363 ho ld on

364 p l o t ( xx , abs ( u1 ( ind , : ) ) , ' r ' )

365 ho ld o f f

366 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

367 y l a b e l ( 'nboldmath$f j u f 1g jg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

368 t i t l e ( [ ' t= ' , num2str ( t t ( i nd ) ) , ' , ( ex /b , num/ r ) ' ] , '

i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' , f n s z t l , ' f o n t w e i g h t '

, f n w g t l )

369 %a x i s ([� L L absu1min absu1max ] )

370 a x i s t i g h t

371 s u b p l o t ( j t n , 3 , 3� ( j t � 1)+2)

372 p l o t ( xx , abs (U2( ind , : ) ) , ' b ' )

373 ho ld on

374 p l o t ( xx , abs ( u2 ( ind , : ) ) , ' r ' )

375 ho ld o f f
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376 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

377 y l a b e l ( 'nboldmath$f j u f 2g jg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

378 t i t l e ( [ ' t= ' , num2str ( t t ( i nd ) ) , ' , ( ex /b , num/ r ) ' ] , '

i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' , f n s z t l , ' f o n t w e i g h t '

, f n w g t l )

379 %a x i s ([� L L absu2min absu2max ] )

380 a x i s t i g h t

381 s u b p l o t ( j t n , 3 , 3� ( j t � 1)+3)

382 p l o t ( xx , abs (U3( ind , : ) ) , ' b ' )

383 ho ld on

384 p l o t ( xx , abs ( u3 ( ind , : ) ) , ' r ' )

385 ho ld o f f

386 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

387 y l a b e l ( 'nboldmath$f j u f 3g jg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

388 t i t l e ( [ ' t= ' , num2str ( t t ( i nd ) ) , ' , ( ex /b , num/ r ) ' ] , '

i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' , f n s z t l , ' f o n t w e i g h t '

, f n w g t l )

389 %a x i s ([� L L absu3min absu3max ] )

390 a x i s t i g h t

391 end

392 f i g = gc f ;

393 f i g . PaperPos i t ionMode = ' auto ' ;

394 f i g p o s = f i g . P a p e r P o s i t i o n ;

395 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

396

397 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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398

399 i f e x t r a c t i o n f l a g==1

400 hf3 = f i g u r e (3 ) ;

401 c l f

402 s u b p l o t ( 3 ,1 ,1 )

403 ho ld on

404 p l o t ( x e x t r a c t i o n , abs ( u 1 e x t r a c t i o n ) , ' r . ' )

405 p l o t ( x i n t e r p , abs ( u 1 i n t e r p ) , ' b ' )

406 ho ld o f f

407 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

408 y l a b e l ( 'nboldmath$f j u f 1g jg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

409 t i t l e ( [ ' t= ' , num2str ( t e x t r a c t i o n e f f ) , ' , (num/ r ,

i n t e r p /b ) ' ] , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' , f n s z t l

, ' f o n t w e i g h t ' , f n w g t l )

410 a x i s t i g h t

411 s u b p l o t ( 3 ,1 ,2 )

412 ho ld on

413 p l o t ( x e x t r a c t i o n , abs ( u 2 e x t r a c t i o n ) , ' r . ' )

414 p l o t ( x i n t e r p , abs ( u 2 i n t e r p ) , ' b ' )

415 ho ld o f f

416 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

417 y l a b e l ( 'nboldmath$f j u f 2g jg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

418 t i t l e ( [ ' t= ' , num2str ( t e x t r a c t i o n e f f ) , ' , (num/ r ,

i n t e r p /b ) ' ] , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' , f n s z t l

, ' f o n t w e i g h t ' , f n w g t l )

419 a x i s t i g h t

420 s u b p l o t ( 3 ,1 ,3 )

421 ho ld on
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422 p l o t ( x e x t r a c t i o n , abs ( u 3 e x t r a c t i o n ) , ' r . ' )

423 p l o t ( x i n t e r p , abs ( u 3 i n t e r p ) , ' b ' )

424 ho ld o f f

425 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

426 y l a b e l ( 'nboldmath$f j u f 3g jg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

427 t i t l e ( [ ' t= ' , num2str ( t e x t r a c t i o n e f f ) , ' , (num/ r ,

i n t e r p /b ) ' ] , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' , f n s z t l

, ' f o n t w e i g h t ' , f n w g t l )

428 a x i s t i g h t

429 f i g = gc f ;

430 f i g . PaperPos i t ionMode = ' auto ' ;

431 f i g p o s = f i g . P a p e r P o s i t i o n ;

432 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

433 end

434

435 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

436 % Sav ing the f i g u r e s

437 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

438

439 i f s a v e f l a g==1

440

441 i f per t mode==0

442 p e r t t a g = [ ' l o c a l i s e d ' ] ;

443 e l s e i f per t mode==1

444 p e r t t a g = [ ' random ' ] ;

445 end



Appendix P. Numerical Integration 237

446 f i l e n a m e = [ ' t w r i p l a n e w a v e ' , . . .

447 i n t 2 s t r ( spec t rumtopo logy (1 ) ) , ' G ' , . . .

448 i n t 2 s t r ( spec t rumtopo logy (2 ) ) , ' SG ' , . . .

449 i n t 2 s t r ( spec t rumtopo logy (3 ) ) , ' B ' , . . .

450 i n t 2 s t r ( spec t rumtopo logy (4 ) ) , ' L ' , . . .

451 i n t 2 s t r ( spec t rumtopo logy (5 ) ) , ' TL ' , . . .

452 p e r t t a g , ' ' , ' exp ' , exper iment number ] ;

453

454 f i g 1 a = f i g u r e (4 ) ;

455 c l f

456 p c o l o r ( xx , t t , abs ( u1 ) )

457 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

458 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

459 %t i t l e ( ' n boldmath$f j u f 1g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

Latex ' , ' f o n t s i z e ' , f n s z t l , ' f on twe igh t ' , f n w g t l )

460 colormap ( f i g1 a , j e t )

461 shad ing f l a t

462 a x i s ([� L L tspan (1 ) tspan (2 ) ] )

463 ax = gca ;

464 ax . Fon tS ize = f n s z t k ;

465 ax . FontWeight = fnwgtk ;

466 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

467 c a x i s ( [ absu1min absu1max ] ) ;

468 hBarhf1a = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 1 t i c k s ) ;

469 l a b e l s h f 1 a = f absu1min : ( absu1max� absu1min ) /4 : absu1maxg;

470 s e t ( hBarhf1a , ' XTickLabel ' , l a b e l s h f 1 a , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

471 f i g = gc f ;

472 f i g . PaperPos i t ionMode = ' auto ' ;
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473 f i g p o s = f i g . P a p e r P o s i t i o n ;

474 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

475

476 f i g 1 b = f i g u r e (5 ) ;

477 c l f

478 p c o l o r ( xx , t t , abs ( u2 ) )

479 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

480 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

481 %t i t l e ( ' n boldmath$f j u f 2g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

Latex ' , ' f o n t s i z e ' , f n s z t l , ' f on twe igh t ' , f n w g t l )

482 colormap ( f i g1b , j e t )

483 shad ing f l a t

484 a x i s ([� L L tspan (1 ) tspan (2 ) ] )

485 ax = gca ;

486 ax . Fon tS ize = f n s z t k ;

487 ax . FontWeight = fnwgtk ;

488 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

489 c a x i s ( [ absu2min absu2max ] ) ;

490 hBarhf1b = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 2 t i c k s ) ;

491 l a b e l s h f 1 b = f absu2min : ( absu2max� absu2min ) /4 : absu2maxg;

492 s e t ( hBarhf1b , ' XTickLabel ' , l a b e l s h f 1 b , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

493 f i g = gc f ;

494 f i g . PaperPos i t ionMode = ' auto ' ;

495 f i g p o s = f i g . P a p e r P o s i t i o n ;

496 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

497

498 f i g 1 c = f i g u r e (6 ) ;

499 c l f
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500 p c o l o r ( xx , t t , abs ( u3 ) )

501 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

502 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

503 %t i t l e ( ' n boldmath$f j u f 3g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

Latex ' , ' f o n t s i z e ' , f n s z t l , ' f on twe igh t ' , f n w g t l )

504 colormap ( f i g 1 c , j e t )

505 shad ing f l a t

506 a x i s ([� L L tspan (1 ) tspan (2 ) ] )

507 ax = gca ;

508 ax . Fon tS ize = f n s z t k ;

509 ax . FontWeight = fnwgtk ;

510 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

511 c a x i s ( [ absu3min absu3max ] ) ;

512 hBarhf1c = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 3 t i c k s ) ;

513 l a b e l s h f 1 c = f absu3min : ( absu3max� absu3min ) /4 : absu3maxg;

514 s e t ( hBarhf1c , ' XT ickLabel ' , l a b e l s h f 1 c , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

515 f i g = gc f ;

516 f i g . PaperPos i t ionMode = ' auto ' ;

517 f i g p o s = f i g . P a p e r P o s i t i o n ;

518 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

519

520 f i g 1 d = f i g u r e (7 ) ;

521 c l f

522 p c o l o r ( sX , sT , abs ( su1 ) )

523 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

524 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )
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525 %t i t l e ( ' n boldmath$f j u f 1g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

Latex ' , ' f o n t s i z e ' , f n s z t l , ' f on twe igh t ' , f n w g t l )

526 colormap ( f i g1d , j e t )

527 shad ing f l a t

528 a x i s ( [ xmin xmax tmin tmax ] )

529 ax = gca ;

530 ax . Fon tS ize = f n s z t k ;

531 ax . FontWeight = fnwgtk ;

532 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

533 c a x i s ( [ absu1min absu1max ] ) ;

534 hBarhf1d = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 1 t i c k s ) ;

535 l a b e l s h f 1 d = f absu1min : ( absu1max� absu1min ) /4 : absu1maxg;

536 s e t ( hBarhf1d , ' XTickLabel ' , l a b e l s h f 1 d , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

537 f i g = gc f ;

538 f i g . PaperPos i t ionMode = ' auto ' ;

539 f i g p o s = f i g . P a p e r P o s i t i o n ;

540 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

541

542 f i g 1 e = f i g u r e (8 ) ;

543 c l f

544 p c o l o r ( sX , sT , abs ( su2 ) )

545 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

546 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

547 %t i t l e ( ' n boldmath$f j u f 2g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

Latex ' , ' f o n t s i z e ' , f n s z t l , ' f on twe igh t ' , f n w g t l )

548 colormap ( f i g 1 e , j e t )

549 shad ing f l a t

550 a x i s ( [ xmin xmax tmin tmax ] )
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551 ax = gca ;

552 ax . Fon tS ize = f n s z t k ;

553 ax . FontWeight = fnwgtk ;

554 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

555 c a x i s ( [ absu2min absu2max ] ) ;

556 hBarhf1e = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 2 t i c k s ) ;

557 l a b e l s h f 1 e = f absu2min : ( absu2max� absu2min ) /4 : absu2maxg;

558 s e t ( hBarhf1e , ' XTickLabel ' , l a b e l s h f 1 e , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

559 f i g = gc f ;

560 f i g . PaperPos i t ionMode = ' auto ' ;

561 f i g p o s = f i g . P a p e r P o s i t i o n ;

562 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

563

564 f i g 1 f = f i g u r e (9 ) ;

565 c l f

566 p c o l o r ( sX , sT , abs ( su3 ) )

567 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

568 y l a b e l ( 'nboldmath$f t g$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

569 %t i t l e ( ' n boldmath$f j u f 3g jg$ ( numer i ca l ) ' , ' i n t e r p r e t e r ' , '

Latex ' , ' f o n t s i z e ' , f n s z t l , ' f on twe igh t ' , f n w g t l )

570 colormap ( f i g 1 f , j e t )

571 shad ing f l a t

572 a x i s ( [ xmin xmax tmin tmax ] )

573 ax = gca ;

574 ax . Fon tS ize = f n s z t k ;

575 ax . FontWeight = fnwgtk ;

576 ax . T i c k L a b e l I n t e r p r e t e r = ' l a t e x ' ;

577 c a x i s ( [ absu3min absu3max ] ) ;
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578 hBarh f1 f = c o l o r b a r ( ' l o c a t i o n ' , ' s o u t h o u t s i d e ' , ' x t i c k ' ,

a b s u 3 t i c k s ) ;

579 l a b e l s h f 1 f = f absu3min : ( absu3max� absu3min ) /4 : absu3maxg;

580 s e t ( hBarhf1 f , ' XT ickLabel ' , l a b e l s h f 1 f , ' f o n t s i z e ' , fnszcb , '

f o n t w e i g h t ' , fnwgcb , ' fontname ' , fnnmcb ) ;

581 f i g = gc f ;

582 f i g . PaperPos i t ionMode = ' auto ' ;

583 f i g p o s = f i g . P a p e r P o s i t i o n ;

584 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

585

586 f i g 3 a = f i g u r e (10) ;

587 c l f

588 ho ld on

589 p l o t ( x e x t r a c t i o n , abs ( u 1 e x t r a c t i o n ) , ' r . ' )

590 p l o t ( x i n t e r p , abs ( u 1 i n t e r p ) , ' b ' )

591 ho ld o f f

592 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

593 y l a b e l ( 'nboldmath$f j u f 1g jg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

594 %t i t l e ( [ ' t = ' , num2str ( t e x t r a c t i o n e f f ) , ' , (num/ r , i n t e r p /b

) ' ] , ' i n t e r p r e t e r ' , ' Latex ' , ' f o n t s i z e ' , f n s z t l , ' f on twe igh t

' , f n w g t l )

595 a x i s t i g h t

596 f i g = gc f ;

597 f i g . PaperPos i t ionMode = ' auto ' ;

598 f i g p o s = f i g . P a p e r P o s i t i o n ;

599 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

600

601 f i g 3 b = f i g u r e (11) ;

602 c l f

603 ho ld on
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604 p l o t ( x e x t r a c t i o n , abs ( u 2 e x t r a c t i o n ) , ' r . ' )

605 p l o t ( x i n t e r p , abs ( u 2 i n t e r p ) , ' b ' )

606 ho ld o f f

607 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

608 y l a b e l ( 'nboldmath$f j u f 2g jg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

609 %t i t l e ( [ ' t = ' , num2str ( t e x t r a c t i o n e f f ) , ' , (num/ r , i n t e r p /b

) ' ] , ' i n t e r p r e t e r ' , ' Latex ' , ' f o n t s i z e ' , f n s z t l , ' f on twe igh t

' , f n w g t l )

610 a x i s t i g h t

611 f i g = gc f ;

612 f i g . PaperPos i t ionMode = ' auto ' ;

613 f i g p o s = f i g . P a p e r P o s i t i o n ;

614 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

615

616 f i g 3 c = f i g u r e (12) ;

617 c l f

618 ho ld on

619 p l o t ( x e x t r a c t i o n , abs ( u 3 e x t r a c t i o n ) , ' r . ' )

620 p l o t ( x i n t e r p , abs ( u 3 i n t e r p ) , ' b ' )

621 ho ld o f f

622 x l a b e l ( 'nboldmath$f xg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , ' f o n t s i z e ' ,

f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

623 y l a b e l ( 'nboldmath$f j u f 3g jg$ ' , ' i n t e r p r e t e r ' , ' La tex ' , '

f o n t s i z e ' , f n s z l b , ' f o n t w e i g h t ' , fnwg lb )

624 %t i t l e ( [ ' t = ' , num2str ( t e x t r a c t i o n e f f ) , ' , (num/ r , i n t e r p /b

) ' ] , ' i n t e r p r e t e r ' , ' Latex ' , ' f o n t s i z e ' , f n s z t l , ' f on twe igh t

' , f n w g t l )

625 a x i s t i g h t

626 f i g = gc f ;

627 f i g . PaperPos i t ionMode = ' auto ' ;
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628 f i g p o s = f i g . P a p e r P o s i t i o n ;

629 f i g . PaperS ize = [ f i g p o s (3 ) f i g p o s (4 ) ] ;

630

631

632 p r i n t ( f i g1 a , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u1 . j peg ' ] , '� d jpeg

' )

633 p r i n t ( f i g1b , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u2 . j peg ' ] , '� d jpeg

' )

634 p r i n t ( f i g 1 c , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u3 . j peg ' ] , '� d jpeg

' )

635 p r i n t ( f i g1d , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u1 zoom . jpeg ' ] , '�

d jpeg ' )

636 p r i n t ( f i g 1 e , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u2 zoom . jpeg ' ] , '�

d jpeg ' )

637 p r i n t ( f i g 1 f , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u3 zoom . jpeg ' ] , '�

d jpeg ' )

638 p r i n t ( f i g3 a , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u1 ( t ' , num2str (

t e x t r a c t i o n ) , ' ) . j peg ' ] , '� d jpeg ' )

639 p r i n t ( f i g3b , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u2 ( t ' , num2str (

t e x t r a c t i o n ) , ' ) . j peg ' ] , '� d jpeg ' )

640 p r i n t ( f i g 3 c , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u3 ( t ' , num2str (

t e x t r a c t i o n ) , ' ) . j peg ' ] , '� d jpeg ' )

641

642 p r i n t ( f i g1 a , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u1 . eps ' ] , '� depsc '

, ' � t i f f ' , ' � r600 ' )

643 p r i n t ( f i g1b , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u2 . eps ' ] , '� depsc '

, ' � t i f f ' , ' � r600 ' )

644 p r i n t ( f i g 1 c , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u3 . eps ' ] , '� depsc '

, ' � t i f f ' , ' � r600 ' )

645 p r i n t ( f i g1d , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u1 zoom . eps ' ] , '�

depsc ' , '� t i f f ' , ' � r600 ' )
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646 p r i n t ( f i g 1 e , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u2 zoom . eps ' ] , '�

depsc ' , '� t i f f ' , ' � r600 ' )

647 p r i n t ( f i g 1 f , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u3 zoom . eps ' ] , '�

depsc ' , '� t i f f ' , ' � r600 ' )

648 p r i n t ( f i g3 a , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u1 ( t ' , num2str (

t e x t r a c t i o n ) , ' ) . eps ' ] , '� depsc ' , '� t i f f ' , ' � r600 ' )

649 p r i n t ( f i g3b , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u2 ( t ' , num2str (

t e x t r a c t i o n ) , ' ) . eps ' ] , '� depsc ' , '� t i f f ' , ' � r600 ' )

650 p r i n t ( f i g 3 c , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u3 ( t ' , num2str (

t e x t r a c t i o n ) , ' ) . eps ' ] , '� depsc ' , '� t i f f ' , ' � r600 ' )

651

652 p r i n t ( f i g1 a , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u1 . pdf ' ] , '� dpdf ' ,

' � r600 ' ) %� p a i n t e r s

653 p r i n t ( f i g1b , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u2 . pdf ' ] , '� dpdf ' ,

' � r600 ' )

654 p r i n t ( f i g 1 c , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u3 . pdf ' ] , '� dpdf ' ,

' � r600 ' )

655 p r i n t ( f i g1d , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u1 zoom . pdf ' ] , '�

dpdf ' , '� r600 ' )

656 p r i n t ( f i g 1 e , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u2 zoom . pdf ' ] , '�

dpdf ' , '� r600 ' )

657 p r i n t ( f i g 1 f , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u3 zoom . pdf ' ] , '�

dpdf ' , '� r600 ' )

658 p r i n t ( f i g3 a , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u1 ( t ' , num2str (

t e x t r a c t i o n ) , ' ) . pdf ' ] , ' � dpdf ' , '� r600 ' )

659 p r i n t ( f i g3b , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u2 ( t ' , num2str (

t e x t r a c t i o n ) , ' ) . pdf ' ] , ' � dpdf ' , '� r600 ' )

660 p r i n t ( f i g 3 c , [ pwd ' / F i g u r e s / ' f i l e n a m e ' u3 ( t ' , num2str (

t e x t r a c t i o n ) , ' ) . pdf ' ] , ' � dpdf ' , '� r600 ' )

661

662 end
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