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Abstract

The aim of this thesis is the analysis of the spectral stability of plane wave solutions of the

3-wave resonant interaction (3WRI) model, when such solutions undergo localised pertur-

bations.

For the first time, we provide a comprehensive topological classification of the spatial sta-

bility spectra with respect to the parameters space and the gain functions associated to

any stability spectrum. We find that all the stability spectra of the coupled nonlinear

Schrödinger (CNLS) system are enclosed in those of the 3WRI system. The topological

features of the CNLS stability spectra are gaps on the real axis (solutions not bounded in

space), and branches and loops off the real axis (solutions bounded in space which can be

linearly unstable in time). New topological components exist in the stability spectra of the

3WRI model: we name such components twisted loops. They are associated with explosive

instability (the corresponding solutions blow up in a finite time) and their gain function

is non-zero in a whole neighbourhood of the origin. We observe that the gain function

associated to the branches is non-zero at low wave numbers, symmetrically located with

respect tto the zero-value of the wave number, but it is zero at the origin of the plot (linear

instability of baseband-type). The gain function associated to the loops is non-zero only

away from the origin (linear instability of passband-type).

We show that the plane wave solutions of the 3WRI model are linearly unstable in time

for any choice of the physical parameters, including those ones associated to the solutions

that are explosive. Thus, there is linear instability of the plane wave for any choice of the

physical parameters corresponding to a positive gain-function.

Finally, we conjecture that the existence of branches in the stability spectra is a neces-

sary condition for the onset of rogue waves ascribable to rational or semi-rational solutions

obtained by Darboux Dressing Transformation. Indeed, we observe numerically linear in-

stability of plane waves with the subsequent generation of localised structures whose onset,

as a result of the perturbation of plane waves, must be investigated further due to the

dispersionless nature of the 3WRI system.
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Chapter 1

Introduction

1.1 Background and Current Research

1.1.1 Modulation Instability for Scalar Dispersive Equations

Many phenomena in nature can be explained via instabilities. Hydrodynamic instabilities

can occur if the initial physical features (velocity, pressure and density) of a fluid flow are

exposed to small disturbances. Between all hydrodynamic instabilities Kelvin-Helmholtz

Instability (KHI) [1, 2] is well-known. It takes place between the interface of two fluids

flowing with different velocities. The most famous examples of the manifestation of KHI

in nature are the red giant vortex in the Jupiter’s atmosphere and the generation of clouds

that are ”ocean wave-like” in the Earth’s atmosphere. If the two fluids flow with different

density Rayleigh-Taylor Instability (RTI) [3] can occur: it is the explanation of the genera-

tion of ”mushroom clouds” in the volcanic eruption or atomic explosion. It can be also seen

as the limit of another fascinating phenomenon that is the Richtmyer-Meshkov Instability

(RMI) [4, 5, 6]. In general, it is when a shock wave interacts with the perturbed interface

of two fluids with different physical properties. At the beginning of the interaction just a

row of vortices with different signs are created, but then the perturbation grows in time and

”mushroom” structures arise. Plasmas exhibit a huge number of magnetohydrodynamics

instabilities, for example ”sausage instability” and ”kink instability” are observed in solar

corona [7, 8].
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Modulational Instability (MI) is ubiquitous in nature and it was observed in several nonlinear

wave phenomena [9], such as in radio waves in transmission lines [10], in light waves

in dielectric materials [11] and in plasma waves during the nonlinear coupling of plasma

cyclotron waves and magnetohydrodynamic modes [12]. In the context of water waves,

MI is referred to as Benjamin-Feir Instability, so named because Benjamin and Feir first

observed it in nonlinear Stokes waves on deep water surface [13, 14].

MI may arise if a plane wave of a scalar nonlinear dispersive equation is perturbed with a

long wave perturbation such that the original waveform is deformed and the wave amplitude

is said to be modulated [15, 16, 17]. Perturbing the amplitude of the plane wave u(x, t) =

aei(kx−ωt) with real amplitude a, wave number k and frequency ω, by means of the plane

waves b(x, t) = b01e
i(Kx−Ωt) + b02e

−i(Kx−Ωt), one gets the perturbed solution

ū(x, t) = (a+b(x, t))ei(kx−ωt) = aei(kx−ωt)+b01e
i((k+K)x−(ω+Ω))t+b02e

i((k−K)x−(ω−Ω))t,

(1.1)

where x is space, t is time, b0j are real amplitudes of the perturbations and b0j << a, the

modulation frequency is Ω << ω and the wave number of the perturbation is K << k.
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After perturbing, the amplitude of the resulting plane wave is not anymore a constant, being

instead a function of space and time. The perturbed solution reads u(x, t) + δu1(x, t) +

δu2(x, t), where δu1(x, t) = b01e
i((k+K)x−(ω+Ω))t and δu2(x, t) = b02e

i((k−K)x−(ω−Ω))t are

the so-called sidebands and u(x, t) is known as the carrier wave.

MI has two stages: a linear and a nonlinear stage. [9]. The linear stage is the mechanism

responsible for the amplification of the perturbation when the approximation δuj << u

remains valid in time. In this limit, the equation for the perturbation is linear, and nonlinear

terms in the perturbation are meant as higher order corrections to the linear dispersive

equation. This approximated linear dispersive equation is named the linearised equation.

When this approximation is no longer valid because the perturbations δuj are such that

δuj ≈ u, and the order of magnitude of the nonlinear terms becomes comparable to the

order of magnitude of the linear dispersive equation, then the nonlinear stage comes into

play. After the amplitude of the perturbed plane wave reaches its maximum value, it may

vanish by causing the formation of localised energy solutions, and solitons may occur as a

result of the balance between dispersion and nonlinearity [18].

Since the linear stage of MI is a linear instability, it can be studied via the linearisation of

the nonlinear equation around the perturbation. By substituting the explicit expression of

u(x, t)+δu1(x, t)+δu2(x, t) into the nonlinear equation, and keeping only the terms at the

first order in the perturbation, the linearised equation can be written as a matrix equation

(see, for instance, [19])

Ab0 = 02×2, (1.2)

where 1 A is a 2 × 2 matrix, 02×2 is the 2 × 2 zero matrix and the solution is the vector

b0 =
(
b01e

i(Kx−Ωt) b02e
−i(Kx−Ωt)

)T
. The condition such that b0 is solution of (1.2)

is the vanishing of the determinant of the matrix A, i.e. det(A) = 0, which gives the

dispersion relation for the perturbations.

In 1965 Lighthill [21] obtained the so called Benjamin-Feir-Lighthill (BFL) criterion to

determine if a scalar system can be linearly unstable or not. Specifically, he considered a

weakly nonlinear Stokes wave (i.e. weakly nonlinear periodic progressive wave, see [22])

on deep water and he found that, if the linearised PDE is a hyperbolic equation, then the

Stokes wave is neutrally stable, instead, when the linearised PDE is an elliptic equation,

then MI may occur [17]. However, this result is obtained by considering negligible dispersion

1The explicit expression of the matrix A depends on the equation in study.
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effect and, for this reason, the BFL criterion is not a sufficient condition for the existence

of MI. Indeed, when dispersion is negligble, the dispersion relation for the perturbation

is independent of the wave number K; on the contrary, when dispersion is present, we

can define a domain for the wave number K of the perturbation such that MI can occur.

Thus, also in the case in which we have elliptic PDEs, the argument of the square root

can be negative only for certain values of K. Moreover, for ∂|Im(K)|
∂K = 0, we obtain the

critical value Kcritic = K(a, P,Q) corresponding to the largest growth rate of |Im(Ω(K))|.

The value Kcritic depends on the amplitude a of the plane wave solution, but not on its

frequency ω and its wave number k, whereas the module |Im(Ω(K))| is known as the gain

function. Thus, MI occurs for values of the physical parameters for which |Im(Ω(K))| is

not zero 2. For instance, the NLS equation can be written3 [15]

ut − iPuxx + iQ|u|2u = 0, (1.3)

when PQ > 0, by the BFL criterion, we have an hyperbolic equation and there is no

possibility to have MI; whereas if PQ < 0, we have an elliptic equation and we can have

MI. Thus, the necessary condition to observe MI is PQ < 0 and we need also to compute

for which values K the gain function |Im(Ω(K))| takes real values different from zero. In

this particular case, the physical parameters are related one with each other by the formula

(Ω− 2PkK)2 = P 2K2

(
K2 + 2

Q

P
a2

)2

, (1.4)

such that, if PQ > 0, the imaginary part of Ω, that is the gain function |Im(Ω(K))|, does

not exist. Instead, if PQ < 0, the explicit expression of the gain function is

|Im(Ω(K))| = 2PkK ± |PK|
√
K2 + 2

Q

P
a2 (1.5)

and the domain of the wave number K, at which the gain function is non-zero, reads

K2 ≤ −2
Q

P
a2. (1.6)

The maximum value of the function |Im(Ω(K))| is reached at the wave number [15]

Kcritic = ±
√
−Q
P a

2.

2That is true also for multicomponent models.
3In the Chapter 2, we will write the NLS equation in a different manner.
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Looking at the expression of the perturbed solution (1.1), the existence of complex mod-

ulation frequency Ω entails that, as time goes on, a perturbation grows with the effect

of amplifying the amplitude of (1.1). Nevertheless, in general, the amplitude might not

grow up indefinitely because, at a certain time, the neglected nonlinear terms come into

play to possibly bound such a growth. From the physical point of view, the BFL criterion

corresponds to a necessary condition for the occurrence of the localisation of the energy

due to a balance between dispersion and nonlinearity. This fact is reflected in the frequency

spectrum of the waves interacting during MI. Indeed, MI can be also explained as a four-

wave resonant interaction between two infinitesimal sidebands at frequencies ω1,2 = ω±Ω

with a strong carrier wave at frequency ω [23]. A wave at frequency ω interacts twice

with a sideband at frequency ω1 to produce another sideband with a different frequency

ω2 = 2ω−ω1. Similarly, this last sideband interacts with the carrier wave and reinforces the

first sideband. In other words, they interact under resonance conditions for the frequencies

ω1 +ω2 = 2ω and also for the wave numbers k1 +k2 = 2k, with k1,2 = k±K. Indeed, if we

consider the perturbed plane wave (1.1) as solution of the NLS equation, the nonlinearity

term becomes proportional to

|ū|2ū = a3ei(kx−ωt) + a2b01e
i((2k−(k+K))x−(2ω−(ω+Ω))t)+

+a2b02e
i((2k−(k−K))x−(2ω−(ω−Ω))t) + c.c.+ o(a2b0j), j = 1, 2,

(1.7)

where c.c. stands for complex conjugate of the correcting terms and we have neglected

all the terms whose order of magnitude is smaller than the terms multiplied by a2b0j .

Here, the correcting terms to the plane waves have as arguments of the exponentials

2k − (k + K) = 2k − k1, 2k − (k − K) = 2k − k2 and 2ω − (ω + Ω) = 2ω − ω1,

2ω − (ω − Ω) = 2ω − ω2. Thus, 2k − k2 = k1, 2k − k1 = k2 and 2ω − ω2 = ω1,

2ω − ω1 = ω2

If only dispersion was present, the resonance conditions would not be satisfied because, in

the linear dispersion relation, frequency would depend only on the wave number. Therefore,

even if the waves would interact with different frequencies, in general, they do not match

the resonant conditions. The interacting waves would propagate with different phase ve-

locities and, as a result, the dispersion effect pulls apart the resulting wave. On the other

hand, if also the nonlinearity is present, then the perturbation satisfies a linearised equation

whose dispersion relation involves both the wave number and the amplitude of the carrier
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wave. Although with different phase velocities, they propagate on the background of the

carrier wave and the wave numbers, as well as the frequencies, match the resonant con-

ditions. Indeed, because of the self-interaction term, the sideband, say, with frequency ω1

satisfies a linearised equation plus a forcing correction term proportional to the sideband at

frequency ω2 and to the squared carrier wave, (see, for instance, the second corrective term

in the expression (1.7)). If this forcing term oscillates with the same frequency of the other

sideband, then they resonate 4. If nonlinearity and dispersion compensate, the sidebands

grow linearly as time goes on and drive the carrier wave to oscillate around the resonant

frequency ω with greater amplitude. In this case, we say that nonlinearity contrasts disper-

sion by compressing the plane wave, namely, MI causes the localisation of the energy. As

already mentioned above, since when nonlinearity and dispersion balance one each other,

we say that the nonlinear stage of MI comes into play and the occurrence of solitons was

observed in this stage [24, 25]. From here it is clear the importance of studying the linear

stability of physical systems undergoing small perturbations and searching for the existence

conditions of localised solutions. In this respect, the interest in mathematical methods to

treat MI has witnessed an explosion during the ’70s, after the powerful Inverse Scattering

Transform (IST) method to find solutions of nonlinear PDEs was developed [26, 27, 28].

It was applied first to the Nonlinear Schrödinger (NLS) equation [29], and then, after the

development of the Ablowitz, Kaup, Newell and Segur (AKNS) scheme [30], it was ap-

plied to the Kortweg de Vries (KdV) equation [31] and to other physical models. The key

idea is that IST is suitable for the investigation of the asymptotic behaviour of solutions

of nonlinear equations. A pioneering research in this sense was conducted by Kuznetsov

and Mikhailov [32]. Using the Shabat-scheme [33], they studied the stability of periodic

stationary waves of the KdV equation as time goes on. The asymptotic stability of the

system is explained by the vanishing of the continuous spectrum, while the discrete spec-

trum survives in time, that is the existence of a set of stable solitons as asymptotic state.

Later, several other works were conducted using the Shabat-scheme. For instance, the NLS

equation, whose solution goes to the amplitude of the Langmuir wave as |x| → ∞ was

used for the investigation of the parametric instability of solitons in a homogeneous plasma

[34] and the KP equation, whose solution goes to the cnoidal wave as |x| → ∞ was used

4In the case of the NLS equation, we have chosen the frequency and the wave number of the perturbations

so that they resonate with the carrier wave.
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for the analysis of the stability of periodic waves in a weakly dispersive medium [35].

In the framework of the IST method, particular boundary conditions are required, for ex-

ample by imposing that the solution and its first derivative are in the class of potentials

vanishing sufficiently fast asymptotically. Indeed, it is difficult to deal technically with the

IST when solutions have more complicated asymptotic behaviour. Nevertheless, some re-

search works have been conducted to reformulate the IST such that one can work with more

sophisticated asymptotic solutions, for instance, solitons with nonzero boundary conditions

as solutions of the focusing Nonlinear Schrödinger equation [36, 37], and it has been shown

that combinations of the growing exponential solutions of the inverse problem saturate

the MI leading, then, to the formation of solitons in the nonlinear stage. In recent times,

this subsequent nonlinear stage of MI for the scalar NLS equation has been the subject

of intensive investigation and, using numerical and analytical techniques, the stability of

plane wave solutions with respect to localised and random perturbations has been studied

[38, 39]. Similarly, the stability of plane wave solutions of the scalar NLS equation with

respect to periodic perturbations has attracted much attention, and has been investigated

in [40, 41, 42, 43] using the theory of finite-gaps and matched asymptotics.

In 1974, Ablowitz developed an alternative and powerful spectral method to lead stability

analysis [44]. The method is based on the fact that the solutions of the linearised equation

can be written in terms of the so called squared eigenfunctions (SE) (see for example [44],

[45, 46] for an introduction to squared eigenfunctions as solutions of the linearised NLS

equation), which in turn can be written in terms of the Lax operators [47]. Once a solution

of a nonlinear equation is perturbed, the problem to investigate the linear stability of the

system is equivalent to investigate the behaviour in time of the SE solutions of the linearised

equation (see, for example, [48]). Indeed, via the construction of the SE, one is able to

compute the corresponding eigenfrequency whose imaginary part, i.e. the gain function,

provides information about the linear stability.

1.1.2 Modulational Instability and Other Linear Instabilities for Multi-

Component Systems

As mentioned above, MI for scalar equations is the deformation of the form of the amplitude

of a plane wave as a result of the balancing of dispersion and nonlinearity. When these
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effects are balanced, solitons may appear in the nonlinear stage. In this case, MI arises when

two sidebands are added on the background of the carrier wave with which they interact.

MI is the result of the self-interaction of the perturbed solution, such that there exists a

nonlinear interaction between plane waves linearly superimposed.

When dispersive nonlinear multi-component systems are taken into account, the single

component of a system may exhibit MI, but the entire system can be linearly unstable or

not. In this regard, the MI of two-component system of counter-propagating waves has

been analysed in the research work [49]. The authors considered two-component solutions

of two coupled sine-Gordon equations, which are travelling with different group velocities

and each component is composed by two counter-propagating waves linearly superimposed.

Then, they used a multiple scale approach to obtain three asymptotic models at different

length scales and different timescales, which are systems of four evolution equations, one

for each wave. By considering the models so obtained, first, they took into account the two

components composed by only one plane wave. At the super-long length scales, the leading

order in the dispersion relations is represented by a dispersion term, such that dispersion is

considered responsible for the MI. As soon as one considers the long-length scales, a term

coming from the self-interaction is added to the linear dispersion relation, so, dispersion and

nonlinearity compete with one another as described in the previous subsection. However,

without any restriction on the wave number of the perturbation, it has been observed that,

besides the linear instability of the single plane wave arising from the competition between

the terms of dispersion and self-interaction, any wave can be affected by the coupling be-

tween the components. Indeed, such coupling can suppress or enhance this linear instability

as a result of the addition of a term coming from the self-interaction. In this way, the

effect of nonlinearity becomes stronger or weaker compared to when coupling is absent.

The plane wave can gain or lose energy due to the sharing and the exchange of energy

occurring when the components overlap, and so, finally, leading to the linear stability or

instability of the system [49, 50]. For these two-component systems, dispersion plays a

key-role in the occurrence of MI, and it has also been shown that coupled dispersionless

nonlinear systems are, indeed, stable with respect to the MI [51]. The linear instability

can occur if the dispersive term is taken into account also if it is a higher order correction

to the transport and nonlinear terms [49, 50]. Furthermore, the presence of an additional

counter-propagating mode in any component can completely inhibit or enable the linear
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instability because of the exchange of energy between the counter-propagating plane waves

in each component and between two coupled components as well. Indeed, because of these

couplings, nonlinearity competes with dispersion in a stronger or weaker manner [49, 50].

The classification of the linear instabilities in the parameters 5 space was carried out in

the research works for two coupled focusing or for two coupled defocusing NLS equations

[71] and for mixed coupled NLS equations, that is a focusing and a defocusing scalar NLS

equations are coupled [52]. Taking into account the coupling between two plane waves

considered as the two modes of a wave packet and whose perturbations are two Fourier

modes, the classification of the linear instabilities is performed on the basis of the energy

exchange between plane waves undergoing linear perturbations. These works confirm the

existence of instabilities also in defocusing regime (besides the long-wave instability) when

there is a coupling of two propagating modes. Several scenarios can occur. For instance,

when two focusing NLS equations are coupled, there can be cross-phase instability if one

unstable mode, or both unstable modes, of the perturbation excite each plane wave and

the energy is shared by the two co-propagating plane waves; or there can be self-phase

instability if one mode of the perturbation excites a plane wave more than the other one,

there is less shared energy between the two plane waves, and, so, there is linear instability

of just one plane wave.

Besides to dispersive nonlinear multi-component systems mentioned above, there is a non-

dispersive nonlinear multi-component system which can exhibit linear instability, that is the

3-wave resonant interaction (3WRI) system [53]. The solitons of the 3WRI system interact

in a different manner from the solitons of dispersive nonlinear systems, thus one can expect

that the mechanism leading to the linear instability (and then to the possible formation

of solitons) is different for the two kinds of systems. For this reason, we refer to this

phenomenon as linear instability rather than as MI. Indeed, differently from the solitons of

dispersive multi-component systems with quadratic coupling, originating from the balance

between dispersion and nonlinearity [54], the solitons of the 3WRI system originate from

the mismatch of the group velocities of the interacting wave packets, once provided the

resonant conditions (see formulas (3.1) in Chapter 3) [53]. In order to highlight how special

the 3WRI system is, we remind the reader about the research work [55] where the genera-

tion of dispersive shock waves was observed in absence of dispersion and whose behaviour

5These parameters are the wave numbers of the two component plane waves and of the disturbance.
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resembles the generation of shock waves in dispersive equations, such as the NLS and the

KdV equation. Moreover, the role of the dispersion in the system was investigated in [56].

The authors studied the linear stability in space of a triplet of dark solitons and showed

that the introduction of a quasi-negligible second order dispersion reduces the instability

allowing the three dark solitons propagation.

It is worth pointing out that there is no galilean transformation for which all the three

waves have zero group velocity and the velocities mismatch allows the envelopes to overlap

when the nonlinearity becomes important. Moreover, due to the fact that the 3WRI system

is non-dispersive, in the asymptotic limits t → ±∞, the envelopes are well separated and

do not overlap; however, during the interaction, the envelopes can exchange both solitons

and radiation. Thus, ”the solitons and radiation (continuos spectrum) are on an equal

footing”[57, 58]. This feature of the 3WRI system makes its soliton solutions remarkably

different from those ones of other dispersive systems for which radiation decays as time goes

on [44, 59]. In fact, solitons and radiation interact nonlinearly and radiation never decays

asymptotically [57, 58]. Kaup and collaborators carried out the linear stability analysis of

the 3WRI system when its solutions have a vanishing background, and gave necessary and

sufficient conditions for linear instabilities to occur [57]. The carrier wave and the two

sidebands have finite and infinitesimal amplitudes, respectively, and they interact under the

three-wave resonant conditions, ω1+ω2+ω3 = 0 and k1+k2+k3 = 0, where the frequencies

ωi and the wave numbers ki can take any value, not necessarily infinitesimally close with

one another. These resonant conditions do not originate as a result of selfinteraction, but

they must be written together with the 3WRI system 6 [58]. Under particular conditions,

the carrier wave can exhibit explosive and the decay instability [60, 61], but only if the

carrier wave travels with intermediate group velocity with respect to the group velocities

of the two sidebands and if it possesses solitons. We stress that the solitons in question

move on a vanishing background and can be obtained, in principle, via IST. In this case,

we say that the carrier wave is linearly unstable [57]. Nevertheless, thanks to the lack of

the dispersion, all we need to know is the linear behaviour at time t→ −∞, and then ”we

can completely determine how this system evolves, even in nonlinear regime”[57], looking

only at the time evolution of the scattering data. This allows to turn around the matter of

solving the inverse problem in order to see if an envelope possesses solitons in the nonlinear

6We will clarify this concept in Chapter 3.
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regime. Some works on the scalar NLS [36, 37, 29] were carried out via this procedure.

However, obtaining N -soliton solutions, especially for multi-component systems, can be

rather difficult task to achieve.

Hence, the necessity to develop mathematical tools to investigate the linear stability of

multi-component systems. The application of perturbation theory to the IST can be ex-

tended, in principle, to investigate the linear stability of any integrable system, also those

ones which are multi-component [62, 63]. The starting point is still the Lax Pair. Once the

scattering data are given by the direct problem, one can construct the associated potential

by the inverse problem. Perturbing the direct and inverse problems, the linear perturbations

of the potential are written in terms of the variations of the scattering data (and vice versa)

by squared combinations of components of eigenfunctions and its adjoints: the so called

squared eigenfunctions (SEs) and the adjoint squared eigenfunctions (ASEs) [62, 63]. Al-

though, the research works by Kaup and collaborators were carried out both on scalar and

multicomponent systems, one needs to use the IST machinery to get a representation of

the perturbation in terms of the SEs, and thus their expression in terms of the eigenmodes.

It is clear that in the framework of the IST method, the stability analysis is cumbersome to

apply to multicomponent systems, in particular for soliton solutions with a non vanishing

background. However, the property of the SEs to be solutions of the linearised equation is

local and it follows directly from the Lax pair without the need to apply the IST machinery

(see Chapters 2 and 3). In this respect, recently a new spectral approach has been devel-

oped in [64]. In this research work, the authors investigate the linear stability of continuous

waves in all regimes in the framework of the integrability and their method can be applied to

other more complicated solutions such as dark-dark, bright-dark, and higher-order solitons

travelling on a continuos wave background.

1.2 Motivations and Purposes

In the recent years MI has been proposed as a possible mechanism for the generation of

rogue waves. ”In oceanography, rogue waves are defined as waves whose height is more

than twice the significant wave height, that is the average height of the highest one-third

of the waves in a wave record” [66, 23].
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From an experimental point of view, researchers are interested on their reproducibility and

observability in wave tank experiments. From a mathematical point of view, this is equiv-

alent to study the linear stability of solutions which can describe the dynamics of rogue

waves.

The dynamics and the physical features of rogue waves can be described by solutions of the

NLS equation, such as the homoclinic orbirts [67] of an unstable Stokes wave. Calini and

collaborators [69] discovered that, beside the mechanism of MI, rogue waves are created

as a result of phase modulation. Using the gauge form of the Bäcklund transformation

[68], they constructed the associated solution of the linearised NLS equation, i.e. a squared

eigenfunction and so they explored the stability of Stokes waves. Finally, they stated the

following selection criterion for rogue waves:“among the homoclinic orbits of a Stokes wave

with M unstable modes, the only ’good’ candidate for rogue wave is the maximally iterated

homoclinic orbit, with all its spatial modes coalesced through phase modulation” [69].

A similar investigation was performed on the spatially periodic breathers on an unstable

plane wave background, obtaining a similar conclusion [70].

If one considers two coupled NLS equations (CNLS), besides the already mentioned non-

focusing instabilities between two unstable and two stable CNLS fields [71] or between a

stable and an unstable CNLS field [52], baseband MI can exists. It is triggered by zero-

frequency disturbances, and it is believed to be responsible for the formation of rogue waves

[72, 73, 74].

Between all the possible kinds of solutions suitable to model rogue waves, we focus on

rational solutions: they are solutions with a rational, or semi-rational 7, dependence on the

variables x and t, in contrast with the standard solitons whose expression is given in terms

of exponentials only. They are also solutions of multicomponent wave equations such as

the CNLS equation and the 3WRI system [75, 76, 77]. In this thesis we take into account

the system of a resonant triad, not only because it encloses this kind of solitons, but even

because the nonlinearity term is the simplest that can occur between three interacting waves

[78, 79], and the interaction of waves under resonance conditions is of great interest in many

fields of research (see, for instance, [80, 81] and the literature therein). We investigate the

linear stability of the 3WRI model by considering solutions on finite background.

7Here, semi-rational solutions are meant to have an expression that is both rational and exponential in

the variables x and t.
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Due to the technical mathematical issues already stated in the previous section, the linear

stability of this system and the mechanism leading to its linear instability are less studied

than those of other systems, such as the CNLS equations. However, further outcomes

can be obtained thanks to the approach developed in [64], and we have applies such an

approach to the plane wave solutions of the 3WRI system in order to investigate their

linear stability and to confirm if linear instability can be considered a necessary condition

to explain the formation of rogue waves mathematically represented by rational solutions.

In order to do that, we take advantage of the integrability of this system [82, 83]. This

fact is not obvious at all, since the stability of a solution is a local phenomenon, while the

integrability is a global characteristic of the equation. As it has already been mentioned

(see [62, 63]), solutions of a linearised equation can be written by squared eigenfunctions,

and, in turn, by means of the associated Lax pair. If an equation is Lax-integrable [84],

the stability of its solutions can be analysed (see, for instance, [71] and [52]). Once the

squared eigenfunctions are obtained, we look at their temporal behaviour: if they have an

exponential growth in time (i.e. the gain function is different from zero), then the provided

solution of the nonlinear equation is (neutrally) linearly unstable. We underline that this

approach allows us to generalise the formalism to N ×N matrices. As a consequence, the

solutions of the Lax pair equations are written in matrix form and the squared eigenfunc-

tions are more general than those ones used so far.

In addition, we use the spectral method developed in [64] for a technical reason: IST is al-

gebrically cumbersome and it becomes more and more complicated to apply if one wants to

find solutions which are rational, semi-rational or, more generally, with a finite background.

Indeed, it is necessary to solve the inverse problem to see if localised structures exist asymp-

totically (after the interaction). For the 3WRI system, the linear stability analysis which

can lead to the formation of solitons on vanishing background has leaded to the conclusion

that the envelope with intermediate velocity can decay surrounding all its N solitons and,

after the interaction, the fast and the slow envelopes own additional N solitons each one.

However, it has been impossible to find the final N soliton solutions which, instead, were

written only in implicit form and the findings were supported by numerical analysis [58].

Instead, this alternative approach [64] allows us to use Darboux Dressing Transformation

(DDT) [85, 86] for envelopes whose background are plane waves interacting resonantly,

and in this respect, it turns out that DDT is potentially more useful and algebrically simpler
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for finding rational solutions [76]. Another reason for choosing this method is that this

approach does not depend on the functional class of the potential, contrary to the IST,

which requires the imposition of boundary conditions. Therefore, a wider class of solutions

can be taken into account, such as rational or semi-rational solitons, whose dependence

on space x and time t usually is asymptotically polynomial, but also other solutions such

as breathers. We have numerically observed the generation of potential rogue waves and

breathers generated via the linear instability of such a system. This remarkable observation

would not have been possibile without the application of the approach [64], which is tailor-

made for multi-component systems with solutions on finite background.

In this thesis, first, we carry out a comprehensive topological classification of the stability

spectra of the 3WRI system in the parameters space, where the parameters in question are

combinations of the physical parameters involved in the plane waves and in the system.

This classification is topological and we associate a gain function to any topology. We

observe that the stability spectra of the CNLS system are included in this classification and,

indeed, the gain function shows the presence of MI-baseband-like and MI-passband-like for

such spectra. However, the stability analysis for the 3WRI system is richer, because it

presents additional topological features. Indeed, we observe a new gain function associated

to such topological features which can be considered neither a MI-passband type nor a

MI-baseband type, and are, instead, associated to a stronger linear instability around the

zero wave number. In particular, we have observed, via numerical simulations, that this

kind of topology and its gain is associated to explosive instability, i.e. the three interacting

waves blow up in a finite time [60, 61].

We show that the plane wave solutions of the 3WRI system are linearly unstable in time

for any choice of the physical parameters, including those ones associated to the solutions

that are explosive. The linear instability of the plane wave correspond to the observation

of a positive gain-function.

Although the onset of the linear instability of the 3WRI system has not been clarified, this

thesis is meant to be a prelude for its understanding. Indeed, we aim to investigate the

mechanism leading to this phenomenon in future research works. It is worth highlighting

that, in the research work [87], the authors have analysed the stability of two coupled or-

dinary differential equations (instead of three PDEs) whose forcing term is the interaction

with a third wave, with large amplitude, which does not obey the same dynamical equa-
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tions of the other two interacting waves with finite amplitudes [88]. They speculate that

the third wave is a cosine as a function of the time.The authors claimed that a sufficient

and necessary condition for the onset of instability is that the two interacting waves have

modes of opposite sign.

In this thesis, we perform the linear stability analysis on three coupled PDEs, and after

linearising every equation, the wave solution interacts with the perturbations of the other

two waves. Moreover, every solution propagates with different velocity and we cannot find

a reference frame in which they have the same velocity. Instead, we can obtain a system

of three ordinary differential equations only in the particular case in which the three waves

propagate at the same velocity [57]. For the 3WRI system with wave solutions propagating

at the same velocity, the Hasselmann’s criterion [89, 90] states that instability occurs if

the two sidebands modes sum together with the same signs, and in the case they interact

resonantly with the same signs, there is neutral stability.

Hence, we underline the relation between the presence of baseband MI type and the pos-

sible existence of rational solitons which can model rogue waves, and in this regard, we

provide a necessary condition for the existence of rational solutions on a finite background

constructed by means of the DDT method. For sake of simplicity, we will refer sometimes

to these rational and semi-rational solutions as rational solutions of Darboux type or DT-

FB rational solutions, FB standing for “finite background”. We do that by the stability

analysis of the plane waves which are solutions of the 3WRI system. These plane waves

are meant as the possible background for solitons, namely as the seed solutions for the

algebraic construction of rational solutions of Darboux type. When needed, we will specify

if we deal with semi-rational solutions, instead of purely rational solutions.

The motivation to conduct this research is because, so far, the mechanism which causes

rogue waves formation is unknown, although several hypothesis have been formulated and

MI (like passband and baseband) is one of them [91], we assume that their onset can be

due to the more general phenomenon of the linear instability, that is a phenomenon that

can occur in the 3WRI system. Moreover, rogue waves are ubiquitous in nature and are

observed in several physical settings, such as in water tank [92], in fibre optics [24] and in

plasma [93]. They are also predicted in the atmosphere [94], in superfluids [95], in Bose-

Einstein condensates [96] and in capillary waves [97].
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1.3 Overview of the thesis

In Chapter 2, we describe the spectral method developed in [64] and we use the NLS

equation as a case study.

In Chapter 3, we give the ’set up’ of the formalism for the 3WRI system: Lax pair and Lax

operators, construction of the squared eigenfunctions, characteristic polynomials and useful

rescalings of the physical parameters of the problem.

In Chapter 4, we conduct the stability linear analysis through the topological classification

of the stability-spectra in the parameters space and the associated gain functions. Thus,

we state a necessary criterium for the existence of rational and semi-rational solitons on a

finite background of Darboux type. However, the computations of the expressions of these

solutions is not the aim of this thesis.

In Chapter 5, we show some numerical observations of breathers and potential rogue waves.



Chapter 2

Linear Stability of Plane Waves of

the NLS and CNLS Systems

In this chapter we present the formalism developed in [64] by providing the NLS equation

as an example. Because NLS is a scalar equation, the space stability spectrum coincides

with the spectrum of the spatial part of the Lax pair [64]. This coincidence is not met in

the general case of the multi-component systems. Thus, in order to understand where the

spatial stability spectrum comes from, we provide the CNLS system as a further example

[64]. In this way we are able to write the general definition of stability spectra for multi-

component systems.

2.1 Universal Nature of the Nonlinear Schrödinger Equation

and Modulational Instability

The origin of the Nonlinear Schrödinger equation is rooted in the theory of self-focusing

waves in electrical fields. In 1964, R. Y. Chiao et al. wrote a NLS-type equation [98].

They considered the wave equation for an electric field plus a nonlinear term and concluded

that an optical beam of a single frequency, whose dynamics is described by such equation,

cannot spread in a nonlinear media, namely the beam is self-focused. Since then, more

investigations were carried out on the self-focusing phenomenon (see, for instance, [99, 100])
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and, in this context, the NLS equation was derived in [99] as we know it today,

ut − iuxx + 2is|u|2u = 0, s2 = 1 , (2.1)

where the subscripts denote the derivatives with respect to the space x and the time t, | · |

is the module of the classical field u(x, t), and s is a sign.

The NLS equation with the sign s = −1 is known as focusing NLS equation and was written

for the first time in the research paper on the self-focusing optical beams in dispersive and

nonlinear media [99]. Using the IST method, Zakharov and Shabat derived its solutions

classified as bright solitons which decay at zero at the spatial infinity, and as breathers

which decay at a constant background at the spatial infinity [29].

For s = 1, the equation is named defocusing NLS. Its solutions are known as dark solitons

due to their feature to have a nontrivial background intensity and a spatial local dip. They

were obtained by IST in [101].

The universal nature of the NLS equation lies in the fact that it describes the dynamics of

many systems in nature whose behaviour is that one of an envelope of a monochromatic

wave packet in a dispersive and nonlinear media when the dissipation can be neglected [19].

Zakharov was the first to derive the NLS equation in the context of water waves [103]. Nev-

ertheless, it can be derived in the limit of weak nonlinearity from several equations via the

multiple scale method, for instance, by the Sine-Gordon equation [15]. The defocusing NLS

equation can also be derived from the KdV equation and the focusing NLS equation from

the modified-KdV (see for example [102]).

After Stokes wrote the approximate solutions of the Laplace problem [22], i.e. the Stokes

waves, Benjamin and Feir discovered that nonlinear Stokes waves are modulationally unsta-

ble [13]. It is well known the pivotal role of the NLS equation in the study of MI and the

NLS equation is one of the most used equation for modelling modulation of waves. In this

regard, we refer the reader to the book [15] for the linear stability analysis of plane waves,

solutions of the NLS equation.

Because the NLS equation had a key role in the understanding of the MI and because it is

a scalar equation, in the next section, we shall describe the spectral method developed in

[64], by using the NLS equation as a case study.
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2.2 Matrix Form of the Nonlinear Schrödinger Equation

Before we proceed with the stability analysis, we make a ’set up’ for a new formalism in which

the NLS is meant as a matrix equation, where the matrices involved are 2×2. In order to do

that, we take advantage of mathematical techniques provided by the integrability. Indeed,

since the NLS equation is integrable [29], it admits a representation via two differential

equations, which are called Lax equations,

ψx = Xψ, ψt = Tψ, (2.2)

where the subscripts are the derivatives with respect to the spatial variable x and the time

variable t, X and T are 2 × 2 matrices named Lax operators, being ψ = ψ(x, t, κ) a

common solution of the two linear differential matrix equations (2.2), while X = X(x, t, κ)

and T = T (x, t, κ) depend on the variables x, t and on a complex quantity κ called spectral

parameter, according to the definitions

X = iκσ3 +Q, (2.3a)

T = 2iκ2σ3 + 2κQ+ iσ3(Q2 −Qx), (2.3b)

where

σ3 =

1 0

0 −1

 , (2.4)

is a Pauli matrix. The matrix Q = Q(x, t) depends on the variables x and t, contains the

complex dynamical variable u = u(x, t) and introduces the sign s2 = 1

Q =

0 su∗

u 0

 , (2.5)

where u∗ is the complex conjugate of the dynamical variable u. We are interested in non-

trivial common solutions ψ of the Lax equations (2.2), which are given by the compatibility

condition

ψxt = ψtx. (2.6)
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The NLS equation can be obtained by (2.6), because it is integrable. By using both (2.2)

and (2.6), we get an equation for the Lax operators X and T

Xt − Tx + [X,T ] = 0, (2.7)

where [X,T ] = XT − TX is the commutator of the two matrices X and T 1. Finally, by

the definitions of the Lax operators (2.3) and using the fact that

Q2 = s||Q||2I2×2, (2.9)

where I2×2 is the 2 × 2 identity matrix and || · || denotes 2 the spectral norm of Q, we

obtain the scalar NLS equation in matrix form

Qt + iσ3Qxx − 2isσ3||Q||2Q = 0. (2.10)

In computing the equation (2.10), we have used the property of the Pauli matrix σ3 to be

involutory, that is σ2
3 = I2×2. Moreover, the anti-commutators {σ3, Q} = 0 and {σ3, Qx} =

0. The anti-commutator between two matrices A and B is defined as {A,B} = AB+BA.

One can check that (2.10) includes the NLS equation in scalar form. By writing (2.10) as

follows 0 s(u∗t + iu∗xx − 2isuu∗2)

ut − iuxx + 2isu∗u2 0

 = 02×2, (2.11)

where 02×2 denotes the null matrix 2× 2, hence,

u∗t + iu∗xx − 2isuu∗2 = 0, (2.12a)

1By (2.2), the left-hand side and the right-hand side of the condition (2.6) are rewritten in the following

way

ψxt = (Xψ)t = Xtψ +Xψt = Xtψ +XTψ, (2.8a)

and

ψtx = (Tψ)x = Txψ + Tψx = Txψ + TXψ. (2.8b)

2The spectral norm of Q is defined as

||Q|| =
√
τmax, Q† =

 0 u∗

su 0

 ,

where τmax is the biggest eigenvalue of the matrix QQ†, where Q† is the conjugate transpose of the matrix

Q.
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ut − iuxx + 2isu∗u2 = 0, (2.12b)

where the equation (2.12a) is the complex conjugate of the equation (2.12b). In particular,

(2.12b) is the NLS equation for u and (2.12a) is the NLS equation for u∗.

2.3 Integrability and Linear Stability

In addition to the matrix NLS equation, we need to introduce Lax operators which are

independent of the spatial variable x and of the time variable t. In this way, the resulting

Lax equations are integrable by the separation of variables method and the obtained solution

is mapped into the solution of the original Lax problem [31].

2.3.1 Lax Problem Revisited

Let us consider the simplest solution of the NLS equation (2.12b), namely the plane wave

u0(x, t) = aei(qx−ηt), (2.13)

depending on x and t, where a is the amplitude, q is the wave number and η is the frequency

of the wave solution. Let a ∈ R be independent of the variables x and t. The frequency

depends on a and q by the relation

η = q2 + 2sa2, (2.14)

that is obtained by substituting (2.13) in the NLS equation (2.12b).

In order to simplify the calculations, we introduce the transformation on the matrix solution

Q0 = Q0(x, t),

Q0 =

 0 su∗0

u0 0

 = G

0 sa

a 0

G−1, (2.15)

where u0 = u0(x, t) is the plane wave given in (2.13), u∗0 is its complex conjugate, G =

G(x, t) is a diagonal matrix which contains all the dependence on the variables x and t,
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and G−1 = G−1(x, t) is its inverse. More in detail, the matrix G can be written as follows

(see Appendix A):

G = e−
i
2

[qx−(q2+2sa2)t]σ3 . (2.16)

The transformation (2.15) induces also a transformation on the solution ψ of the Lax pair

(2.2),

ψ = Gφ, (2.17)

such that it introduces the function φ = φ(x, t).

By putting the transformation (2.17) into the the Lax pair (2.2), we obtain the PDEs (see

Appendix B):

φx = iWφ, φt = −iZφ, (2.18)

where the operators W = W (κ) and Z = Z(κ) are defined as follows

iW = G−1XG−G−1Gx, (2.19a)

−iZ = G−1TG−G−1Gt. (2.19b)

The operators W and Z in (2.19) are 2×2 matrices independent of x and t and depending

only on the spectral parameter κ, whose expressions, in terms of their entries, are 3

W =

κ+ q
2 −isa

−ia −κ− q
2

 , Z =

−2κ2 + q2

2 isa(2κ− q)

ia(2κ− q) 2κ2 − q2

2

 , (2.20)

and, in addition, they are related with one another is

Z = −2
(
κ− q

2

)
W. (2.21)

3We have used the formulas

G−1Gx = − i
2
qσ3, G−1Gt =

i

2
(q2 + 2sa2)σ3,

and the anti-commutators

{σ3, Q} = 0.
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The advantage of the revisited Lax Pair (2.18) is that we can integrate it by separation of

variables and a solution is

φ = ei(Wx−Zt), (2.22)

where we have used the fact that [W,Z] = 0. In turn, by using the transformation (2.17),

the solution of the Lax Pair (2.2) is

ψ = e−
i
2

[qx−(q2+2sa2)t]σ3ei(Wx−Zt). (2.23)

2.4 Investigating Stability via Lax Pair

The perturbations of the NLS equation can be written as combinations of the SEs which

are solutions of the linearised equation [44]. Since the SEs are written starting form the

Lax operators, it turns out that one can characterise the solutions of the linearised equation

by using such operators.

2.4.1 Squared Eigenfunctions

The starting point of our investigation is the Lax problem (2.2) for the NLS equation.

Using the solutions ψ and ψ−1 of the Lax problem (2.2), we define the SE Ψ = Ψ(x, t)

Ψ = ψMψ−1, (2.24)

where M = M(κ) is a 2× 2 matrix dependent only on the spectral parameter κ. By (2.2),

Ψ satisfies the PDEs [64]

Ψx = [X,Ψ], Ψt = [T,Ψ], (2.25)

which are compatible with one another because of (2.7).

The transformation (2.17) induces the similarity transformation

Ψ = GΦG−1, (2.26)
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where the matrix G is given in (2.16), and Φ = Φ(x, t), defined as

Φ := φMφ−1, (2.27)

satisfies the PDEs (Appendix C)

Φx = i[W,Φ], Φt = −i[Z,Φ], (2.28)

whose solution is 4

Φ = ei(Wx−Zt)Φ(0, 0)e−i(Wx−Zt). (2.29)

where Φ(0, 0) is the initial condition at x = 0 and t = 0. Because of (2.27) and (2.22),

Φ(0, 0) ≡M(κ). Finally, because of the transformations (2.26) and (2.17), the SE, solution

of the PDEs (2.25), reads

Ψ = GφΦ(0, 0)φ−1G−1 = ψΦ(0, 0)ψ−1, (2.30)

where ψ is provided by (2.23).

2.4.2 Solution of the Linearised Equation and its Connection with Integra-

bility

In this section we introduce the linearised equation (LE) obtained perturbing a generic so-

lution of the NLS.

4Let us suppose Φ(x, t) = α(x)β(t), by integrating in x the first of the equations (2.28)

α(x) = α(0) + i

∫ x

0

[W,α(x1)]dx1,

and, via iteration,

α(x) = α(0)+i

∫ x

0

[W,α(0)]dx1−
∫ x

0

[
W,

∫ x1

0

[W,α(x2)] dx2

]
dx1 = α(0)+i[W,α(0)]x−

∫ x

0

[
W,

∫ x1

0

[W,α(x2)] dx2

]
dx1.

Similarly, by integrating in t the second of the equations (2.25), one gets

β(t) = β(0)− i[Z, β(0)]t−
∫ t

0

[
Z,

∫ t1

0

[Z,α(t2)] dt2

]
dt1,

thus,

Φ(x, t) = α(x)β(t) = α(0)β(0) + i[W,α(0)β(0)]x− i[Z,α(0)β(0)]t+ .... ,

and, by setting α(0)β(0) = Φ(0, 0), the solution is (2.29).
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Let us suppose to have a solution of a nonlinear equation and to add to it a small pertur-

bation, so that the perturbed solution is u+ δu. As a consequence, the matrix solution is

perturbed

Q→ Q+ δQ, (2.31)

and the perturbed Lax operators are

X → X + δX, T → T + δT. (2.32)

By substituting (2.32) in the equations (2.7), at the first order in the perturbation, we get

the LE

(δX)t − (δT )x + [δX, T ] + [X, δT ] = 0, (2.33)

which is an evolution equation for the perturbation δQ. Moreover, we stress that the

expression of the linearised equation, as it is written in (2.33), is independent of the model

until one chooses the Lax pair, namely the matrix Q and, for this reason, the LE (2.33) is

written more generally as follows

At −Bx + [A, T ] + [X,B] = 0. (2.34)

We are interested in searching for solutions A = A(x, t, κ) and B = B(x, t, κ) related to

the fundamental matrix solution ψ of the Lax pair. In this respect, we provide the following

propositions, which are also stated in [64].

Proposition 2.4.1. If the pair A, B solves the linearised equation (2.34), then also the

pair F = F (x, t), H = H(x, t) defined as

F = [A,Ψ], H = [B,Ψ], (2.35)

satisfies the linearised equation (2.34), namely

Ft −Hx + [F, T ] + [X,H] = 0. (2.36)

This is a consequence of the Jacobi identity and of the fact that Ψ is a solution of (2.25)

[64].
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Proposition 2.4.2. The following expressions

F =

[
∂X

∂κ
,Ψ

]
, H =

[
∂T

∂κ
,Ψ

]
, (2.37)

are solutions of the linearised equation (2.36).

The validity of this statement follows from the fact that the matrices

A =
∂X

∂κ
, B =

∂T

∂κ
, (2.38)

are solutions of the equation (2.34) and from the Proposition 2.4.1 [64].

A consequence of the Proposition 2.4.2 is that any sum or integral of F over the spectral

variable κ is a solution δQ of the LE (2.33). As in the paper [64], we assume that the

perturbation δQ has the integral representation

δQ =

∫
dκF (x, t, κ), (2.39)

which provides a solution δQ bounded and localised in x at any fixed time t. We require

that the perturbation is localised, so that the absolute value of the perturbed solution goes

to a constant as |x| → ∞.

The matrix F (x, t, κ) and the perturbation δQ satisfy the same linearised equation (2.33)

provided that only local terms are involved in their expressions [64]. The solution F plays the

same role as the exponential solution of any linearised equation with constant coefficients,

namely, by varying κ over the spectrum, it provides the set of ”Fourier-like” modes of the

linear PDE (2.33) and it takes the general expression [64]

F (x, t, κ) = G(x, t)
N∑

j,m=1

µjm(κ)ei[(x(wj−wm)−t(zj−zm)]F (jm)(κ)G−1(x, t) , (2.40)

where wj and zj are the eigenvalues of the matrices W and Z, respectively and N is the

dimension of the matrices W and Z. The coefficients µjk(κ) are arbitrary functions of the

spectral parameter κ, whereas F (jm)(κ) constitute a basis (we will obtain explicitly the

formula (2.77) in the section 2.5).

If we want δQ to be bounded, then the solution F must be bounded in x for any fixed t and

κ, and the subset of the complex κ-plane, over which the integral (2.39) runs, constitutes

the so-called stability x-spectrum of the solution Q, denoted by Sx [64]. The spacial

spectrum Sx can be geometrically defined as follows:
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Definition 2.4.3. The x-spectrum Sx, namely the spectral curve on the complex κ-plane, is

the set of values of the spectral variable κ such that at least one of these complex numbers

kj = wj+1 − wj+2, j = 1, 2, ..., N (modN) is real.

Similarly, one can define the stability t-spectrum, denoted by St, for which the perturbation

δQ and the solution F is bounded and localised in time for any fixed x and κ. Here, we

are interested in finding the values of the spectral parameter κ for which the perturbation

δQ is bounded in space but it can grow up in time, such that the solution Q can even be

linearly unstable in time [64]. In the case of the NLS equation, we will do that by finding

both the Sx and St spectrum. The values of κ belonging to the Sx spectrum, but not to

the St spectrum are those ones for which linear instability occurs. We highlight that, for

the scalar NLS equation, the spectrum of the operator d
dx − X and the spectrum of the

operator d
dt −T coincide with the stability spectrum Sx and with the stability spectrum St,

respectively (see [64] for more details about this point).

In the following, we find the general expression of F for the NLS equation. Although H is

also a solution of the LE, we choose to work with F only for the sake of simplicity. Because

we are in the case of 2 × 2 matrices, we use the algebraic basis generated by the Pauli

matrices.

From (2.37), the solution F can be written as

F = 2iσ3Ψ(o), (2.41)

where we have used the commutation rules between the Pauli matrices. Therefore, we

are interested only on the computation of the off-diagonal part of the SE Ψ; in particular,

because G is a diagonal matrix 5, we consider only the following SE:

Ψ(o) = GΦ(o)G−1, (2.42)

where Φ(o) = ei(W0x−Z0t)Φ(o)(0, 0)e−i(W0x−Z0t) (see [64] for more details about the proce-

dure for obtaining this solution after the diagonalisation of the matrices W and Z), where

W0 and Z0 are the diagonalised matrices of W and Z, and the latter are simultaneously

5By the definition of Ψ (2.26), we have

Ψ = GΦG−1 = G(Φ(o) + Φ(d))G−1 = GΦ(o)G−1 + Φ(d),

where Φ(o) and Φ(d) are the off-diagonal part and the diagonal part of the matrix Φ, respectively.
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diagonalised because they commute with one another. We cannot have the term propor-

tional to Φ(d)(0, 0), because, when x = 0 and t = 0, the solution must be still off-diagonal.

Thus, we impose Φ(o)(0, 0) ≡ Φ(0, 0) and Φ(d)(0, 0) ≡ 0. Moreover, if the matrices W

and Z were not diagonalised, then Φ(x, t) would have also had entries on its diagonal part,

but we want to take only its off-diagonal entries. Indeed, once put Φ(o)(0, 0) ≡ Φ(0, 0),

one can check this by assuming that the exponential ei((W
(d)+W (o))x−(Z(d)+Z(o))t) can be

approximated by the Taylor series I2×2 + i((W (d) + W (o))x − (Z(d) + Z(o))t) + .... and,

then, by substituting it into the expression of Φ(x, t).

Let us suppose that the expression of the initial condition is

Φ(o)(0, 0) = ασ1 + βσ2, (2.43)

where α and β are arbitrary constants, and σ1 and σ2 are the Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 .

Let W0 and Z0 be proportional to σ3. Indeed, because of the property of the trace to be

invariant under cyclic permutations, it turns out that the trace of the similarity transfor-

mations for diagonalising the matrices W and Z in (2.19) is zero as well as W0 and Z0 are

2× 2 traceless matrices.

Since the off-diagonal Pauli matrices, σ1 and σ2, anti-commute with the diagonal Pauli

matrix σ3, we get

Ψ(o) = ασ1e
−2i(W0x−Z0t)ei(qx−(q2+2a2)t)σ3 , if s=+1, (2.44)

Ψ(o) = βσ2e
−2i(W0x−Z0t)ei(qx−(q2−2a2)t)σ3 , if s=-1. (2.45)

We have supposed β = 0 for the defocusing case s = +1 in (2.44), and α = 0 for the

focusing case s = −1 in (2.45). This is because Q is an off-diagonal matrix equals to

Q = aσ1e
i(qx−(q2+2a2)t)σ3 if s=+1, and equals to Q = −iaσ2e

i(qx−(q2−2a2)t)σ3 if s = −1,

and we choose to perturb with a matrix δQ with amplitude proportional to σ1 if s = +1 or

proportional to σ2 if s = −1. Moreover, since F satisfies the same evolution equation of

δQ and they are related with one another in (2.39), then the perturbation δQ and F must

be proportional to the same Pauli matrix. In turn, F is given in (2.41), so that the squared
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eigenfunctions must be those in (2.44) and (2.45). Finally, using the commutation and

anti-commutation rules of the Pauli matrices applied to the expression (2.41), the solution

of the LE is

F = −2ασ2e
−2i(W0x−Z0t)ei(qx−(q2+2a2)t)σ3 , if s = +1, (2.46)

F = 2βσ1e
−2i(W0x−Z0t)ei(qx−(q2−2a2))tσ3 , if s = −1. (2.47)

We observe that, in the case of the NLS equation written via 2×2 matrices, the differences

of the egeinvalues wj and zj are wj−wj+1 = 2wj and zj−zj+1 = 2zj for j = 1, 2 mod(2),

because of the commutation rules of the Pauli matrices. This does not hold for matrices

W and Z whose dimension is N > 2.

2.4.3 Spectral Stability Analysis

The matrices W and Z are simultaneously diagonalised and are related one with the other

by means of formula (2.21) and thus their eigenvalues are related as well 6,

w = ±
√
κ2 − sa2, z = −2κw, (2.48)

where we are considering the plane wave with q = 0.

In both the focusing and defocusing (s = −1 and s = +1) cases, the eigenvalues w and

z are reals if and only if κ ∈ Sx and St, respectively. In the defocusing case s = +1 the

solution u = ae−2ia2t is linearly stable because the x-spectrum

Sx = {−∞ < κ ≤ −a} ⊕ {a ≤ κ < +∞}, (2.49)

is included in the spectrum of the operator T

St = Sx ⊕ {κ = iγ : −∞ < γ < +∞}. (2.50)

Both the spectra are shown in the figure 2.1.

In the focusing case s = −1, the solution u = ae2ia2t is linearly unstable. Indeed, the

6In order to obtain the eigenvalues w and z, we have solved the equations

Det(W − w I2×2) = 0, Det(Z − z I2×2) = 0,

with unknowns w and z, and Det(·) is the determinant.
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Figure 2.1: Defocusing case, a=1.

x-spectrum is

Sx = {−∞ < κ < +∞}⊕ {κ = −iγ : −a ≤ γ ≤ +a}, (2.51)

while t-spectrum is

St = {−∞ < κ < +∞}⊕ {κ = iγ : γ < −a or γ > +a}. (2.52)

In this case the branch −a < γ < +a belongs to Sx but not to St, as shown in the

figure 2.2. This is related to the MI phenomenon, indeed, in such a case, the squared

-2 -1 0 1 2
-2

-1

0

1

2

SX

-2 -1 0 1 2
-2

-1

0

1

2

ST

Figure 2.2: Focusing case, a=1.

eigenfunctions in (2.46) and (2.47) grow exponentially as time goes on.
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2.5 Wave Coupling and Solution of the Linearised Equation

for the CNLS System

In the following we give an introduction to the linear stability problem of the plane wave

solutions of the CNLS system within the integrability framework to prove that the main

objects to be computed are the eigenmodes’ wave numbers and frequencies defined on the

stability spectrum. In the presentation, we will follow [64].

For the CNLS system, we start by choosing the Lax operators X(x, t, κ) and T (x, t, κ) to

be

X(κ) = iκΣ +Q , T (κ) = 2iκ2Σ + 2κQ+ iΣ(Q2 −Qx) , (2.53)

where Σ, Q are matrix-valued functions of x and t, and κ is the spectral parameter, and

Σ =


1 0 0

0 −1 0

0 0 −1

 , (2.54a)

Q =


0 v∗1 v∗2

u1 0 0

u2 0 0

 . (2.54b)

Here and below the asterisk denotes complex conjugation and the four field variables

u1, u2, v1, v2 are considered as independent functions of x and t, and are conveniently

arranged as two two-dimensional vectors, that is

u =

 u1

u2

 , v =

 v1

v2

 . (2.55)

Then the matrix PDE (2.7) becomes, in this case,

Qt = −iΣ(Qxx − 2Q3) , (2.56)

which is equivalent to the two vector PDEs

ut = i[uxx − 2(v†u)u]

vt = i[vxx − 2(u†v)v] , (2.57)
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equivalent to the CNLS system upon setting

v1 = s1u1, (2.58a)

v2 = s2u2. (2.58b)

Here the dagger notation denotes the Hermitian conjugation (which takes column-vectors

into row-vectors). In this simpler setting, if Q(x, t) is a given solution of the equation

(2.56), the linearised equation (2.33) for a small change δQ(x, t) reads

δQt = −iΣ[δQxx − 2(δQQ2 +QδQQ+Q2δQ)] . (2.59)

Moreover, the Propositions 2.4.1 and 2.4.2 are still satisfied for the CNLS system (and

any multi-component system, satisfying certain hypothesis, see [64]), and the fact that the

perturbation δQ and the solution F are linked by the integral (2.39) guarantees that the

matrix F (x, t, κ) satisfies this same linear PDE, namely

Ft = −iΣ[Fxx − 2(FQ2 +QFQ+Q2F )] , (2.60)

and, for κ ∈ Sx, these solutions should be considered as eigenmodes of the linearised

equation.

The spectral analysis is based on the following

Proposition 2.5.1. The matrix

F = i[Σ , Ψ] , (2.61)

defined in the Proposition 2.4.2, along with (2.53), in the case of the CNLS system, satisfies

the same linear equation satisfied by δQ.

The Proposition 2.5.1 has been specialised to the case of the CNLS equation, but it is stated

in a general form in [64] (see Proposition 4 of the paper), in which it is formulated for any

multi-component system provided that each term in the expression of the Lax operators

has a local character.

We can compute analytically the matrix F if the fundamental matrix solution ψ(x, t, κ) of
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the Lax pair corresponding to the solution Q(x, t) is explicitly known. Here we devote our

attention to the stability of the plane wave solution of (2.56), or of the equivalent vector

system (2.57),

u(x, t) = ei(qxσ3−νt)a , v(x, t) = ei(qxσ3−νt)b , ν = q2 + 2b†a . (2.62)

In these expressions a and b are arbitrary, constant and, with no loss of generality, real

2-dim vectors:

a =

 a1

a2

 , b =

 b1

b2

 . (2.63)

The plane wave solution of the CNLS system is obtained by setting

b1 = s1a1, (2.64a)

b2 = s2a2. (2.64b)

The reduced version of this system is the NLS one-component version, for u2 = v2 =

0, v1 = −u1, that turns out to be a good model of the Benjamin-Feir (or modulational)

instability which is of great physical relevance (see Chapter 2).

The main focus of this section is to understand how the spectrum Sx changes by varying the

parameters a1, a2, b1, b2 and q. In matrix notation, see (2.54b), this plane wave solution

(2.62) reads

Q = GΞG−1 , Ξ =


0 b1 b2

a1 0 0

a2 0 0

 , G(x, t) = ei(qxσ−q
2tσ2+ptΣ) , (2.65)

where the matrix Σ has the expression (2.54a) while the matrix σ is

σ =


0 0 0

0 1 0

0 0 −1

 , (2.66)

and we conveniently introduce the real parameters

p = b1a1 + b2a2 (2.67a)
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r = b1a1 − b2a2 (2.67b)

which will be handy in the following. Next we observe that a fundamental matrix solution

ψ(x, t, κ) of the Lax equations has the expression

ψ(x, t, κ) = G(x, t)ei(xW (κ)−tZ(κ)) , (2.68)

where the x, t-independent matrices W and Z are found to be

W (κ) =


κ −ib1 −ib2

−ia1 −κ− q 0

−ia2 0 −κ+ q

 = κΣ− qσ − iΞ , (2.69)

Z(κ) =


−2κ2 i(2κ− q)b1 i(2κ+ q)b2

i(2κ− q)a1 2κ2 − q2 − a2b2 a1b2

i(2κ+ q)a2 a2b1 2κ2 − q2 − a1b1

 = κ2−2κW (κ)−W 2(κ)−p ,

(2.70)

with the property that they commute, [W , Z] = 0, consistently with the compatibility

condition ψxt = ψtx. We consider here the eigenvalues wj(κ) and zj(κ), j = 1, 2, 3, of

W (κ) and, respectively, of Z(κ) as simple, as indeed they are for generic values of κ. In

this case both W (κ) and Z(κ) are diagonalized by the same matrix U(κ), namely

W (κ) = U(κ)WD(κ)U−1(κ) , WD = diag{w1, w2, w3}

Z(κ) = U(κ)ZD(κ)U−1(κ) , ZD = diag{z1, z2, z3} . (2.71)

Next we construct the matrix F (x, t, κ) via its definition, see (2.61), (2.26) and (2.27),

F (x, t, κ) = [Σ , φ(x, t, κ)M(κ)φ−1(x, t, κ)] , (2.72)

which, because of the explicit expression (2.68), reads

F (x, t, κ) = G(x, t)
[
Σ , ei(xW (κ)−tZ(κ))M(κ)e−i(xW (κ)−tZ(κ))

]
G−1(x, t) . (2.73)

As for the matrix M(κ), it lies in a nine-dimensional linear space whose standard basis is

given by the matrices B(jm), whose entries are

B
(jm)
kn = δjkδmn , (2.74)
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where δjk is the Kronecker symbol (δjk = 1 if j = k and δjk = 0 otherwise). However the

alternative basis V (jm), which is obtained via the similarity transformation

V (jm)(κ) = U(κ)B(jm)U−1(κ) , (2.75)

where U(κ) diagonalizes W and Z (see (2.71)), is more convenient to our purpose. Indeed,

expanding the generic matrix M(κ) in this basis as

M(κ) =

3∑
j,m=1

µjm(κ)V (jm)(κ) , (2.76)

the scalar functions µjm being its components, and inserting this decomposition into the

expression (2.73), leads to the following representation of F

F (x, t, κ) = G(x, t)
3∑

j,m=1

µjm(κ)ei[(x(wj−wm)−t(zj−zm)]F (jm)(κ)G−1(x, t) , (2.77)

where we have introduced the x, t-independent matrices

F (jm)(κ) =
[
Σ , V (jm)(κ)

]
. (2.78)

The advantage of expression (2.77) is to explicitly show the dependence of the matrix F

on the six exponentials ei[(x(wj−wm)−t(zj−zm)].

The elements µjk(κ) are arbitrary because they are the coefficients on the basis V jk(κ)

used to write the matrix M(κ) in (2.76), that is, in turn, arbitrary.

2.6 Eigenmodes’ Wave Numbers and Frequencies for Multi-

Components Systems

The Proposition 2.5.1 stated in the previous section guarantees that, for any choice κ of

the functions µjm(κ), the expression (2.77) be a solution of the linearized equation (2.59),

see (2.60). The requirement to have δQ bounded is equivalent to require F bounded.

Looking at the formula (2.77), since µjk are arbitrary, it is sufficient to impose that only

one difference, say k1 − k2, is real and the corresponding µ12 6= 0, and to impose that the

other coefficients are µ23 = µ31 = 0.’ The further condition that the solution δQ(x, t) be

bounded in x at any fixed time t results in integrating expression (2.77) with respect to the
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variable κ over the spectral curve Sx of the complex κ-plane:

δQ(x, t) =

∫
Sx

dκF (x, t, κ) . (2.79)

The spacial spectrum Sx can be geometrically defined as follows:

Definition 2.6.1. The x-spectrum Sx, namely the spectral curve on the complex κ-plane,

is the set of values of the spectral variable κ such that at least one of the three complex

numbers kj = wj+1 − wj+2, j = 1, 2, 3 (mod 3), or explicitly

k1(κ) = w2(κ)−w3(κ) , k2(κ) = w3(κ)−w1(κ) , k3(κ) = w1(κ)−w2(κ) , (2.80)

is real.

Observe that the kj ’s play the role of eigenmode wave-numbers (see (2.77)).

The requirement to have δQ bounded is equivalent to require F bounded. Looking at the

formula (2.77), since µjk are arbitrary, it is sufficient to impose that only one difference, say

k1−k2, to be real and the corresponding µ12 6= 0 and to impose that the other coefficients

are µ23 = µ31 = 0.

To the purpose of establishing the stability properties of the continuous wave solution (2.62)

we do not need to compute the integral representation (2.79) of the solution δQ of (2.59).

Indeed, it is sufficient to compute the eigenfrequencies

ω1(κ) = z2(κ)− z3(κ) , ω2(κ) = z3(κ)− z1(κ) , ω3(κ) = z1(κ)− z2(κ) , (2.81)

as suggested by the exponentials which appear in (2.77). Their expression follows from the

matrix relation (2.70)

zj = κ2 − 2κwj − w2
j − p , (2.82)

and read

ωj = −kj(2κ+ wj+1 + wj+2) , j = 1, 2, 3 (mod 3) . (2.83)

This expression looks even simpler by using the relation w1 +w2 +w3 = −κ implied by the

trace of the matrix W (κ) (see (2.69)) and finally reads

ωj = kj(wj − κ) , j = 1, 2, 3 . (2.84)

The consequence of this expression (2.84), which is relevant to our stability analysis, is

given by the following
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Proposition 2.6.2. The continuous wave solution (2.62) is stable against perturbations

δQ whose representation (2.39) is given by an integral which runs only over those values

of κ ∈ Sx which are strictly real.

The proof of this Proposition is provided in [64].



Chapter 3

The 3-Wave Resonant Interaction

Model

In this Chapter we introduce the 3WRI system and we reformulate it in order to include all

the possible velocity orderings and all the possible choices of signs in just one Lax pair. This

reformulation simplifies the computations in view of a complete classification of the spatial

stability spectra in the parameters space (see Chapter 4). Then, we apply the formalism

developed in [64] as introduced in the Chapter 2. Finally, we write the differences of the

eigenvalues of the matrices W in terms of the differences of the eigenvalues of the matrices

Z.

3.1 Linear Stability Analysis of the 3WRI Equations: Histori-

cal Overview and State of the Research

The 3-wave resonant interaction (3WRI) model describes the dynamics of three waves inter-

acting by a quadratic nonlinearity and without dispersion and dissipation. The nonlinearity

term can be considered like a perturbation at the first order of the linear dynamics [55, 78].

The weak, quadratic nonlinearity and the neglected dispersion make the system the simplest

model to be analysed in case of resonant interaction. The interaction is called ’resonant’

because it takes place only when the frequencies ηj and the wave numbers νj of each wave
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with j = 1, 2, 3 satisfy particular relations, named resonant conditions:

η1 + η2 + η3 = 0, ν1 + ν2 + ν3 = 0. (3.1)

Moreover, the dispertionless dynamics entails that for time going to ±∞ the solutions are

well separated and do not decay, and the model is integrable [58]. The dynamics with

dispersion can be also described by adding a dispersive term that, in general, makes the

model non-integrable, unless it is a second order correction to the linear dynamics that acts

in a timescale longer than the nonlinearity. However, this correction affects substantially

the stability of the system. For instance, in the research work [56], a triplet of dark solitons

with locked velocity has been found to be always unstable. Nevertheless, a quasi-negligible

second order dispersion balances the nonlinearity effect so that a stable triplet of dark soli-

tons can propagate.

In this thesis we are interested in the linear stability analysis of the simplest solutions of the

3WRI system, i.e. the plane waves. The stability of a resonant triad was studied first in

1967 by Hasselmann for spatially uniform plane waves and he formulated a stability criterion

(named Hasselmann’s criterion)[89]:

”the nonlinear coupling between two infinitesimal components 1 and 2 and a finite compo-

nent 3 whose wave-numbers and frequencies satisfy the resonant-interaction conditions

η1 ± η2 = η3, ν1 ± ν2 = ν3,

is unstable for the sum interaction and neutrally stable for the difference interaction.”

In other words, the criterion above states that the wave with highest frequency exhibits

instability [44, 90]. The dynamics of a conservative system of coupled plane waves with

amplitudes modulated in time is described by the ordinary differential equations

dA1

dt
= s1A

∗
2A
∗
3 ,

dA2

dt
= s2A

∗
1A
∗
3 ,

dA3

dt
= s3A

∗
1A
∗
2 ,

(3.2)

where Aj = Aj(t), with j = 1, 2, 3, are complex slowly varying amplitudes, sj are signs

such that s2
j = 1, and the asterisk denotes the complex conjugation. Let us suppose

that the wave A3 is the ’pump’, whose amplitude is initially finite and it is approximately

constant in time, while the amplitudes of the other two interacting waves are infinitesimal
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and dependent on time. These assumptions lead the system (3.2) to reduce to [44, 57]

dA1

dt
= s1A

∗
2A
∗
3 ,

dA2

dt
= s2A

∗
1A
∗
3 ,

dA3

dt
= 0 .

(3.3)

and because A3 is constant in time, we obtain

d2Aj
dt2

≈ s1s2Aj |A3|2, j = 1, 2. (3.4)

If s1 = s2 = 1 and s3 = −1, then the infinitesimal amplitudes grow exponentially until the

linear approximation is not longer valid, the amplitudes A1 and A2 become comparable to

the amplitude A3 which, in turn, depletes. However, this process is periodic, in the sense

that, after an exact period 2t0
1, A1 and A2 deplete and A3 grows [57]. Thus, A1 and A2 are

periodic, and A3 is nonlinearly unstable: the linear approximation is not valid anymore when

the infinitesimal amplitudes reach the value of the finite one. If s1 = s2 = s3, all the three

amplitudes grow indefinitely and the system exhibits explosive instability [57, 60, 61, 104].

Beside research works on the system of ordinary differential equations (3.2), further research

has been carried out on the system (3.2) and on the stability of its solutions. In particular,

if the amplitudes Aj depend on both time and space, such that the system (3.2) involves

partial derivatives with respect to both time t and space x, general solutions are wave

packets [105, 106]. The starting point of the investigation in this thesis is the 3WRI model,

that is written in general form as an integrable system of three PDEs in 1 + 1 dimensions

[55] 
q1t + c1q1x = s1q

∗
2q
∗
3 ,

q2t + c2q2x = s2q
∗
1q
∗
3 ,

q3t + c3q3x = s3q
∗
1q
∗
2 ,

(3.5)

where qj = qj(x, t) are complex amplitudes, cj is the group velocity of the jth-packet, sj

such that s2
j = 1. The subscripts x and t denote the partial derivatives with respect to

space x and time t, respectively, while the asterisk stands for the complex conjugation.

By assuming that the resonant conditions (3.1) are satisfied, the system (3.5) describes

1t0 is the time that the infinitesimal solutions A1 and A2 take to become comparable to the amplitude

A3.



Chapter 3. The 3-Wave Resonant Interaction Model 41

several processes that can be classified mainly by the signs sj and by the ordering of

the velocities cj [57]. Indeed, the system (3.5) comes from perturbing the differential

equation uTT + Ω(−i∂X)2u = N(u), where Ω(η) is a real nonnegative polynomial, with

Ω2(0) > 0, and N is twice differentiable function, with N(0) = N ′(0) = 0, enclosing

nonlinear terms [55, 78, 79]. After using the multi-scale method, one gets an equation for

the lower order error term and, in order to avoid that this term grows linearly, we need to

set equal to zero some terms such that, after rescaling, we obtain the system (3.5) with

signs sj = sgn(N ′′(0)νj), j = 1, 2, 3 [55]. Therefore, the system (3.5), with the resonant

conditions (3.1) and with a sign sj different from the other two signs, is associated to

decay instability. On the other hand, the system (3.5) can also be obtained, with the same

procedure described above, by replacing the term N(u) with the term 2 N(ux), such that

the signs are defined as sj = −sgn(N′′(0)νjηmηl), for j, l, m = 1, 2, 3 and all distinct [55].

As a result, the conditions (3.1) are satisfied for s1 = s2 = s3, provided that the ratios

ηj
νj

are all positive. This is the case known as explosive instability. Indeed, by considering

wave packets as solutions, we can individuate the solutions with explosive behaviour via the

analysis of the Manley-Rowe relations 3 [107]∫
R
|q1|2 dx− s1s2

∫
R
|q2|2 dx = I12, (3.6a)

∫
R
|q2|2 dx− s2s3

∫
R
|q3|2 dx = I23, (3.6b)

∫
R
|q3|2 dx− s1s3

∫
R
|q1|2 dx = I31, (3.6c)

with qj being a smooth function satisfying the condition |qj |2 → 0 for |x| → ∞, where | · | is

the modulus 4 and I12, I23 and I13 being constants. The equations (3.6) are conservation

2The subscript x denotes the derivative with respect to x of the solution u.
3If we multiply each equation for the envelope qj by its complex conjugate q∗j , and if we add to this

equation the equation for q∗j multiplied by qj , we obtain an equation for the action of every envelope [55]

(that is the energy of the wave divided by ηj [57])

d

dt

∫
R
|qj |2dx = 2sj

∫
R

Re{q1q2q3}dx, j = 1, 2, 3,

and Re{·} is the real part of the product q1q2q3. Finally, by summing two by two these equations and by

integrating them with respect to the time, we get the Manley-Rowe relations. [55]
4This is a consequence of the fact that the solutions qj are wave packets and so they are also square-

integrable
∫
R |qj |

2 dx <∞.
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laws of the action exchanged between the interacting envelopes [108, 109].

By looking at the relations (3.6), we deduce that when all the signs sj are equal one to

another, the system (3.5) can exhibit solutions with spikes at a finite time because the

conserved quantity Ikj may not bound the action
∫
R |qj |

2 dx of any packet in the left-hand

side of the equations (3.6). Indeed, the envelope can grow up indefinitely and blow up

at a finite time although their mutual exchange of action allows Ikj to remain constant

[60, 55, 110]. If instead one sign is different from the others, the system (3.5) describes

two kind of interactions: decay instability or stimulated backscatter [57]. For example, let

us consider s3 = −1 and s1 = s2 = 1, then the Manley-Rowe relations become 5∫
R
|q1|2 dx−

∫
R
|q2|2 dx = I12, (3.7a)

∫
R
|q3|2 dx +

∫
R
|q1|2 dx = I13, (3.7b)

∫
R
|q2|2 dx +

∫
R
|q3|2 dx = I23. (3.7c)

With this choice of signs, the constants Ikj are nonnegative and bound any norm of the

envelopes at any time, such that the solutions do not grow up indefinitely and remain

bounded (see [55] and [110] for more details). This process is interesting because, during

the interaction between the envelopes, linear instability may occur. In this respect, in [111],

by using the IST formalism and numerical techniques, the authors studied the stability of

a finite amplitude wave interacting with two initially infinitesimal amplitude waves. In this

way, the system (3.5) reduces to a system of two linear equations for the initial infinitesimal

waves. Because the small amplitudes can grow up during the interaction, after a certain

time, nonlinearity comes into play and the linear approximation is not valid. However, there

is a connection between the linearisation of the 3WRI model and the Zakharov-Shabat

problem describing its nonlinear evolution. In particluar, after some transformations, the

3WRI model describing the interaction between a ’pump’ and two infinitesimal sidebands,

reduces to three Zhakarov-Shabat problems [57]. This is because the system is disper-

sionless, the envelopes are well separated in the initial and the final states, and hence the

5Only two conserved quantities Ikj are linearly independent. Indeed, for I12 and I13 linearly independent,

then I23 = I12 − I13.
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Zhakarov-Shabat scattering data contain all the information about the final state. A con-

clusion about the linear stability analysis of the 3WRI model is that, if the highest-frequency

pump has the middle velocity and contains solitons, then linear instability occurs and in the

final state the pump can show a spike at a finite time (explosive instability) or can deplete

(decay instability) [57]. We highlight that this analysis was conducted by supposing that

the potential of the eigenvalues problem goes to zero as x→ ±∞ (see also [58]).

Although, the Manley-Rowe relations are useful to predict if square-integrable solutions

blow up at a finite time, we can not use them when plane waves solutions are considered.

For this reason, even if we do not exclude the possibility of the existence of solutions with

explosive instability, in our analysis, we need to consider any choice of signs, also that one

in general associated to explosive instability, i.e. s1 = s2 = s3.

Moreover, most of the research works lead so far dealt with wave packets, not with plane

waves as, instead, we shall do. In addition, the linear stability analysis was carried out by

considering the two side-bands and the pump as solutions of the three 3WRI system. The

framework of our research is more general, in the sense that we deal with a system of three

plane waves, we perturb every solution and then every solution interacts with the pertur-

bations of the other two interacting waves. In other words, we are considering a system of

three pumps interacting in resonance one with each other and every pump interacts with

two side-bands.

In the literature, the system (3.5) has been written in different forms, obtained by redefining

the variables qj and the velocities cj . This is because, from the computational point of

view and depending on the applications, a form may be more convenient than others. For

instance, let us consider the case in which one sign is different from the others. If one puts

q1 = q̄1, q2 = q̄∗2 and q3 = q̄3 and s1 = −p1, s2 = p2 and s3 = −p3, the system (3.5) can

be written in a more general form by introducing a complex coupling constant K [112][56]
q̄1t + c1q̄1x = −p1K

∗q̄2q̄
∗
3 ,

q̄2t + c2q̄2x = p2Kq̄1q̄3 ,

q̄3t + c3q̄3x = −p3K
∗q̄∗1 q̄2.

(3.8)

Although the equations (3.8) describe the interactions between three waves in a homoge-

neous medium [58, 111], they can be mapped into a system with a phase factor describing

the interactions in a medium with weak inhomogeneity and an IST problem is formulated

in order to understand the effect of inhomogeneities on the three waves interaction [112].
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In this thesis we apply the spectral analysis method developed in [64] to plane waves

only. On the other hand, several other researches were carried out on more complicated

solutions of the 3WRI system. In fact, it is well known that the 3WRI model has so-

lutions that are triplets of solitons travelling together with a common velocity, the so

called simultons. Interesting research works were conducted on simultons in the last

years [82, 113, 114, 115, 116]. Indeed, the system (3.12) has also been used in a co-

variant form [56] obtained transforming the fields q̄j as u1(z, y) = K
√

c2
c1−c2 q̄1(x, t),

u2(z, y) = K
√

c1
c2−c1 q̄2(x, t), u3(z, y) = K

√
c1c2 q̄3(x, t) and with ’velocities’ of the soli-

tons V1 = 1
c1−c3 , V2 = 1

c2−c3 satisfying the condition 0 < V1 < V2. After that transfor-

mations, z and y are the temporal and the spatial variable, respectively. The equations

so obtained have a simulton solution constituted by three dark solitons which are always

unstable unless the 3WRI system is perturbed via a weak dispersion. It was observed that

this weak dispersion reduces the MI [56]. Even if the perturbed system should not have

solitons, the dispersion parameters are chosen such that only the shape of the soliton are

slightly modified and at the same time the instability is reduced [56]. In the same work,

the analysis and the classification of the stabilities according to the signs is carried out.

The stability of a simulton composed by two bright and a dark solitons (BBD) was studied

in the paper [114]. Let c1, c2 and c3 be the velocities of the triad solutions of the 3WRI

system and c be the velocity of the simulton. It was found that when c is brought below a

critical value, that is

cuns =
2c1c2

c1 + c2 −Q(c1 − c2)
, (3.9)

the simulton becomes unstable. Q depends on the parameters involved on the expression

of the simulton, and when −1 < Q < 1, we have c1 < cuns < c2. Furthermore, an unstable

simulton decays in a stable one emitting a pulse when c is brought above the value cuns and

the simulton becomes a ’boomeron’ in the sense that its final velocity is different from the

initial one. The stability was also analysed under collision between two stable simultons,

and it was found they can pass through each other maintaining their shape if their velocities

are different, and repulse or attract each other if their velocities are the same. A similar

analysis was carried out on the interaction between a stable or an unstable simulton with

a linear wave [115]. Bearing in mind the outcomes described above, an interesting future

direction of research is the stability analysis of rational triads, whose analytical expressions

were found by Darboux Dressing Transformation in [72, 83].
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3.2 Lax Pair

As explained in Chapter 1, the main aim of this thesis is to individuate values of the physical

parameters for which linear instability occurs. In general, we observe that a change of the

ordering of the velocities is reflected into a change of the Lax pair associated to the system.

This would be quite impractital in view of a complete classification of the instabilities

(and of the stability spectra that we will introduce later in this work) with respect to the

parameters. For this reason, in the following discussion, first we observe some symmetries

in the 3WRI system, and then we use such symmetries to write a general expression for

the Lax operators including all possible orderings of the velocities. This general expression

allows us to compute all the necessary analytic tools and, only in the end, deduce what

happens if we change the velocities ordering without further complicated computations.

3.2.1 Symmetries

The Lax operators associated with the system (3.5) [53, 58] make our computations hard

to carry out because of the square roots in their expressions. In order to write the Lax

operators in the easy form, one can rescale the fields qj as follows [55]

qj =

√
∆1∆2∆3

∆j
sjuj , j = 1, 2, 3, (3.10)

where s2
j = 1 and

∆1 = c2 − c3, ∆2 = c1 − c3, ∆3 = c1 − c2, (3.11)

and the system (3.5) becomes
u1t + c1u1x = s2s3|∆1|u∗2u∗3 ,

u2t + c2u2x = s1s3|∆2|u∗1u∗3 ,

u3t + c3u3x = s1s2|∆3|u∗1u∗2 .

(3.12)

The symbol | · | denotes the absolute value of the differences of the velocities which is

defined as

|ci − cj | =


ci − cj if ci > cj ,

cj − ci if cj > ci ,

i, j = 1, 2, 3. (3.13)
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Thus, once fixed, say, the velocity c3, the system (3.12) takes two different expressions

corresponding to the orderings c1 > c2 and c2 > c1. The same argument holds when c1, or

c2, is fixed. Therefore, the system (3.12) encloses six systems associated to every velocities

ordering 6 and they correspond to six Lax Pairs. We can not write all the six Lax pairs in

one, because the differences of the velocities appear only after computing the compatibility

condition for the Lax operators. Every Lax operator contains terms proportional to the

single velocities cj , but not terms proportional to their differences, that, instead, appear

after the computation of the commutator between the two operators. Precisely, the six

3WRI systems are:

C1) c1 > c2 > c3
u1t + c1u1x = s2s3(c2 − c3)u∗2u

∗
3 ,

u2t + c2u2x = s1s3(c1 − c3)u∗1u
∗
3 ,

u3t + c3u3x = s1s2(c1 − c2)u∗1u
∗
2 ,

(3.14)

C2) c1 > c3 > c2
u1t + c1u1x = −s2s3(c2 − c3)u∗2u

∗
3 ,

u2t + c2u2x = s1s3(c1 − c3)u∗1u
∗
3 ,

u3t + c3u3x = s1s2(c1 − c2)u∗1u
∗
2 ,

(3.15)

C3) c3 > c1 > c2
u1t + c1u1x = −s2s3(c2 − c3)u∗2u

∗
3 ,

u2t + c2u2x = −s1s3(c1 − c3)u∗1u
∗
3 ,

u3t + c3u3x = s1s2(c1 − c2)u∗1u
∗
2 ,

(3.16)

C4) c3 > c2 > c1
u1t + c1u1x = −s2s3(c2 − c3)u∗2u

∗
3 ,

u2t + c2u2x = −s1s3(c1 − c3)u∗1u
∗
3 ,

u3t + c3u3x = −s1s2(c1 − c2)u∗1u
∗
2 ,

(3.17)

6In this discussion, we are not considering the choices of the signs.
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C5) c2 > c3 > c1
u1t + c1u1x = s2s3(c2 − c3)u∗2u

∗
3 ,

u2t + c2u2x = −s1s3(c1 − c3)u∗1u
∗
3 ,

u3t + c3u3x = −s1s2(c1 − c2)u∗1u
∗
2 ,

(3.18)

C6) c2 > c1 > c3
u1t + c1u1x = s2s3(c2 − c3)u∗2u

∗
3 ,

u2t + c2u2x = s1s3(c1 − c3)u∗1u
∗
3 ,

u3t + c3u3x = −s1s2(c1 − c2)u∗1u
∗
2 .

(3.19)

Since our aim is to classify the spectra of the Lax operators with regard to the parameters

involved in the 3WRI model, we should examine every Lax Pair (3.14)-(3.19) to get a

complete classification. Nevertheless, our analysis can be further simplified because in the

system of equations (3.12) only the product of signs appear. This implies there are only

four possible products of signs, each one corresponding to two different combinations of

the signs 7:

S1) for s1 = s2 = −s3
s2s3 = −1,

s1s3 = −1,

s1s2 = 1,

(3.20)

S2) for s1 = s3 = −s2
s2s3 = −1,

s1s3 = 1,

s1s2 = −1,

(3.21)

7For example, the case s1 = s2 = −s3 encloses two combinations of signs that are s1 = s2 = −1 and

s3 = 1 or s1 = s2 = 1 and s3 = −1.
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S3) for s2 = s3 = −s1
s2s3 = 1,

s1s3 = −1,

s1s2 = −1,

(3.22)

S4) for s1 = s2 = s3
s2s3 = 1,

s1s3 = 1,

s1s2 = 1.

(3.23)

At this point, it is worth reminding that we are including also the ”explosive case” (i.e.

the case (3.23)). In fact, as already mentioned, we do not have reason to exclude this

case. A priori, we cannot know if the system with the combination of signs in (3.23) is

actually explosive for the plane wave solutions because we can not predict the possibility

of explosive behaviour via the Manley-Rowe relations, for the plane wave solutions are not

square-integrable.

By combining the systems (3.14)-(3.19) with every possible choice of signs (3.20)-(3.23), we

get in total twenty-four systems of equations, everyone denoted by the letter Cj , associated

to a Lax pair, and by the letter Sj , associated to the choice of signs. Therefore, for instance,

the system of equations C1S1 is the one corresponding to the Lax pair C1 with a choice of

signs S1. However, only twelve cases are relevant because the others can be obtained by

the former via symmetry, as will be shown below.

Proposition 3.2.1. For every fixed choice of signs, if the velocities ordering is reversed,

the resulting system is symmetric to the former one by relabelling of the indices, that is

equivalent to exchange the bigger velocity with the smaller velocity.

Proof. Let us consider, say, the velocities orderings C1, (3.14), and C4, (3.17), and let us

suppose that the signs s1s2, s1s3 and s2s3 are fixed and are the same for both systems.

In the system (3.14) the differences of the velocities are all positive, while in the system

(3.17) they are all negative. However, there is a minus in front of the negative differences

in (3.17), such that the sign in front of the interaction term is the same of the system
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(3.14). In particular, the systems (3.14) and (3.17) are equivalent, in the sense that one

can be obtained from the other by a relabelling. Indeed, after the substitutions 1 → 3,

3 → 1 and 2 → 2 in the system (3.17) we get the system (3.14), and vice versa. Thus, if

we consider first the system (3.17) in which the solution u1 has the smaller velocity and u3

has the bigger one, after relabelling, u1 has the bigger velocity and u3 has the smaller one.

This reasoning can be extended to all orderings of velocities.

As a consequence of the Proposition 3.2.1, we may consider only three orderings instead

of six. In particular, the equivalent orderings are: C1 with C4, C2 with C5 and C3 with

C6. We note that once the signs are fixed, for example after choosing the signs S4,

the signs of the interactions are positive in all the systems (3.14)-(3.19), and this is a

consequence of the presence of the modulus |∆j | in the system (3.5). Since the choice

s1s2 = s1s3 = s2s3 = −1 is not allowed, it looks like the negative interactions are not

allowed. Nevertheless, there is another symmetry in the model that makes the interaction

of any sign possible.

Proposition 3.2.2. For any choice of signs and any velocities ordering, the 3WRI system

admits interaction with both positive and negative signs.

Proof. Let us consider the system (3.14) with fixed signs. If we change every solution

uj → −uj and then we define −uj = ūj , then we get that the solutions ūj satisfy the

same system of uj with the same interaction, namely, ūj are also solutions of the model.

On the other hand, if we come back to uj , we get a 3WRI system for uj , but with the sign

of the interaction opposite to the former, i.e. negative.

Proposition 3.2.1 and Proposition 3.2.2 suggest that we can change the interaction sign

by changing simultaneously the signs of all the amplitudes of the solutions uj . Below, we

shall show that, once the ordering of the velocities is fixed, the systems for ūj and for uj

describe the same processes.



Chapter 3. The 3-Wave Resonant Interaction Model 50

3.2.2 A General Expression for the 3WRI System

In order to fulfil the stability analysis, we need to deal with six Lax pairs (or with three Lax

pairs if we want to rediscover the other three orderings by symmetry) and, once fixed the

velocities ordering, we will vary the signs to reproduce the four cases S1, S2, S3 and S4.

However, our analysis can be simplified further because the cases analysed in the previous

section can be rediscovered if the 3WRI model is interpreted and written in a particular

fashion (as explained below).

Let us consider the 3WRI model
u1t + c1u1x = s1(c2 − c3)u∗2u

∗
3 ,

u2t + c2u2x = s2(c1 − c3)u∗1u
∗
3 ,

u3t + c3u3x = s3(c1 − c2)u∗1u
∗
2 ,

(3.24)

where sj are signs such that s2
j = 1, j = 1, 2, 3, and the velocities and their orderings

can be whatever 8. Indeed, in some of the systems (3.14)-(3.19), the differences cj − cj+1

appear with a minus in front of them. In the system (3.24), the sign minus is included in

the definition of sj and, for this reason, there are eight possible choices of signs:

S+
1 ) s1 = s2 = 1, s3 = −1;

S−1 ) s1 = s2 = −1, s3 = 1;

S+
2 ) s1 = s3 = 1, s2 = −1;

S−2 ) s1 = s3 = −1, s2 = 1;

S+
3 ) s2 = s3 = 1, s1 = −1;

S−3 ) s2 = s3 = −1, s1 = 1;

S+
4 ) s1 = s2 = s3 = −1;

S−4 ) s1 = s2 = s3 = 1.

8We are taking into account also the combinations of signs not included in the classification of the

choices Sj .
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The combination S+
1 is obtained from the combination S−1 by a symmetry. To prove that,

let us consider the 3WRI system for the solution u = u(x, t)
u1t + c1u1x = s1(c2 − c3)u∗2u

∗
3 ,

u2t + c2u2x = s2(c1 − c3)u∗1u
∗
3 ,

u3t + c3u3x = s3(c1 − c2)u∗1u
∗
2.

(3.25)

Proposition 3.2.3. In the system (3.25), the interaction term is left invariant by changing

all the signs sj , (see also [57]).

Proof. The system (3.25) admits solutions like ūj = eiθjuj , where θj are arbitrary phases.

We also write s̄j = |s̄j |ei arg(s̄j), with |s̄j | = 1 and

arg(s̄j) =


0 if s̄j = 1,

π if s̄j = −1,

j = 1, 2, 3, (3.26)

the signs s̄j are mapped into the signs sj via the following transformation

s̄j = ei(arg(sj)+φj), j = 1, 2, 3 (3.27)

and when we come back to the system for uj , we have
u1t + c1u1x = (c2 − c3)u∗2u

∗
3e
−i(θ1+θ2+θ3−arg(s1)−φ1)

u2t + c2u2x = (c1 − c3)u∗1u
∗
3e
−i(θ1+θ2+θ3−arg(s2)−φ2)

u3t + c3u3x = (c1 − c2)u∗1u
∗
2e
−i(θ1+θ2+θ3−arg(s3)−φ3) .

(3.28)

The system (3.28) is equivalent to the system
ū1t + c1ū1x = (c2 − c3)ū∗2ū

∗
3e
i arg(s̄1)

ū2t + c2ū2x = (c1 − c3)ū∗1ū
∗
3e
i arg(s̄2)

ū3t + c3ū3x = (c1 − c2)ū∗1ū
∗
2e
i arg(s̄3) ,

(3.29)

only if φ1 = φ2 = φ3 ≡ φ and φ = θ1 + θ2 + θ3. Because sj and s̄j are just signs,

φ has value π or 0. Moreover, looking at the system for the solution ūj , one has also

e−i(θ1+θ2+θ3−arg(s̄j)) = e−i(θ1+θ2+θ3−arg(sj)−φ), with j = 1, 2, 3, and so ei(arg(s̄j)) = ei(arg(sj)+φ),

such that arg(s̄j) = arg(sj) + φ. Let us suppose s̄1 = 1, s̄2 = −1 and s̄3 = −1, there

are two possibilities: φ = 0, and arg(s1) = 0, arg(s2) = arg(s3) = π, or φ = π, and
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Velocities ordering

signs sj C1 C2 C3 C4 C5 C6

S+
1 −S1C1 S2C2 −S4C3 S1C4 −S2C5 S4C6

S−1 S1C1 −S2C2 S4C3 −S1C4 S2C5 −S4C6

S+
2 −S2C1 S1C2 −S3C3 S2C4 −S1C5 S3C6

S−2 S2C1 −S1C2 S3C3 −S2C4 S1C5 −S3C6

S+
3 −S3C1 S4C2 −S2C3 S3C4 −S4C5 S2C6

S−3 S3C1 −S4C2 S2C3 −S3C4 S4C5 −S2C6

S+
4 −S4C1 S3C2 −S1C3 S4C4 −S3C5 S1C6

S−4 S4C1 −S3C2 S1C3 −S4C4 S3C5 −S1C6

Table 3.1: 3WRI cases.

arg(s1) = π, arg(s2) = arg(s3) = 0.

This means that if we want to leave unchanged the interaction, we need to change both

the signs sj and the signs of all the amplitudes, i.e. ūj = −uj . In other words, changing

all the signs sj is equivalent to changing all the signs in front of the amplitudes of the

solutions uj .

As a consequence of the Proposition 3.2.3, we take into account only four possible choices

of signs (instead of eight) that, combined with the six possible velocities orderings, give

twenty-four systems in total, although we expect twelve relevant cases only. This means

there is another symmetry, in fact the Proposition 3.2.1 holds for the system (3.24) as well.

We can associate every case of the 3WRI model (3.12) to every case of the model described

by the system (3.24), as shown in the Table 3.1. Let us focus on the choices S+
1 and S−1 .

Once the signs S+
1 are fixed, the system 3WRI (3.24) gives us the right cases S2C2, S1C4

and S4C6 for the solution uj , while the other remaining cases are reversed, −S1C1, −S4C3,

−S2C5 and the sign minus denotes this reversion. Nevertheless, these cases are the right

ones for ūj = −uj , and can be also obtained with the right signs by changing the signs

sj → −sj . Moreover, by the Proposition 3.2.1, the case S1C1 is equivalent to the case

S1C4. The same argument holds for the other orderings.

Finally, we observe that with the model (3.12) one would have to deal with three Lax pairs

and then, to obtain the other orderings, we have to swap the bigger velocity with the smaller
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one. As we show in the following, with (3.24) we deal with only one Lax pair and, if we

wish, we can cover all cases by a change of sign or by changing the values of the velocities

without changing Lax pair.

3.3 Plane Wave Solutions

The system (3.24) admits as solutions the plane waves

u1 = a1e
i(η1t−ν1x), u2 = a2e

i(η2t−ν2x), u3 = a3e
i(η3t−ν3x), (3.30)

where aj are the amplitudes, ηj are the frequencies and νj are the wave numbers.

By choosing the reference frame moving with the wave u3, such that the velocity c3 = 0

and by substituting the solution u3 in the last equation of the system (3.24), we get the

resonant conditions

η1 + η2 + η3 = 0, ν1 + ν2 + ν3 = 0. (3.31)

The amplitude a3 takes the expression

a3 = is3a1a2
c1 − c2

η1 + η2
, a1, a2 ∈ R, (3.32)

thus, the solution u3 is

u3 = is3a1a2
c1 − c2

η1 + η2
e−i((η1+η2)t−(ν1+ν2)x). (3.33)

Moreover, by setting the expression (3.33) and the other two plane waves u1 and u2 in

(3.30) into the first two equations of the system (3.24), the nonlinear dispersion relations

are obtained

ν1 =
η1

c1
+ s1s3a

2
2

c2(c1 − c2)

c1(η1 + η2)
,

ν2 =
η2

c2
+ s2s3a

2
1

c1(c1 − c2)

c2(η1 + η2)
.

(3.34)

3.3.1 Galilean Invariance

The system (3.24) is invariant under the substitutions

uj(x, t) = ūj(x̄, t̄), (3.35)



Chapter 3. The 3-Wave Resonant Interaction Model 54

where space x and time t transform as the Galilei transformations
x = x̄+ vt̄ ,

t = t̄ ,

(3.36)

and the characteristic, linear velocities are

cj = c̄j + v, j = 1, 2, 3. (3.37)

Furthermore, by replacing the plane wave solutions in (3.35), we get 9

ηj = η̄j + vν̄j , ν̄j = νj , āj = aj , ∀j = 1, 2, 3. (3.38)

By the Galilean transformations for the frequencies and for the wave numbers (3.38), with-

out loss of generality, we choose, for example, η1 = q and η2 = ±q. However, due to the

resonant conditions (3.31), we can put η1 = η2 = q only, otherwise three wave resonance

does not occur.

From now on, we shall choose the reference frame in which c3 = 0, and we shall fix

η1 = η2 = q and, as a consequence, η3 = −2q. In this way, the plane waves (3.30) become

u1 = a1e
i(qt−ν1x), u2 = a2e

i(qt−ν2x), u3 = is3a1a2
c1 − c2

2q
e−i(2qt−(ν1+ν2)x), (3.39)

where the frequencies are

ν1 =
q

c1
+ s1s3a

2
2

c2(c1 − c2)

2qc1
,

ν2 =
q

c2
+ s2s3a

2
1

c1(c1 − c2)

2qc2
.

(3.40)

9Indeed,

uj(x, t) = ūj(x̄, t̄),

entails

aje
i(ηjt−νjx) = āje

i(η̄j t̄−ν̄j x̄),

and, by substituting (3.36),

aje
i(ηjt−νjx) = aje

i((ηj−vνj)t̄−νj x̄),

from which the formulas (3.38).



Chapter 3. The 3-Wave Resonant Interaction Model 55

3.4 Lax Pair Formulation

The phenomenon of the linear stability, is analysed using the feature of the 3WRI model

to be Lax-integrable. Indeed, a squared combination of fundamental solutions of the Lax

pair is presented like a combination of the ’eigenmode-solutions’ of the linearised equation

[64]. In this respect, the differences of the eigenvalues of the Lax operators are necessary

to write a solution of the linearised equation. In this section we give the explicit expressions

of the Lax operators involved in the Lax formulation of the problem. We show how a

similarity transformation allows us to break free the Lax operators from the dependence of

space and time variables, such that the Lax equation is reduced to the Liouville equations,

whose integration is trivial. A further gauge transformation simplifies our computations and

makes our formula easier to handle. Finally, we find out that every Lax operator, obtained

after such transformations, is written as a polynomial expression in the other Lax operator.

Therefore, we obtain the relation between the differences of the eigenvalues of the Lax

operators, and the solution of the linearised equation is provided in detail.

In the following, we apply the theory for multi-component systems provided in Chapter 2.

3.4.1 Linearised Equation

In this section we present the Lax pair and the linearised equation, following the research

work [64].

Since the 3WRI is Lax-integrable, we associate to the system (3.24) the Lax operators

X̃ ≡ X̃(x, t, κ) and T̃ ≡ T̃ (x, t, κ)

X̃ = −iκC̃ + U, T̃ = iκD̃ + V, (3.41)

where x and t are the space and time variables, respectively, κ is the spectral parameter,

and C̃ and D̃ are 3× 3 matrices depending only on the linear velocities cj

C̃ =


−1

3(c1 + c2) 0 0

0 1
3(2c2 − c1) 0

0 0 1
3(2c1 − c2)

 , (3.42)
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D̃ =
c1c2

3


−2 0 0

0 1 0

0 0 1

 . (3.43)

The matrices U = U(x, t) and V = V (x, t) involve the solutions 10 uj of the system (3.24),

the signs sj and the velocities cj , and they are defined as follows

U =


0 s1u1 −s1s2s3u

∗
2

s1s2s3u
∗
1 0 s3u3

s2u2 s1s2s3u
∗
3 0

 , (3.44)

V =


0 −s1c1u1 s1s2s3c2u

∗
2

−s1s2s3c1u
∗
1 0 0

−s2c2u2 0 0

 . (3.45)

Let us introduce the Lax pair

ψ̃x = X̃ψ̃, ψ̃t = T̃ ψ̃, (3.46)

whose solution ψ̃ = ψ̃(x, t, κ) is a 3× 3 matrix which satisfies the compatibility condition

ψ̃xt = ψ̃tx, (3.47)

that is equivalent to the equation for the Lax operators

X̃t − T̃x + [X̃, T̃ ] = 0, ∀ψ̃, (3.48)

or, equivalently,

Ut − Vx + [U, V ] = 0, ∀ψ̃. (3.49)

Here and thereafter the brackets [·, ·] denote the commutator between the operators.

Proposition 3.4.1. The following two operators

X = −iκC + U, T = iκD + V, (3.50)

where

C = C̃ +
1

3
(c1 + c2)I, D = D̃ +

2

3
c1c2I, (3.51)

10We remind the reader that the asterisk stands for complex conjugation.
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and I is the identity matrix 3× 3, constitute a Lax pair

ψx = Xψ, ψt = Tψ, (3.52)

whose solution transforms as

ψ = ψ̃ei
2
3
κc1c2t−iκ3 (c1+c2)x. (3.53)

Proof. Indeed the matrices C̃ and D̃, involved in (3.41), are

C̃ = −1

3
(c1 + c2)I + (c1 + c2)(Σ+ + Σ−), (3.54)

D̃ = −2

3
c1c2I + c1c2(Σ+ + Σ−), (3.55)

where

Σ+ =


0 0 0

0 1 0

0 0 0

 , Σ− =


0 0 0

0 0 0

0 0 1

 . (3.56)

This means that the Lax operators X and T have a diagonal part proportional to Σ+ and

Σ−, and with entries X11 and T11 which are null elements. Looking at the compatibility

conditions (3.48) and (3.49), we see that the terms −i2
3κc1c2I and − i

3κ(c1 + c2)I do not

affect the computation of the 3WRI equations and then the stability analysis. Moreover,

by substituting X̃ = X + iκ3 (c1 + c2) and T̃ = T − i2
3κc1c2 in the Lax pair (3.41), we have

the equations

ψ̃x − i
κ

3
(c1 + c2)ψ̃ = Xψ̃, (3.57a)

ψ̃t + i
2

3
κc1c2ψ̃ = T ψ̃, (3.57b)

and, by defining ψ = ψ̃ei
2
3
κc1c2t−iκ3 (c1+c2)x, the equations (3.57) become the Lax pair

(3.52).

If we perturb the solutions uj → uj + δuj , we have, as a consequence, that also the Lax

operators become perturbed X → X + δX, T → T + δT . If we set these perturbed
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operators in the compatibility condition (3.48), at the first order in the perturbation, we

get the equation for the perturbations δX and δT [64]

δXt − δTx + [δX, T ] + [X, δT ] = 0, (3.58)

named linearised equation. In order to find a solution of the linearised equation related to

the solution of the Lax pair (3.46), we define the squared eigenfunction Ψ = Ψ(x, t, κ) by

the following similarity transformation

Ψ = ψMψ−1, (3.59)

where M = M(κ), is a constant matrix, independent on x and t and ψ−1 is the inverse of

the matrix ψ = ψ(x, t, κ). After that, two propositions, stated in the paper [64], are given

below.

Proposition 3.4.2. If the pair E, J solve the linearised equation (3.58), then also the pair

F = [E,Ψ], H = [J,Ψ], (3.60)

is a solution of the linearised equation (3.58), namely

Ft −Hx + [F, T ] + [X,H] = 0. (3.61)

Proposition 3.4.3. The following expressions,

F =

[
∂X

∂κ
,Ψ

]
, H =

[
∂T

∂κ
,Ψ

]
, (3.62)

provide solutions of the linearised equation (3.58).

One notes that, to obtain the solution F , one needs to know the explicit expression of the

squared eigenfunction (3.59) related to the solution of the Lax pair. This will be the aim

of the next section.

3.4.2 Similarity Transformation of the Lax Pair

Once the Lax operators are provided, we see that only the matrices U and V enclose the

solutions uj and, so, the dependence on the variables x and t. Below, we introduce a



Chapter 3. The 3-Wave Resonant Interaction Model 59

similarity transformation by which the Lax pair becomes a pair of Liouville equations simple

to integrate. In this way, one can obtained the squared eigenfunctions.

Let G = G(x, t, κ) be a matrix such that

U = GU0G
−1, V = GV0G

−1, (3.63)

with G−1 the inverse of G = G(x, t, κ) and

U0 =


0 s1a1 −s1s2s3a2

s1s2s3a1 0 s3a3

s2a2 s1s2s3a
∗
3 0

 , V0 =


0 −s1c1a1 s1s2s3c2a2

−s1s2s3c1a1 0 0

−s2c2a2 0 0

 ,

(3.64)

so that the Lax operators are independent of x and t.

More in details, the explicit expression of the matrix G is (Appendix D)

G = e−
i
2

(ν1−ν2)xIe−i(qt−ν1x)Σ+ei(qt−ν2x)Σ− , (3.65)

and [Σ+,Σ−] = 0. In addition, this transformation induces the similarity transformation

ψ = Gφ on the solution of the Lax problem 11, and, so, on its squared eigenfunctions (see

definition in [64])

Ψ = GΦG−1, (3.66)

11The operator X is

X = G(−iκC + U0)G−1;

this, substituted in ψx = Xψ, gives

ψx = G(−iκC + U0)G−1ψ,

and, by multiplying to the left by G−1,

G−1ψx = (−iκC + U0)G−1ψ.

Since G−1ψx = (G−1ψ)x − (G−1)xψ and (G−1G)x = (G−1)xG+G−1Gx = 0, we obtain

(G−1ψ)x = (−iκC + U0 −G−1Gx)(G−1ψ);

this, after defining φ = G−1ψ and iW0 = iκC + U0 −G−1Gx, becomes

φx = iW0φ.
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and on the Lax operators (appendix E)

iW0 = G−1XG−G−1Gx, −iZ0 = G−1TG−G−1Gt. (3.67)

Therefore, the Lax pair becomes

Φx = i[W0,Φ], Φt = −i[Z0,Φ], (3.68)

whose solution is

Φ = ei(W0x−Z0t)Φ(0, 0)e−i(W0x−Z0t), (3.69)

with Φ(0, 0) initial condition. Explicitly, we have

W0 =


ν1−ν2

2 −is1a1 is1s2s3a2

−is1s2s3a1 −κc2 − ν1+ν2
2 −is3a3

−is2a2 −is1s2s3a
∗
3 −κc1 + ν1+ν2

2

 , (3.70a)

Z0 =


0 −is1c1a1 is1s2s3c2a2

−is1s2s3c1a1 −κc1c2 − q 0

−is2c2a2 0 −κc1c2 + q

 , (3.70b)

with wave-numbers ν1 and ν2 given by (3.40) and [W0, Z0] = 0.

3.4.3 Gauge Transformation

In order to carry out our stability analysis, we need to know the eigenvalues of the matri-

ces W0 and Z0, and so it is necessary to compute the characteristic polynomials of such

matrices. However, the expressions (3.70a) and (3.70b) make the computation of their

characteristic polynomials difficult. For this reason, we introduce a gauge transformation

simplifyng the form of the polynomials that we will introduce in the next sections.

The matrices G, W0 and Z0 in (3.63) and (3.70) can be generalised as follows (see formulas

(D.7) in the Appendix D),

G =


ei(mqt−lν1x−nν2x) 0 0

0 ei((m−1)qt−(l−1)ν1x−nν2x) 0

0 0 ei((m+1)qt−lν1x−(n+1)ν2x)

 , (3.71)
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or,

G = ei(mqt−(lν1+nν2)x)Ie−i(qt−ν1x)Σ+ei(qt−ν2x)Σ− , (3.72)

W0(κ; l, n) =


ν1l + ν2n −is1a1 is1s2s3a2

−is1s2s3a1 −κc2 + ν1(l − 1) + ν2n −is3a3

−is2a2 −is1s2s3a
∗
3 −κc1 + ν1l + ν2(n+ 1)

 , (3.73)

Z0(κ;m) =


mq −is1c1a1 is1s2s3c2a2

−is1s2s3c1a1 −κc1c2 + q(m− 1) 0

−is2c2a2 0 −κc1c2 + q(m+ 1)

 , (3.74)

where l, m and n are rational numbers.

They reduce to (3.65), (3.70a) and (3.70b) by setting m = 0, l = 1
2 and n = −1

2 .

Let us define the gauge transformation

Ḡ = Ge−i(mqt−(lν1+nν2)x)I, (3.75)

such that,

ψ̄ = Ḡφ̄ = Gφ = ψ, (3.76)

with φ̄ = ei(mqt−(lν1+nν2)x)Iφ. The Lax pair becomes 12
ψ̄x = X̄ψ̄ ,

ψ̄t = T̄ ψ̄ .

(3.77)

By combining the Lax pair (3.77) with (3.76), we get
φ̄x = iW̄ φ̄ ,

φ̄t = −iZ̄φ̄ .
(3.78)

On the other hand (Appendix G)
φx = iW0φ ,

φt = −iZ0φ ,

(3.79)

12In this case, X̄ ≡ X and T̄ ≡ T .
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and therefore,

W̄ = W0 − (lν1 + nν2)I, Z̄ = Z0 −mqI, (3.80)

with l, n and m which are, in general, rational numbers.

By using the gauge transformations (3.75) and (3.80), by setting m = 0, l = 1
2 , n = −1

2

and multiplying W by 2c1c2q, we shall work with the matrices

W = 2c1c2q


0 −is1a1 is1s2s3a2

−is1s2s3a1 −κc2 − ν1 −is3a3

−is2a2 −is1s2s3a
∗
3 −κc1 + ν2

 , (3.81)

and

Z =


0 −is1c1a1 is1s2s3c2a2

−is1s2s3c1a1 −κc1c2 − q 0

−is2c2a2 0 −κc1c2 + q

 . (3.82)

This choice will prove convenient in the light of the treatment illustrated in the next chapter.

3.4.4 Relations between the Transformed Lax Operators and the Differ-

ences of their Eigenvalues

The matrix W is expressible as a polynomial of the matrix Z (Appendix H) as follows

W = (c1 − c2)Z2 − c1(−q − c1c2κ)Z + c2(q − c1c2κ)Z − (c1 − c2)(a2
2c

2
2s1s3 − a2

1c
2
1s2s3)I,

(3.83)

and vice versa, the matrix Z as function of the matrix W (Appendix H) is

Z

[
a2

2s1s3(c1 − c2)

2c1q
− a2

1s2s3(c1 − c2)

2c2q
− (c2 + c1)q

c1c2(c1 − c2)
+ κ

]
=

W 2

4c2
1c

2
2q

2
−

− W

2c1c2q

[
a2

1s2s3c1(c1 − c2)

2c2q
− a2

2s1s3c2(c1 − c2)

2c1q
+
q(c1 − c2)

c1c2
− (c1 + c2)κ+

2q

c1 − c2

]
−

− (a2
2s1s3 − a2

1s2s3)I.

(3.84)

In addition, if wj and zj , j = 1, 2, 3 are the eigenvalues of W and Z, respectively, then

wj = (c1−c2)z2
j−c1(−q−c1c2κ)zj+c2(q−c1c2κ)zj−(c1−c2)(a2

2c
2
2s1s3−a2

1c
2
1s2s3), j = 1, 2, 3,
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(3.85)

and

zj

[
a2

2s1s3(c1 − c2)

2c1q
− a2

1s2s3(c1 − c2)

2c2q
− (c2 + c1)q

c1c2(c1 − c2)
+ κ

]
=

w2
j

4c2
1c

2
2q

2
−

− wj
2c1c2q

[
a2

1s2s3c1(c1 − c2)

2c2q
− a2

2s1s3c2(c1 − c2)

2c1q
+
q(c1 − c2)

c1c2
− (c1 + c2)κ+

2q

c1 − c2

]
−

− (a2
2s1s3 − a2

1s2s3), j = 1, 2, 3,

(3.86)

hence, the differences of the eigenvalues of W are (Appendix I)

wj−wj+1 = (zj−zj+1)(c1−c2)

(
−zj+2 − c1c2κ+ q

c1 + c2

c1 − c2

)
, j = 1, 2, 3, mod(3).

(3.87)

and the differences between the eigenvalues of Z are (Appendix I)

(zj − zj+1)

(
2a2

2s1s3c2(c1 − c2)− 2a2
1s2s3c1(c1 − c2)− 2q2 (c2 + c1)

(c1 − c2)
+ 2c1c2qκ

)
=

= −(wj − wj+1)

(
wj+2

2c1c2q
+

2q

c1 − c2

)
.

(3.88)

3.4.5 Characteristic Polynomials and Rescaled Differences of the Eigenval-

ues

Although in the previous sections we use some transformations to greatly simplify the

Lax operators and the Lax pair, the characteristic polynomials are still hard to handle.

However, we can do some further substitutions to obtain a more elegant expression of the

characteristic polynomials.

First of all, we can rescale some parameters by q. Once the characteristic polynomials of

W and Z are denoted with P̃W (w̃;κ) and P̃Z(z̃;κ), respectively, then the amplitudes, the

unknowns w̃ and z̃, and the spectral parameter can be rescaled as follows:

a1 = qα1, a2 = qα2 , (3.89a)

w̃ = q2w, z̃ = qz, (3.89b)
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κ =
qλ

c1c2
. (3.89c)

At this point, we rename the characteristic polynomials

PW (w;λ) = − P̃ (w;κ)

q6
, PZ(z;λ) = − P̃ (z;κ)

q3
. (3.90)

The coefficients of these characteristic polynomials are expressions of the rescaled ampli-

tudes to the second and to the fourth and we benefit from further substitutions,

p1 =
c2

1s1α
2
1 + c2

2s2α
2
2

s1s2s3
, p2 =

c2
1s1α

2
1 − c2

2s2α
2
2

s1s2s3
, (3.91)

and combinations of the velocities

c1 − c2

c1 + c2
= p3, c1 + c2 = p4, p4 6= 0. (3.92)

We highlight that later in our analysis we will consider also the limiting case p3 →∞ (that

is p4 → 0).

The computations of the characteristic polynomials after the substitutions above show that,

after multiplying the variable w by a factor p4, we can rescale once more the polynomial

PW (w;λ) by a factor p3
4. Finally, the characteristic polynomials become

PW (w;λ) = w3 + [2λ− p3(2 + p2)]w2+

+
[
p2(1 + 2p2

3 − p3λ) + p1p3(−3 + p3λ)− (p2
3 − 1)(λ2 − 1)

]
w+

+ [p2(λ− p3(−1 + p2 + p3(p3 + λ)))]− p2
1p

3
3+

+ p1

[
−1 + p3(p3 + 2p2p3 − λ+ p2

3λ)
]
,

(3.93)

and

PZ(z;λ) = z3 + 2λz2 + (λ2 + p2 − 1)z + p2λ− p1. (3.94)

Moreover, by setting the substitutions above, we rewrite the formulas (3.83) and (3.84)

respectively as follows

W = p3Z
2 + q(1 + p3λ)Z + p3p2q

2, (3.95)

and

Z = − p3

1− p3

(
λ+ p2

3(p1 − λ)− p2p3 + p3

)W 2 +

(
p2p

2
3 − 2λp2

3 + p2
3 + 1

)
1− p3

(
λ+ p2

3(p1 − λ)− p2p3 + p3

)W+

+
2p1p

2
3 − p2p

3
3 − p2p3

1− p3

(
λ+ p2

3(p1 − λ)− p2p3 + p3

) ,
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(3.96)

hence, the differences between the eigenvalues become

wj − wj+1 = (zj − zj+1) [(−p3zj+2 + q(1− λp3))] , (3.97)

for j = 1, 2, 3, mod(3), and

zj − zj+1 =

−
(w1 − w2)

(
p3

(
−p3(−2λ+ p2 + 1) + p4q

2((p2 + 2)p3 − 2λ)− w3

)
− 1
)

1− p3

(
λ+ p2

3(p1 − λ)− p2p3 + p3

) ,
(3.98)

for j = 1, 2, 3, mod(3). Furthermore, we give some useful formulas. Because the trace is

invariant under cyclic permutations, the eigenvalues wj and zj satisfy the following relations

w1 + w2 + w3 = ((2 + p2)p3 − 2λ), (3.99)

z1 + z2 + z3 = −2λ, (3.100)

with p4 = c1 + c2, and by the computation of the determinant of the matrices W and Z,

we get

z1z2z3 = p1 − λp2, (3.101)

w1w2w3 = p2
1p

3
3−p1

[
p3

(
−λ+ 2p2p3 + λp2

3 + p3

)
− 1
]
+p2

[
p2p3 +

(
p2

3 − 1
)

(λ+ p3)
]
.

(3.102)

Obviously, the formulas above are satisfied for both complex and real λ.

Because a solution of the linearised equation can be expressed as combination of the ex-

ponentials ei(x(wj−wj+1)−t(zj−zj+1)) [64], we have completed the preliminary calculations in

order to prepare the work for the stability analysis.



Chapter 4

Spectra and Linear Instabilities of

the 3WRI Equations

In this Chapter we will follow the theory for multi-component systems provided in Chapter

2 and we will use all the preliminary computations carried out in Chapter 3.

We provide the definition of Sx-spectrum as composed by the values of the spectral pa-

rameter λ which are the roots of the polynomial P(ξ, λ) of the squares of the differences

ξ = (w1−w2)2. The analysis of the nature of the λ-roots allows us to obtain a full topolog-

ical classification of the stability spectra in the parameters space. Using a numerical routine

implemented in MATLAB R2017a, for any generic choice of the physical parameters, we

plot the stability spectrum and its associated gain function (see definition below). The fact

that this function is always different from zero indicates that linear instability occurs for

any generic choice of the parameters p1, p2 and p3.

4.1 Spatial and Temporal Stability Spectra

Given the real parameters p1, p2 and p3 (see formulas (3.91) and (3.92)), we are interested

in finding the values of the complex spectral parameter λ such that the plane waves are

bounded in space and see if they are linearly stable or unstable in time. In other words, let

wj be the eigenvalues of the matrix W and zj the eigenvalues of Z; them we aim to search
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those values of the spectral parameter λ corresponding to real differences kj = wj+1−wj+2,

whereas the differences ωj = zj+1 − zj+2 can be real or complex. This latter point can be

understood for the differences kj are linked to the differences ωj by the formula

kj = ωj(−p3zj + q(1− λp3)), j = 1, 2, 3. (4.1)

Therefore, values of the spectral parameter λ corresponding to real kj may correspond to

complex ωj and so linear instability may occur.

In the following, we will refer to the eigenvalues w (resp. z) of the matrix W (resp. Z)

also as w-roots (resp. z-roots) of the characteristic polynomial PW (w;λ) (resp. PZ(z;λ)),

namely, the polynomial roots of the equation PW (w;λ) = 0 (resp. PZ(z;λ) = 0), solved

with respect to w (resp. z). From here on, we fix q = 1, without loss of generality, because

of the Galileian invariance (Chapter 3).

Definition 4.1.1. The spatial stability spectrum Sx for the plane wave solutions of the

3WRI system (3.5), is defined as the locus of the λ-plane identified with C such that,

for fixed values of the physical parameters p1, p2 and p3, the characteristic polynomial

PW (w;λ), admits at least two w-roots such that their difference is a real number, namely,

the set of the spectral parameter λ for which there exist at least two eigenvalues w` and

wm for the matrix W , for some ` and m, for which (w` − wm) ∈ R.

Definition 4.1.2. The temporal stability spectrum St for the plane wave solutions of the

3WRI system (3.5), is defined as the locus of the λ-plane identified with C such that, for

fixed values of the physical parameters p1, p2 and p3, the characteristic polynomial PZ(z;λ)

admits at least two z-roots such that their difference is a real number, namely, the set of

values of the spectral parameter λ such that there exist at least two eigenvalues z` and zm

for the matrix Z, for some ` and m, for which (z` − zm) ∈ R.

In the following, we give the definition of the components of the stability spectrum Sx.

Definition 4.1.3. Real values of the spectral parameter λ, not belonging to Sx constitute

a gap (G). A gap, including a single isolated real point within its real endpoints, will be

renamed as split gap (SG).

Complex values of the spectral parameter λ, belonging to Sx correspond to branches (B)

and loops (L), which are open and closed curves, respectively. Figure of eight loops, self-

intersecting on the real axis, will be referred to as twisted loops (TL).
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Once the parameter p3 is fixed, the topological classification of the spacial stability spectra

Sx in the (p1, p2) parameters space, can be obtained by means of the algebraic-geometric

procedure described in the next sections 1.

4.1.1 Polynomials of the Squares of the Differences

Let us write the characteristic polynomials (3.93) and (3.94) in a general form

PW (w;λ) ≡ PW (w;λ; p1, p2, p3) =
3∑
j=0

a
(W )
j wj =

3∏
j=1

(w − wj), a
(W )
3 = 1, (4.2a)

PZ(z;λ) ≡ PZ(z;λ; p1, p2, p3) =
3∑
j=0

a
(Z)
j zj =

3∏
j=1

(z − zj), a
(Z)
3 = 1. (4.2b)

By combinations of the coefficients {a(W )
j }3j=0, we construct the coefficients of the poly-

nomial PW (ξ;λ) ≡ PW (ξ;λ; p1, p2, p3) of degree 3 in the variable ξ, whose ξ-roots are the

squares of all the possible differences of the roots of the polynomial PW (w;λ) (Appendix

J),

PW (ξ;λ) ≡ PW (ξ;λ; p1, p2, p3) =

3∏
j,h=1
j<h

[
ξ − (wj − wh)2

]
, (4.3)

that is a 2-variate polynomial in ξ and λ. For the sake of simplicity, we will refer to PW (ξ;λ)

as the polynomial of the squares of the differences. A ξ-root (resp. λ-root) of PW (ξ;λ) is

a polynomial root of the equation PW (ξ;λ) = 0, solved with respect to ξ (resp. λ).

For any fixed p1, p2 and p3 parameters, the spectrum Sx is the locus of the λ-roots of

PW (ξ;λ) for all ξ ∈ R, ξ ≥ 0. In other words, the spatial spectrum Sx can be seen as a

one-parameter algebraic variety over the complex numbers, and it is defined as

Sx = {λ ∈ C | PW (ξ;λ) = 0, ξ ∈ R, ξ ≥ 0} . (4.4)

Similarly, by combinations of the coefficients {a(Z)
j }3j=0, we can construct the coefficients

of the polynomial PZ(η;λ) = P(η;λ; p1, p2, p3), that is a polynomial of degree 3 in the

1An analogous procedure can be implemented for deriving the temporal stability spectra St, starting

from Z instead of W .
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variable η and whose η-roots are the squares of the differences of the roots of the polynomial

PZ(z;λ) (Appendix J),

PZ(η;λ) ≡ PZ(η;λ; p1, p2, p3) =
3∏

j,h=1
j 6=h

[
η − (zj − zh)2

]
, (4.5)

that is a 2-variate polynomial in η and λ. A η-root (resp. λ-root) of PZ(η;λ) is a polynomial

root of the equation PZ(η;λ) = 0, solved with respect to η (resp. λ).

For any fixed p1, p2 and p3 parameters, the temporal spectrum St is the locus of the λ-

roots of PZ(η;λ) for all η ∈ R, η ≥ 0. In other words, the spectrum St can be seen as the

one-parameter algebraic variety over the complex numbers, and it is defined as

St = {λ ∈ C | PZ(η;λ) = 0, η ∈ R, η ≥ 0} . (4.6)

4.2 Real Spectrum

In this section we take into account only real λ-roots. By bearing in mind this assumption,

and because P (w;λ) is a cubic polynomial, the existence of a real w-root implies that the

other two w-roots are real too, otherwise there are two complex conjugate w-roots and a

w-real root. Therefore, in the first case the differences kj are all real and the corresponding

λ values belong to the spectrum Sx. In the second case, they are all complex and λ values

belong to a gap.

By denoting by ∆y(P(y)) the discriminant with respect to y of the polynomial P (y), we

observe that the polynomial of the squares of the differences PW (0;λ) (resp. PZ(0;λ))

is equal to the discriminant with respect to w (resp. z) of the characteristic polynomial

PW (w;λ) (resp. PZ(z;λ)) with the opposite sign,

PW (0;λ) = −∆w(PW (w;λ)), PZ(0;λ) = −∆z(PZ(z;λ)), (4.7)

and they are related as follows

PW (0;λ) = PZ(0;λ)R2(λ), (4.8)

where

−PZ(0;λ) = 4λ4−27p2
1−4λ3p1 +18λp1(p2 +2)+λ2((p2−20)p2−8)−4(p2−1)3, (4.9)
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and

R(λ) =
(
p3

(
λ+ p2

3(p1 − λ)− p2p3 + p3

)
− 1
)
. (4.10)

Since we impose kj to be real, we consider only PW (0;λ) ≤ 0.

Indeed, by assuming R(λ) 6= 0, PZ(0;λ) ≤ 0 if and only if PW (0;λ) ≤ 0, that is, by (4.8),

if PZ(0;λ) is negative or zero, then PW (0;λ) is like that, and vice versa.

There is also the limiting case R(λ) = 0, satisfied for

λ =
p2

3(p1p3 − p2 + 1)− 1

p3

(
p2

3 − 1
) , (4.11)

for which PW (0;λ) = 0, but PZ(0;λ) can be zero, positive or negative. In the following

proposition we prove that only the real part of Sx contributes to the stability, namely that,

if Sx has an off-real component, then the solution is expected to be unstable.

Proposition 4.2.1. For a generic choice of the physical parameters, the plane wave solution

of the 3WRI system is stable against perturbations δQ integrated only over values of λ in

Sx strictly real, with the exception of the point separating a split gap.

Proof. Let us suppose λ ∈ R, so that wj and zj are roots of third degree polynomials with

real coefficients. As a consequence, the characteristic polynomials can have: three real and

distinct w-roots; or a real triple w-root; or a w-real double root and a real simple w-root

or two complex conjugate w-roots and a real w-root. We impose that wj −wj+1 be real 2,

thus we exclude the case in which the characteristic polynomial P (w;λ) has two complex

conjugate w-roots and a real w-root.

Let us assume R(λ) 6= 0 and let wj be real and all distinct, i.e. PW (0;λ) < 0. Thus, since

p4 ∈ R, all the differences wj − wj+1 are also real and all distinct

wj − wj+1 = (zj − zj+1)(−zj+2p3 − λp3 + 1), j = 1, 2, 3, mod(3), (4.12)

and then the product (zj−zj+1)(−zj+2p3−λp3 +1) is real too. For λ ∈ R, we cannot have

(zj − zj+1) ∈ C and (−zj+2p3−λp3 + 1) ∈ C so that (zj − zj+1)(−zj+2p3−λp3 + 1) ∈ R

because, by the relation (4.8), we would have PZ(0;λ) > 0, and so PW (0;λ) > 0, in contra-

diction with the hypothesis. Instead, we can have (zj−zj+1) ∈ R and (−zj+2p3−λp3+1) ∈
2Since wj are roots of a third degree polynomial with real coefficients, then the requerement to have at

least a real difference implies that all the differences wj − wj+1 are real too.
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R, so that their product is real, and then wj − wj+1 ∈ R, ∀j = 1, 2, 3.

Moreover, we remind that if also only two roots coincide, then PZ(0;λ) = 0, and this

condition pushes PW (0;λ) = 0 to vanish, but we are imposing PW (0;λ) to be strictly

positive.

Therefore we conclude that if λ ∈ R and R(λ) 6= 0, then PW (0;λ) < 0 if and only if

PZ(0;λ) < 0.

Let us suppose PW (0;λ) = 0 and P (w;λ) has a double real root and a simple real root. For

the sake of simplicity, we impose w1 = w2, while w3 is different from the other two. From

the formula (4.12) and by considering p3 6= 0, we distinguish three cases corresponding to

all the possibilities for which we have w1 − w2 = 0:

1. z1 − z2 = 0 and −z3p3 − λp3 + 1 = 0, (PZ(0;λ) = 0 and R(λ) = 0);

2. z1 − z2 = 0 and −z3p3 − λp3 + 1 6= 0, (PZ(0;λ) = 0 and R(λ) 6= 0);

3. z1 − z2 6= 0 and −z3p3 − λp3 + 1 = 0, (PZ(0;λ) 6= 0 and R(λ) = 0).

In the following we shall discuss the reverse arguments: starting from the hypothesis 1.,

2., and 3., we show that w1 = w2, and the w-roots are all real, i.e. if PZ(0;λ) = 0, then

PW (0;λ) = 0.

1. If z1 = z2, then z1 and z2 are real, then z3 is necessarily real, and for this particular case

we get

z3 =
1

p3
− λ, (4.13)

and by (3.100)

z1 = z2 = −1

2

(
1

p3
+ λ

)
. (4.14)

Moreover,

z2 − z3 = −1

2

(
3

p3
− λ
)
, z3 − z1 =

1

2

(
3

p3
− λ

)
, (4.15)

so that

z1 − z2 = 0, (z2 − z3) = −(z3 − z1). (4.16)
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By keeping in mind formulas (4.13) and (4.12), we compute the differences wj −wj+1 and

get

w1−w2 = 0, w2−w3 = −(w3−w1) = −p4

2

(
3

p3
− λ
)

(−z1p3− λp3 + 1), (4.17)

all real, because all the parameters involved and all the three zj are real.

Thus, we conclude that PZ(0;λ) = 0 implies PW (0;λ) = 0.

Furthermore, the characteristic polynomial P (z3;λ) becomes proportional to R(λ),

P (z3;λ) =
1− p3

(
λ+ p2

3(p1 − λ)− p2p3 + p3

)
p3

3

= − 1

p3
3

R(λ). (4.18)

This implies that, if z3 = 1
p3
− λ is a zero of the characteristic polynomial P (z;λ), then

R(λ) = 0 and λ has the expression (4.11). The reverse argument is also true: if R(λ) = 0,

then z3 = 1
p3
− λ is a zero of the characteristic polynomial P (z;λ).

2. We assume z1 = z2 and z1 and z2 are both real. As a consequence z3 is real, but we

impose that z3 does not satisfy the formula (4.13) any more. Nevertheless, by the formulas

(3.100) and (3.101), we have that

2z3
j + 2λz2

j + (1− λ)p2 = 0, zj = z1 = z2, (4.19)

and once zj is obtained 3 , we can use (3.100) to get z3 = −2(zj + λ). Therefore, the

relations (4.17) and (4.16) are still satisfied, indeed

z1 = z2, z3 − z1 = −(z2 − z3) = −(3zj + 2λ), zj = z1 = z2, (4.20)

and then,

w1 = w2, w2−w3 = −(w3−w1) = (3zj+2λ)(−p3zj−p3λ+1), zj = z1 = z2, (4.21)

and all the three differences (wj − wj+1) are real. Even for this case PZ(0;λ) = 0 implies

PW (0;λ) = 0. In this case R(λ) is different from zero.

3. Let us consider the most general case in which all the three zj are different from one

another. PW (0;λ) = 0 when R(λ) = 0. We identify two sub-cases:

3It is not the aim of our analysis to find the explicit expression of the solutions zj = z1 = z2.
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3a) PZ(0;λ) < 0, and the characteristic polynomial P (z;λ) has three real z-roots all

distinct;

3b) PZ(0;λ) > 0, and the characteristic polynomial P (z;λ) has two complex conjugate

z-roots and a real z-root.

Furthermore, since R(λ) = 0, then PW (0;λ) = 0, and P (w;λ) has a) a real double w-root

and a simple w-root or b) a triple real w-root.

3a) Let us suppose zj are all different, but z3 = 1
p3
− λ. By substituting λ = 1

p3
− z3, into

the other two differences w2 − w3 and w3 − w1, we get

w2 − w3 = −p3(z2 − z3)(z1 − z3), w3 − w1 = p3(z2 − z3)(z1 − z3), (4.22)

that is

w2 − w3 = −(w3 − w1), (4.23)

and in addition

w1 − w2 = 0. (4.24)

However, this case is impossible. Indeed, by using the formula (4.22) and matching the two

formulas

w2 − w3 = (z2 − z3)(−p3z1 − p3λ+ 1), (4.25)

w3 − w1 = (z3 − z1)(−p3z2 − p3λ+ 1), (4.26)

via (4.23), we get the equation

(z2 − z3)(−p3z1 − p3λ+ 1) = (z1 − z3)(−p3z2 − p3λ+ 1), (4.27)

that is satisfied for z1 = z2. However, this is a contradiction to the hypothesis PZ(0;λ) < 0.

Thus, we can not have PZ(0;λ) < 0, and instead we have PZ(0;λ) = 0. Note that because

of the formula (4.8), we have R(λ) = 0.
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The case b) is impossible. Indeed, because w1 = w2 = w3 has to be verified, we need to

impose z1 = z2 = z3 = 1
p3
− λ, that is a contradiction to the hypothesis PZ(0;λ) < 0.

3b) If PZ(0;λ) > 0, the characteristic polynomial P (z;λ) has two complex conjugate

roots, say, z1 and z2, and a real root z3. In order the case a) to be verified, the relation

z3 = 1
p3
− λ has to be satisfied. We can not have (−zjp3 − λp3 + 1) = 0, for j = 1, 2,

because this equation would be satisfied only for z-roots all real, but we are in the hypothesis

PZ(0;λ) > 0. We note that, since Re(z1) = Re(z2) and Im(z1) = −Im(z2), then z2 − z3

and z3 − z1 are complex with the same imaginary part and z1 − z2 = 2iIm(z1). Moreover,

because w2 − w3 = −(w3 − w1) = −p3(z1 − z3)(z2 − z3), the differences w2 − w3 and

w3 − w1 are real, in particular

w2−w3 = −(w3−w1) = −p3

(
(Re(zj)− z3)2 + (Im(zj))

2
)
, zj = z1 = z2, (4.28)

and we have that if p3p4 > 0, then w2 − w3 < 0 < w3 − w1, and if p3p4 < 0, then

w3 − w1 < 0 < w2 − w3.

Moreover, z3 coincides with the solution of R(λ) and the formula (4.18) is still satisfied.

The case b) is impossible because, since we require a priori that all the roots zj must be

different from each other, we have to impose (−zjp3 − λp3 + 1) = 0, ∀j = 1, 2, 3 in order

to have all the three wj coinciding and real, which gives us all zj coinciding and real, but

this is a contradiction to the hypothesis PZ(0;λ) > 0.

Let us suppose P (w;λ) has a triple real root, that is PW (0;λ) = 0. We distinguish two

cases:

1. z1 = z2 = z3, but −p3zj − p3λ+ 1 6= 0, (PZ(0;λ) = 0 and R(λ) 6= 0);

2. z1 = z2 = z3, and −p3zj − p3λ+ 1 = 0, (PZ(0;λ) = 0 and R(λ) = 0).

All the cases above are trivial to show, but in the case 2., we have that, by making the

sum of all the three zj solutions of the equation −p3zj − p3λ+ 1 = 0, ∀j = 1, 2, 3, we get

z1 + z2 + z3 = 3
(

1
p3
− λ
)

with p3 6= 0, in contrast with the trace (3.100), unless λ = 3
p3

.

Finally, we conclude that if R(λ) = 0 and PZ(0;λ) > 0, then PW (0;λ) = 0 and P (w;λ)
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has a double real root and a simple real root.

If PZ(0;λ) > 0, we have that all the three real differences wj − wj+1 correspond to the

three differences zj − zj+1, all complex.

On the other hand, let us assume now that λ is complex, λ = µ + iρ, with nonvanishing

imaginary part, ρ 6= 0. Let wj = αj + iβj be the (generically complex) roots of PW (w;λ).

With this notation, we have that one of the wave numbers, say k3 = w1 −w2, will be real

only if β1 = β2 = β. Then, from (3.98) , we have that ω3 = z1 − z2 will also be real only

if the following equation is satisfied:

−β3

(
−1 + p3(p3 − p2p3 + p2

3(p1 − µ) + µ])
)

+
(
−1 + p2

3

) (
−1 + p2

3 − p3α3

)
ρ. (4.29)

Writing the polynomial PW (w;λ) as PW (w;λ) =
∏3
j=1(w−αj − i βj), and comparing the

real and imaginary parts of the coefficients of same powers of w from this expression with

those obtained from (3.93), we get, in addition to equation (4.29), six further polynomial

equations, constituting overall a system of seven polynomial equations for the seven un-

knowns α1, α2, α3, β, β3, µ, ρ, each equation being of degree 1, 2 or 3 in the unknowns:

p2
2p3 + p2

1p
3
3 − α1α2α3 + α3β

2 + α1ββ3 + α2ββ3 + p2(−1 + p2
3)(p3 + µ)−

− p1(−1 + p3(p3 + 2p2p3 − µ+ p2
3µ)),

(4.30a)

−(α1 + α2)α3β + (−α1α2 + β2)β3 + (p2 − p1p3)(−1 + p2
3)ρ, (4.30b)

1 + α1α2 + (α1 + α2)α3 − β(β + 2β3)− µ]2 + p1p3(3− p3µ)+

p2(−1 + p3(−2p3 + µ])) + ρ]2 + p2
3(−1 + µ2 − ρ2),

(4.30c)

(α1 + α2 + 2α3)β + (α1 + α2)β3 + (−2µ+ p3(p2 − p1p3 + 2p3µ))ρ, (4.30d)

(2 + p2)p3 − α1 − α2 − α3 − 2µ, (4.30e)

−2β − β3 − 2ρ. (4.30f)
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Using an algebraic manipulation software (like Mathematica or Maple), after a long and

tedious work (we apply the method developed in [65]), one shows that, for a generic choice

of the parameters p1, p2 and p3, system (4.30) either does not have real solutions or features

at most 72 complex solutions. This excludes, for a generic choice of the parameters p1,

p2 and p3, that there exist sets of non-vanishing measure off the real axis on the λ-plane

for which z1 and z2 generate a real difference when w1 and w2 generate a real difference,

namely for which either side of (3.98) is real. As the set of exceptional complex values of λ

for which either side of (3.98) is real has generically at most vanishing measure, it does not

contribute to the integral in (2.79); therefore, for a generic choice of the parameters p1,

p2, and p3, the plane wave solution is stable against the perturbation δQ integrated only

over values of λ in Sx strictly real, with the exception of the isolated points in the split

gaps. The discussion of the non-generic choices of the parameters p1, p2 and p3, possibly

allowing a set of non-vanishing measure off the real axis on the λ-plane providing a stable

contribution to the integral of the perturbation, is left to future investigation.

We stress that for both the cases 1. and 2., if P (z;λ) has a double real root and a simple

real root, then it is the same also for P (w;λ).

Whatever the labelling is, we have always three real differences wj − wj+1. Moreover,

the relations zj − zj+1 = 0 and zj+1 − zj+2 = −(zj+3 − zj) imply wj − wj+1 = 0 and

wj+1 − wj+2 = −(wj+3 − wj) for j = 1, 2, 3, mod(3). In particular, one can prove that,

for real λ, there is an order relation for the differences zj − zj+1 and wj −wj+1, and there

exist a bijective relation between the two orderings of the differences, but this argument

will not be discussed in this thesis.

4.2.1 Gaps and Branches

In this section we give a topological description of the components of the spectrum Sx

which are referred to as gaps and branches. We impose that the eigenvalues of W are

non-simple and we take into account the polynomial PW (0;λ) and its relation with the

polynomial PZ(0;λ) given by (4.8). In fact, as discussed in the previous section, by (4.8),

the eigenvalues wj are non-simple if and only if the eigenvalues zj are non-simple, with the
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exception of a point on the real axis of the Sx spectrum 4. Thus, one can study first the

discriminant with respect to λ of PZ(0;λ) to get the main structure of the Sx spectrum 5,

but then one needs to introduce a resultant, which will be defined later, to know for which

values of the physical parameters a split-gap occurs. Therefore, it is useful to introduce the

discriminant ∆λPZ(0;λ) which can be factorised as

∆λPZ(0;λ) =
∏
j

Dj(p1, p2)dj , ∀p3 ∈ R, (4.31)

and the resultant Resλ(PZ(0;λ),R(λ)) which can be factorised as

Resλ(PZ(0;λ),R(λ)) =
∏
j

Rj(p1, p2, p3)rj . (4.32)

Let Dj be the real-analytic variety in the parameter space (p1, p2), implicitly defined as

Dj = {p1, p2, p3 ∈ R : Dj(p1, p2) = 0, Rj(p1, p2, p3) = 0}. (4.33)

Once the value of the parameter p3 is fixed, a first topological classification of the possible

curves in the λ-plane in terms of the choices of the parameters (p1, p2) can be made by

observing the nature of the λ-roots for which the matrix Z (resp. W ) has non-simple

eigenvalues. This corresponds to analysing the sign of (4.31). By imposing (4.31) to be

negative, we obtain a set of regions in the (p1, p2)-plane in which Z (resp. W ) is not

diagonalisable for two real values of λ and for a pair of complex conjugate values of λ.

This values of λ identify the end-points of a gap and of a branch, respectively. On the

contrary, if (4.31) is positive, we obtain regions in the (p1, p2)-plane in which Z (resp. W )

is not diagonalisable either for four real values of λ corresponding to the end-points of two

gaps, or for two pairs of complex conjugate values of λ corresponding to the end-points of

two branches. In addition, besides the λ-roots of the polynomial PZ(0;λ), the polynomial

PW (0;λ) has also one real double λ-root, that is the λ-root of the polynomial R(λ). The

value of this λ-root depends on the parameters p1, p2 and p3, and so it varies as pj vary,

and it varies in the (p1, p2)-plane once the value of p3 is fixed. Interestingly, we have found

that also the sign of the resultant (4.32) is relevant for the classification of gaps and it is

a determining factor for defining the so called split-gap. In particular, a split-gap exists in

4We can have at most one split-gap. This is a consequence of the formula (4.8), in which R(λ) is a first

degree polynomial in λ, and the only root gives the point between the two endpoints of a gap.
5One observes that the discriminant with respect to λ of PW (0;λ) is always zero because the polynomial

PW (0;λ) has a double real λ-root for any choice of the parameters pj .
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the regions of the (p1, p2)-plane for which the resultant is negative (see below).

Finally, the curves defined by (4.33) are the boundaries of the regions in the (p1, p2)-plane

associated to different topologies of the spectra Sx.

In order to define the number of gaps and branches, we compute the discriminant ∆z(P (z;λ)) =

−PZ(0;λ), that is a polynomial in λ, with parameters p1, p2, and p3. The polynomial

PZ(0;λ) is negative whenever the three roots zj are real, and it is positive if only one root

zj is real. As a consequence, for fixed values of p1, p2, and p3, the polynomial PZ(0;λ)

is positive (resp. negative) for those values of λ inside (resp. outside) the gap, and they

become zero at the end-points of gaps. Gaps and branches appear or disappear at the

multiple-zeros of the polynomial PZ(0;λ) (as discussed more in details later), thus at the

zeros of the discriminant 6 ∆λPZ(0;λ), namely when

∆λPZ(0;λ) = −256(p1 − p2)(p1 + p2)
(
27p2

1 − (p2 − 1)(p2 + 8)2
)3

= 0. (4.34)

The three polynomial factors appearing in (4.34) bound the regions in the (p1, p2)-plane

characterised by different numbers of gaps and branches. We denote such curves as follows

D1 = {(p1, p2) ∈ R2 : p1 − p2 = 0}, (4.35)

D2 = {(p1, p2) ∈ R2 : p1 + p2 = 0}, (4.36)

D3 = {(p1, p2) ∈ R2 :
(
27p2

1 − (p2 − 1)(p2 + 8)2
)3

= 0}. (4.37)

On the curves (4.35)-(4.37), two real values of λ-roots collide by closing a gap, or they

separate by opening a gap. Whenever two real λ-roots collide to close a gap, they become

two complex conjugate roots, and so they identify the end-points of a gap. Vice versa, if

two complex conjugate λ-roots become two real λ-roots, we expect that a gap appears. As

a result, the (p1, p2)-plane is divided in domains identified by different number of gaps and

branches.

Proposition 4.2.2. The Sx-spectrum has the gaps and branches structure described in
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Table 4.1: Gaps and branches structure.

Regions in the (p1, p2)-plane #G #B λ-roots of Pz(0;λ)

0 < p2 < γ ∩ −p2 < p1 < p2 2G 0B 4 distinct and real

γ < p2 < p1 ∩ γ < p1 2G 0B 4 distinct and real

γ < p2 < −p1 ∩ γ < −p1 2G 0B 4 distinct and real

p2 > γ ∩ −p2 < p1 < p2 1G 1B 2 distinct and real, 2 complex conjugate

p1 < p2 < −p1 ∩ p1 < 0 1G 1B 2 distinct and real, 2 complex conjugate

−p1 < p2 < p1 ∩ p1 > 0 1G 1B 2 distinct and real, 2 complex conjugate

p2 < 0 ∩ p2 < p1 < −p2 0G 2B 2 pairs of complex conjugate roots

table 4.1. where the polynomial γ is defined as

γ = 27p2
1 − (p2 − 1)(p2 + 8)2, (4.38)

and the intervals in the parameter space are written in implicit form.

The classification of gaps and branches in the (p1, p2)-plane has been obtained by studying

simultaneously the sign of the discriminant ∆λ(PZ(0;λ)) and the signs of the following

polynomials [117]

∆01 = 8a2a4 − 3a2
3, (4.39a)

∆02 = 64a0a
3
4 − 16a1a3a

2
4 − 16a2

2a
2
4 + 16a2a

2
3a4 − 3a4

3, (4.39b)

∆03 = 8a1a
2
4 − 4a2a3a4 + a3

3, (4.39c)

∆04 = 12a0a4 − 3a1a3 + a2
2, (4.39d)

6Note that the discriminant w.r.t. λ of both the discriminant ∆z(P (z;λ)) and of the polynomial PZ(0;λ)

is actually the same, although ∆z(P (z;λ)) and PZ(0;λ) have opposite signs.
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where aj are the coefficients of 7

PZ(0;λ) = a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0. (4.40)

Let us identify, case by case, the conditions on the polynomials (4.39a)-(4.39d) and on the

discriminant ∆λ(PZ(0;λ)) within the regions in the (p1, p2)-plane [117].

• By imposing ∆λPZ(0;λ) > 0, ∆01 < 0 and ∆02 < 0, we have 4 distinct real λ-roots

which identify the four end-points of 2 gaps and 0 branches.

• When ∆λPZ(0;λ) < 0, we have 2 distinct real λ-roots and 2 complex conjugate

λ-roots. In this case we have 1 gap and 1 branch.

• The conditions to obtain the regions in the (p1, p2)-plane corresponding two pairs of

complex conjugate roots, are

1. ∆λPZ(0;λ) > 0, ∆01 > 0 and ∆02 > 0;

2. ∆λPZ(0;λ) > 0, ∆01 < 0 and ∆02 >
∆2

01
4 ;

3. ∆λPZ(0;λ) > 0, ∆01 > 0 and ∆02 < 0.

Thus, we have 0 gaps and 2 branches.

• The condition to have 4 real roots all coincident, that is ∆λPZ(0;λ) = 0, ∆04 = 0

and ∆02 = 0, is never satisfied.

• There are some extreme points of gaps domains. Indeed, the condition ∆λPZ(0;λ) =

0 and ∆04 = 0 is verified at the points (4, 4) and (−4, 4) for which we have a triple

real root and a simple real root, thus we have 1 gap. The condition ∆λ∆zP(z) = 0,

∆02 = 0 and ∆01 < 0 is verified only at the point (0, 0) for which we have two double

real roots and 1 gap.

• Furthermore, there are some exceptional points for which, although they are corre-

sponding to 0 gaps, the nature of the roots is different from that in their neighbour-

hood. In more detail, we have two pairs of complex conjugate λ-roots at the point

7Strictly speaking, we should have written

−PZ(0;λ) = a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0,

but the sign on front of the polynomial PZ(0;λ) is completely irrelevant after the computation of the

discriminant w.r.t. λ.
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(0,−8), that is when ∆λPZ(0;λ) = 0 and ∆02 > 0, or a real double root and two

complex conjugate roots for 1) ∆λPZ(0;λ) = 0 and ∆02 > 0, or 2) ∆λPZ(0;λ) = 0,

∆01 > 0 and ∆03 6= 0, and the corresponding domains belonging to the curves D1

and D2, and they are:

−8 + 4
√

3 < p2 < 0, {p1 = p2 ∪ p1 = −p2}, (4.41a)

p2 < −8− 4
√

3, {p1 = p2 ∪ p1 = −p2}, (4.41b)

or,

−4 < p2 < −20 + 8
√

6, {p1 = p2 ∪ p1 = −p2}, (4.42a)

−20− 8
√

6 < p2 < −4, {p1 = p2 ∪ p1 = −p2}. (4.42b)

We have also 4 real distinct λ-roots for ∆λPZ(0;λ) > 0, ∆01 < 0 and 0 < ∆02 <
∆2

01
4

Other limiting cases can be discussed, but this is not the aim of our research work

because we are interested in generic cases only.

The same classification for branches and gaps was obtained in [64] for the CNLS equation.

Split Gaps

Looking at the expressions (4.35), (4.36) and (4.37), we deduce that the gaps structure

described so far can change by varying p1 and p2 only. Nevertheless, since PW (0;λ) =

PZ(0;λ)R2(λ), PW (0;λ) can be zero when R(λ) = 0 also if PZ(0;λ) is negative or

positive. Since R(λ) is a first degree polynomial and it has real coefficients, the equality

R(λ) = 0 may be verified just at one point of the real Sx-spectrum 8. Moreover, because

of the expression of R(λ), for values of p1 and p2 varying in an interval so that we have

a fixed number of gaps, this point can move inside or can coincide with an endpoint of

gap. Since R(λ) depends on p3 as well, we expect that the regions in the (p1, p2)-plane

8This point is also a real double-zero of the polynomial R2(λ).
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in which the zero of R(λ) is inside a gap move by varying p3. Moreover, when R(λ) = 0

then PW (0;λ) = 0 too, and for this reason we have only two possible scenarios:

1. PZ(0;λ) > 0 and the double-zero is within a gap, i.e. a split-gap;

2. PZ(0;λ) = 0 and the double-zero is a triple-zero of the polynomial PW (0;λ), and it

coincides with the end-point of a gap.

We underline that the situation in which PZ(0;λ) < 0 and PW (0;λ) = 0 never occurs

because of the Proposition 4.2.1.

We define a transition in the evolution of gaps structure, also in the case in which, a

split-gap appears because a point falls within an existent gap (or, vice versa, a split-gap

becomes an effective gap because a point shifts from the inside of a gap to the end-point

of the gap). To see for which values of the parameters pj such a transition occurs, we have

to understand for which values of the parameters p1, p2 and p3 the zero of R(λ) collides

with a zero of PZ(0;λ), or, in other words, when PZ(0;λ) has a common root with the

polynomial R(λ). This analysis is conducted by studying the resultant with respect to λ

between the two polynomials PZ(0;λ) and R(λ). The discriminant with respect to λ of the

product PZ(0;λ)R2(λ) does not give us further information about this kind of transition,

since the quantity 9

∆λ(PZ(0;λ)R2(λ)) = ∆λ(PZ(0;λ)R(λ))(Resλ(PZ(0;λ)R(λ),R(λ)))2∆λ(R(λ)) =

= ∆λPZ(0;λ)(∆λR(λ))2(Resλ(PZ(0;λ),R(λ)))4(Resλ(R(λ),R(λ)))2,

(4.43)

is always zero because of the resultant Resλ(R(λ),R(λ)) = 0. However, the other terms

might or might not be zero. Therefore, the useful quantity to analyse is the resultant

Resλ(PZ(0;λ),R(λ)): in other words, we are interested to understand for which values of

the parameters p1, p2 and p3 the resultant

Resλ(PZ(0;λ),R(λ)) =
(
p2

3

(
−2p1p3 + (p2 − 1)p2

3 + p2 + 2
)
− 1
)2

(
p3

(
p3

3

(
p2

1 − 4p2 + 4
)
− 2p1(p2 − 2)p2

3 − 4p1 + (p2(p2 + 4)− 8)p3

)
+ 4
)
,

(4.44)

is zero or not. In the discussion below, we shall prove that, in (4.44), the polynomial factor

that appears squared does not correspond to any transition, while the other polynomial

9Note that ∆λR(λ) = 1.
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factor identifies a curve bounding the regions in the (p1, p2)-plane where there exist split

gaps; we define such a curve as,

D4 = {p1, p2, p3 ∈ R : R4(p1, p2, p3) = 0}, (4.45)

where the polynomial R4(p1, p2, p3) = R4 is

R4 = p3

(
p3

3

(
p2

1 − 4p2 + 4
)
− 2p1(p2 − 2)p2

3 − 4p1 + (p2(p2 + 4)− 8)p3

)
+ 4. (4.46)

Proposition 4.2.3. In the (p1, p2)-plane, the curve D4, defined in (4.45), identifies the

transition curve for the existence of split gaps. In particular, once the values of p3 is fixed,

the values of the parameters p1 and p2 for which the polynomial R4 is negative correspond

to regions where there are split gaps.

Proof. Let us write PZ(0;λ) and R(λ) in a more general form

PZ(0;λ) = a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0, (4.47)

R(λ) = b1λ+ b0, (4.48)

and let τj and θj be the roots of PZ(0;λ) and R(λ) respectively, so that the resultant with

respect to λ can be written as

Resλ(PZ(0;λ),R(λ)) = a4b
4
1

4∏
k=1

1∏
j=1

(τk − θj). (4.49)

Let us suppose that, say, τj are all real and distinct, such that we have two gaps. Let us

consider the initial situation in which θ1 = τ1 < τ2 < τ3 < τ4, which corresponds to having

(4.49) equal to zero and the point θ1 coinciding with an end-point of a gap. Then, we vary

the values of the parameters p1 and p2 so that θ1 increases until we have τ1 < θ1 < τ2 <

τ3 < τ4, and we have that (4.49) is negative 10 and θ1 is inside the gap. In particular, we

have the so called split-gap 11. Thus, the resultant (4.49), and so (4.44), is negative for this

kind of gap structure. Finally, we conclude that the relevant part of the resultant is only

10a4b
4
1 is positive, because a4 = 4.

11If, per absurdum, it was R(λ) = 0 also in the case in which PZ(0;λ) < 0, then (4.49) would be positive

for the ordering τ1 < τ2 < θ1 < τ3 < τ4.
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the second polynomial. Indeed, by rescaling λ by λ̃ = aλ, with a ∈ R, in both PZ(0;λ) and

R(λ). In this way, we get the resultant Resλ(PZ(0; λ̃),R(λ̃)) = a4Resλ(PZ(0;λ),R(λ)).

Therefore, λ can be rescaled to eliminate the squared polynomial, or, in other words, such

a polynomial is arbitrary.

Let us consider another situation in which we have two distinct real roots and two complex

conjugate roots (1G 1B), and we focus only on the product
∏4
k=1

∏1
j=1(τk − θj). One

can show that the product between the terms (τk − θj) corresponding to the two complex

conjugate τk is always real and positive. Indeed, let τ1 = c+ i d and τ2 = τ∗1 = c− i d be

the two complex conjugate roots. Since θ is always real, then the following product

(τ1− θ)(τ∗1 − θ) = (c+ id− θ)(c− id− θ) = c2 + d2 + θ2− 2θ = d2 + (θ− c)2, (4.50)

is positive. At this point, the proof above on the case for the four distinct real roots can

be repeated also here, by considering only the two factors of the resultant corresponding to

the two distinct real roots τk.

The proof for the other cases, showed in table 4.1, is straightforward.

By taking into account the regions associated to split gaps, a general classification of gaps

structure is given below.

Proposition 4.2.4. Besides the gaps structure described in table 4.1, the Sx-spectrum may

feature split gaps for the following choices of the parameters:

1) if −1 < p3 < 1, σ1 < p1 < σ2 and p2 > 1− 1
p2

3
with 1− 1

p2
3
< 0;

2) if p3 < −1 or p3 > 1, σ1 < p1 < σ2 and p2 > 1− 1
p2

3
with 1− 1

p2
3
> 0;

where

σ1 =
2

p3
3

+
p2 − 2

p3
− 2|p2

3 − 1|
√

1 + (p2 − 1)p2
3

|p3|3
, (4.51)

σ2 =
2

p3
3

+
p2 − 2

p3
+

2|p2
3 − 1|

√
1 + (p2 − 1)p2

3

|p3|3
, (4.52)

and the intervals in 1) and 2) are written in implicit form.
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(a) (p1, p2)-plane, p3 = −0.6.

Figure 4.1: (p1, p2)-plane, when p3 = −0.6. Split gaps appear inside the region bounded

by the curve D4.
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(a) (p1, p2)-plane, p3 = 2.

Figure 4.2: (p1, p2)-plane, when p3 = 2. Split gaps appear inside the region bounded by

the curve D4.
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The Figures 4.1(a) and 4.2(a) show where there exist split gaps. By overlaying the results

of the Table 4.1 to the findings of the Proposition 4.2.4, the total number of gaps and split

gaps is predicted. For example, looking at the Figure 4.1(a), we have a total of 1G and

1SG in the region between the curves D3 and D4, while we have 1G and 1SG in the region

between D4 and D3. Instead, in Figure 4.2(a), the region below D3 has 1G and 1SG, while

that one above D3 has 1G and 1SG.

Symmetries and Gaps

In the following discussion, we take advantage of the symmetries in the (p1, p2)-plane to

classify gaps as p3 changes. Indeed, since ∆λPZ(0;λ) is invariant under transformations

p1 → −p1 and p2 → p2, the plot of the curves D1, D2 and D3 are symmetric with respect

to the p2-axis. The curve D4 depends also on p3, and it has symmetries p1 → −p1, p2 → p2

and p3 → −p3. Nevertheless, for finite values of p3, such a curve is not symmetric with

respect to p2-axis and moves in the (p1, p2)-plane as p3 varies. In particular, by changing

p3 to −p3, the D4 plot is reflected with respect to p2-axis. The curve D4 can be written

by expressing p2 as a function of p1 and p3

p2(p1, p3) = −2 + p3p1 + 2p2
3 ±

2|p3 − p3
3|
√
p3p1 + p2

3 − 1

p2
3

, (4.53)

and by changing p3 → −p3, we get

p2(p1,−p3) = −2− p3p1 + 2p2
3 ±

2|p3 − p3
3|
√
−p3p1 + p2

3 − 1

p2
3

, (4.54)

that is p2(p1,−p3) = p2(−p1, p3), and one can define

p̄2(p̄1, p3) = −2 + p3p̄1 + 2p2
3 ±

2|p3 − p3
3|
√
p3p̄1 + p2

3 − 1

p2
3

, (4.55)

where p̄1 = −p1 and the bar denotes the parameters p1 and p2 after the transformations.

Thus, p̄2(p̄1, p3) is the curve p2(p1, p3), reflected with respect to the p2-axis.

On the other hand, as p3 approaches infinity, D4 becomes symmetric to the p2-axis. In the

following, we shall discuss the symmetries of D4 in more detail.

Proposition 4.2.5. For −1 < p3 < 1, and for p3 < −1 or p3 > 1, the curve D4 is

asymmetric with respect to the p2-axis. For p3 → ±∞, D4 is symmetric with respect to

p2-axis. For p3 = 0, D4 disappears. For p3 = 1, D4 coincides with D1, while for p3 = −1,
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D4 coincides with D2. For p3 = 0, p3 = 1 and p3 = −1, there are not split gaps and the

gaps structure is described only by table 4.1.

Proof. By looking at the expression of D4 written as a function of p1, i.e. (4.53), we see

that p2(p1) is neither even nor odd. Nevertheless, by dividing (4.45) by the maximum power

of p3, after taking the limit p3 → ±∞, we obtain

p2(p1) = 1− p2
1

4
, (4.56)

which is clearly an even function, and so it is symmetric with respect to the p2-axis.

Furthermore, the domain of the function (4.53) is{
∀p3 ∈ R/{0}, (p1 ∈ R : p1 ≥

(
1

p3
− p3

)}
. (4.57)

The curve D4 is not defined for p3 = 0. In addition, once we chose p3 = ±1, (4.53) can

be considered as a function of p1 only, whose explicit expression is

p2(p1) = ±p1, (4.58)

that are D1 and D2 for p3 = 1 and p3 = −1, respectively 12. In these cases the curve D4

becomes (p1 − p2)2 or (p1 + p2)2, which are positive and, as a result, there are no split

gaps, and the discussion reduces to Table 4.1 only.

Because of curve symmetries on the (p1, p2)-plane, here and thereafter we consider only

negative values of p3.

The Figures 4.3 and 4.4 are plots of the (p1, p2)-plane with the entire topological classifi-

cation of gaps and branches components for p3 = −0.6. We choose p3 = −0.6 without

loss of generality, indeed for |p3| > 1 the curve D4 moves in the regions with 1G and 0G

by creating a split-gap, and the discussion is the same.

4.3 Complex Spectrum

In the previous section we have considered the characteristic polynomial P (w;λ) and we

have analysed the situations in which two wj-roots coincide. We can summarise the clas-

sification of λ-roots at which at least one difference wj − wk is zero, i.e. ξ = 0:

12The domain of the function p2(p1) becomes {p1 ∈ R} for this case.
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Figure 4.3: (p1, p2)-plane, p3 = −0.6

1. 4 distinct real roots and/or 1 double real root (2G 0SG 0B or 1G 1SG 0B);

2. 2 distinct real roots, 2 complex conjugate roots and/or 1 double root (1G 0SG 1B or

0G 1SG 1B);

3. 2 pairs of complex conjugate roots (0G 0SG 2B).

Let us consider the polynomial of the squares of the differences PW (ξ;λ), defined in (4.3),

which is a sixth degree polynomial in λ and a third degree polynomial in ξ2. We construct the

polynomial Q(ξ) ≡ Q(ξ; p1, p2, p3), that is the discriminant with respect to λ of PW (ξ;λ)

Q(ξ) ≡ ∆λ PW (ξ;λ) . (4.59)

Then, we perform the polynomial factorisation of Q(ξ) with respect to ξ. This results in

the following form

Q(ξ) = ξQ2
1(ξ)Q2(ξ) , (4.60)
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where Q1(ξ) ≡ Q1(ξ; p1, p2, p3) and Q2(ξ) ≡ Q2(ξ; p1, p2, p3) are two polynomials in the

variable ξ, whose degree are four and six respectively, and Q1,2(0) 6= 0. We will refer to

Q1 and Q2 as the even and odd parts of Q(ξ), respectively.

Proposition 4.3.1. Let ξ̄ be the largest positive root of Q2(ξ). Then, for ξ > ξ̄, all the

λ-roots of PW (ξ;λ) are real; therefore, the stability spectra always contains part of the real

axis and never features a gap containing the point at infinity.

Proof. The polynomial of the squares of the differences is written as (Appendix J)

PW (ξ;λ) = ξ3 − f1ξ
2 +

f2
1

4
ξ − f2

6
, (4.61)

where f1 ≡ f1(λ; p1, p2, p3) and f2 ≡ f2(λ; p1, p2, p3) are polynomials whose unknown is

the spectral parameter λ and they are depending also by the physical parameters p1, p2

and p3. In particular, for the 3WRI model, these polynomials have the general expressions

f1 = α0 + α1λ+ α2λ
2, (4.62a)
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f2 = β0 + β1λ+ β2λ
2 + β3λ

3 + β4λ
4 + β5λ

5 + β6λ
6. (4.62b)

The polynomial of the squares of the differences (4.61) vanishes for any λ-root

ξ3 − f1ξ
2 +

f2
1

4
ξ − f2

6
= 0 (4.63)

and, by diving (4.63) by ξ3, we get the equation

1− f1

ξ
+

f2
1

4 ξ2
− f2

6 ξ3
= 0. (4.64)

Since 1
ξ → 0 as ξ → +∞, we define 1

ξ ≡ ε, so that the equation (4.64) becomes

1− f1ε+
f2

1

4
ε2 − f2

6
ε3 = 0. (4.65)

At this point, we note that for ε = 0, we have the impossible equality 1 = 0, that means

all the three roots approach infinity as ε goes to zero. Thus, we deal with a singular

perturbation problem and, in order to solve the equation (4.65), we set the rescaled variable

λ = y
δ(ε) into the equation (4.65) and substitute f1 and f2, scuh that

1 + α2
0

ε2

4
− α0ε−

β0ε
3

6
+
y

δ

(
α0α1

2
ε2 − α1ε−

b1
6
ε3
)

+
y2

2δ2
α0α2ε

2+

+
y2

4δ2
α2

1ε
2 − y2

δ2
α2ε−

y2

6δ2
β2ε

3+

+
y3

2δ3
α1α2ε

2 − y3

6δ3
β3ε

3 +
y4

4δ4
α2

2ε
2 − y4

6δ4
β4ε

3 − y5

6δ5
β5ε

3 − y6

6δ6
β6ε

3 = 0.

(4.66)

By using the principle of dominant balance, we require that at least two leading-order terms

have the same order of magnitude. By imposing the condition

ε3

δ5
=
ε3

δ6
, (4.67)

we get

δ = 1, (4.68)

that gives us solutions not approaching infinity as ε→ 0, so we have to rule out this choice.

The right expression for δ is given by the condition

ε3

δ6
=
ε2

δ4
, (4.69)
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hence,

δ = ε
1
2 . (4.70)

By substituting (4.70) in (4.66), we obtain

1 +
α2

0ε
2

4
− α0ε−

β0ε
3

6
+

+ y2

(
α0α2ε

2
+
α2

1ε

4
− α2 −

β2ε
2

6

)
+ y

(
1

2
α0α1ε

3/2 − α1

√
ε− 1

6
β1ε

5/2

)
+

+ y3

(
1

2
α1α2

√
ε− 1

6
β3ε

3/2

)
+ y4

(
α2

2

4
− β4ε

6

)
− 1

6
β5y

5√ε− β6y
6

6
= 0.

(4.71)

Therefore, we look for solutions of the kind13

y = y0 + ε
1
2 y1 +O(ε) , (4.72)

and by putting the expansion above into the equation (4.71) and collecting the terms with

respect to equal powers of ε

√
ε

(
1

2
α1α2y

3
0 − α1y0 + α2

2y
3
0y1 − 2α2y0y1 −

β5y
5
0

6
− β6y

5
0y1

)
+

+
α2

2y
4
0

4
− α2y

2
0 −

β6y
6
0

6
+ 1 + ... = 0,

(4.73)

where we have neglected the terms O(ε).

By expanding and matching the coefficients of εn to zero, for n = 0, 1, we obtain the

equations

1− α2y
2
0 +

α2
2y

4
0

4
− β6y

6
0

6
= 0, (4.74a)

1

2
α1α2y

3
0 − α1y0 + α2

2y
3
0y1 − 2α2y0y1 −

β5y
5
0

6
− β6y

5
0y1 = 0, (4.74b)

whose solutions 14 are y0j with j = 1, ..., 6. To find the order of the correction, we have

to substitute the solution y0j into the second equations and get y1j . Thus the solutions

are of the kind yj = y0j + O(ε
1
2 ), j = 1, ..., 6. Moreover, y2

0j are all reals, in fact, if one

13Because of (4.70), the corrections to the roots must be a regular perturbation expansion in powers of

ε
1
2 , otherwise we can not match powers of an expansion having only integral powers of ε.
14For the aim of this discussion the explicit expressions of y0j are not necessary.
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considers the polynomial (4.74a) as a third degree polynomial whose unknown is y2
0, the

discriminant is

∆y0 =
2

27
β3

6

(
α3

2 − 9β6

)2
, (4.75)

i.e.

∆y0 = 6144p6
3

(
p2

3 − 1
)6 (

1295p6
3 + 1298p4

3 + 431p2
3 + 48

)2
, (4.76)

and the condition 15 ∆y0 ≥ 0 is satisfied ∀p3 ∈ R. In addition, by the Descartes’ rule of

signs, it results that y2
0j are all positive, hence y0j are reals.

However, we are interested in finding λ, i.e.

λj = y0jε
− 1

2 +O(1), j = 1, ..., 6, (4.77)

and, coming back to the old variables, it turns out that

λj = y0j

√
ξj +O(1) , j = 1, ..., 6. (4.78)

Finally, keeping in mind the assumption ξj ∈ R+, the roots λj are all reals. Furthermore,

since y0j are solutions of the polynomial (4.74a) and since α2 = 2
(
3p2

3 + 1
)
> 0 and

β6 = (4p6
3 − 8p4

3 + 4p2
3) > 0, ∀p3 ∈ R, by using the Descarte’s rule for such a polynomial,

we see there are exactly 3 positive and 3 negative roots.

Let us impose a difference wj − wk to be real and strictly positive, i.e. ξ > 0. By the

formula (4.59), the values of ξ for which two λ-roots collide are those ones for which Q2(ξ)

vanishes. After that, Q2(ξ) may change sign, that is, after a collision, two λ-roots may

change their nature. In more detail, two real λ-roots may become complex and vice versa.

Indeed, if the polynomial of the squares of the differences is regarded as a polynomial in λ,

for any fixed ξ, we expect one of these scenarios:

a) 6 distinct real λ-roots;

b) 4 distinct real λ-roots and 2 complex conjugate λ-roots;

c) 2 distinct real λ-roots and 2 pairs of complex conjugate λ-roots;

15That is the condition for which y2
0j are three distinct real roots or multiple real roots.
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d) 3 pairs of complex conjugate λ-roots.

As ξ varies, two or more of the above scenarios can coexist. However, the case d) never

occurs. There is no interval of ξ in which all the roots are complex. In other words, ∀ξ > 0,

there are at least two real roots. This is a consequence of the fact that the polynomial

of the squares of the differences PW (ξ;λ) is equal to the square of the polynomial of the

differences w` − wm (Appendix J). Since the polynomial of the differences has only real

coefficients, it can have a pair of complex conjugated λ-roots at most. As a result, we

expect two pairs of complex conjugate λ-roots at most for the polynomial of the squares

of the differences.

In this section we focus on the complex subset of the Sx-spectrum which may lead to

instability in time (besides the point separating a split-gap). This part of the spectrum

consists of open and closed continuous curves named branches and loops respectively. To

understand how these curves appear, we have to imagine an initial situation in which

the values of the spectral parameters λ are roots of the polynomial PW (0;λ). Then, we

impose the condition ξ > 0, so that the values of the spectral parameters λ are roots of the

polynomial PW (ξ;λ) ∀ξ ∈ R. After that, one or more of the scenarios a), b) or c) occur

as ξ varies. For example, at ξ = 0, let us consider the initial condition for which we have 2

distinct real λ-roots and 2 complex conjugate λ-roots. Let us suppose that the polynomial

PW (ξ;λ) has 2 distinct real λ-roots and 2 complex conjugate λ-roots for some ξ ∈ R.

This means that all the real roots remain on the real axis and the 2 complex conjugate

roots collide at some point on the real axis and then go to infinity necessarily on the real

axis (see Proposition 4.3.1). In this case, the spectrum would be composed by 1G and 1B

and 0L. However, several other situations can occur as ξ varies. For instance, let b) be the

next situation. We have that 2 real λ-roots become a pair of complex conjugate λ-roots.

Since ∀ξ > 0 these couple of complex roots must remain conjugate (they are the roots of

a polynomial with real coefficients) and, in addition, all the roots must be real as ξ →∞,

instead of having a branch we have a loop. In this case, the spectrum would be composed

by 1G 1B 1L.

A loop can be regarded as a branch closed on the real axis. Sometimes, the difference with

a branch is that it is created by λ-roots not corresponding to ξ = 0. In any case, a loop

comes from two initial real λ-roots, instead of two complex conjugate λ-roots, unlike a



Chapter 4. Spectra and Linear Instabilities of the 3WRI Equations 94

branch. Nevertheless, there are some situations in which a loop is created by starting from

real λ-roots associated to ξ = 0. As ξ varies, two real λ-roots cannot travel in a branch

because, if that happens, they are forced to travel it again in order to come back on the

real axis when ξ → ∞ (see Proposition 4.3.1). For the same reason, two initial complex

conjugate roots, starting form the ends of a branch, travel such a branch but never come

back on it. Therefore, they collide on the real axis and, after that, approach infinity.

Proposition 4.3.2. The λ-roots cannot be periodic functions of ξ.

Proof. Since λ-roots are solutions of a polynomial, they can not be periodic. In particular,

once the other parameters are fixed, let us suppose, that the λ-roots are periodic functions

of ξ. Then the limit of λ(ξ) as ξ → ∞ is not convergent, because they are oscillating.

Thus, the λ(ξ) must be monotonic function of ξ.

4.3.1 Loops Classification

In this subsection we give the loops classification and so the complete spectra classification.

The (p1, p2)-plane is divided in regions in which the spectra have the same topology and

the number of gaps and the number of branches are known in every region. After choosing

the values of the parameters p1, p2 and p3 in any of such regions, we use MATLAB codes in

order to find the ξ-roots of the polynomial Q2(ξ). Between these roots we select only the

real and positive ξ-roots. If we find ξ̄1,...,ξ̄N real and positive roots, we have to consider

N + 1 intervals: from 0 to ξ̄1, from ξ̄1 to ξ̄2, etc... , until the last interval from ξ̄N to

+∞. In this way, if the polynomial of the squares of the differences PW (ξ;λ) is meant

like a polynomial in the λ variable, every coefficient of such a polynomial is a function

of the ξ variable. Then, we require every coefficient to be positive within every interval

{ξ̄j , ξ̄j+1}, with j = 1, ..., N − 1. After that, we see that the coefficients can change their

sign inside intervals whose endpoints do not coincide with the ξ-roots of Q2(ξ), we denote

them as ξ1, ..., ξM , and so further intervals appear in the ξ domain. We apply the Descartes

rule of signs in all the intervals {ξj , ξj+1}, with j = 1, ...,M − 1, and we see how many

real positive, real negative and complex conjugate roots there are. Nevertheless, different

cases may be present. For example, if we have three sign changes for the polynomial in

λ and for the polynomial in −λ, then we may have 3 positive roots, 3 negative roots, or
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3 positive roots, 1 negative root and 2 complex conjugate roots, or 3 positive roots, 1

negative root and 2 complex conjugate roots, or 1 positive root, 1 negative root and 2 pairs

of complex conjugate roots. However, only one of these options is the real one. Therefore,

we choose a generic point in every interval {ξj , ξj+1}, j = 1, ..,M − 1, and compute again

the coefficients of the polynomial of the squares of the differences. We count the number

of sign changes in every interval. Thus, we exclude all the options not corresponding to

the real one. By this method, as ξ varies, we can imagine the dynamic of the λ-roots on

the Sx spectrum, and so suppose the creation of a new spectrum component, or when two

λ-roots collide to return to the real axis.

Moreover, we write down a formula linking the number of branches, loops and twisted

loops:

#TL+ 2#L+ #B = #ξ+, (4.79)

where ξ+ stands for the positive roots of Q2(ξ).

4.3.2 Spectra Classification: Descartes Rule of Signs and Sturm Chains

Here we give a detailed, but general, description of the procedure used to obtain the

topological classification of the spectra in the (p1, p2)-plane. Then, we will apply this

procedure to any region in the parameter space with a particular number of gaps and

branches.

Let P (x) be a polynomial in x with real coefficients, and let deg(P ) be its degree. Let us

suppose P (x) is ordered by descending variable exponent, then the number of positive roots

of the polynomial is equal to the number of sign differences between consecutive nonzero

coefficients, or is less than it by en even number. Multiple roots are counted separately.

In order to obtain the number of negative roots, we substitute −x into the polynomial

P (x) to get Q(x) ≡ P (−x), and we apply the Descartes rule of sign to Q(x). If, for

instance, P (x) is a third degree polynomial, and the sequence of successive signs for P (x)

is {+ + −−}, we expect 1 positive root. On the other hand, let us suppose Q(x) has the

sequence of successive signs {− + +−}. Then, the polynomial Q(x) has 2 positive roots

and the polynomial P (x) has 2 negative roots. Since the number of complex roots must

be equal to deg(P ), the minimum number of strictly complex roots is deg(P ) − (p + n),
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where p denotes the number of positive roots, and n denotes the number of negative roots.

Thus, if we apply the Descartes rule of signs to both P (x) and Q(x), and the sum of the

number of their positive roots does not match deg(P ), we expect the polynomial P (x) to

have complex roots.

We apply the Descartes rule of signs to the polynomial of the squares of the differences

PW (ξ;λ), regarded as polynomial in λ, for any choice of the parameters p1, p2 and p3.

The polynomial PW (ξ;λ) is a sixth degree polynomial and the coefficients of λ6 and of

λ5 are constants and so independent on ξ. In other words, their signs are the same as ξ

varies. However, the other coefficients are depending on ξ, and so their sign can change as

ξ varies. Thus, after choosing the values of p1, p2 and p3, we get

PW (ξ;λ) = g6λ
6 + g5λ

5 + g4(ξ)λ4 + g3(ξ)λ3 + g2(ξ)λ2 + g1(ξ)λ+ g0(ξ), (4.80)

where g6 and g5 are numbers, while gj(ξ),with j = 0, 1, 2, 3, 4, are polynomials in ξ.

The trick is to require some coefficients to be positive and see for which value of ξ this

condition is satisfied. For instance, let ξ̄1 and ξ̄2 be the two values of ξ at which Q(ξ),

i.e. Q2(ξ), changes sign. We impose the conditions gj(ξ) > 0, ∀j = 1, 2, 3, 4, in every

interval 0 < ξ < ξ̄1, ξ̄1 < ξ < ξ̄2 and ξ̄2 < ξ < +∞. Sometimes, it will happen that

some polynomial coefficient is negative, for example, for 0 < ξ < ξ1 < ξ̄1 and instead

positive for ξ1 < ξ < ξ̄1. In such case, we will split the ξ-domain in intervals as [0, ξ1],

[ξ1, ξ2], [ξ2, ξ3], [ξ3,+∞), where we have redefined ξ̄1 = ξ2 and ξ̄2 = ξ3. Then, in every

of this interval we apply the Descartes rule of sign. We choose a particular value of ξ,

say, into the interval {0, ξ1}, substitute it in the polynomial PW (ξ;λ) and count the sign

changes. For example, we could have the sequence of signs {+ + − − − + −}, that is

associated to the possibilities: 3 positive and 1 complex conjugate λ-roots, or 1 positive

and 2 complex conjugate λ-roots. Whereas, for the polynomial PW (ξ;λ) after substituting

λ→ −λ, we have the sequence of signs {+ + − + − − −} associated to the possibilities:

3 negative and 0 complex conjugate λ-roots, or 1 negative and 2 complex conjugate λ-root.

By combining altogether the sequences of signs we obtain the possibilities: 3 positive and 3

negatives λ-roots, 3 positive (resp. 3 negative), 1 negative (resp. 1 positive) and 2 complex

conjugate λ-roots. After that, we will repeat the same procedure by choosing a particular

value of ξ into the other intervals.

Once we have the intervals in which the structure of the algebraic curves in the λ-plane

may change, we will apply the Sturm chains method to the polynomial PW (ξ;λ). First
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of all, we choose a value of ξ in every interval [0, ξ1],[ξ1, ξ2], [ξ2, ξ3] and [ξ3,+∞), and

substitute this value of ξ in the polynomial of the squares of the differences which be-

comes dependent only on λ, i.e. PW (λ). From here, we construct the Sturm chain

{P(j)
W }6j=0 = {P(0)

W ,P(1)
W ,P(2)

W ,P(3)
W ,P(4)

W ,P(5)
W ,P(6)

W } for every fixed ξ in any interval [0, ξ1],

[ξ1, ξ2], [ξ2, ξ3] and [ξ3,+∞):

P(0)
W (λ) = PW (λ),

P(1)
W (λ) =

d

dλ
P(0)
W (λ),

P(2)
W (λ) = −Remainder

(
P(0)
W (λ),P(1)

W (λ)
)
,

P(3)
W (λ) = −Remainder

(
P(1)
W (λ),P(2)

W (λ)
)
,

P(4)
W (λ) = −Remainder

(
P(2)
W (λ),P(3)

W (λ)
)
,

P(5)
W (λ) = −Remainder

(
P(3)
W (λ),P(4)

W (λ)
)
,

P(6)
W (λ) = −Remainder

(
P(4)
W (λ),P(5)

W (λ)
)
.

The result of this computation is a sequence of numbers changing as ξ changes, and we

write down only the sign of every number in the sequence and, from such a sequence, we

extract the sequence of the corresponding signs. This sequence of signs changes only if we

choose values of ξ from intervals different from to each other.

4.4 Gain Function

In this section, we present the functionH(ω, k) as an implicit function of the eigenwavenum-

ber k = wi−wj and of the eigenfrequency ω = zi−zj . The vanishing of the this polynomial,

i.e. H(ω, k) = 0, for fixed k, provides ω as a function of H and of the other parameters of

the system p1, p2 and p3, whose imaginary part is the gain function. However, we do not

solve this polynomial because it is sixth degree polynomial in ω, instead, we will compute

numerically (via a MATLAB 2018a routine) and we will display an example of the gain

function for any spectrum in the classification in the next section.

In the following, we show how the function H(ω, k) is obtained.

Let us consider the two characteristic polynomials PZ(z;λ) and PW (w;λ). Because the
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two associate matrices commute, i.e. [Z,W ] = 0, they have roots in common, such that

their resultant must be zero for values of the parameters involved in their expressions. The

resultants with respect to p1 and p2 read, respectively,

Resp1(PZ(z;λ);PW (w;λ)) = (−p3(p2 + z(λ+ z)) + w − z)
(
λ2 + p2(p3(λ+ z)− 1)2+

+p2
3(λ+ z − 1)(λ+ z + 1)(z(λ+ z)− 1) + p3

(
w(z(λ+ z)− 2)− z(λ+ z)2 + z

)
+ w2+

+2λ(w + z) + wz + z2 − 1
)
,

(4.82)

Resp2(PZ(z;λ);PW (w;λ)) = (−p1p3 − p3z + (w − z)(λ+ z))
(
−λ+ p1(p3(λ+ z)− 1)2+

+(λ+ z)(p2
3(−(λ+ z − 1))(λ+ z + 1) + p3(w(z(λ+ z)− 2) + z(λ+ z − 1)(λ+ z + 1))+

+(λ+ w)(λ+ w + z))) .

(4.83)

Because the resultants (4.82) and (4.83) are the product of two polynomials, for each one

of them, we equal to zero the polynomial with the simplest expression, in this way we obtain

two maps between the eigenvalue w and z,

w → p3(p1 + z)

λ+ z
+ z, (4.84)

and

w → p3(p2 + z(λ+ z)) + z. (4.85)

Using the two maps (4.84) and (4.85), we define the two polynomials by taking the numer-

ators of the following expressions

J1(z1, z2;λ) = (4 ((λ+ z1)(λ+ z2)(k − z1 − z2)− p3(p1 + z1)(λ+ z2)− p3(p1 + z2)(λ+ z1))) ,

(4.86)

and

J2(z1, z2;λ) = 4 (k − (p3(p2 + z1(λ+ z1)) + z1 − p3(p2 + z2(λ+ z2)) + z2)) , (4.87)

and, after the substitutions ω = z1 − z2 and θ = z1 + z2, they become

J1(θ;λ) = k
(
(θ + 2λ)2 − ω2

)
+ ω

(
−θ2 + 4p1p3 − 4λ(θ + λ+ p3) + ω2

)
, (4.88)
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J2(θ;λ) = k − ω(p3(θ + λ) + 1). (4.89)

Moreover, we introduce another polynomial, that is the polynomial of the sums of the

eigenvalues zj (Appendix K)

SZ(θ, λ) = θ3 + 4λθ2 + (5λ2 + p2 − 1)θ + p1 + λ(−2 + p2 + 2λ2). (4.90)

Then, the Groebner basis of the three polynomial J1(θ;λ), J2(θ;λ) and SZ(θ, λ) yields a

list of polynomials of which only the first is independent on λ and θ and provides the gain

function

H(ω, k) = k4
(
ω2 − 4

)
− 4k3ω

(
p1p3 + ω2 − 4

)
−

− k2ω2
(
−12p1p3 + p2

3

(
p2

2 + 4p2 + 2ω2 − 8
)
− 6

(
ω2 − 4

))
+

+ 2kω3
(
p1p3

(
−(p2 − 2)p2

3 − 6
)

+ p2
3

(
p2

2 + 4p2 + 2ω2 − 8
)
− 2ω2 + 8

)
+

+ ω4
(
p4

3

(
−
(
p2

1 − 4p2 + 4
))

+ 2p1(p2 − 2)p3
3 + 4p1p3 − (p2(p2 + 4)− 8)p2

3 − 4
)

+(
p2

3 − 1
)2
ω6.

(4.91)

4.5 Description of the x-Stability Spectra

In this section we provide an analytical description of the spatial stability spectra obtained

for any generic choice of the parameters in the (p1, p2)-plane and we display both the Sx-

spectrum and its associated gain function ω3 = Γ(k3) in any region of the (p1, p2)-plane

(see Appendices M and L).

Regions with 1 Gap and 1 Branch

In the regions with 1 gap and 1 branch, we note the following correspondence between the

number of loops and the number of positive ξ-roots:

• 2L: 5 positive ξ-roots;
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• 1L: 3 positive ξ-roots;

• 0L: 1 positive ξ-roots.

If we choose p1 = −0.8, p2 = 0.4 and p3 = −0.6, we have that Q2(ξ) changes sign 5 times

at any of the following values of ξ: ξ̄1 = 0.028, ξ̄2 = 1.887, ξ̄3 = 2.115, ξ̄4 = 3.146 and

ξ̄5 = 33.419. After applying the Descartes rule of signs to the polynomial of the squares of

the differences multiplied by minus, further intervals must be considered whose end-points

are: ξ1 = 0.028, ξ2 = 0.152, ξ3 = 1.887, ξ4 = 2.115, ξ5 = 3.146, ξ6 = 6.517, ξ7 = 15.021

and ξ8 = 33.419. Then, we apply the Sturm chains technique by substituting a generic ξ

value on every interval [ξj , ξj+1] into the expression of the coefficients and we count the

sign changes. Finally, we can classify the nature of the λ-roots and so we can describe the

whole spectrum. In particular:

• 0 < ξ < ξ1: 4 λ-roots on the real axis and 2 λ-roots are travelling along the branch;

• ξ1 < ξ < ξ2: 2 λ-roots on the real axis, 2 λ-roots on the branch and 2 λ-roots on a

loop;

• ξ2 < ξ < ξ3: 4 λ-roots on the real axis, and 2 λ-roots on a loop or on the branch;

• ξ3 < ξ < ξ4: 6 λ-roots on the real axis;

• ξ4 < ξ < ξ5: 6 λ-roots on the real axis;

• ξ5 < ξ < ξ6: 4 λ-roots on the real axis, 2 λ-roots on the second loop;

• ξ6 < ξ < ξ7: 4 λ-roots on the real axis, 2 λ-roots on the second loop;

• ξ7 < ξ < ξ8: 4 λ-roots on the real axis, 2 λ-roots on the second loop.

• ξ > ξ8: 6 λ-roots on the real axis.

We conclude that 2 loops exist for these choices of the physical parameters.
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Figure 4.5: Stability spectrum for p1 = −0.8, p2 = 0.4, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).

Figure 4.6: Gain function Γ(k3) where k3 = w1 − w2 associated to the stability spectrum

obtained at p1 = −0.8, p2 = 0.4, p3 = −0.6.

By setting p1 = −4.0, p2 = −3.0 and p3 = −0.6, we have that Q2(ξ) changes sign 3

times at any of the following values of ξ: ξ̄1 = 0.030, ξ̄2 = 31.959 and ξ̄3 = 49.660. By

applying the Descartes rule of signs, further intervals must be considered whose end-points

are: ξ1 = 0.026, ξ2 = 0.030, ξ3 = 0.525, ξ4 = 31.959, ξ5 = 38.834, ξ6 = 49.660 and

ξ7 = 52.214. Then, we apply the Sturm chains technique and we obtain the classification

of the nature of the λ-roots:

• 0 < ξ < ξ1: 4 λ-roots on the real axis and 2 λ-roots on the branch;
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• ξ1 < ξ < ξ2: 4 λ-roots on the real axis and 2 λ-roots on the branch;

• ξ2 < ξ < ξ3: 2 λ-roots on the real axis, and 2 λ-roots on the loop and 2 λ-roots on

the branch;

• ξ3 < ξ < ξ4: 2 λ-roots on the real axis and 2 λ-roots on the branch and 2 λ-roots

on the loop;

• ξ4 < ξ < ξ5: 2 λ-roots on the real axis and 2 λ-roots on the branch and 2 λ-roots

on the loop;

• ξ5 < ξ < ξ6: 6 λ-roots on the real axis;

• ξ > ξ7: 6 λ-roots on the real axis.

Therefore, 1 loop is present in this spectrum.

Figure 4.7: Stability spectrum at p1 = −4.0, p2 = −3.0, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).



Chapter 4. Spectra and Linear Instabilities of the 3WRI Equations 103

Figure 4.8: Gain function Γ(k3) with k3 = w1 − w2 associated to the spectrum obtained

at p1 = −4.0, p2 = −3.0, p3 = −0.6.

By setting p1 = 1.0, p2 = 3.0 and p3 = −0.6, we have that Q2(ξ) changes sign 1 time in

the point ξ̄1 = 36.911. After applying the Descartes rule of signs, further intervals must

be considered whose end-points are: ξ1 = 0.079, ξ2 = 3.664, ξ3 = 36.911. Then, we apply

the Sturm chains technique and we get the following classification:

• 0 < ξ < ξ1: 4 real λ-roots and 2 λ-roots on the branch;

• ξ1 < ξ < ξ2: 4 real λ-roots and 2 λ-roots on the branch;

• ξ2 < ξ < ξ3: 4 real λ-roots and 2 λ-roots on the branch;

• ξ > ξ3: 6 λ-roots on the real axis.

No loops exist into the spectrum for these choices of the physical parameters.
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Figure 4.9: Stability spectrum at p1 = 1.0, p2 = 3.0, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).

Figure 4.10: Gain function Γ(k3) wherek3 = w1 −w2 associated to the spectrum obtained

at p1 = 1.0, p2 = 3.0, p3 = −0.6.

4.5.1 Regions with 0 Gap and 2 Branches

In the regions with 0 gap and 2 branches, there is the following correspondence between

the number of loops and the number of positive ξ-roots:

• 2L: 6 positive ξ-roots;

• 1L: 4 positive ξ-roots;
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• 0L: 2 positive ξ-roots.

Let us set p1 = −6.2, p2 = −6.3 and p3 = −0.6. For these values of the parameters

the polynomial Q2(ξ) change sign 6 times at the values of ξ: ξ̄1 = 0.168, ξ̄2 = 1.219,

a
¯
rξ3 = 63.296, ξ̄4 = 63.549, ξ̄5 = 64.132, ξ̄6 = 70.732. Then, we apply the Descartes

rule of signs and we find further intervals whose end-points are: ξ1 = 0.168, ξ2 = 0.451,

ξ3 = 0.839, ξ4 = 1.015, ξ5 = 1.219, ξ6 = 2.746, ξ7 = 63.296, ξ8 = 64.132, ξ9 = 66.267,

ξ10 = 70.732, ξ11 = 71.817, ξ12 = 82.022, ξ13 = 87.860. In this way, by the Sturm chains

method, we have the classification of the λ-roots:

• 0 < ξ < ξ1: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on the

other branch;

• ξ1 < ξ < ξ2: 4 λ-roots on the real axis and 2 λ-roots on a branch;

• ξ2 < ξ < ξ3: 4 λ-roots on the real axis and 2 λ-roots on a branch;

• ξ3 < ξ < ξ4: 4 λ-roots on the real axis and 2 λ-roots on a branch;

• ξ4 < ξ < ξ5: 4 λ-roots on the real axis and 2 λ-roots on a branch;

• ξ5 < ξ < ξ6: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop;

• ξ6 < ξ < ξ7: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop;

• ξ7 < ξ < ξ8: 6 λ-roots on the real axis;

• ξ8 < ξ < ξ9: 4 λ-roots on the real axis and 2 λ-roots on a loop;

• ξ9 < ξ < ξ10: 4 λ-roots on the real axis and 2 λ-roots on a loop;

• ξ10 < ξ < ξ11: 6 λ-roots on the real axis;

• ξ11 < ξ < ξ12: 6 λ-roots on the real axis;

• ξ12 < ξ < ξ13: 6 λ-roots on the real axis;

• ξ > ξ13: 6 λ-roots on the real axis.
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Thus, we see 2 loops in this spectrum.

Figure 4.11: Stability spectrum with p1 = −6.2, p2 = −6.3, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).

Figure 4.12: Gain function Γ(k3) where k3 = w1−w2 associated to the spectrum obtained

at p1 = −6.2, p2 = −6.3, p3 = −0.6.

If we choose p1 = −4.0, p2 = −4.2 and p3 = −0.6, the polynomial Q2(ξ) vanishes 4 times

in these points: ξ̄1 = 0.129, ξ̄2 = 0.240, ξ̄3 = 36.370 and ξ̄4 = 44.444. By using the

Descartes rule of signs we have: ξ1 = 0.129, ξ2 = 0.179, ξ3 = 0.240, ξ4 = 0.380, ξ5 =

0.495, ξ6 = 1.047, ξ7 = 36.370, ξ8 = 43.943, ξ9 = 44.444, ξ10 = 46.439, ξ11 = 49.745,

ξ12 = 57.025. By constructing the Sturm chains method, we obtain the following λ-roots

classification:
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• 0 < ξ < ξ1: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on the

other branch;

• ξ1 < ξ < ξ2: 4 λ-roots on the real axis and 2 λ-roots on a branch;

• ξ2 < ξ < ξ3: 4 λ-roots on the real axis and 2 λ-roots on a branch;

• ξ3 < ξ < ξ4: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop;

• ξ4 < ξ < ξ5: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop;

• ξ5 < ξ < ξ6: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop;

• ξ6 < ξ < ξ7: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop;

• ξ7 < ξ < ξ8: 4 λ-roots on the real axis and 2 λ-roots on a branch or on a loop;

• ξ8 < ξ < ξ9: 4 λ-roots on the real axis and 2 λ-roots on a branch or on a loop;

• ξ9 < ξ < ξ10: 6 λ-roots on the real axis;

• ξ10 < ξ < ξ11: 6 λ-roots on the real axis;

• ξ11 < ξ < ξ12: 6 λ-roots on the real axis;

• ξ > ξ12: 6 λ-roots on the real axis.

Only one loop is present in the spectrum.
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Figure 4.13: Stability spectrum with p1 = −4.0, p2 = −4.2, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).

Figure 4.14: Gain function Γ(k3) where k3 = w1−w2 associated to the spectrum obtained

at p1 = −4.0, p2 = −4.2, p3 = −0.6.

If we choose p1 = 1.0, p2 = −3.0 and p3 = −0.6, the polynomial Q2(ξ) vanishes 2 times

in these two points: ξ̄1 = 8.421 and ξ̄2 = 13.280. By using the Descartes rule of signs

we have: ξ1 = 0.076, ξ2 = 0.769, ξ3 = 2.284, ξ4 = 8.421, ξ5 = 11.354, ξ6 = 12.477,

ξ7 = 13.157, ξ8 = 13.280, ξ9 = 13.289. By using Sturm chains we get the following λ-roots

classification:

• 0 < ξ < ξ1: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on the

other branch;
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• ξ1 < ξ < ξ2: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on the

other branch;

• ξ2 < ξ < ξ3: 4 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on the

other branch;

• ξ3 < ξ < ξ4: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on the

other branch;

• ξ4 < ξ < ξ5: 4 λ-roots on the real axis, 2 λ-roots on a branch;

• ξ5 < ξ < ξ6: 4 λ-roots on the real axis, 2 λ-roots on a branch;

• ξ6 < ξ < ξ7: 4 λ-roots on the real axis, 2 λ-roots on a branch;

• ξ7 < ξ < ξ8: 4 λ-roots on the real axis, 2 λ-roots on a branch;

• ξ8 < ξ < ξ9: 6 λ-roots on the real axis;

• ξ > ξ9: 6 λ-roots on the real axis.

No loop is present in the spectrum.

Figure 4.15: Stability spectrum with p1 = 1.0, p2 = −3.0, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).
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Figure 4.16: Gain function Γ(k3) where k3 = w1−w2 associated to the spectrum obtained

at p1 = 1.0, p2 = −3.0, p3 = −0.6.

4.5.2 Regions with 2 Gaps and 0 Branch

In the regions with 2 gaps and 0 branch, there is the following correspondence between the

number of loops and the number of positive ξ-roots:

• 2L: 4 positive ξ-roots;

• 1L: 2 positive ξ-roots.

The region with 2 gaps, 0 branch and 0 loop does not exist. This is because the λ-roots

which start to move in the interval between the 2 gaps would be trapped inside such interval

and never would go to infinity: this is in contradiction of the Proposition 4.3.1.

Let us set p1 = −70.0, p2 = 60.0 and p3 = −0.6. The polynomial Q2(ξ) changes sign 4

times in the points ξ̄1 = 1.596, ξ̄2 = 218.582, ξ̄3 = 968.174, ξ̄4 = 3944.396. After applying

the Descartes rule of signs, the end-point of the intervals become: ξ1 = 1.596, ξ2 = 32.536,

ξ3 = 218.582, ξ4 = 482.289, ξ5 = 968.174, ξ6 = 1480.780, ξ7 = 3944.396, ξ8 = 4733.800.

By using Sturm chains method, we get the following λ-roots classification:

• 0 < ξ < ξ1: 6 λ-roots on the real axis;
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• ξ1 < ξ < ξ2: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ2 < ξ < ξ3: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ3 < ξ < ξ4: 2 λ-roots on the real axis, 2 λ-roots on a loop and 2 λ-roots on another

loop;

• ξ4 < ξ < ξ5: 2 λ-roots on the real axis, 2 λ-roots on a loop and 2 λ-roots on another

loop;

• ξ5 < ξ < ξ6: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ6 < ξ < ξ7: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ7 < ξ < ξ8: 6 λ-roots on the real axis;

• ξ > ξ8: 6 λ-roots on the real axis.

Therefore, we see 2 loops in this spectrum.

Figure 4.17: Stability spectrum with p1 = −70.0, p2 = 60.0, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).
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Figure 4.18: Gain function Γ(k3) where k3 = w1−w2 associated to the spectrum obtained

at p1 = −70.0, p2 = 60.0, p3 = −0.6.

Let us set p1 = 0.2, p2 = 0.6 and p3 = −0.6. The polynomial Q2(ξ) changes sign 2

times in the points ξ̄1 = 2.348 and ξ̄2 = 18.989. After applying the Descartes rule of signs

,the end-point of the intervals become: ξ1 = 2.348, ξ2 = 6.410 and ξ3 = 18.989. After

constructing the Sturm chains, the λ-roots classification is:

• 0 < ξ < ξ1: 6 λ-roots on the real axis;

• ξ1 < ξ < ξ2: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ2 < ξ < ξ3: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ > ξ3: 6 λ-roots on the real axis.

Therefore, there is only 1 loop in this spectrum.
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Figure 4.19: Stability spectrum with p1 = 0.2, p2 = 0.6, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).

Figure 4.20: Gain function Γ(k3) where k3 = w1−w2 associated to the spectrum obtained

at p1 = 0.2, p2 = 0.6, p3 = −0.6.

4.5.3 Region with 1 Gap, 1 Split Gap and 0 Branches

There is only one possibility:

• 1L 1TL: 3 positive ξ-roots.

By choosing p1 = −90.0, p2 = 60.0 and p3 = −0.6, the polynomial Q2(ξ) vanishes in

the points ξ̄1 = 63.032, ξ̄2 = 2891.269 and ξ3 = 4474.552. By the Descartes rule, the ξ-
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domain is split by these points: ξ1 = 63.032, ξ2 = 267.710, ξ3 = 1569.140, ξ4 = 2891.269,

ξ5 = 4474.552, ξ6 = 6153.740. The λ-roots classification is obtained by the Sturm chains

construction:

• 0 < ξ < ξ1: 4 λ-roots on the real axis and 2 λ-roots on a loop;

• ξ1 < ξ < ξ2: 2 λ-roots on the real axis, 2 λ-roots on a loop and 2 λ-roots on another

loop;

• ξ2 < ξ < ξ3: 2 λ-roots on the real axis, 2 λ-roots on a loop and 2 λ-roots on another

loop;

• ξ3 < ξ < ξ4: 2 λ-roots on the real axis, 2 λ-roots on a loop and 2 λ-roots on another

loop;

• ξ4 < ξ < ξ5: 4 λ-roots on the real axis and 2 λ-roots on a loop;

• ξ5 < ξ < ξ6: 6 λ-roots on the real axis;

• ξ > ξ6: 6 λ-roots on the real axis.

In this spectrum it looks like there are only two loops, but actually there are 1 loop and

1 twisted loop. Therefore, the second loop that we have found has to be counted twice.

Indeed, we cannot individuate the exact value of ξ in which the two λ-roots collide on the

real axis to become again two complex conjugate roots travelling the second part of the

twisted loop.
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Figure 4.21: Stability spectrum with p1 = −90.0, p2 = 60.0, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).

Figure 4.22: Gain function Γ(k3) where k3 = w1−w2 associated to the spectrum obtained

at p1 = −90.0, p2 = 60.0, p3 = −0.6.

4.5.4 Region with 1 Split Gap and 1 Branch

In this region we have:

• 1L 1TL: 4 positive ξ-roots;

• 1TL: 2 positive ξ-roots.
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Let us fix p1 = −1.4, p2 = −1.0 and p3 = −0.6. The polynomial Q2(ξ) changes sign

4 times in the points ξ̄1 = 9.216, ξ̄2 = 11.823, ξ̄3 = 12.195 and ξ̄4 = 27.053. By the

Descartes rule of signs, we get: ξ1 = 0.002, ξ2 = 0.421, ξ3 = 9.216, ξ4 = 11.823,

ξ5 = 12.195, ξ6 = 27.053, so that, by using the Sturm chains technique, the λ-roots are

classified as follows:

• 0 < ξ < ξ1: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop;

• ξ1 < ξ < ξ2: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop

• ξ2 < ξ < ξ3: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop

• ξ3 < ξ < ξ4: 4 λ-roots on the real axis, 2 λ-roots on a branch or on a loop;

• ξ4 < ξ < ξ5: 6 λ-roots on the real axis;

• ξ5 < ξ < ξ6: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ > ξ6: 6 λ-roots on the real axis.

In this spectrum there is 1 loop and 1 twisted loop. Also in this case it is not possible

distinguish the exact value of ξ in which two λ-roots collide in the point separating a split

gap and then they become again two complex conjugate roots.
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Figure 4.23: Stability spectrum with p1 = −1.4, p2 = −1.0, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).

Figure 4.24: Gain function Γ(k3) where k3 = w1 − w2 associated to the spectrum at

p1 = −1.4, p2 = −1.0, p3 = −0.6.

If we choose p1 = −4, p2 = 2 and p3 = −0.6, the polynomial Q2(ξ) vanishes 2 times in

ξ̄1 = 9.591 and ξ̄2 = 98.262. By the Descartes rule of signs, we get the points ξ1 = 0.136,

ξ2 = 9.591, ξ3 = 19.547, ξ4 = 45.537, ξ5 = 98.262. The classification of the λ-roots is:

• 0 < ξ < ξ1: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop;

• ξ1 < ξ < ξ2: 2 λ-roots on the real axis, 2 λ-roots on a branch and 2 λ-roots on a

loop;
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• ξ2 < ξ < ξ3: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ3 < ξ < ξ4: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ4 < ξ < ξ5: 4 λ-roots on the real axis, 2 λ-roots on a loop;

• ξ > ξ5: 6 λ-roots on the real axis.

It looks like we have only one loop, but actually this is a twisted loop.

Figure 4.25: Stability spectrum with p1 = −4.0, p2 = 2.0, p3 = −0.6. ρ = Re(λ) and

µ = Im(λ).

Figure 4.26: Gain function Γ(k3) where k3 = w1−w2 associated to the spectrum obtained

at p1 = −4.0, p2 = 2.0, p3 = −0.6.

Summarising, all the possibile topologies in the (p1, p2)-plane are:
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• 1G 0SG 1B 2L 0TL;

• 1G 0SG 1B 1L 0TL;

• 1G 0SG 1B 0L 0TL;

• 0G 0SG 2B 2L 0TL;

• 0G 0SG 2B 1L 0TL;

• 0G 0SG 2B 0L 0TL;

• 2G 0SG 0B 2L 0TL;

• 2G 0SG 0B 1L 0TL;

• 1G 1SG 0B 1L 1TL;

• 0G 1SG 1B 1L 1TL;

• 0G 1SG 1B 0L 1TL.

4.6 Topological Classification of the Spectra in the Parameter

Space

At this point, we can obtain the entire topological classification of the spectra in the

parameter space. In order to do that, we need to describe the curves in the (p1, p2)-plane

separating the regions with different number of gaps, branches and loops. First of all, we

compute and factorise the polynomial Q2(ξ) at ξ = 0,

Q2(0) =
4∏
j=1

Dj(p1, p2, p3)dj , (4.92a)

whose corresponding curves are given by (4.33), as well as the discriminant of Q2(ξ) with

respect to ξ,

∆ξQ2(ξ) =

4∏
j=0

Ej(p1, p2, p3)ej , (4.92b)
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where the functions Ej depend on the parameters p1, p2 and p3.

Similarly to the definition (4.33), let Ej be the real-analytic variety in the parameter space,

implicitly defined as

Ej =
{
p1, p2 , p3 ∈ R ∃ (p1, p2) ∈ R1×1 |Ej(p1, p2, p3) = 0

}
. (4.93a)

The curves (4.93a) define transition regions with different topological structures. In partic-

ular, we find again the curves (4.93a), which are D1, D2, D3 and D4 coinciding with E1,

E2, E3 and E4, respectively, plus another curve that we denote as E0.

If the matrix W features the parameters p1, p2 and p3 only in polynomial form, then Dj ,

with j = 1, 2, 3, 4, and E0 are algebraic varieties over the reals.

Definition 4.6.1. Let

C =

 ⋃
j=1,2,3,4

Dj

 ⋃
E0, (4.94)

be the set of all the varieties Dj joined with E0. The set C defines the boundaries of the

regions in the (p1, p2)-parameters space associated to different topologies of the spectra

Sx.

For instance, if the (effective16) parameter space is 2-dimensional, then C is a set of curves

on the real plane.

Finally, in the figures 4.27 and 4.28, we show the curves C in the parameters space and the

entire topological classification of the spectra in this space.

16The parameters p1 and p2 may appear in the definition of the varieties Dj and E combined in a certain

number of functions, whose total number can be less than the original number of parameters; then, these

functions of the parameters, on which the varieties depend, play the role of “effective” parameters.
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Figure 4.27: (p1, p2)-plane, p3 = −0.6.
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Figure 4.28: (p1, p2)-plane, p3 = −0.6.



Chapter 5

Classification of the Stability

Spectra on the Physical Parameters

Space and Numerical Simulations

Based on the results obtained in the previous chapter, in the following we discuss the

classification of the stability spectra in terms of the physical parameters space. We divide

the parameters space in octants and in every octant we provide the values of the physical

parameters. Then, we provide some examples of numerical solutions of the original 3WRI

system to show that the plane wave solution is everywhere linearly unstable and that the

presence of a branch into the stability spectrum can be associated, depending on the class

of the perturbation, to the onset of localised structures such as breather-like solutions and

potential rogue waves.

These numerical simulations have been included manly for the sake of complementing the

analytical results: although the theory presented herein cannot quantitatively explain these

numerical experiments, it is interesting to observe that perturbing plane waves associated to

different spectra and integrating numerically (over a short time) the 3WRI system using the

different perturbing waves yields different time evolutions and behaviours, hence suggesting

a potential link, in the spirit of what has been done for the NLS system in [72]. This link

may be the subject of future investigation.
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5.1 Classification of the Stability Spectra on the Physical Pa-

rameters Space

The formulas (3.91) can be written as follows

s1s2s3p1 = c2
1s1a

2
1 + c2

2s2a
2
2, (5.1a)

s1s2s3p2 = c2
1s1a

2
1 − c2

2s2a
2
2, (5.1b)

by summing and subtracting (5.1) and (5.1b) we get, respectively,

c2
1 =

s2s3

2a2
1

(p1 + p2), (5.2a)

c2
2 =

s1s3

2a2
2

(p1 − p2). (5.2b)

Moreover, we know that

p3 =
c1 − c2

c1 + c2
. (5.3)

Let us separate the parameters space (p1, p2) in quadrants and let us enumerate clockwise

the quadrants with the roman numbers I, II, III, IV. Then, let us separate further every

quadrant in two parts or octants according to the following scheme:

Ia

IbIIa

IIb

IIIb

IIIa IVb

IVa

In every octant, we have the following relation between the parameters p1 and p2:
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• Octant Ia: |p1| > |p2|, p1 > 0 and p2 > 0;

• Octant Ib: |p1| < |p2|, p1 > 0 and p2 > 0;

• Octant IIa: |p1| < |p2|, p1 < 0 and p2 > 0;

• Octant IIb: |p1| > |p2|, p1 < 0 and p2 > 0;

• Octant IIIa: |p1| > |p2|, p1 < 0 and p2 < 0;

• Octant IIIb: |p1| < |p2|, p1 < 0 and p2 < 0;

• Octant IVa: |p1| < |p2|, p1 > 0 and p2 < 0;

• Octant IVb: |p1| > |p2|, p1 > 0 and p2 < 0.

In order to see which choice of signs exists in any octant, let us take into account the

formulas (5.2a) and (5.2b).

In the quadrant I, we have p1 > 0 and p2 > 0, then, by the formula (5.2a), it results

in s2s3 = 1, and so s2 = s3 = ±1. In the octant Ia, we have p1 > p2, then, by

the formula (5.2b), s1s3 = 1. This yields that the choice of signs is S+
4 or S−4 , that is

s1 = s2 = s3 = ±1. In the octant Ib, we have p1 < p2, thus, by the relation (5.2b), the

choice of signs is S+
3 or S−3 , that is s1 = −1 and s2 = s3 = 1 or s1 = 1 and s2 = s3 = −1,

respectively.

In the quadrant II, we have p1 < 0 and p2 > 0, and by the formula (5.2b), it results

s1s3 = −1, and so s1 = −s3. In the octant IIa, p1 > −p2, as a consequence of the relation

(5.2a), we have s2s3 = 1. Therefore, the choice of signs is S+
3 or S−3 , corresponding to

s1 = −1 and s2 = s3 = 1 or s1 = − and s2 = s3 = −1, respectively. On the other hand

in the octant IIb, we have p1 < −p2. By the formula (5.2a), we obtain s2s3 = −1. Thus

we have the choices of signs s1 = s2 = 1 and s3 = −1 or s1 = s2 = −1 and s3 = 1 which

are denoted as S+
1 and S−1 , respectively.

In the quadrant III, we have p1 < 0 and p2 < 0. By the relation (5.2a), we obtain

s2s3 = −1, that is s2 = −1 and s3 = 1 or s2 = 1 and s3 = −1. In the octant IIIa, p1 < p2,

and as consequence of the formula (5.2b) we get s1s3 = −1. Therefore, the combinations

of signs are s1 = s2 = 1 and s3 = −1 or s1 = s2 = −1 and s3 = 1 corresponding to the

choices S+
1 and S−1 , respectively. In the octant IIIb, we have p1 > p2, then s1s3 = 1, that
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is s1 = s3 = 1 and s3 = −1 or s1 = s3 = −1 and s3 = 1. They correspond to the choices

S+
2 and S−2 , respectively.

In the quadrant IV, we have the relations p1 > 0 and p2 < 0. By the relation (5.2b),

it results in s1s3 = 1, and so s1 = s3 = 1 or s1 = s3 = −1. Moreover, in the octant

IVa, p1 < −p2, then, by (5.2a) s2s3 = −1, we obtain s1 = s3 = 1 and s2 = −1 or

s1 = s3 = −1 and s2 = 1. These combinations of signs are denoted as S+
2 and S−2 ,

respectively. In the octant IVb, p1 > −p2 and, by the formula (5.2a), this yields s2s3 = 1.

Thus, we have s1 = s2 = s3 = 1 or s2 = s2 = s3 = −1, corresponding to te choices S+
4 or

S−4 , respectively.

In the following subsection we will provide the mapping from the parameters p1, p2, p3 into

the parameters c1, c2, a1 and a2.

5.1.1 Octant Ia

By looking at the formulas (5.2), if p1 > p2 > 0, then p1 + p2 > 0 and p1 − p2 > 0. As a

consequence, s1s3 = 1 and s2s3 = 1 and, so, s1 = s2 = s3.

By subctracting (5.2a) from (5.2b)

c2
1 − c2

2 =
1

2a2
1

(p1 + p2)− 1

2a2
2

(p1 − p2) =
1

2a2
1a

2
2

[p1(a2
2 − a2

1) + p2(a2
1 + a2

2)]. (5.4)

For p3 < 0, we have |c2| > |c1|, so c2
1 − c2

2 < 0, and

0 <
p1

p2
<
a2

2 + a2
1

a2
1 − a2

2

then |a1| > |a2|. (5.5)

Similarly, for p3 > 0, we have |c2| < |c1|, the equation c2
1 − c2

2 > 0 gives us the condition

|a1| > |a2|. We have |a1| 6= |a2|, otherwise p2 < 0.

In conclusion, for both the cases |c2| > |c1| (p3 < 0) and |c2| < |c1| (p3 > 0) the amplitudes

satisfy the relation |a1| > |a2|.

5.1.2 Octant Ib

By (5.2), if p2 > p1 > 0, then p1 + p2 > 0 and p1− p2 < 0 and also we have s2s3 = 1 and

s1s3 = −1. Thus, it results in s2 = s3 = −s1.
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By subtracting (5.2a) from (5.2b)

c2
1− c2

2 =
1

2a2
1

(p1 + p2) +
1

2a2
2

(p1− p2) =
1

2a2
1a

2
2

[p1(a2
1 + a2

2) + p2(a2
2− a2

1]) < 0. (5.6)

For p3 < 0, we have |c2| > |c1|. Thus,

0 <
p1

p2
<
a2

1 − a2
2

a2
2 + a2

1

then |a1| > |a2|. (5.7)

It must be |a1| 6= |a2|, although we have the contradiction p1 < 0.

One can show that for both |c2| > |c1| (p3 < 0) and |c2| < |c1| (p3 > 0) the amplitudes

satisfy the relation |a1| > |a2|.

5.1.3 Octant IIa

By (5.2), if p2 > 0 and p1 < 0 and |p2| > |p1|, then p1 + p2 > 0 and p1 − p2 < 0 and

s2s3 = 1 and s1s3 = −1. This entails s2 = s3 = −s1.

By summing (5.2a) and (5.2b)

c2
1 + c2

2 =
1

2a2
1

(p1 + p2)− 1

2a2
2

(p1− p2) =
1

2a2
1a

2
2

[p1(a2
2− a2

1) + p2(a2
2 + a2

1)] > 0. (5.8)

Thus,

0 >
p1

p2
>
a2

1 + a2
2

a2
1 − a2

2

, then, |a1| < |a2|. (5.9)

In this case, if |a1| 6= |a2|, otherwise p1 > 0.

For both |c2| > |c1| (p3 < 0) and |c2| < |c1| (p3 > 0) the amplitudes satisfy the relation

|a1| < |a2|.

5.1.4 Octant IIb

By (5.2), if p2 > 0 and p1 < 0 and |p1| > |p2|, then we obtain p1 +p2 > 0 and p1−p2 < 0

and s2s3 = 1 and s1s3 = −1. As a result, we get s2 = s3 = −s1. By summing (5.2a) and

(5.2b)

c2
1 + c2

2 =
1

2a2
1

(p1 +p2)− 1

2a2
2

(p1−p2) =
1

2a2
1a

2
2

[p1(a2
2−a2

1) +p2(a2
2 +a2

1)] > 0. (5.10)
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Therefore,

0 >
p2

p1
>
a2

1 − a2
2

a2
2 + a2

1

then |a1| < |a2|. (5.11)

Also in this case |a1| 6= |a2|, otherwise we have a contradiction. Finally, for both |c2| > |c1|

(p3 < 0) and |c2| < |c1| (p3 > 0) the amplitudes satisfy the relation |a1| < |a2|.

5.1.5 Octant IIIa

By (5.2), if p1 < p2 < 0, then p1 + p2 < 0 and p1 − p2 < 0 and s2s3 = −1 and s1s3 − 1.

This entails s1 = s2 = −s3.

By subtracting (5.2a) from (5.2b)

c2
1−c2

2 = − 1

2a2
1

(p1 +p2)+
1

2a2
2

(p1−p2) =
1

2a2
1a

2
2

[p1(a2
1−a2

2)−p2(a2
2 +a2

1)] < 0. (5.12)

Therefore,

0 <
p1

p2
<
a2

1 + a2
2

a2
1 − a2

2

then |a1| > |a2|. (5.13)

If |a1| = |a2|, we have the contradiction p2 > 0.

For both |c2| > |c1| (p3 < 0) and |c2| < |c1| (p3 > 0) the amplitudes satisfy the relation

|a1| > |a2|.

5.1.6 Octant IIIb

By (5.2), if p2 < p1 < 0, then p1 + p2 < 0 and p1 − p2 > 0 and s2s3 − 1 and s1s3 = 1.

Therefore, it turns out s1 = s3 = −s2.

By subctring (5.2a) from (5.2b)

c2
1−c2

2 = − 1

2a2
1

(p1 +p2)− 1

2a2
2

(p1−p2) =
1

2a2
1a

2
2

[−p1(a2
2 +a2

1)+p2(a2
1−a2

2)] < 0. (5.14)

Thus,

0 <
p2

p1
<
a2

1 + a2
2

a2
1 − a2

2

=⇒ |a1| > |a2|. (5.15)

If |a1| = |a2|, we have the contradiction p1 > 0. For both |c2| > |c1| (p3 < 0) and

|c2| < |c1| (p3 > 0) the amplitudes satisfy the relation |a1| > |a2|.
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5.1.7 Octant IVa

By (5.2), if p2 < 0 and p1 > 0 and |p2| > |p1| =⇒ p1 + p2 < 0 and p1 − p2 > 0.

s2s3 = −1 and s1s3 = 1 entails s1 = s3 = −s2.

By summing (5.2a) and (5.2b)

c2
1 +c2

2 = − 1

2a2
1

(p1 +p2)+
1

2a2
2

(p1−p2) =
1

2a2
1a

2
2

[p1(a2
1−a2

2)−p2(a2
2 +a2

1)] > 0. (5.16)

Thus,

0 >
p1

p2
>
a2

1 + a2
2

a2
1 − a2

2

=⇒ |a1| < |a2|. (5.17)

If |a1| = |a2|, then p2 < 0 ∀a1, a2. For both |c2| > |c1| (p3 < 0) and |c2| < |c1| (p3 > 0)

the amplitudes satisfy the relation |a1| ≤ |a2|.

5.1.8 Octant IVb

By (5.2), if p2 < 0 and p1 > 0 and |p1| > |p2| yields p1 + p2 > 0 and p1 − p2 > 0. If

s2s3 = 1 and s1s3 = 1, then s1 = s3 = s2. By summing (5.2a) and (5.2b)

c2
1 + c2

2 =
1

2a2
1

(p1 +p2) +
1

2a2
2

(p1−p2) =
1

2a2
1a

2
2

[p1(a2
1 +a2

2) +p2(a2
2−a2

1)] > 0. (5.18)

Thus,

0 >
p1

p2
>
a2

1 − a2
2

a2
1 + a2

2

=⇒ |a1| < |a2|. (5.19)

If |a1| = |a2|, then p1 > 0 ∀a1, a2. Finally, for both |c2| > |c1| (p3 < 0) and |c2| < |c1|

(p3 > 0) the amplitudes satisfy the relation |a1| ≤ |a2|.

5.1.9 Transformations of the Physical Parameters

In the following we provide the transformations form the parameters p1, p2, p3 and p4 to

the velocities c1, c2, to the amplitudes a1, a2 and to the signs s1, s2 and s3.

The velocities c1 and c2 can be also written as

c1 =
(1 + p3)p4

2
, (5.20a)
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c2 =
(1− p3)p4

2
. (5.20b)

In the following we provide the values of the signs sj , j = 1, 2, 3, for different range of the

parameters p1 and p2.

• if p2 < 0 and p1 ≤ p2: s1 = −1, s2 = −1, s3 = 1;

• if p2 < 0 and −p2 < p1 < p2: s1 = −1, s2 = 1, s3 = −1;

• if p2 < 0 and p1 ≥ −p2: s1 = −1, s2 = −1, s3 = −1;

• if p2 > 0 and p1 ≤ −p2: s1 = −1, s2 = −1, s3 = 1;

• if p2 > 0 and −p2 < p1 < p2: s1 = −1, s2 = 1, s3 = 1;

• if p2 > 0 and p1 ≥ p2: s1 = −1, s2 = −1, s3 = −1;

• if p2 = 0 and p1 < 0: s1 = −1, s2 = −1, s3 = 1;

• if p2 = 0 and p1 > 0: s1 = −1, s2 = −1, s3 = −1.

If p1 = p2 = 0, then a1 = a2 = 0 and is not considered.

The amplitudes transform as follows

a1 =

√
2s2s3(p1 + p2)

|1 + p3||p4|
, (5.21a)

a2 =

√
2s2s3(p1 − p2)

|1− p3||p4|
. (5.21b)

5.2 Numerical Simulations

In this section we show some numerical observations of different evolution obtained by

integrating numerically the 3WRI system from a perturbed plane wave solution.

We use two kinds of perturbations: a localised perturbation and a random perturbation1.

1In this respect, it is right to highlight that the linear stability analysis of plane wave solutions of the

scalar NLS equation when these plane waves are perturbed via periodic perturbations was carried out in

[38, 39, 40, 41, 42, 43]
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We fix p1, p2 and p3 and we reconstruct all the physical parameters, a1, a2, c1, c2, s1,

s2, s3, based on the formulae in Section 5.1.9. Using these parameters, we construct the

corresponding plane wave solution. We compute this plane wave solution at t = 0, we

perturb it spatially and we use it as the initial condition for our numerical simulation. Each

initial condition is perturbed alternatively in two different ways:

• through a localised perturbation, added to the initial data (individually to each u′js),

having the form:

ε cos
(πx

2L

)
e−αx

2
, (5.22)

where L is the semi-length of the numerical integration interval, ε is the amplitude

of the perturbation (in the following ε = 10−3, unless specified differently), and α

is a chosen parameter, typically set to 2 (in the following α = 2, unless specified

differently);

• through a random perturbation, added as a noise to the initial data (individually to

each u′js), having the form:

εψ(x) with ψ(−L) = ψ(L) = 0, (5.23)

where ψ(x) for x ∈ (−L,L) is a uniform distribution in the interval [0, 1], L is again

the semi-length of the integration interval and ε is the amplitude of the perturbation;

in the implementation, the random perturbation is smoothened by computing ψ on

a subset of the spatial nodes and then by using a Whittaker-Shannon interpolation

formula [119] over the remaining nodes (see Appendix N).

As for the numerical scheme applied, we use the method of lines with a pseudospectral,

Fourier discretisation in space and an adaptive Runge-Kutta scheme in time implemented in

MATLAB R2017a (see Appendix O and Appendix P). In order to apply the pseudospectral

method, it is very convenient to have initial conditions independent of the space variable.

Let us provide the following transformation:
ũ1 = eiν1(x−c1t)u1,

ũ2 = eiν2(x−c2t)u2,

ũ3 = ei(ν3x+ωt)u3,

(5.24)
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where

ν1 =
η1

c1
+ s1s3a

2
2

c2

c1

(c1 − c2)

η1 + η2
, (5.25a)

ν2 =
η2

c2
+ s2s3a

2
1

c1

c2

(c1 − c2)

η1 + η2
, (5.25b)

ν3 = −(ν1 + ν2), (5.25c)

ω = c1ν1 + c2ν2 (5.25d)

then, it is straightforward to verify that ũ1, ũ2, ũ3 satisfy the following system of PDEs 2
ũ1t = −c1ũ1x + s1c2ũ

∗
2ũ
∗
3 ,

ũ2t = −c2ũ2x + s2c1ũ
∗
1ũ
∗
3 ,

ũ3t = iωũ3 + s3(c1 − c2)ũ∗1ũ
∗
2 ,

(5.26)

with the following initial conditions
ũ1(x, 0) = eiν1xu1(x, 0),

ũ2(x, 0) = eiν2xu2(x, 0),

ũ3(x, 0) = eiν3xu3(x, 0).

(5.27)

We integrate system (5.26) with initial condtions (5.27) and the we invert (5.24) to obtain

the solutions in terms of the u′js starting from the solutions in terms of the ũ′js.

Observe that, if uj(x, t) is the plane wave solution (3.30), then ũj(x, t) does not depend

explicitly on the space variable x, indeed we have
ũ1 = a1e

i(η1−ν1c1)t,

ũ2 = a2e
i(η2−ν2c2)t,

ũ3 = a3e
i(η3+ω)t,

(5.28)

2Although the solutions ũj , for j = 1, 2, 3 may appear simpler than those ones used in the theoretical

part of the Thesis, they satisfy a system (see formula (5.26)) more complicated than that one used for the

analytical computations and dealing with it would result an useless effort. On the other hand, the system

(5.26) has been found useful for the numerics in this Chapter.
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with a3 as in (3.32), and η3 = −(η1 + η2).

In particular, from (5.28), we see that ũj(x, 0) does not depend on the spatial variable x,

and hence the integration interval 3 [−L,L] can be taken arbitrary for system (5.26) using

(5.28) at t = 0 as initial conditions.

In the following we denote with

ρ
(0)
j = max

x∈[−L,L]

|uj(x, 0)|
aj

, (5.29a)

the ratio between the initial maximum of the absolute value of the perturbed solution and

aj (that is the amplitude of the unperturbed wave); we also introduce

ρ̄j = max
x∈[−L,L],t∈[0,T ]

|uj(x, t)|
aj

, (5.29b)

namely, the ratio between the maximum of the absolute value of the perturbed solution on

the whole integration domain [−L,L]× [0, T ] and aj .

Before we show some numeric simulations, it is right to provide the following definition of

rogue wave:

“In the real ocean, rogue waves are waves that are very steep and much higher than

the surrounding waves in a wave record, which is usually of 20-minute length;...There is

currently no consensus on one unique definition of a rogue wave, but a common and simple

approach is to define a rogue wave as a wave whose wave height or crest height exceeds

some thresholds related to the significant wave height. A common definition is to apply

the criteria (Haver, 2000):

Hmax

Hs
> 2, and/or

Cmax
Hs

> 1.25,

where Hmax denotes the zero-crossing wave height, Cmax is the crest height, and Hs is

the significant wave height, defined as four times the standard deviation of the surface,

typically calculated from a 20-minute measurement of the surface elevation.” [120].

Because of this definition, we report the value ρ̄max for each numerical solution and this

value will give us in percentage the ratio between the maximum value obtained by the

numerical simulations and the background. We will state that we have a potential rogue

wave any time the maximum value of the solution exceeds at least of three times the value of

3The range of values of L is taken as larger as possible to make sure that all the modes with higher

velocities are included as well.
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the background. We will state that we have a potential rogue wave any time the maximum

value of the solution exceeds at least three times the value of the background.

5.2.1 2G 0SG 0B 1L 0TL

We investigate the region 2G 0B 1L that is located near the origin in the parameter space

(see Figure 4.27).

We choose the parameters p1 = 0.2, p2 = 0.3, p3 = −0.6 and p4 = 1 corresponding to the

velocities c1 = 0.2, c2 = 0.8, to the amplitudes a1 = 2.5, a2 = 0.27951 and to the choice

of signs s1 = 1, s2 = 1, s3 = 1. In particular with the localised perturbation, we observe:

• ρ(0)
1 = 0.04% and ρ̄1 = 0.052206%;

• ρ(0)
2 = 0.35777% and ρ̄2 = 0.35777%;

• ρ(0)
3 = 0.47703% and ρ̄3 = 0.82379%.

By perturbing with random perturbation, we observe:

• ρ(0)
1 = 0.058176% and ρ̄1 = 0.17725%;

• ρ(0)
1 = 0.48424% and ρ̄2 = 0.61943%;

• ρ(0)
1 = 0.57518% and ρ̄3 = 1.6717%.

5.2.2 0G 0SG 2B 1L 0TL

We investigate the region 0G 2B 1L that is located near the origin on the parameter space

(see Figure 4.27).

We choose the parameters p1 = 0.2, p2 = −0.4, p3 = −0.6 and p4 = 1 corresponding to

the velocities c1 = 0.2, c2 = 0.8, to the amplitudes a1 = 1.5811,, a2 = 0.68465 and to the

choice of signs s1 = −1, s2 = 1, s3 = −1. In particular with the localised perturbation

(5.22), we observe:
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• ρ(0)
1 = 0.063246% and ρ̄1 = 333.6069%;

• ρ(0)
2 = 0.14606% and ρ̄2 = 598.6718%;

• ρ(0)
3 = 0.30792% and ρ̄3 = 1014.7219%.

By perturbing with random perturbation, we observe:

• ρ(0)
1 = 0.082294% and ρ̄1 = 239.9949%;

• ρ(0)
2 = 0.18711% and ρ̄2 = 407.9717%;

• ρ(0)
3 = 0.52058% and ρ̄3 = 607.7822%.

5.2.3 1G 1SG 0B 1L 1TL

We choose the parameters p1 = −90.0, p2 = 60.0, p3 = −0.6 and p4 = 1 corresponding

to the velocities c1 = 0.2, c2 = 0.8, to the amplitudes a1 = 19.3649, a2 = 10.8253 and

to the choice of signs s1 = 1, s2 = 1, s3 = −1. In this case we have explosive behaviour

and, in particular, with the localised perturbation (5.22), we observe explosion at t = 0.75

seconds:

• ρ(0)
1 = 0.005164% and ρ̄1 = 502961.1987%;

• ρ(0)
2 = 0.0092376% and ρ̄2 = 449856.3477%;

• ρ(0)
3 = 0.0015901% and ρ̄3 = 134122.7821%.

We do not report the plots fro these simulations because they are all blu coloured. We run

the simulations for the solutions |u1|, |u2| and |u3| in the region 1G 1SG 0B 1L 1TL after

localised perturbation and the simulations run over a time 0 ≤ t ≤ 0.7 and a space −30 ≤

x ≤ 30. We observe the maximum for |u1| is 97416.7 on the background with intensity

18.6, the solution |u2| reaches its maximum of intensity at 48707.7 on the background

with intensity 9.2 and the solution |u3| has its maximum of intensity at 84365.7 on the

background of intensity 62.8.
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With the random perturbation (5.23), we observe explosion at t = 0.71375 seconds:

• ρ(0)
1 = 0.0072695% and ρ̄1 = 502961.1987%;

• ρ(0)
2 = 0.011944% and ρ̄2 = 478.2925%;

• ρ(0)
3 = 0.0022268% and ρ̄3 = 140.8017%.

We do not report the plots fro these simulations because they are all blu coloured. We have

observed the evolutions of the solutions |u1|, |u2| and |u3| in the region 1G 1SG 0B 1L 1TL

after random perturbation and the simulations run over a time 0 ≤ t ≤ 0.7 and a space

−30 ≤ x ≤ 30. The maximum reached by |u1| is 122.8 on the background with intensity

0.5, the solution |u2| reaches its maximum of intensity at 61.3 on the background with

intensity 1.9 and the solution |u3| has its maximum of intensity at 122.3 on the background

of intensity 60.7

Conjecture 5.2.1. The presence of a twisted loop (or a split-gap) in a stability spectrum

corresponds to a solution that is explosive in time.

Conjecture 5.2.2. The existence of branches in a stability spectrum is a necessary condition

for the onset of rogue waves ascribable to rational or semi-rational solutions and which can

be obtained by DDT.
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Figure 5.1: Solutions |u1|, |u2| and |u3| in the region 2G 0SG 0B 1L 0TL after localised

perturbation. The simulations run over a time 0 ≤ t ≤ 120 and a space −20 ≤ x ≤ 20.
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1.5  1.975 2.45 2.925 3.4  

0  0.1 0.2 0.3 0.4

0   0.35 0.7 1.05 1.4 

Figure 5.2: Zoom of the solutions |u1|, |u2| and |u3| in the region 2G 0SG 2B 1L 0TL

after localised perturbation. The simulations run over a time 80 ≤ t ≤ 120 and a space

5 ≤ x ≤ 15.
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Figure 5.3: Solutions |u1|, |u2| and |u3| in the region 2G 0SG 0B 1L 0TL after random

perturbation. The simulations run over a time 0 ≤ t ≤ 120 and a space −20 ≤ x ≤ 20.
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1.4  1.925 2.45 2.975 3.5  

0  0.1 0.2 0.3 0.4

0    0.525 1.05 1.575 2.1  

Figure 5.4: Zoom of the solutions |u1|, |u2| and |u3| in the region 2G 0SG 2B 1L 0TL

after random perturbation. The simulations run over a time 100 ≤ t ≤ 120 and a space

0 ≤ x ≤ 20.
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Figure 5.5: Solutions |u1|, |u2| and |u3| in the region 0G 0SG 2B 1L 0TL after localised

perturbation. The simulations run over a time 0 ≤ t ≤ 60 and a space −30 ≤ x ≤ 30.

These localised structures resemble the breather solutions of the NLS equation [121]. We

observe a complementarity in the pattern and in the colours between the three solutions

displayed, this suggests a well defined exchange of energy between the three solutions that

is interesting to be studied deeper in future works.
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0   1.05 2.1 3.15 4.2 

0  0.9 1.8 2.7 3.6

0  0.8 1.6 2.4 3.2

Figure 5.6: Zoom of the solutions |u1|, |u2| and |u3| in the region 0G 0SG 2B 1L 0TL after

localised perturbation. The simulations run over a time 0 ≤ t ≤ 30 and a space 0 ≤ x ≤ 15.

In the plots for |u1| and |u3| we have localised structures which are breathe-like solutions

with a maximum of intensity of 4.2 and 3.2 (red colour) on a background with intensity 0

(blu colour).
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Figure 5.7: Solutions |u1|, |u2| and |u3| in the region 0G 0SG 2B 1L 0TL after random

perturbation. The simulations run over a time 0 ≤ t ≤ 60 and a space −30 ≤ x ≤ 30. We

observe a complementarity in the pattern and in the colours between the the three solutions

displayed, this suggests a well defined exchange of energy between the three solutions that

is interesting to be studied deeper in future works.
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0   0.65 1.3 1.95 2.6 

0    0.575 1.15 1.725 2.3  

0    0.475 0.95 1.425 1.9  

Figure 5.8: Zoom of the solutions |u1|, |u2| and |u3| in the region 0G 0SG 2B 1L 0TL after

random perturbation. The simulations run over a time 0 ≤ t ≤ 30 and a space 0 ≤ x ≤ 15.

In the plots of |u1| and |u2| we have potential rogue waves with a maximum of intensity

of 2.6 and 2.3 (red colour) on a background with 0 intensity (blu colour). These localised

structures resemble the development of “integrable turbulence” studied for the focusing

NLS equation in [39].



Chapter 6

Conclusions

6.1 Summary of the Results

The aim of this thesis has been the analysis of the spectral stability of plane wave solutions

of the 3WRI model, when such solutions undergo localised perturbations. The approach is

based on a spectral method recently developed in [64] to carry out the stability analysis of

a nonlinear multi-component system, when the solutions have a non-vanishing background.

The problem of assessing the stability of solutions of the 3WRI system had been already

investigated in the literature. For instance, Kaup’s research works [57, 63, 58] had focussed

on the stability analysis of the 3WRI model with soliton solutions on vanishing background,

which can be obtained, in principle, by the IST method [31, 30, 29, 53]. It is well known

that the IST machinery, in addition to being technically cumbersome to apply to multi-

component systems, depends on the boundary conditions (e.g. by requiring the solution

and its first derivative to be in the class of potentials vanishing sufficiently fast to infinity).

On the contrary, the method in [64] is independent of the class of the potentials and tailor-

made for the application to multi-component systems. We have obtained several results:

• By applying the method in [64] to the 3WRI model, we have provided for the first

time, a comprehensive topological classification of the spatial stability spectra (as

curves on the complex plane) with respect to the parameters space and the gain

functions associated to any stability spectrum.
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• Interestingly, we have found that all the stability spectra of the CNLS system are also

enclosed in those of the 3WRI system. Indeed, the same method has already been

successfully applied to the CNLS system [64]. The topological features of the CNLS

stability spectra are gaps on the real axis, and branches and loops off the real axis:

the gaps correspond to the solutions which are not bounded in space, whereas the

branches and loops correspond to the solutions which are instead bounded in space,

but which can be linearly unstable in time.

• Compared to the CNLS system, new topological features exist in the stability sfpectra

of the 3WRI model, for instance, figure-of-eight loops that we have named twisted

loops. Remarkably, the gain function associated to the twisted loops is non-zero in a

whole neighbourhood of the origin (origin enclosed). This fact has been conjecturally

associated to explosive instability: the solutions blow up in a finite time.

• We have observed that the gain function associated to the branches is non-zero at

low wave numbers, symmetrically located with respect to the zero-value of the wave

number, but it is anyway zero at the origin of the plot (linear instability of baseband-

type). The gain function associated to the loops is non-zero only away from the origin

(linear instability of passband-type).

• We have observed linear instability in time of plane waves for any choice of the physical

parameters, except for those ones associated to the solutions that are explosive and we

observe the subsequent generation of coherent localised structures, such as breather-

like solutions and potential rogue waves. Some of these solutions have been observed

numerically and, to the best of our knowledge, they have never been observed before

in the context of the linear instability of the 3WRI system. Nevertheless, the 3WRI

system is a dispersionless system with only coupling terms between the different

wave components [58]. Thus, the observation of localised structures is remarkable,

if one considers that MI has been observed in the context of nonlinear dispersive

systems, where nonlinearity and dispersion can balance each other (see, for example,

[37, 45, 71, 52, 17, 49, 50, 51, 9]).

A conclusion is that the mechanism for the onset of localised structures (e.g. potential

rogue waves) in the 3WRI system, as a result of localised perturbations of plane

waves, must be different. For this reason, in the context of the 3WRI system, we
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have prefered to refer to this physical phenomenon as ”linear instability” rather than

as linear stage of MI.

6.2 Open Problems and Future Directions

There are several open problems related to the subject of this Thesis and to the results

obtained so far. In the following, we provide some possible future directions for the research.

6.2.1 The Onset of Rogue Waves in the 3-Wave Resonant Interaction

Model

We have conjectured that the existence of branches in the stability spectra is a necessary

condition for the onset of rogue waves ascribable to rational or semi-rational solutions

[75, 76, 77] and which can be obtained by DDT [85]. Indeed, the ends of a branch

correspond to the vanishing of at least a difference between the eigenvalues of the spatial

Lax operator after gauge transformation. Following [75], we see that if two eigenvalues are

equal with one another, we have a necessary condition for the existence of semi-rational

solitons whereas, if all the three eigenvalues are equal with one another, we have the

necessary condition for the existence of rational solutions. Moreover, in the paper [72],

it has been found that, for rational solutions in defocusing regime of the CNLS, potential

rogue waves exist if and only if base-band MI exists. We refer to potential rogue waves as

the rogue waves which can be modelled by rational and semi-rational solitons obtainable

by DDT method.

In a future research work, we aim to write a necessary (and, possibly, also a sufficient)

condition for the existence of potential rogue waves in terms of the parameters used to

classify the topologies of the stability spectra, namely, we aim to understand for which

values of the parameters the necessary condition is also sufficient.
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6.2.2 Spectra of the Lax Operators and Stability Spectra

Following the paper [64], we have assumed that the perturbation δQ has the integral

representation

δQ =

∫
dκF (x, t, κ), (6.1)

which provides a solution δQ bounded and localised in x at any fixed time t. The bounded-

ness condition of F (x, t, κ) defines the spatial stability spectrum Sx of the solution Q(x, t).

As mentioned in [64], this spectrum depends on the behaviour of the matrix Q(x) for large

|x|. Indeed, if Q(x) vanishes sufficiently fast as |x| → ∞, then Sx coincides with the

spectrum of the operator d/dx− iλΣ−Q(x), that is defined by the spatial Lax equation.

Instead, if Q(x) is non-vanishsing as |x| → ∞, as for the case of plane waves, the spectrum

Sx of the solution Q(x) in general may not coincide with the spectrum of the differential

operator d/dx− iλΣ−Q(x), when Q(x) is N ×N with N > 2.

In [52, 71], it has been provided a spectral criterion for the occurrence of MI in the CNLS

system. The authors establish a link between the eigenmode of the linearised problem with

the eigenfunctions of the Lax problem which, in turn, can be used to construct the nonlocal

dynamics of the system via Bäcklund transformations [122]. Nevertheless, they impose that

the solutions satisfy boundary periodic conditions and the criterium for the existence of MI

refers to the Floquet spectrum of the Lax operators. In the approach developed in [64] is

independent of the boundary conditions for the solutions, so that, in the context of this

new spectral method, one can establish a more general correspondence between the spectra

of the Lax operators and the stability spectra.

6.2.3 Exchange of Energy in the Linear Instability of the 3-Wave Resonant

Interaction Model

In the simulations of all the three solutions of the 3WRI system, we have always observed the

presence of colours and pattern complementarity. We conjecture that this complementarity

is due to the exchange of energy between the waves during their interaction such that,

when one has the maximum values of the intensity, explained as the absorption of energy,

the density of another wave is at its minimum, so the latter has given away its energy.
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Similar investigation on nonlinear dispersive multicomponent systems has been conducted

in [49, 50, 51], both via numerical simulations and perturbative methods.



Appendix A

Transformation Matrix G(x, t) for

the matrix NLS Equation

Let G = G(x, t) be the matrix such that the transformation (2.15) is verified. Let us

suppose that its expression is

G =

g1 0

0 g2

 , (A.1)

whose entries are g1 = g1(x, t), g2 = g2(x, t), and its inverse matrix is

G−1 =

g−1
1 0

0 g−1
2

 , (A.2)

such that,

G

0 sa

a 0

G−1 =

 0 sag1g
−1
2

ag−1
1 g2 0

 . (A.3)

Since (A.3) must be equal to Q0 provided in (2.15), after the substitution of the relation

dispersion (2.14) in the plane wave (2.13), we obtain

g1g
−1
2 = e−i(qx−(q2+2sa2)t), g−1

1 g2 = ei(qx−(q2+2sa2)t). (A.4)

By (A.4) we find a relation between the entries g1 and g2

g1 = g2e
−i(qx−(q2+2sa2)t). (A.5)
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With the following ansatz on the expressions of such entries

g1 = eim(qx−(q2+2sa2)t), g2 = ein(qx−(q2+2sa2)t), (A.6)

the equation (A.5) reads

eim(qx−(q2+2sa2)t) = ei(n−1)(qx−(q2+2sa2)t), (A.7)

which gives us the condition

m = n− 1, (A.8)

with m and n arbitrary rational numbers.

For the sake of simplicity, we choose n = 1
2 and, finally, we get

G = e−
i
2

(qx−(q2+2sa2)t)σ3 , (A.9)

where σ3 is the Pauli matrix (2.4).



Appendix B

Lax Equations of the NLS Equation

By the transformation (2.17) the right-hand sides of the Lax equations (3.41) become

Xψ = XGφ, Tψ = TGφ, (B.1)

and, on the other hand, the left-hand sides read

ψx = Gxφ+Gφx, ψt = Gtφ+Gφt, (B.2)

finally, matching (B.1) and (B.2)

Gxφ+Gφx = XGφ, (B.3a)

Gtφ+Gφt = TGφ. (B.3b)

Multiplying by G−1 from the left the equations (B.3), the PDEs for the solution φ are

φx = iWφ, (B.4a)

φt = −iZφ. (B.4b)

where we have defined the operators as follows

iW = G−1XG−G−1Gx, (B.5a)

−iZ = G−1TG−G−1Gt. (B.5b)



Appendix C

PDEs for the SE Φ(x, t) of the NLS

Equation

Since ψ is a solution of the Lax pair (2.2), the squared eigenfunction (SE) Ψ defined in (2.24)

satisfies the PDEs (2.25) The transformation (2.17) induces the similarity transformation

which introduces another SE Φ, solution of other PDEs that we shall find in the following

discussion.

By looking at the expression of G in (2.16), one can check that the left-hand sides of the

PDEs (2.25) are

Ψx = GxΦG−1 +GΦxG
−1 +GΦG−1

x , (C.1a)

Ψt = GtΦG
−1 +GΦtG

−1 +GΦG−1
t ; (C.1b)

by matching the right-hand side and the left-hand side of the PDEs (2.25), it results

XGΦG−1 −GΦG−1X = GxΦG−1 +GΦxG
−1 +GΦG−1

x , (C.2a)

TGΦG−1 −GΦG−1T = GtΦG
−1 +GΦtG

−1 +GΦG−1
t . (C.2b)

Finally, by multiplying by G−1 from the left and by G from the right, and considering that

G−1
x G = −G−1Gx, the equations (C.2) become the PDEs satisfied by Φ

Φx = i[W,Φ], Φt = −i[Z,Φ]. (C.3)



Appendix D

Similarity Transformation for the

3WRI System

The transformation

U = GU0G
−1, (D.1)

in matrix form reads
0 s1a1e

i(qt−ν1x) −s1s2s3a2e
−i(qt−ν2x)

s1s2s3a1e
−i(qt−ν1x) 0 s3a3e

−i(2qt−(ν1+ν2))x

s2a2e
i(qt−ν2x) s1s2s3a

∗
3e
i(2qt−(ν1+ν2))x

 =


0 s1a1g1g

−1
2 −s1s2s3a2g1g

−1
3

s1s2s3a1g2g
−1
1 0 s3a3g2g

−1
3

s2a2g3g
−1
1 s1s2s3a

∗
3g3g

−1
2 0

 ,

(D.2)

where G is

G =


g1 0 0

0 g2 0

0 0 g3

 , (D.3)
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and the entries g1, g2 and g3 are unknown.

The matrix equation (D.2) gives us a system of three equations
g1 = g2e

i(qt−ν1x) ,

g2 = g3e
−i(2qt−(ν1+ν2))x ,

g3 = g1e
i(qt−ν2x) .

(D.4)

Looking at (D.4), one assumes the general expression of the unknowns gj

g1 = ei(m1qt−(l1ν1+n1ν2)x), g2 = ei(m2qt−(l2ν1+n2ν2)x), g3 = ei(m3qt−(l3ν1+n3ν2)x),

(D.5)

with mj , nj and lj , j = 1, 2, 3, are positive or negative integers or can be zero. The

expressions (D.5), substituted in the system (D.4), gives
m1 = m,

m2 = m− 1 ,

m3 = m+ 1 ,


l1 = l ,

l2 = l − 1 ,

l3 = l ,


n1 = n ,

n2 = n ,

n3 = n+ 1 ,

(D.6)

so that

g1 = ei(mqt−(lν1+nν2)x), g2 = ei((m−1)qt−((l−1)ν1+nν2)x), g3 = ei((m+1)qt−(lν1+(n+1)ν2)x),

(D.7)

and for m = 0, l = 1
2 and n = −1

2 , we get

g1 = e−
i
2

(ν1−ν2)x, g2 = e−i(qt−
1
2

(ν1+ν2)x), g3 = ei(qt−
1
2

(ν1+ν2)x). (D.8)

By substituting the expressions (D.8) in (D.3), the matrix G (D.3) can rewritten as in

formula (3.65).



Appendix E

Liouville Equations

Let

Ψ = GΦG−1 (E.1)

be a SE defined via the solution ψ of the Lax Pair (3.41) and satisfying the differential

equations

Ψx = [X,Ψ], Ψt = [T,Ψ]. (E.2)

By differentiating (E.1) with respect to x and t, we obtain, respectively, 1

Ψx = GxΦG−1 +GΦxG
−1 +GΦ(G−1)x, (E.3a)

Ψt = GtΦG
−1 +GΦtG

−1 +GΦ(G−1)t, (E.3b)

and, on the other hand, by substituting (E.1) in the equations (E.2)

[X,Ψ] = XGΦG−1 −GΦG−1X, (E.4a)

[T,Ψ] = TGΦG−1 −GΦG−1T. (E.4b)

1We use the fact that G−1G = I and (G−1G)x = 0 from which

(G−1)xG = −G−1Gx.

The same argument holds for the differentiation w.r.t. t.
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By matching (E.3) with (E.4) and multiplying from the left by G−1 and from the right by

G, we obtain the Liouville equations

Φx = i[W0,Φ], Φt = −i[Z0,Φ], (E.5)

where the operators

iW0 = G−1XG−G−1Gx, −iZ0 = G−1TG−G−1Gt, (E.6)

are now independent of x and t. The equations (E.2) are not simply integrable because

of the dependence on x and t of the matrices X and T . However, after the similarity

transformation via the matrix G, the equations (E.6) are now simply integrable and the

expression of their solution is well known and it is given in (3.69).



Appendix F

Differential equations for φ

Let ψ be the solution of the Lax Pair

ψx = Xψ, ψt = Tψ. (F.1)

If we make the transformation

ψ = Gφ, (F.2)

by the differential equations (F.1), we obtain the identities

Gxφ+Gφx = XGφ, (F.3a)

Gtφ+Gφt = TGφ, (F.3b)

and multiplied to right by G−1, give us the differential equations for φ

φx = (G−1XG−G−1Gx)φ, (F.4a)

φt = (G−1TG−G−1Gt)φ. (F.4b)

If we define

iW0 = G−1XG−G−1Gx, −iZ0 = G−1TG−G−1Gt (F.5)
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we have

φx = iW0φ, (F.6a)

φt = −iZ0φ. (F.6b)



Appendix G

Gauges for W and Z

We can check the expressions (3.75), by looking at the transformation

φ̄ = ei(mqt−(lν1+nν2)x)Iφ, (G.1)

that, differentiated, say, w.r.t. x gives

φ̄x = (ei(mqt−(lν1+nν2)x)Iφ)x = (−i(lν1 + nν2)φ− φx)ei(mqt−(lν1+nν2)x)I, (G.2)

on the other hand, because φ̄x = iW̄ φ̄,

iW̄ φ̄ = (Ḡ−1X̄Ḡ− Ḡ−1Ḡx)φ̄ =

= (G−1XG−G−1Gx − i(lν1 + nν2))φ̄ =

= i(W0 − (lν1 + nν2))φ̄ =

= i(W0 − (lν1 + nν2))ei(mqt−(lν1+nν2)x)Iφ .

(G.3)

By matching (G.2) with (G.3), we obtain the equation

φx = iW0φ, (G.4)

with

W̄ = W0 − (lν1 + nν2). (G.5)

The same argument holds for the operators Z̄ and Z0.



Appendix H

Relation between the Lax Operators

W and Z

Let us consider the matrix

ζ =

(
c1 − c2
2qc1c2

)(
Z2 − (a22c

2
2s1s3 − a21c21s2s3)I

)
=

=


0 − ia1s1c1(c1−c2)(−q−c1c2κ)2qc1c2

ia2s1s2s3c2(c1−c2)(q−c1c2κ)
2qc1c2

− ia1s1s2s3c1(c1−c2)(−q−c1c2κ)2qc1c2
−a

2
2s1s3c2(c1−c2)

2qc1
+ (c1−c2)(−q−c1c2κ)2

2qc1c2

a1a2(c1−c2)
2q

− ia2s2c2(c1−c2)(q−c1c2κ)2qc1c2
−a1a2s1s2(c1−c2)2q

a21s2s3c1(c1−c2)
2qc2

+ (c1−c2)(q−c1c2κ)2
2qc1c2

 .

(H.1)

Let us focus on the off-diagonal-part of the matrix above. The off-block diagonal terms

ζij , which are proportional to the terms ζji, can be handled as follows. For example, the

numerator of the entry ζ12 is

−ia1c1s1(c1 − c2)(−q − c1c2κ) = −ia1c
2
1s1(−q − c1c2κ) + ia1c1c2s1(−q − c1c2κ) (H.2)

whose last term is, by adding and subtracting q into the brackets,

ia1c1c2s1(−q − c1c2κ) = −2iqa1c1c2s1 + ia1c1c2s1(q − c1c2κ), (H.3)

by substituting (H.3) in (H.2), one gets

− ia1s1c
2
1(−q − c1c2κ)− 2ia1s1c1c2q + ia1s1c1c2(q − c1c2κ) =

= W12 + Z12c1(−q − c1c2κ)− Z12c2(q − c1c2κ),
(H.4)
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that is

ζ12 =
W12

2qc1c2
+ Z12

c1(−q − c1c2κ)

2qc1c2
− Z12

c2(q − c1c2κ)

2qc1c2
. (H.5)

Similarly, let us consider the term ζ22. The first term in the sum is already in W22, while

the numerator of the second term can be handled as follows

(c1 − c2)(−q − c1c2κ)2 = c1(−q − c1c2κ)2 − c2(−q − c1c2κ)2 =

= c1(−q − c1c2κ)2 − c2(−q − c1c2κ)(−q − c1c2κ) =

= c1(−q − c1c2κ)2 − c2(−q − c1c2κ)(−q − q + q − c1c2κ) =

= c1(−q − c1c2κ)2 + 2qc2(−q − c1c2κ)− c2(−q − c1c2κ)(q − c1c2κ) =

= W22 + Z22c1(−q − c1c2κ)− Z22c2(q − c1c2κ),

(H.6)

hence,

ζ22 =
W22

2qc1c2
+ Z22

c1(−q − c1c2κ)

2qc1c2
− Z22

c2(q − c1c2κ)

2qc1c2
. (H.7)

By repeating the same calculations for the other terms of the matrix (H.1), we get the

matrix polynomial

W = Z2(c1−c2)−Zc1(−q−c1c2κ)+Zc2(q−c1c2κ)−(c1−c2)(a2
2c

2
2s1s3−a2

1c
2
1s2s3)I, (H.8)

i.e. the polynomial (3.83).

Let us consider the matrix

ξ = W 2 − (a2
2s1s3 + a2

1s2s3)I, (H.9)

whose entries are

ξ11 = 0, (H.10)

ξ22 = 4q2c2
1c

2
2

(
−a2

2s1s3 − a2
1a

2
2s1s2

(
c1 − c2

2q

)2

+

(
−a

2
2s1s3c2(c1 − c2)

2qc1
− q

c1
− c2κ

)2
)
,

(H.11)

ξ33 = 4q2c2
1c

2
2

(
a2

1s2s3 − a2
1a

2
2s1s2

(
c1 − c2

2q

)2

+

(
a2

1s2s3c1(c1 − c2)

2qc2
+
q

c2
− c1κ

)2
)
,
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(H.12)

ξ21 = s2s3ξ12 = 4q2c2
1c

2
2

(
−ia1s1

(
a2

2s1s3(c1 − c2)2

2qc1
− q

c1
− c2κ

))
, (H.13)

ξ31 = −s1s3ξ13 = 4q2c2
1c

2
2

(
−ia2s2

(
a2

1s2s3(c1 − c2)2

2qc2
+
q

c2
− c1κ

))
, (H.14)

ξ23 = −s1s2ξ32 =

= 4q2c2
1c

2
2

(
a1a2 + a1a2

(
c1 − c2

2q

)(
− a2

2s1s3c2(c1 − c2)

2qc1
+

+
a2

1s2s3c1(c1 − c2)

2qc2
− q

c1
− c2κ+

q

c2
− c1κ

))
.

(H.15)

Let us handle the entry ξ12, proportional to the entry ξ21. The part inside the brackets

becomes

a2
2s1s3(c1 − c2)2

2qc1
− a2

1s2s3(c1 − c2)2

2qc2
+
a2

1s2s3(c1 − c2)2

2qc2
=

=
a2

2s1s3(c1 − c2)2

2qc1
+
a2

1s2s3(c1 − c2)2

2qc2
− a2

1s2s3c1(c1 − c2)

2qc2
+
a2

1s2s3c2(c1 − c2)

2qc2
=

=
a2

2s1s3(c1 − c2)2

2qc1
+
a2

1s2s3(c1 − c2)2

2qc2
− a2

1s2s3c1(c1 − c2)

2qc2
+
a2

1s2s3c2(c1 − c2)

2qc2
+

+
a2

2s1s3c1(c1 − c2)

2qc1
− a2

2s1s3c1(c1 − c2)

2qc1
,

(H.16)

on the other hand,

− q

c1
− c2κ =

2q

c1 − c2
− 2q

c1 − c2
− q

c1
− c2κ+

q

c2
− c1κ−

q

c2
+ c1κ =

=
2q

c1 − c2
− q

c1
− c2κ− c1κ−

q

c2
− 2qc1c2 + qc1(c1 − c2)

c1c2(c1 − c2)
+ c1κ =

=
2q

c1 − c2
− q

c1
− c2κ− c1κ−

q

c2
− c1

(
q

c2 + c1

c1c2(c1 − c2)
− κ
)
.

(H.17)

By summing the terms (H.16) and (H.17), and by putting altogether in the expression of

the entry ξ12, we have

ξ12 = 2qc1c2W12

(
a2

2s1s3(c1 − c2)2

2qc1
+
a2

1s2s3(c1 − c2)2

2qc2
− a2

2s1s3c1(c1 − c2)

2qc1
+

+
a2

1s2s3c2(c1 − c2)

2qc2
+

2q

c1 − c2
− q

c1
− c2κ+

q

c2
− c1κ

)
+

+ 4q2c2
1c

2
2Z12

(
a2

2s1s3(c1 − c2)

2qc1
− a2

1s2s3(c1 − c2)

2qc2
− q c2 + c1

c1c2(c1 − c2)
+ κ

)
.

(H.18)
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By following a similar procedure, we get

ξ23 = 2qc1c2W23. (H.19)

In matrix form, it turns out that

W 2 − (a2
2s1s3 + a2

1s2s3)I =

= 2qc1c2W

(
a2

2s1s3(c1 − c2)2

2qc1
+
a2

1s2s3(c1 − c2)2

2qc2
− a2

2s1s3c1(c1 − c2)

2qc1
+

+
a2

1s2s3c2(c1 − c2)

2qc2
+

2q

c1 − c2
− q

c1
− c2κ+

q

c2
− c1κ

)
+

+ 4Zq2c2
1c

2
2

(
a2

2s1s3(c1 − c2)

2qc1
− a2

1s2s3(c1 − c2)

2qc2
− q c2 + c1

c1c2(c1 − c2)
+ κ

)
,

(H.20)

and finally,

Z

(
a2

2s1s3(c1 − c2)

2qc1
− a2

1s2s3(c1 − c2)

2qc2
− q c2 + c1

c1c2(c1 − c2)
+ κ

)
=

W 2

4q2c2
1c

2
2

− W

2qc1c2

(
a2

2s1s3(c1 − c2)2

2qc1
+
a2

1s2s3(c1 − c2)2

2qc2
−

−a
2
2s1s3c1(c1 − c2)

2qc1
+
a2

1s2s3c2(c1 − c2)

2qc2
+

+
2q

c1 − c2
− q

c1
− c2κ+

q

c2
− c1κ

)
− (a2

2s1s3 + a2
1s2s3)I.

(H.21)



Appendix I

Relation between the differences of

the Eigenvalues of the Lax

Operators W and Z

From the polynomial (3.83) we can write

wj = (c1−c2)z2
j−c1(−q−c1c2κ)zj+c2(q−c1c2κ)zj−(c1−c2)(a2

2c
2
2s1s3−a2

1c
2
1s2s3) (I.1)

∀j = 1, 2, 3, and the difference between two eigenvalues is, for example,

w1−w2 = (c1− c2)(z2
1 − z2

2)− c1(−q− c1c2κ)(z1− z2) + c2(q− c1c2κ)(z1− z2). (I.2)

Furthermore, because Tr(Z) = −2c1c2κ and z2
1 − z2

2 = (z1 − z2)(z1 + z2), we substitute

in the previous expression

z1 + z2 = −z3 − 2c1c2κ, (I.3)

and, as a consequence,

w1−w2 = (c1−c2)(z1−z2)(−z3−2c1c2κ)−c1(−q−c1c2κ)(z1−z2)+c2(q−c1c2κ)(z1−z2).

(I.4)

The difference of the eigenvalues (I.4) can be also written in a different fashion after adding

and subtracting the terms qc1 and qc2. Indeed, it reads

w1 − w2 = (z1 − z2)(−z3(c1 − c2) + q(c1 + c2)− c1c2κ(c1 − c2)). (I.5)
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To compute the differences zj − zj+1, we repeat all the calculations above, but we need to

make the substitution w1 + w2 = −w3 − Tr(W ), where

Tr(W ) = 2qc1c2

(
a2

1s2s3c1(c1 − c2)

2qc2
− a2

2s1s3c2(c1 − c2)

2qc1
− q

c1
− c2κ+

q

c2
− c1κ

)
.

(I.6)



Appendix J

Characteristic Polynomial and the

Associated Polynomial of the

Squares of the Differences

Let W̃ be the diagonalised matrix of the matrix W . The eigenvalues w`, for ` = 1, 2, 3,

are the roots of the characteristic polynomial

P (w) = w3 − Tr(W̃ )w2 +
1

2

(
Tr2(W̃ )− Tr(W̃ 2)

)
w −Det(W̃ ). (J.1)

We denote the trace and the determinant of matrix with Tr(·) and Det(·), respectively. In

(J.1) we have replaced Tr(W ) with Tr(W̃ ) by using the property of the trace to be invariant

under cyclic permutations and Det(W ) with Det(W̃ ) because of the Binet theorem in order

to simplify the computations.

We take advantage from the property of trace and determinant to be invariant under

similarity transformation, and also from the property of the coefficients of the polynomial

(J.1) to be invariants. In this respect, let us introduce the Vandermonde matrix

Υ =


1 w1 w2

1

1 w2 w2
2

1 w3 w2
3

 , (J.2)
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whose determinant is

Det(Υ) = w2
1(w3−w2)+w2

2(w1−w3)+w2
3(w2−w1) = (w1−w2)(w2−w3)(w3−w1), (J.3)

and we note that 1 (Det(Υ))2 = ∆WP (w), where ∆WP (w) is the discriminant of the

polynomial (J.1) with respect to w. In some computation, we benefit from the Cayley-

Hamilton Theorem to write the determinant as

Det(W̃ ) =
1

6

(
Tr3(W̃ ) + 2Tr(W̃ 3)− 3Tr(W̃ )Tr(W̃ 2)

)
. (J.4)

Below, we give some useful formulas

2(w1w2 + w2w3 + w3w1) = Tr2(W̃ )− Tr(W̃ 2), (J.5)

and

(w2
1w

2
2 + w2

2w
2
3 + w2

3w
2
1 + 2w2

1w2w3 + 2w1w
2
2w3 + 2w1w2w

2
3) =

= (w2
1w

2
2 + w2

2w
2
3 + w2

3w
2
1 + 2w1w2w3Tr(W̃ )) =

1

4

(
Tr2(W̃ )− Tr(W̃ 2)

)2
,

(J.6)

or

(w2
1w

2
2 + w2

2w
2
3 + w2

3w
2
1) =

=
1

4

(
Tr2(W̃ )− Tr(W̃ 2)

)2
− 1

3
Tr(W̃ )

(
Tr3(W̃ ) + 2Tr(W̃ 3)− 3Tr(W̃ )Tr(W̃ 2)

)
,

(J.7)

where in the last equality we use the formula (J.4).

In the next subsections we shall show the connection between the characteristic polynomial

(J.1) and the polynomial of the differences w` − wm and the polynomial of the squares of

the differences, that is (w` − wm)2.

J.0.4 Polynomial of the Differences

Let

P (k) = k3 − Tr(W̃1)k2 +
1

2

(
Tr2(W̃1)− Tr(W̃ 2

1 )
)
k −Det(W̃1), (J.8)

be the characteristic polynomial whose roots are the differences w` − wm = k`m, with

` 6= m, and `,m = 1, 2, 3, so the matrix W̃1 is

W̃1 =


k12 0 0

0 k23 0

0 0 k31

 . (J.9)

1When two roots coincide Det(Υ) = 0.
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Proposition J.0.1. Every coefficient of the polynomial (J.8) can be expressed by the

coefficients of the polynomial (J.1) plus the determinant of the Vandermonde matrix Υ. In

particular, the polynomial (J.8) can be written as

PW̃1 = k3 − 1

2

(
3Tr(W̃ 2)− Tr2(W̃ )

)
k −Det(Υ). (J.10)

Proof. By looking at the matrix W̃1, we have

Tr(W̃1) = 0, (J.11)

and, as a consequence,

Trn(W̃1) = 0, n = 1, 2, 3... . (J.12)

On the other hand,

Tr(W̃ 2
1 ) = k2

12 + k2
23 + k2

31 = 2Tr(W̃ 2)− 2(w1w2 + w2w3 + w3w1), (J.13)

which becomes, by the relation (J.5),

Tr(W̃ 2
1 ) = 3Tr(W̃ 2)− Tr2(W̃ ). (J.14)

It is trivial to see that

Det(W̃1) = Det(Υ). (J.15)

Proposition J.0.2. The eigenvalues w` are the roots of the characteristic polynomial (J.1)

if and only if the differences k`m are roots of the characteristic polynomial (J.10).

Proof. First of all we prove that if w` are roots of the polynomial (J.1), then the differences

k`m are roots of the polynomial (J.10).

Let us substitute k = w` − wm into the polynomial (J.10), we have

(w` − wm)3 − 1

2

(
3Tr(W̃ 2)− Tr2(W̃ )

)
(w` − wm)−Det(Υ) =

= w3
` − w3

m − 3w2
`wm + 3w`w

2
m +

1

2

(
Tr2(W̃ )− Tr(W̃ 2)

)
w`−

− 1

2

(
Tr2(W̃ )− Tr(W̃ 2)

)
wm − Tr(W̃ 2)w` + Tr(W̃ 2)wm −Det(Υ),

(J.16)
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we can identify the first and the fifth term in the polynomial satisfied by w`, while the

second and the sixth term in the polynomial satisfied by wm. Leaving aside for a moment

Det(Υ), the remaining terms are handled to give

− 3w2
`wm + 3w`w

2
m − Tr(W̃ 2)w` + Tr(W̃ 2)wm =

= −w2
`Tr(W̃ ) + w2

mTr(W̃ ) + w2
` (wk − wm) + w2

m(w` − wk) + w2
k(wm − w`) =

= −w2
`Tr(W̃ ) + w2

mTr(W̃ ) + Det(Υ).

(J.17)

The first two terms to the left-hand side of the equation above correspond to the quadratic

terms of the polynomial for w` and wm, respectively. The term Det(Υ) cancels out once

substituted into the polynomial (J.10). However, we can identify the difference of the known

terms of the polynomials for w` and wm within the trivial difference Det(Υ)−Det(Υ)

Det(Υ) = −Det(W̃ )+(w2
1(w3−w2)+w2

2(w1−w3)+w2
3(w2−w1)+w1w2w3), (J.18)

so Det(Υ)−Det(Υ) = Det(W̃ )−Det(W̃ ). To show that if the difference w`−wm are roots

of the polynomial (J.10), then w` are roots of the polynomial (J.1), we need to subtract

the polynomial calculated in wm from the polynomial calculated in w`

P (w`)−P (wm) = w3
`−w3

m−Tr(W̃ )w2
` +Tr(W̃ )w2

m+
1

2

(
Tr2(W̃ )− Tr(W̃ 2)

)
(w`−wm).

(J.19)

By using the formula (J.17) we replace the terms −Tr(W̃ )w2
` + Tr(W̃ )w2

m and write down

the polynomial (J.10).

Note that both w` − wm = k`m and w` − wm = km` are roots of the polynomial (J.10).

J.0.5 Polynomial of the Squares of the Differences

Let

PW̃2 = ξ3 − Tr(W̃2)ξ2 +
1

2

(
Tr2(W̃2)− Tr(W̃ 2

2 )
)
ξ −Det(W̃2). (J.20)

be the characteristic polynomial whose roots are the differences (w` −wm)2 = k2
`m = ξ`m,

and the matrix W̃2 is

W̃2 =


ξ12 0 0

0 ξ23 0

0 0 ξ31

 . (J.21)
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Proposition J.0.3. Every coefficient of the polynomial (J.20) can be expressed by the

coefficients of the polynomial (J.1) plus the square of the determinant of the Vandermonde

matrix Υ. In particular, the polynomial (J.20) can be written as

PW̃2 = ξ3−
(

3Tr(W̃ 2)− Tr2(W̃ )
)
ξ2+

1

4

(
3Tr(W̃ 2)− Tr2(W )

)2
ξ−(Det(Υ))2. (J.22)

Proof. By definition of trace and by using the formula (J.5), it results in

Tr(W̃2) = 3Tr(W̃ 2)− Tr2(W̃ ), (J.23)

that is the coefficient of the second power of ξ in (J.22). In general,

Trn(W̃2) = (3Tr(W̃ 2)− Tr2(W̃ ))n, n = 1, 2, 3.... (J.24)

On the other hand, by using the formula (J.6), we have

Tr(W̃ 2
2 ) = 6Tr(W̃ 4)− 4Tr(W̃ )Tr(W̃ 3)+

+
3

2

(
Tr2(W̃ )− Tr(W̃ 2)

)2
− 2Tr(W̃ )

(
Tr3(W̃ ) + 2Tr(W̃ 3)− 3Tr(W̃ )Tr(W̃ 2)

)
.

(J.25)

and since

6Tr(W̃ 4) = −2Tr4(W̃ ) + 3
(

Tr2(W̃ )− Tr(W̃ 2)
)2

+ 8Tr(W̃ )Tr(W̃ 3), (J.26)

we have

Tr(W̃ 2
2 ) =

1

2

(
3Tr(W̃ 2)− Tr2(W̃ )

)2
, (J.27)

so that the coefficient of the first power of ξ is

1

2

(
Tr2(W̃2)− Tr(W̃ 2

2 )
)

=
1

4

(
3Tr(W̃ 2)− Tr2(W )

)2
. (J.28)

Finally, the constant term is

(Det(Υ))2 = (w1 − w2)2(w2 − w3)2(w3 − w1)2, (J.29)

i.e. Det(W̃2).

Note that (Det(Υ))2 = ∆WP (w) and when two eigenvalues w` coincide this term is zero.

Before we move on, we focus on the characteristic polynomial of the matrix W̃ 2 = Y

Y =


y1 0 0

0 y2 0

0 0 y3

 , y` = w2
` (J.30)
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that is

P (y) = y3 − Tr(Y )y2 +
1

2

(
Tr2(Y )− Tr(Y 2)

)
y −Det(Y ). (J.31)

The polynomial (J.31) can be written in terms of the eigenvalues w` as

P (w2) = w6 − Tr(W̃ 2)w4 +
1

2

(
Tr2(W̃ 2)− Tr(W̃ 4)

)
w2 −Det(W̃ 2), (J.32)

and, from the Fundamental Theorem of Algebra, we expect six roots of the polynomial

(J.32). However, the polynomial (J.31) is a third degree polynomial for the variable y,

and this means that, for ` = 1, 2, 3, we have three roots w2
` = y`, but actually they are

corresponding to six roots w` = ±√y` of the polynomial (J.32). As a direct result, at

first sight, it looks like that between these six roots, everyone satisfying the polynomials

(J.31) and (J.32), only three roots are solutions of the polynomial (J.1). In particular, we

are interested only on those ones that satisfy the conditions w1 + w2 + w3 = Tr(W̃ ) and

w1w2w3 = Det(W̃ ), also if all the six solutions of (J.32) satisfy the conditions w2
1 + w2

2 +

w2
3 = Tr(W̃ 2) and w2

1w
2
2w

2
3 = Det(W̃ 2).

Thus, the roots are of the polynomial (J.22) are the six roots: ±(w1 − w2), ±(w2 − w3),

±(w3−w1). One can ask: which of these differences correspond to those one for the roots

of the polynomial (J.1)?

Let us consider the following diagonal matrices

W1 =


w1 0 0

0 w2 0

0 0 w3

 , W2 =


w2 0 0

0 w1 0

0 0 w3

 , (J.33)

it is simple to check that the two matrices above have the same characteristic polynomial and

they are connected by a similarity transformation. Indeed, let W be the non-diagonalised

matrix, we have

W = U−1
1 W1U1, W = U−1

2 W2U2, (J.34)

hence

W1 = U−1
3 W2U3, (J.35)
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where U3 = U2U
−1
1 . If the matrix of the squares of the differences associated to W1 is

W12 =


(w1 − w2)2 0 0

0 (w2 − w3)2 0

0 0 (w3 − w1)2

 , (J.36)

then, by following the same algorithm for the construction of the matrix above, we get the

matrix associated to the matrix W2, that is

W22 =


(w2 − w1)2 0 0

0 (w1 − w3)2 0

0 0 (w3 − w2)2

 . (J.37)

The characteristic polynomial for the matrix W12 has the roots: ±(w1−w2), ±(w2−w3),

±(w3−w1). The roots of the characteristic polynomial of the matrix W22 are: ±(w2−w1),

±(w1−w3), ±(w3−w2). Let us suppose, that we are working with the matrix W12 and the

right triplet is the differences +(w1−w2), +(w2−w3), +(w3−w1) that coincide with the

same differences of the matrix W22 but with the reversed sign. This means that choosing

the other combinations of signs in front of the differences corresponds to choose another

eigenspace connected to the first eigenspace by a similarity transformation. This means

that the polynomial (J.22) encloses all the possible differences associated to any possible

eigenspace.

Proposition J.0.4. The differences w` − wm = k`m are roots of the characteristic poly-

nomial (J.10) if and only if (w` − wm)2 = ξ`m are roots of the characteristic polynomial

(J.22).

Proof. Let us compute the square of the polynomial PW̃1 (J.10)

(PW̃1)2 = (k3 − 1

2

(
3Tr(W̃ 2)− Tr2(W̃ )

)
k −Det(Υ))2 =

= k6 +
1

4

(
3Tr(W̃ 2)− Tr2(W̃ )

)2
k2+

+ (Det(Υ))2 − k4
(

3Tr(W̃ 2)− Tr2(W̃ )
)
− 2Det(Υ)k3 + Det(Υ)

(
3Tr(W̃ 2)− Tr2(W̃ )

)
k,

(J.38)
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that can be also written as

(PW̃1)2 =

= k6 +
1

4

(
3Tr(W̃ 2)− Tr2(W̃ )

)2
k2−

− k4
(

3Tr(W̃ 2)− Tr2(W̃ )
)
−Det(Υ)

(
k3 − 1

2

(
3Tr(W̃ 2)− Tr2(W̃ )

)
k

)
−

−Det(Υ)

(
k3 − 1

2

(
3Tr(W̃ 2)− Tr2(W̃ )

)
k −Det(Υ)

)
,

(J.39)

and we note that the term within the parenthesis multiplied by Det(Υ) in the last line is

PW̃1 and it is zero when the roots are the eigenvalues k`m = w`−wm, and, in the second

line, the term multiplied by Det(Υ) is still Det(Υ) for the same roots. Moreover, if we do

the substitution k2 = ξ, the last equation is PW̃2

(PW̃1)2 = PW̃2 = ξ3−ξ2
(

3Tr(W̃ 2)− Tr2(W̃ )
)

+
1

4

(
3Tr(W̃ 2)− Tr2(W̃ )

)2
ξ−(Det(Υ))2.

(J.40)

On the other hand,

PW̃1 = ±
√
PW̃2. (J.41)

Lemma J.0.5. The roots w` are solutions of the characteristic polynomial (J.1) if and only

if the roots (w` − wm)2 = ξ`m are solutions of the polynomial (J.22).

Lemma J.0.6. is a consequence of the Propositions J.0.2 and J.0.4.

Every result obtained in this appendix is general and can be applied to any matrix, and so

to both the matrices W and Z.



Appendix K

Polynomial SZ(θ;λ) of the sums of

the eigenvalues zj

In this appendix we show the construction of the polynomial SZ(θ;λ) of the sums of the

eigenvalues zj .

The characteristic polynomial of the matrix Z is the polynomial whose roots are the eigen-

values zj , with j = 1, 2, 3, and, so, it takes the expression

PZ(z;λ) = (z − z1)(z − z2)(z − z3). (K.1)

On the other hand, we can construct the polynomial of the sums of the eigenvalues zj ,

defined as the polynomial whose roots are z1 + z2, z2 + z3 and z3 + z1, that is

SZ(x;λ) = (x− (z1 + z2))(x− (z2 + z3))(x− (z1 + z3)). (K.2)

that isSZ(x;λ) =x3 − 2x2Tr(Z) +
x

2

(
3Tr2(Z)− Tr(Z2)

)
− 1

3

(
Tr3(Z)− Tr(Z3)

)
.

(K.3)

Hence, the coefficients of the polynomial SZ(x;λ) in (K.3) can be written in terms of the

coefficients of the polynomial PZ(z;λ) in (K.1), and, so, we obtain

SZ(θ;λ) = θ3 + 4λθ2 + (5λ2 + p2 − 1)θ + p1 + λ(−2 + p2 + 2λ2). (K.4)

that is the polynomial of the sums of the eigenvalues zj .



Appendix L

Space Stability Spectra

1 % Parameter s to be a s s i g n e d

2 %p1 =−0.8; p2 =0.4 ; p3 =−0.6; %1G 1B 2L

3 %p1 =−4.0; p2 =−3.0; p3=−0.6;%1G 1B 1L

4 %p1 =1.0; p2 =3.0 ; p3 =−0.6; %1G 1B 0L

5 p1 =−6.2; p2 =−6.3; p3 =−0.6; %0G 2B 2L

6 %p1 = −4.0; p2 = −4.2; p3 = −0.6; %0G 2B 1L

7 %p1 =1.0; p2 =−3.0; p3 =−0.6; %0G 2B 0L

8 %p1 =−70.0; p2 =60.0 ; p3 =−0.6; %2G 0B 2L

9 %p1 = 0 . 2 ; p2 =0.6 ; p3 = −0.6; %2G 0B 1L

10 %p1 =−90.0; p2 =60.0 ; p3 =−0.6; %1G 1SG 0B 1L 1TL

11 %p1 =−1.4; p2 =−1.0; p3 =−0.6; %0G 1SG 1B 1L 1TL

12 %p1 =−4.0; p2 =2.0 ; p3 =−0.6; %0G 1SG 1B 0L 1TL

13 %p1 = 2 ; p2 = −4; p3 = −0.6;

14 Nx = 2∗1 e3 ;

15

16 % S a v e f l a g . I f ’ s a v e f l a g =0’ no f i g u r e i s saved . I f ’ s a v e f l a g

=1 ’ , a l l

17 % f i g u r e s a r e saved .

18 s a v e f l a g = 0 ;

19
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20 % D a t a f l a g . I f ’ d a t a f l a g =0’ no data i s g e n e r a t e d . I f ’ d a t a f l a g

=1 ’ , data i s

21 % g e n e r a t e d .

22 d a t a f l a g = 1 ;

23

24 % Computation o f t he c u r v e on t he lambda−p lane , p a r a m e t r i z e d

as a f u n c t i o n

25 % o f x = k3 ˆ 2 ;

26 i f d a t a f l a g==1

27 [ x , lambda ] = b r a n c h s o l v e r 1 ( p1 , p2 , p3 , Nx) ;

28 end

29

30 % NB: I f th e c u r v e s a r e not w e l l c e n t e r e d i n th e lambda−p lane ,

then t he

31 % i n s t r u c t i o n f o r t he a r r a y AXISLAMBDA below has to be

m o d i f i e d .

32

33 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34 % Roots o f Q2( x )

35 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

36 % For a g i v e n c h o i c e o f r and p , th e r o o t s o f th e p o l y n o m i a l

Q2( x ) a r e

37 % e v a l u a t e d . Let Q( x ) be t he d i s c r i m i n a n t o f t he p o l y n o m i a l

whose r o o t s a r e

38 % th e s q u a r e s o f t he d i f f e r e n c e s o f th e r o o t s o f th e

c h a r a c t e r i s t i c

39 % p o l y n o m i a l PW; then Q( x ) = Q1( x ) ˆ2 ∗ Q2( x ) ; t h u s Q2( x ) i s

th e p o l y n o m i a l
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40 % t h a t d e s c r i b e s th e changes o f s i g n o f Q( x ) .

41

42 % Let X be th e s e t o f t he r e a l , non−n e g a t i v e z e r o s o f Q2( x ) . X

has at most

43 % f o u r e l e m e n t s and i t i s shown t h a t i t has a t l e a s t one

e l em en t . Let Xj be

44 % i t s e l ements , where j sp a n s between 1 and the t o t a l number

o f r e a l

45 % non−n e g a t i v e r o o t s o f Q2( x ) , s o r t e d i n a s c e n d i n g o r d e r .

46 %

47 % This v a l u e s a r e u t i l i s e d f o r p l o t t i n g t he r e g i o n s o f x where

Q i s

48 % p o s i t i v e ( g r e e n c o l o r ) and where Q i s n e g a t i v e ( r e d c o l o r ) .

49

50 c o e f f d i s c r = q c o e f ( p1 , p2 , p3 ) ;

51 x r = r o o t s ( c o e f f d i s c r ) ; % r o o t s o f Q2

52 x r r e a l = s o r t ( r e a l ( x r ( ( abs ( imag ( x r ) )<1e−10) & ( r e a l ( x r )

>=0) ) ) ) ;

53 xspan = [ 0 4∗max ( x r r e a l ) ] ;

54 d i s p ( [ ’

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

’ ] )

55 d i s p ( [ ’ Roots o f Q2( x ) f o r p1 = ’ , num2str ( 1 ) , ’ , p2 = ’ , num2str

( p2 ) , ’ , p3 = ’ , num2str ( p3 ) ] )

56 x r ( : ) % d i s p l a y s th e r o o t s o f Q2

57 d i s p ( [ ’

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

’ ] )

58

59 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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60 % C o l u m n i z a t i o n o f lambda and x

61 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62 l ambdaco l = lambda ( : ) ;

63 l ambdaco l2 = c o n j ( lambdaco l ) .∗ l ambdaco l ;

64 x c o l = [ x ( : ) ; x ( : ) ; x ( : ) ; x ( : ) ; x ( : ) ; x ( : ) ] ;

65

66 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

67 % S t e r e o g r a p h i c p r o j e c t i o n

68 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69 Sy = 2∗ r e a l ( l ambdaco l ) ./(1+ lambdaco l2 ) ;

70 Sz = 2∗ imag ( lambdaco l ) ./(1+ lambdaco l2 ) ;

71 Sx = (1− l ambdaco l2 ) ./(1+ lambdaco l2 ) ;

72

73 lambda2 1 = c o n j ( lambda ( : , 1 ) ) .∗ lambda ( : , 1 ) ;

74 Sy1 = 2∗ r e a l ( lambda ( : , 1 ) ) ./(1+ lambda2 1 ) ;

75 Sz1 = 2∗ imag ( lambda ( : , 1 ) ) ./(1+ lambda2 1 ) ;

76 Sx1 = (1− lambda2 1 ) ./(1+ lambda2 1 ) ;

77

78 lambda2 2 = c o n j ( lambda ( : , 2 ) ) .∗ lambda ( : , 2 ) ;

79 Sy2 = 2∗ r e a l ( lambda ( : , 2 ) ) ./(1+ lambda2 2 ) ;

80 Sz2 = 2∗ imag ( lambda ( : , 2 ) ) ./(1+ lambda2 2 ) ;

81 Sx2 = (1− lambda2 2 ) ./(1+ lambda2 2 ) ;

82

83 lambda2 3 = c o n j ( lambda ( : , 3 ) ) .∗ lambda ( : , 3 ) ;

84 Sy3 = 2∗ r e a l ( lambda ( : , 3 ) ) ./(1+ lambda2 3 ) ;

85 Sz3 = 2∗ imag ( lambda ( : , 3 ) ) ./(1+ lambda2 3 ) ;
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86 Sx3 = (1− lambda2 3 ) ./(1+ lambda2 3 ) ;

87

88 lambda2 4 = c o n j ( lambda ( : , 4 ) ) .∗ lambda ( : , 4 ) ;

89 Sy4 = 2∗ r e a l ( lambda ( : , 4 ) ) ./(1+ lambda2 4 ) ;

90 Sz4 = 2∗ imag ( lambda ( : , 4 ) ) ./(1+ lambda2 4 ) ;

91 Sx4 = (1− lambda2 4 ) ./(1+ lambda2 4 ) ;

92

93 lambda2 5 = c o n j ( lambda ( : , 5 ) ) .∗ lambda ( : , 5 ) ;

94 Sy5 = 2∗ r e a l ( lambda ( : , 5 ) ) ./(1+ lambda2 5 ) ;

95 Sz5 = 2∗ imag ( lambda ( : , 5 ) ) ./(1+ lambda2 5 ) ;

96 Sx5 = (1− lambda2 5 ) ./(1+ lambda2 5 ) ;

97

98 lambda2 6 = c o n j ( lambda ( : , 6 ) ) .∗ lambda ( : , 6 ) ;

99 Sy6 = 2∗ r e a l ( lambda ( : , 6 ) ) ./(1+ lambda2 6 ) ;

100 Sz6 = 2∗ imag ( lambda ( : , 6 ) ) ./(1+ lambda2 6 ) ;

101 Sx6 = (1− lambda2 6 ) ./(1+ lambda2 6 ) ;

102

103 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

104 % Omega3 and Gain (gamma)

105 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

106 % Omega3 , k3 and th e g a i n a r e computed o n l y f o r t he v a l u e s o f

lambda ( and

107 % th e c o r r e s p o n d i n g v a l u e s o f x ) f o r which lambda has a non−

z e r o i m a g i n a r y

108 % p a r t . k3 = s q r t ( x ) . g a i n = imag ( omega3 ) .

109

110 lambdacom = lambdaco l ( abs ( imag ( lambdaco l ) ) ˜=0) ;

111 xcom = x c o l ( abs ( imag ( lambdaco l ) ) ˜=0) ;
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112 k3 = s q r t ( xcom ) ;

113 i f d a t a f l a g==1

114 omega3 = o m e g a e x t r a c t o r 2 ( p1 , p2 , p3 , k3 , lambdacom ) ;

115 end

116 gamma = imag ( omega3 ) ;

117

118 kk3 = s q r t ( x ) ;

119 i f d a t a f l a g==1

120 omega3H = omegaext ractorH ( p1 , p2 , p3 , kk3 ) ;

121 end

122 omega3Hcol = omega3H ( : ) ;

123 gammaH = imag ( omega3Hcol ) ;

124

125 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

126 % O p t i m i z i n g the a x e s r a n g e s i n o r d e r to c e n t r e the lambda−

c r u v e s f o r the

127 % u s e r (AXISLAMBDA)

128 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

129 l a m b d a c o l n o n z e r o i m a g = lambdaco l ( ( imag ( lambdaco l ) ˜=0)&( abs (

r e a l ( l ambdaco l ) )>1e−9) ) ;

130 maxlambdare = max ( r e a l ( l a m b d a c o l n o n z e r o i m a g ) ) ;

131 minlambdare = min ( r e a l ( l a m b d a c o l n o n z e r o i m a g ) ) ;

132 maxlambdaim = max ( imag ( l a m b d a c o l n o n z e r o i m a g ) ) ;

133 minlambdaim = min ( imag ( l a m b d a c o l n o n z e r o i m a g ) ) ;

134 maxlambdare = max ( [ maxlambdare max ( r e a l ( lambda ( 1 , : ) ) ) ] ) ;

135 minlambdare = min ( [ minlambdare min ( r e a l ( lambda ( 1 , : ) ) ) ] ) ;

136 i f maxlambdaim==0

137 maxlambdaim = 1 ;
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138 end

139 i f minlambdaim==0

140 minlambdaim = −1;

141 end

142 a x i s l a m b d a = [ minlambdare maxlambdare minlambdaim maxlambdaim

]∗ ( 1 5 / 1 0 ) ;

143 a x i s l a m b d a = 2∗ [ −3 . 0 , 3 . 0 , −5 . 5 , 5 . 5 ] ;

144

145 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

146 % Computation o f s1 , s2 and a1 , a2 c o r r e s p o n d i n g to th e g i v e n

v a l u e s o f r , p

147 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

148 % i f ( abs ( p )>=abs ( r ) )&&(r>=0)&&(p>=0)

149 % s1 = 1 ; s2 = 1 ;

150 % e l s e i f ( abs ( p )<abs ( r ) )&&(r>=0)&&(p>=0)

151 % s1 = 1 ; s2 = −1;

152 % e l s e i f ( abs ( p )>=abs ( r ) )&&(r>=0)&&(p<0)

153 % s1 = −1; s2 = −1;

154 % e l s e i f ( abs ( p )<abs ( r ) )&&(r>=0)&&(p<0)

155 % s1 = 1 ; s2 = −1;

156 % e l s e i f ( abs ( p )>=abs ( r ) )&&(r<0)&&(p>=0)

157 % s1 = 1 ; s2 = 1 ;

158 % e l s e i f ( abs ( p )<abs ( r ) )&&(r<0)&&(p>=0)

159 % s1 = −1; s2 = 1 ;

160 % e l s e i f ( abs ( p )>=abs ( r ) )&&(r<0)&&(p<0)

161 % s1 = −1; s2 = −1;

162 % e l s e i f ( abs ( p )<abs ( r ) )&&(r<0)&&(p<0)

163 % s1 = −1; s2 = 1 ;
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164 % end

165 %

166 % a1 = s q r t ( s1 ∗( p+r ) /2) ; a2 = s q r t ( s2 ∗( p−r ) /2) ;

167 % d i s p ( [ s1 s2 ; a1 a2 ] ) ;

168

169 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

170 % Computation o f t he two c r i t i c a l c u r v e s on th e ( r , p )−p l a n e

171 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

172 % d e l t a 2 = 2ˆ(2/3) ; d e l t a 4 = d e l t a 2 ˆ 2 ;

173 % pden = @( x ) ( x+s q r t (4+x . ˆ 2 ) ) . ˆ ( 2 / 3 ) ;

174 % p c u r v e 1 = @( x ) −5 + 3∗( d e l t a 2 . / pden ( x ) + pden ( x ) / d e l t a 2 ) ;

175 % p c u r v e 2 = @( x ) −s q r t (16−12∗ d e l t a 2 ∗ ( ( x . ˆ 2 ) . ˆ ( 1 / 3 ) )+3∗ d e l t a 4

∗ ( ( x . ˆ 4 ) . ˆ ( 1 / 3 ) ) ) ;

176 % i f r<=4

177 % rmin = 0 ;

178 % rmax = 4 ;

179 % e l s e

180 % rmin = 4 ;

181 % rmax = 2∗ r−8;

182 % end

183 % dr = ( rmax−rmin ) /1 e3 ;

184 % r v e c = [ rmin : dr : rmax ] ;

185 % pvec1 = p c u r v e 1 ( r v e c ) ;

186 % pvec2 = p c u r v e 2 ( r v e c ) ;

187

188 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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189 % Computation o f t he c r i t i c a l c u r v e s on th e ( a1 , a2 )−p l a n e

190 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

191 % r v a l = l i n s p a c e (−100 ,100 ,1 e4 ) ;

192 % p v a l 1 = p c u r v e 1 ( r v a l ) ;

193 % p v a l 2 = p c u r v e 2 ( r v a l ) ;

194 % a 1 v a l 1 = s q r t ( s1 ∗( p v a l 1+r v a l ) /2) ; a 2 v a l 1 = s q r t ( s2 ∗( pva l1−

r v a l ) /2) ;

195 % a 1 v a l 2 = s q r t ( s1 ∗( p v a l 2+r v a l ) /2) ; a 2 v a l 2 = s q r t ( s2 ∗( pva l2−

r v a l ) /2) ;

196 % a1vec1 = a 1 v a l 1 ( ( imag ( a 1 v a l 1 )==0)&(imag ( a 2 v a l 1 )==0)) ;

197 % a2vec1 = a 2 v a l 1 ( ( imag ( a 1 v a l 1 )==0)&(imag ( a 2 v a l 1 )==0)) ;

198 % a1vec2 = a 1 v a l 2 ( ( imag ( a 1 v a l 2 )==0)&(imag ( a 2 v a l 2 )==0)) ;

199 % a2vec2 = a 2 v a l 2 ( ( imag ( a 1 v a l 2 )==0)&(imag ( a 2 v a l 2 )==0)) ;

200

201 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

202 % PLOTS

203 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

204 r e d f a c = 0 . 8 5 ;

205 hf 1 = f i g u r e ( 1 ) ;

206 c l f

207 s u b p l o t ( 6 , 9 , [ 1 2 10 1 1 ] )

208 % p l o t ( rvec , pvec1 , ’ k ’ )

209 % h o l d on

210 % %p l o t ( rvec , pvec2 , ’ r ’ )

211 % p l o t ( rvec ,−pvec2 , ’ r ’ )

212 % p l o t ( rvec , rvec , ’ b ’ )
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213 % p l o t ( rvec ,− rvec , ’ b ’ )

214 % p l o t ( r , p , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’ MarkerFaceColor ’ , ’ c ’ , ’

MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 4 )

215 % h o l d o f f

216 % a x i s ( [ rmin rmax −rmax rmax ] )

217 % x l a b e l ( ’ $r$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

218 % y l a b e l ( ’ $p$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

219 % t i t l e ( [ ’ $ ( r , p ) $−p lane , $ r=$ ’ , num2str ( r ) , ’ $p=$ ’ , num2str (

p ) ] , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

220 % tmp = g e t ( gca , ’ p o s i t i o n ’ ) ;

221 % s e t ( gca , ’ p o s i t i o n ’ , [ tmp ( 1 ) tmp ( 2 ) r e d f a c ∗tmp ( 3 ) r e d f a c ∗

tmp ( 4 ) ] ) ;

222 s u b p l o t ( 6 , 9 , [ 1 9 20 28 2 9 ] )

223 % p l o t ( rvec , pvec1 , ’ k ’ )

224 % h o l d on

225 % %p l o t ( rvec , pvec2 , ’ r ’ )

226 % p l o t ( rvec ,−pvec2 , ’ r ’ )

227 % p l o t ( rvec , rvec , ’ b ’ )

228 % p l o t ( rvec ,− rvec , ’ b ’ )

229 % p l o t ( r , p , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’ MarkerFaceColor ’ , ’ c ’ , ’

MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 4 )

230 % h o l d o f f

231 % a x i s ( [ rmin 4 −4 4 ] )

232 % x l a b e l ( ’ $r$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

233 % y l a b e l ( ’ $p$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

234 % %t i t l e ( ’ $ ( r , p ) $−p lane ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

235 % tmp = g e t ( gca , ’ p o s i t i o n ’ ) ;

236 % s e t ( gca , ’ p o s i t i o n ’ , [ tmp ( 1 ) tmp ( 2 ) r e d f a c ∗tmp ( 3 ) r e d f a c ∗

tmp ( 4 ) ] ) ;

237 s u b p l o t ( 6 , 9 , [ 3 7 38 46 4 7 ] )

238 % p l o t ( rvec , pvec1 , ’ k ’ )

239 % h o l d on
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240 % %p l o t ( rvec , pvec2 , ’ r ’ )

241 % p l o t ( rvec ,−pvec2 , ’ r ’ )

242 % p l o t ( rvec , rvec , ’ b ’ )

243 % p l o t ( rvec ,− rvec , ’ b ’ )

244 % p l o t ( r , p , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’ MarkerFaceColor ’ , ’ c ’ , ’

MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 4 )

245 % h o l d o f f

246 % a x i s ( [ 4 rmax −rmax rmax ] )

247 % x l a b e l ( ’ $r$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

248 % y l a b e l ( ’ $p$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

249 % %t i t l e ( ’ $ ( r , p ) $−p lane ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

250 % tmp = g e t ( gca , ’ p o s i t i o n ’ ) ;

251 % s e t ( gca , ’ p o s i t i o n ’ , [ tmp ( 1 ) tmp ( 2 ) r e d f a c ∗tmp ( 3 ) r e d f a c ∗

tmp ( 4 ) ] ) ;

252 s u b p l o t ( 6 , 9 , [ 3 : 6 ] )

253 Nxx = 1 e4 ; xx = l i n s p a c e ( x ( 1 ) , x ( end ) , Nxx ) ;

254 imgc = z e r o s ( 2 , Nxx , 3 ) ;

255 f o r k=1:Nxx

256 i f p o l y v a l ( c o e f f d i s c r , ( xx ( k ) ) )>0

257 imgc ( : , k , 1 ) = 0 ;

258 imgc ( : , k , 2 ) = 1 ;

259 imgc ( : , k , 3 ) = 0 ;

260 e l s e

261 imgc ( : , k , 1 ) = 1 ;

262 imgc ( : , k , 2 ) = 0 ;

263 imgc ( : , k , 3 ) = 0 ;

264 end

265 end

266 imagesc ( xx ,[−1 1 ] , imgc )

267 h o l d on

268 p l o t ( xx , z e r o s ( s i z e ( xx ) ) , ’ k ’ , ’ M a r k e r S i z e ’ , 3 )

269 y = l i n s p a c e (−1 ,1 ,10) ;
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270 f o r k=1: l e n g t h ( x r r e a l )

271 p l o t ( x r r e a l ( k ) ∗ ones ( s i z e ( y ) ) , y , ’ k ’ , ’ M a r k e r S i z e ’ , 3 )

272 end

273 %x p l = p l o t ( x ( 1 ) , 0 , ’ o ’ , ’ MarkerFaceColor ’ , ’ k ’ , ’ MarkerS ize

’ , 5 ) ;

274 h o l d o f f

275 a x i s ( [ x ( 1 ) x ( end ) −1 1 ] )

276 x l a b e l ( ’ $k {3}ˆ{2}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

277 t i t l e ( [ ’ S ign o f $\D e l t a $ f o r s q u a r e s o f d i f f e r e n c e s : green

−pos , red−neg ’ ] , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

278 tmp = g e t ( gca , ’ p o s i t i o n ’ ) ;

279 s e t ( gca , ’ p o s i t i o n ’ , [ tmp ( 1 ) tmp ( 2 ) r e d f a c ∗tmp ( 3 ) r e d f a c ∗tmp

( 4 ) ] ) ;

280 s u b p l o t ( 6 , 9 , [ 1 2 : 1 5 , 2 1 : 2 4 , 3 0 : 3 3 , 3 9 : 4 2 , 4 8 : 5 1 ] )

281 p l o t ( r e a l ( lambda ( : , 1 ) ) , imag ( lambda ( : , 1 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’

, 2 )

282 h o l d on

283 p l o t ( r e a l ( lambda ( : , 2 ) ) , imag ( lambda ( : , 2 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’

, 2 )

284 p l o t ( r e a l ( lambda ( : , 3 ) ) , imag ( lambda ( : , 3 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’

, 2 )

285 p l o t ( r e a l ( lambda ( : , 4 ) ) , imag ( lambda ( : , 4 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’

, 2 )

286 p l o t ( r e a l ( lambda ( : , 5 ) ) , imag ( lambda ( : , 5 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’

, 2 )

287 p l o t ( r e a l ( lambda ( : , 6 ) ) , imag ( lambda ( : , 6 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’

, 2 )

288 % p l 1 = p l o t ( r e a l ( lambda ( 1 , 1 ) ) , imag ( lambda ( 1 , 1 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

289 % p l 2 = p l o t ( r e a l ( lambda ( 1 , 2 ) ) , imag ( lambda ( 1 , 2 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;
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290 % p l 3 = p l o t ( r e a l ( lambda ( 1 , 3 ) ) , imag ( lambda ( 1 , 3 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

291 % p l 4 = p l o t ( r e a l ( lambda ( 1 , 4 ) ) , imag ( lambda ( 1 , 4 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

292 % p l 5 = p l o t ( r e a l ( lambda ( 1 , 5 ) ) , imag ( lambda ( 1 , 5 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

293 % p l 6 = p l o t ( r e a l ( lambda ( 1 , 6 ) ) , imag ( lambda ( 1 , 6 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

294 h o l d o f f

295 x l a b e l ( ’ $\mu$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

296 y l a b e l ( ’ $\ rho$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

297 t i t l e ( [ ’ $\ lambda$ , $p 1=$ ’ , num2str ( p1 ) , ’ , $p 2=$ ’ , num2str (

p2 ) , ’ , $p 3=$ ’ , num2str ( p3 ) ] , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

298 a x i s ( a x i s l a m b d a )

299 tmp = g e t ( gca , ’ p o s i t i o n ’ ) ;

300 s e t ( gca , ’ p o s i t i o n ’ , [ tmp ( 1 ) tmp ( 2 ) r e d f a c ∗tmp ( 3 ) r e d f a c ∗tmp

( 4 ) ] ) ;

301 s u b p l o t ( 6 , 9 , [ 7 : 9 , 1 6 : 1 8 , 2 5 : 2 7 ] )

302 s e t ( gcf , ’ c o l o r ’ , ’w ’ ) ;

303 [ sph1 , sph2 , sph3 ] = s p h e r e ( 6 4 ) ;

304 hs = s u r f l ( sph1 , sph2 , sph3 ) ;

305 s e t ( hs , ’ FaceAlpha ’ , 0 . 6 )

306 s h a d i n g i n t e r p

307 co lormap ( bone )

308 h o l d on

309 p l o t 3 ( Sx , Sy , Sz , ’ k . ’ , ’ M a r k e r S i z e ’ , 2 , ’ L ineWidth ’ , 2 )

310 p l o t 3 ( 1 , 0 , 0 , ’ r . ’ , ’ M a r k e r S i z e ’ , 1 5 )

311 p l o t 3 (−1 ,0 ,0 , ’ g . ’ , ’ M a r k e r S i z e ’ , 1 5 )

312 a x i s e q u a l % or s q u a r e

313 box o f f

314 g r i d o f f

315 a x i s o f f
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316 v iew ( 7 0 , 5 )

317 % s p l 1 = p l o t 3 ( Sx1 ( 1 ) , Sy1 ( 1 ) , Sz1 ( 1 ) , ’ o ’ , ’ MarkerFaceColor

’ , ’ b ’ , ’ MarkerS ize ’ , 3 ) ;

318 % s p l 2 = p l o t 3 ( Sx2 ( 1 ) , Sy2 ( 1 ) , Sz2 ( 1 ) , ’ o ’ , ’ MarkerFaceColor

’ , ’ b ’ , ’ MarkerS ize ’ , 3 ) ;

319 % s p l 3 = p l o t 3 ( Sx3 ( 1 ) , Sy3 ( 1 ) , Sz3 ( 1 ) , ’ o ’ , ’ MarkerFaceColor

’ , ’ b ’ , ’ MarkerS ize ’ , 3 ) ;

320 % s p l 4 = p l o t 3 ( Sx4 ( 1 ) , Sy4 ( 1 ) , Sz4 ( 1 ) , ’ o ’ , ’ MarkerFaceColor

’ , ’ b ’ , ’ MarkerS ize ’ , 3 ) ;

321 % s p l 5 = p l o t 3 ( Sx5 ( 1 ) , Sy5 ( 1 ) , Sz5 ( 1 ) , ’ o ’ , ’ MarkerFaceColor

’ , ’ b ’ , ’ MarkerS ize ’ , 3 ) ;

322 % s p l 6 = p l o t 3 ( Sx6 ( 1 ) , Sy6 ( 1 ) , Sz6 ( 1 ) , ’ o ’ , ’ MarkerFaceColor

’ , ’ b ’ , ’ MarkerS ize ’ , 3 ) ;

323 h o l d o f f

324 t i t l e ( [ ’ $\ lambda$ , $p 1=$ ’ , num2str ( p1 ) , ’ , $p 2=$ ’ , num2str (

p2 ) , ’ , $p 3=$ ’ , num2str ( p3 ) ] , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

325 s u b p l o t ( 6 , 9 , [ 3 4 : 3 6 , 4 3 : 4 5 , 5 2 : 5 4 ] )

326 p l o t ( k3 , abs (gamma) , ’ b . ’ , ’ M a r k e r S i z e ’ , 3 )

327 h o l d on

328 p l o t (−k3 , abs (gamma) , ’ b . ’ , ’ M a r k e r S i z e ’ , 3 )

329 p l o t ( s q r t ( x c o l ) , abs (gammaH) , ’ r . ’ , ’ M a r k e r S i z e ’ , 3 )

330 p l o t (− s q r t ( x c o l ) , abs (gammaH) , ’ r . ’ , ’ M a r k e r S i z e ’ , 3 )

331 % g p l 1 = p l o t ( s q r t ( x ( 1 ) ) , abs (gamma1 ( 1 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

332 % g p l 2 = p l o t ( s q r t ( x ( 1 ) ) , abs (gamma2 ( 1 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

333 % g p l 3 = p l o t ( s q r t ( x ( 1 ) ) , abs (gamma3 ( 1 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

334 % g p l 4 = p l o t ( s q r t ( x ( 1 ) ) , abs (gamma4 ( 1 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

335 % g p l 5 = p l o t ( s q r t ( x ( 1 ) ) , abs (gamma5 ( 1 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;



Appendix L. Space Stability Spectra 190

336 % g p l 6 = p l o t ( s q r t ( x ( 1 ) ) , abs (gamma6 ( 1 ) ) , ’ o ’ , ’

MarkerFaceColor ’ , ’ red ’ , ’ MarkerS ize ’ , 4 ) ;

337 % a x i s ([−k3max k3max 0 gammamax ]∗ ( 1 2 / 1 0 ) )

338 h o l d o f f

339 x l a b e l ( ’ $k {3}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

340 y l a b e l ( ’ $ | \Gamma( k {3}) | $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

341 t i t l e ( [ ’ Modulus o f Gain $p 1=$ ’ , num2str ( p1 ) , ’ , $p 2=$ ’ ,

num2str ( p2 ) , ’ , $p 3=$ ’ , num2str ( p3 ) ] , ’ i n t e r p r e t e r ’ , ’

l a t e x ’ )

342 tmp = g e t ( gca , ’ p o s i t i o n ’ ) ;

343 s e t ( gca , ’ p o s i t i o n ’ , [ tmp ( 1 ) tmp ( 2 ) r e d f a c ∗tmp ( 3 ) r e d f a c ∗

tmp ( 4 ) ] ) ;

344

345 %f i l e n a m e = [ ’ GBL r = ’ , num2str ( r ) , ’ p = ’ , num2str ( p ) ] ;

346 %p r i n t ( hf1 , [ pwd ’/ F i g u r e s / ’ f i l e n a m e ’ . jpeg ’ ] , ’ − djpeg ’ )

347

348 % f o r j =2:100: l e n g t h ( x )

349 % p l 1 . XData = r e a l ( lambda ( j , 1 ) ) ; p l 1 . YData = imag ( lambda ( j

, 1 ) ) ;

350 % p l 2 . XData = r e a l ( lambda ( j , 2 ) ) ; p l 2 . YData = imag ( lambda ( j

, 2 ) ) ;

351 % p l 3 . XData = r e a l ( lambda ( j , 3 ) ) ; p l 3 . YData = imag ( lambda ( j

, 3 ) ) ;

352 % p l 4 . XData = r e a l ( lambda ( j , 4 ) ) ; p l 4 . YData = imag ( lambda ( j

, 4 ) ) ;

353 % p l 5 . XData = r e a l ( lambda ( j , 5 ) ) ; p l 5 . YData = imag ( lambda ( j

, 5 ) ) ;

354 % p l 6 . XData = r e a l ( lambda ( j , 6 ) ) ; p l 6 . YData = imag ( lambda ( j

, 6 ) ) ;

355 % x p l . XData = x ( j ) ;

356 % g p l 1 . XData = s q r t ( x ( j ) ) ; g p l 1 . YData = abs (gamma1( j ) ) ;

357 % g p l 2 . XData = s q r t ( x ( j ) ) ; g p l 2 . YData = abs (gamma2( j ) ) ;
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358 % g p l 3 . XData = s q r t ( x ( j ) ) ; g p l 3 . YData = abs (gamma3( j ) ) ;

359 % g p l 4 . XData = s q r t ( x ( j ) ) ; g p l 4 . YData = abs (gamma4( j ) ) ;

360 % g p l 5 . XData = s q r t ( x ( j ) ) ; g p l 5 . YData = abs (gamma5( j ) ) ;

361 % g p l 6 . XData = s q r t ( x ( j ) ) ; g p l 6 . YData = abs (gamma6( j ) ) ;

362 % s p l 1 . XData = Sx1 ( j ) ; s p l 1 . YData = Sy1 ( j ) ; s p l 1 . ZData =

Sz1 ( j ) ;

363 % s p l 2 . XData = Sx2 ( j ) ; s p l 2 . YData = Sy2 ( j ) ; s p l 2 . ZData =

Sz2 ( j ) ;

364 % s p l 3 . XData = Sx3 ( j ) ; s p l 3 . YData = Sy3 ( j ) ; s p l 3 . ZData =

Sz3 ( j ) ;

365 % s p l 4 . XData = Sx4 ( j ) ; s p l 4 . YData = Sy4 ( j ) ; s p l 4 . ZData =

Sz4 ( j ) ;

366 % s p l 5 . XData = Sx5 ( j ) ; s p l 5 . YData = Sy5 ( j ) ; s p l 5 . ZData =

Sz5 ( j ) ;

367 % s p l 6 . XData = Sx6 ( j ) ; s p l 6 . YData = Sy6 ( j ) ; s p l 6 . ZData =

Sz6 ( j ) ;

368 % drawnow

369 % end

370

371

372 f i g u r e ( 2 )

373 s u b p l o t ( 1 , 3 , 1 )

374 p l o t ( k3 , abs (gamma) , ’ b . ’ , ’ M a r k e r S i z e ’ , 3 )

375 h o l d on

376 p l o t (−k3 , abs (gamma) , ’ b . ’ , ’ M a r k e r S i z e ’ , 3 )

377 p l o t ( s q r t ( x c o l ) , abs (gammaH) , ’ r . ’ , ’ M a r k e r S i z e ’ , 3 )

378 p l o t (− s q r t ( x c o l ) , abs (gammaH) , ’ r . ’ , ’ M a r k e r S i z e ’ , 3 )

379 h o l d o f f

380 x l a b e l ( ’ $k {3}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

381 y l a b e l ( ’ $ | \Gamma( k {3}) | $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

382 t i t l e ( [ ’ Modulus o f Gain , $p 1=$ ’ , num2str ( p1 ) , ’ , $p 2=$ ’ ,

num2str ( p2 ) , ’ , $p 3=$ ’ , num2str ( p3 ) ] , ’ i n t e r p r e t e r ’ , ’
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l a t e x ’ )

383 tmp = g e t ( gca , ’ p o s i t i o n ’ ) ;

384 s e t ( gca , ’ p o s i t i o n ’ , [ tmp ( 1 ) tmp ( 2 ) r e d f a c ∗tmp ( 3 ) r e d f a c ∗

tmp ( 4 ) ] ) ;

385 s u b p l o t ( 1 , 3 , 2 )

386 p l o t ( k3 , abs (gamma) , ’ b . ’ , ’ M a r k e r S i z e ’ , 3 )

387 h o l d on

388 p l o t (−k3 , abs (gamma) , ’ b . ’ , ’ M a r k e r S i z e ’ , 3 )

389 h o l d o f f

390 x l a b e l ( ’ $k {3}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

391 y l a b e l ( ’ $ | \Gamma( k {3}) | $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

392 t i t l e ( [ ’ Modulus o f Gain from numer ics , $p 1=$ ’ , num2str ( p1

) , ’ , $p 2=$ ’ , num2str ( p2 ) , ’ , $p 3=$ ’ , num2str ( p3 ) ] , ’

i n t e r p r e t e r ’ , ’ l a t e x ’ )

393 tmp = g e t ( gca , ’ p o s i t i o n ’ ) ;

394 s e t ( gca , ’ p o s i t i o n ’ , [ tmp ( 1 ) tmp ( 2 ) r e d f a c ∗tmp ( 3 ) r e d f a c ∗

tmp ( 4 ) ] ) ;

395 s u b p l o t ( 1 , 3 , 3 )

396 p l o t ( s q r t ( x c o l ) , abs (gammaH) , ’ r . ’ , ’ M a r k e r S i z e ’ , 3 )

397 h o l d on

398 p l o t (− s q r t ( x c o l ) , abs (gammaH) , ’ r . ’ , ’ M a r k e r S i z e ’ , 3 )

399 h o l d o f f

400 x l a b e l ( ’ $k {3}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

401 y l a b e l ( ’ $ | \Gamma( k {3}) | $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )

402 t i t l e ( [ ’ Modulus o f Gain from $H$ , $p 1=$ ’ , num2str ( p1 ) , ’ ,

$p 2=$ ’ , num2str ( p2 ) , ’ , $p 3=$ ’ , num2str ( p3 ) ] , ’

i n t e r p r e t e r ’ , ’ l a t e x ’ )

403 tmp = g e t ( gca , ’ p o s i t i o n ’ ) ;

404 s e t ( gca , ’ p o s i t i o n ’ , [ tmp ( 1 ) tmp ( 2 ) r e d f a c ∗tmp ( 3 ) r e d f a c ∗

tmp ( 4 ) ] ) ;

405
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406 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

407 % % PLOTS

408 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

409 f s l a b e l s = 2 8 ;

410 f s t i c k s = 2 4 ;

411

412 % % hf1 = f i g u r e ( 1 ) ;

413 % % c l f

414 % % p l o t ( rvec , rvec , ’ k ’ , ’ LineWidth ’ , 2 )

415 % % h o l d on

416 % % p l o t ( rvec ,− rvec , ’ k ’ , ’ LineWidth ’ , 2 )

417 % % p l o t ( rvec , pvec1 , ’ r ’ , ’ L ineWidth ’ , 2 )

418 % % p l o t ( rvec , pvec2 , ’ b ’ , ’ LineWidth ’ , 2 )

419 % % p l o t ( r , p , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’ MarkerFaceColor ’ , ’ g ’ , ’

MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 9 )

420 % % h o l d o f f

421 % % a x i s ( [ rmin rmax −rmax rmax ] )

422 % % a x i s s q u a r e

423 % % x l a b e l ( ’ $r$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s , ’

f o n t w e i g h t ’ , ’ bo ld ’ )

424 % % y l a b e l ( ’ $p$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s , ’

f o n t w e i g h t ’ , ’ bo ld ’ )

425 % % ax = gca ; ax . F o n t S i z e = f s t i c k s ;

426 % %

427 % % hf2 = f i g u r e ( 2 ) ;

428 % % c l f

429 % % i f max ( a1 , a2 )<3

430 % % a1max = 3 ; a2max = a1max ;
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431 % % e l s e

432 % % a1max = 5;%1.5∗max ( a1 , a2 ) ;

433 % % a2max = a1max ;

434 % % end

435 % % i f s1==1&&s2==1

436 % % p l o t ( a1vec1 , a2vec1 , ’ r ’ , ’ L ineWidth ’ , 2 )

437 % % h o l d on

438 % % e l s e i f s1==−1&&s2==1

439 % % p l o t ( a1vec2 , a2vec2 , ’ b ’ , ’ L ineWidth ’ , 2 )

440 % % h o l d on

441 % % p l o t ( a1vec1 , a2vec1 , ’ r ’ , ’ L ineWidth ’ , 2 )

442 % % e l s e i f s1==−1&&s2==−1

443 % % p l o t ( a1vec2 , a2vec2 , ’ b ’ , ’ L ineWidth ’ , 2 )

444 % % h o l d on

445 % % e l s e i f s1==1&&s2==−1

446 % % p l o t ( a1vec2 , a2vec2 , ’ b ’ , ’ L ineWidth ’ , 2 )

447 % % h o l d on

448 % % p l o t ( a1vec1 , a2vec1 , ’ r ’ , ’ L ineWidth ’ , 2 )

449 % % end

450 % % p l o t ( a1 , a2 , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’ MarkerFaceColor ’ , ’ g ’ , ’

MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 9 )

451 % % h o l d o f f

452 % % a x i s ( [ 0 a1max 0 a2max ] )

453 % % a x i s s q u a r e

454 % % x l a b e l ( ’ $a {1}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s

, ’ f o n t w e i g h t ’ , ’ bo ld ’ )

455 % % y l a b e l ( ’ $a {2}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s

, ’ f o n t w e i g h t ’ , ’ bo ld ’ )

456 % % ax = gca ; ax . F o n t S i z e = f s t i c k s ;

457 % % ax . XTick = [ 0 : a1max ] ; ax . YTick = [ 0 : a2max ] ;

458 %

459 hf 3 = f i g u r e ( 3 ) ;
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460 c l f

461 p l o t ( r e a l ( lambda ( : , 1 ) ) , imag ( lambda ( : , 1 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’ , 2 )

462 h o l d on

463 p l o t ( r e a l ( lambda ( : , 2 ) ) , imag ( lambda ( : , 2 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’ , 2 )

464 p l o t ( r e a l ( lambda ( : , 3 ) ) , imag ( lambda ( : , 3 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’ , 2 )

465 p l o t ( r e a l ( lambda ( : , 4 ) ) , imag ( lambda ( : , 4 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’ , 2 )

466 p l o t ( r e a l ( lambda ( : , 5 ) ) , imag ( lambda ( : , 5 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’ , 2 )

467 p l o t ( r e a l ( lambda ( : , 6 ) ) , imag ( lambda ( : , 6 ) ) , ’ b . ’ , ’ M a r k e r S i z e ’ , 2 )

468 %p l o t ( r e a l ( lambda ( 1 , 1 ) ) , imag ( lambda ( 1 , 1 ) ) , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’

MarkerFaceColor ’ , ’ r ’ , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )

469 %p l o t ( r e a l ( lambda ( 1 , 2 ) ) , imag ( lambda ( 1 , 2 ) ) , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’

MarkerFaceColor ’ , ’ r ’ , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )

470 %p l o t ( r e a l ( lambda ( 1 , 3 ) ) , imag ( lambda ( 1 , 3 ) ) , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’

MarkerFaceColor ’ , ’ r ’ , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )

471 %p l o t ( r e a l ( lambda ( 1 , 4 ) ) , imag ( lambda ( 1 , 4 ) ) , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’

MarkerFaceColor ’ , ’ r ’ , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )

472 %p l o t ( [ r /(2∗p ) , 0 ] , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’ MarkerFaceColor ’ , ’ b ’ , ’

MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )

473 h o l d o f f

474 x l a b e l ( ’ $\mu$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s , ’

f o n t w e i g h t ’ , ’ b o l d ’ )

475 y l a b e l ( ’ $\ rho$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s , ’

f o n t w e i g h t ’ , ’ b o l d ’ )

476 a x i s ( a x i s l a m b d a )

477 ax = gca ;

478 ax . F o n t S i z e = f s t i c k s ;

479 ax . FontWeight = ’ normal ’ ;

480 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

481 o u t e r p o s = ax . O u t e r P o s i t i o n ;

482 t i = ax . T i g h t I n s e t ;

483 l e f t = o u t e r p o s ( 1 ) + t i ( 1 ) ;

484 bottom = o u t e r p o s ( 2 ) + t i ( 2 ) ;
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485 a x w i d t h = o u t e r p o s ( 3 ) − t i ( 1 ) − t i ( 3 ) ;

486 a x h e i g h t = o u t e r p o s ( 4 ) − t i ( 2 ) − t i ( 4 ) ;

487 ax . P o s i t i o n = [ l e f t bottom a x w i d t h a x h e i g h t ] ;

488 f i g = g c f ;

489 f i g . PaperPos i t ionMode = ’ auto ’ ;

490 f i g p o s = f i g . P a p e r P o s i t i o n ;

491 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

492

493 % % hf4 = f i g u r e ( 4 ) ;

494 % % c l f

495 % % p l o t ( k3 , abs (gamma) , ’ b . ’ , ’ MarkerS ize ’ , 4 )

496 % % h o l d on

497 % % p l o t (−k3 , abs (gamma) , ’ b . ’ , ’ MarkerS ize ’ , 4 )

498 % % h o l d o f f

499 % % x l a b e l ( ’ $k {3}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s

, ’ f o n t w e i g h t ’ , ’ bo ld ’ )

500 % % y l a b e l ( ’ $ | \Gamma( k {3}) | $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e

’ , f s l a b e l s , ’ f o n t w e i g h t ’ , ’ bo ld ’ )

501 % % a x i s ([−max ( k3 ) max ( k3 ) 0 max ( abs (gamma) ) ] ∗ 1 . 0 5 )

502 % % a x i s s q u a r e

503 % % ax = gca ; ax . F o n t S i z e = f s t i c k s ;

504 % %

505 % % hf5 = f i g u r e ( 5 ) ;

506 % % c l f

507 % % s e t ( gcf , ’ c o l o r ’ , ’ w ’ ) ;

508 % % [ sph1 , sph2 , sph3 ] = s p h e r e ( 6 4 ) ;

509 % % hs = s u r f l ( sph1 , sph2 , sph3 ) ;

510 % % s e t ( hs , ’ FaceAlpha ’ , 0 . 6 )

511 % % s h a d i n g i n t e r p

512 % % colormap ( bone )

513 % % h o l d on

514 % % p l o t 3 ( Sx , Sy , Sz , ’ k . ’ , ’ MarkerS ize ’ , 1 , ’ LineWidth ’ , 1 )
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515 % % p l o t 3 ( 1 , 0 , 0 , ’ co ’ , ’ Marker ’ , ’ o ’ , ’ MarkerFaceColor ’ , ’ c ’ , ’

MarkerEdgeColor ’ , ’ c ’ , ’ MarkerS ize ’ , 5 )

516 % % p l o t 3 (−1 ,0 ,0 , ’ yo ’ , ’ Marker ’ , ’ o ’ , ’ MarkerFaceColor ’ , ’ y ’ , ’

MarkerEdgeColor ’ , ’ y ’ , ’ MarkerS ize ’ , 5 )

517 % % a x i s e q u a l % o r s q u a r e

518 % % box o f f

519 % % g r i d o f f

520 % % a x i s o f f

521 % % view ( 7 0 , 5 ) %view ( 7 0 , 5 )

522 % % h o l d o f f

523 %

524 ds = 5 ;

525 hf 6 = f i g u r e ( 6 ) ;

526 c l f

527 p l o t ( r e a l ( lambda ( 1 : ds : end , 1 ) ) , imag ( lambda ( 1 : ds : end , 1 ) ) , ’ b . ’ , ’

M a r k e r S i z e ’ , 2 )

528 h o l d on

529 p l o t ( r e a l ( lambda ( 1 : ds : end , 2 ) ) , imag ( lambda ( 1 : ds : end , 2 ) ) , ’ b . ’ , ’

M a r k e r S i z e ’ , 2 )

530 p l o t ( r e a l ( lambda ( 1 : ds : end , 3 ) ) , imag ( lambda ( 1 : ds : end , 3 ) ) , ’ b . ’ , ’

M a r k e r S i z e ’ , 2 )

531 p l o t ( r e a l ( lambda ( 1 : ds : end , 4 ) ) , imag ( lambda ( 1 : ds : end , 4 ) ) , ’ b . ’ , ’

M a r k e r S i z e ’ , 2 )

532 p l o t ( r e a l ( lambda ( 1 : ds : end , 5 ) ) , imag ( lambda ( 1 : ds : end , 5 ) ) , ’ b . ’ , ’

M a r k e r S i z e ’ , 2 )

533 p l o t ( r e a l ( lambda ( 1 : ds : end , 6 ) ) , imag ( lambda ( 1 : ds : end , 6 ) ) , ’ b . ’ , ’

M a r k e r S i z e ’ , 2 )

534 %p l o t ( r e a l ( lambda ( 1 , 1 ) ) , imag ( lambda ( 1 , 1 ) ) , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’

MarkerFaceColor ’ , ’ r ’ , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )

535 %p l o t ( r e a l ( lambda ( 1 , 2 ) ) , imag ( lambda ( 1 , 2 ) ) , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’

MarkerFaceColor ’ , ’ r ’ , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )
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536 %p l o t ( r e a l ( lambda ( 1 , 3 ) ) , imag ( lambda ( 1 , 3 ) ) , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’

MarkerFaceColor ’ , ’ r ’ , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )

537 %p l o t ( r e a l ( lambda ( 1 , 4 ) ) , imag ( lambda ( 1 , 4 ) ) , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’

MarkerFaceColor ’ , ’ r ’ , ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )

538 %p l o t ( [ r /(2∗p ) , 0 ] , ’ ko ’ , ’ Marker ’ , ’ o ’ , ’ MarkerFaceColor ’ , ’ b ’ , ’

MarkerEdgeColor ’ , ’ k ’ , ’ MarkerS ize ’ , 5 )

539 h o l d o f f

540 x l a b e l ( ’ $\mu$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s , ’

f o n t w e i g h t ’ , ’ b o l d ’ )

541 y l a b e l ( ’ $\ rho$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s , ’

f o n t w e i g h t ’ , ’ b o l d ’ )

542 a x i s ( a x i s l a m b d a )

543 ax = gca ;

544 ax . F o n t S i z e = f s t i c k s ;

545 ax . FontWeight = ’ normal ’ ;

546 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

547 o u t e r p o s = ax . O u t e r P o s i t i o n ;

548 t i = ax . T i g h t I n s e t ;

549 l e f t = o u t e r p o s ( 1 ) + t i ( 1 ) ;

550 bottom = o u t e r p o s ( 2 ) + t i ( 2 ) ;

551 a x w i d t h = o u t e r p o s ( 3 ) − t i ( 1 ) − t i ( 3 ) ;

552 a x h e i g h t = o u t e r p o s ( 4 ) − t i ( 2 ) − t i ( 4 ) ;

553 ax . P o s i t i o n = [ l e f t bottom a x w i d t h a x h e i g h t ] ;

554 f i g = g c f ;

555 f i g . PaperPos i t ionMode = ’ auto ’ ;

556 f i g p o s = f i g . P a p e r P o s i t i o n ;

557 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

558

559

560 % % hf7 = f i g u r e ( 7 ) ;

561 % % c l f
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562 % % p l o t ( k3 ( 1 : ds : end ) , abs (gamma ( 1 : ds : end ) ) , ’ b . ’ , ’ MarkerS ize

’ , 4 )

563 % % h o l d on

564 % % p l o t (−k3 ( 1 : ds : end ) , abs (gamma ( 1 : ds : end ) ) , ’ b . ’ , ’ MarkerS ize

’ , 4 )

565 % % h o l d o f f

566 % % x l a b e l ( ’ $k {3}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s

, ’ f o n t w e i g h t ’ , ’ bo ld ’ )

567 % % y l a b e l ( ’ $ | \Gamma( k {3}) | $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e

’ , f s l a b e l s , ’ f o n t w e i g h t ’ , ’ bo ld ’ )

568 % % a x i s ([−max ( k3 ) max ( k3 ) 0 max ( abs (gamma) ) ] ∗ 1 . 0 5 )

569 % % a x i s s q u a r e

570 % % ax = gca ; ax . F o n t S i z e = f s t i c k s ;

571

572 hf 7 = f i g u r e ( 7 ) ;

573 c l f

574 p l o t ( s q r t ( x c o l ) , abs (gammaH) , ’ b . ’ , ’ M a r k e r S i z e ’ , 2 )

575 h o l d on

576 p l o t (− s q r t ( x c o l ) , abs (gammaH) , ’ b . ’ , ’ M a r k e r S i z e ’ , 2 )

577 h o l d o f f

578 x l a b e l ( ’ $k {3}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s , ’

f o n t w e i g h t ’ , ’ b o l d ’ )

579 y l a b e l ( ’ $ | \Gamma( k {3}) | $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,

f s l a b e l s , ’ f o n t w e i g h t ’ , ’ b o l d ’ )

580 a x i s ([−max ( k3 ) max ( k3 ) 0 max ( abs (gamma) ) ] ∗ 1 . 0 5 )

581 ax = gca ;

582 ax . F o n t S i z e = f s t i c k s ;

583 ax . FontWeight = ’ normal ’ ;

584 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

585 o u t e r p o s = ax . O u t e r P o s i t i o n ;

586 t i = ax . T i g h t I n s e t ;

587 l e f t = o u t e r p o s ( 1 ) + t i ( 1 ) ;
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588 bottom = o u t e r p o s ( 2 ) + t i ( 2 ) ;

589 a x w i d t h = o u t e r p o s ( 3 ) − t i ( 1 ) − t i ( 3 ) ;

590 a x h e i g h t = o u t e r p o s ( 4 ) − t i ( 2 ) − t i ( 4 ) ;

591 ax . P o s i t i o n = [ l e f t bottom a x w i d t h a x h e i g h t ] ;

592 f i g = g c f ;

593 f i g . PaperPos i t ionMode = ’ auto ’ ;

594 f i g p o s = f i g . P a p e r P o s i t i o n ;

595 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

596

597

598 hf 8 = f i g u r e ( 8 ) ;

599 c l f

600 p l o t ( s q r t ( x c o l ( 1 : ds : end ) ) , abs (gammaH ( 1 : ds : end ) ) , ’ b . ’ , ’

M a r k e r S i z e ’ , 2 )

601 h o l d on

602 p l o t (− s q r t ( x c o l ( 1 : ds : end ) ) , abs (gammaH ( 1 : ds : end ) ) , ’ b . ’ , ’

M a r k e r S i z e ’ , 2 )

603 h o l d o f f

604 x l a b e l ( ’ $k {3}$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , f s l a b e l s , ’

f o n t w e i g h t ’ , ’ b o l d ’ )

605 y l a b e l ( ’ $ | \Gamma( k {3}) | $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,

f s l a b e l s , ’ f o n t w e i g h t ’ , ’ b o l d ’ )

606 a x i s ([−max ( k3 ) max ( k3 ) 0 max ( abs (gamma) ) ] ∗ 1 . 0 5 )

607 ax = gca ;

608 ax . F o n t S i z e = f s t i c k s ;

609 ax . FontWeight = ’ normal ’ ;

610 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

611 o u t e r p o s = ax . O u t e r P o s i t i o n ;

612 t i = ax . T i g h t I n s e t ;

613 l e f t = o u t e r p o s ( 1 ) + t i ( 1 ) ;

614 bottom = o u t e r p o s ( 2 ) + t i ( 2 ) ;

615 a x w i d t h = o u t e r p o s ( 3 ) − t i ( 1 ) − t i ( 3 ) ;
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616 a x h e i g h t = o u t e r p o s ( 4 ) − t i ( 2 ) − t i ( 4 ) ;

617 ax . P o s i t i o n = [ l e f t bottom a x w i d t h a x h e i g h t ] ;

618 f i g = g c f ;

619 f i g . PaperPos i t ionMode = ’ auto ’ ;

620 f i g p o s = f i g . P a p e r P o s i t i o n ;

621 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

622

623

624 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

625 % % S a v i n g th e f i g u r e s

626 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

627 i f s a v e f l a g==1

628 f i l e n a m e = [ ’ spect rum p1= ’ , num2str ( p1 ) , ’ p2= ’ , num2str ( p2 )

, ’ p3= ’ , num2str ( p3 ) ] ;

629 p r i n t ( hf3 , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ lambda . j p e g ’ ] , ’−

d j p e g ’ )

630 p r i n t ( hf6 , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ lambda . eps ’ ] , ’−

depsc ’ , ’− t i f f ’ )

631 p r i n t ( hf3 , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ lambda . pdf ’ ] , ’−dpdf

’ )

632 p r i n t ( hf7 , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ g a i n . j p e g ’ ] , ’−d j p e g

’ )

633 p r i n t ( hf8 , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ g a i n . eps ’ ] , ’−depsc ’

, ’− t i f f ’ )

634 p r i n t ( hf7 , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ g a i n . pdf ’ ] , ’−dpdf ’ )

635 end
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Gain Function

1 f u n c t i o n omega=o m e g a e x t r a c t o r 2 ( p1 , p2 , p3 , k , lambda )

2

3 omega = z e r o s ( s i z e ( k ) ) ;

4 jmax = l e n g t h ( k ) ;

5

6 f o r j =1: jmax

7 kk = k ( j ) ; l l = lambda ( j ) ;

8 p w c o e f f = f l i p l r ( [ (−1) .∗ p1 . ˆ 2 . ∗ p3 .ˆ3+ p1 .∗((−1)+p3 . ∗ ( p3

+2.∗p2 .∗ p3+(−1) .∗ l l +p3 . ˆ 2 . ∗ l l ) )+p2 . ∗ ( l l +(−1) .∗ p3 .∗((−1)

+p2+p3 . ∗ ( p3+ l l ) ) ) , . . .

9 p2 .∗ ( 1+ 2 .∗ p3 .ˆ2+(−1) .∗ p3 .∗ l l )+p1 .∗ p3 .∗((−3)+p3

.∗ l l ) +(−1) .∗((−1)+p3 . ˆ 2 ) .∗((−1)+ l l . ˆ 2 )

,((−2) +(−1) .∗ p2 ) .∗ p3 +2.∗ l l , 1 ] ) ;

10 p z c o e f f = [ 1 , 2∗ l l , p2−1+ l l ˆ2 , p2∗ l l −p1 ] ;

11 wroots = r o o t s ( p w c o e f f ) ;

12 %z r o o t s = r o o t s ( p z c o e f f ) ;

13

14 w d i f f = wroots−wroots ( [ 2 , 3 , 1 ] ) ;

15 [ foo , mind ] = min ( abs ( abs ( w d i f f )−kk ) ) ;

16 wroots0 = [ wroots ; wroots ( 1 ) ] ;

17 w1 = wroots0 ( mind ) ; w2 = wroots0 ( mind+1) ;
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18 cz1 = [ p3 ,1+ p3∗ l l , p2∗p3−w1 ] ;

19 cz2 = [ p3 ,1+ p3∗ l l , p2∗p3−w2 ] ;

20 z 1 r o o t s = r o o t s ( cz1 ) ;

21 z 1 v a l = abs ( p o l y v a l ( p z c o e f f , z 1 r o o t s ) ) ;

22 [ fooz1 , i n d z 1 ] = min ( z 1 v a l ) ; z1 = z 1 r o o t s ( i n d z 1 ) ;

23 z 2 r o o t s = r o o t s ( cz2 ) ;

24 z 2 v a l = abs ( p o l y v a l ( p z c o e f f , z 2 r o o t s ) ) ;

25 [ fooz2 , i n d z 2 ] = min ( z 2 v a l ) ; z2 = z 2 r o o t s ( i n d z 2 ) ;

26 t h e t a = z1+z2 ;

27 omega ( j ) = kk /(1+p3 ∗( t h e t a+ l l ) ) ;

28 d i s p ( [ ’ o m e g a e x t r a c t i o n : p1 = ’ , num2str ( p1 ) , ’ , p2 = ’ ,

num2str ( p2 ) , ’ , p3 = ’ , num2str ( p3 ) , . . .

29 ’ d i f f = ’ , num2str ( f o o ) , ’ , k3 = ’ , num2str ( kk ) , . . .

30 ’ : j = ’ , i n t 2 s t r ( j ) , ’ , f i n a l j = ’ , i n t 2 s t r ( jmax ) ] ) ;

31 end

32 r e t u r n

1 f u n c t i o n omega = omegaext ractorH ( p1 , p2 , p3 , k )

2

3 jmax = l e n g t h ( k ) ;

4 omega = z e r o s ( jmax , 6 ) ;

5

6 f o r j =1: jmax

7 kk = k ( j ) ;

8 polH = f l i p l r ( [ (−4) .∗ kk .ˆ4 ,(−4) .∗ kk . ˆ 3 .∗ ( ( −4 )+p1 .∗ p3 ) , kk

. ˆ 2 .∗ ( ( −2 4 )+kk .ˆ2+12.∗ p1 .∗ . . .

9 p3+(−1) .∗((−8)+p2 .∗(4+ p2 ) ) .∗ p3 . ˆ 2 ) , 2 .∗ kk .∗(8+(−2) .∗ kk

.ˆ2+((−8)+p2 . ∗ ( . . .

10 4+p2 ) ) .∗ p3 .ˆ2+ p1 .∗ p3 .∗((−6) +(−1) .∗((−2)+p2 ) .∗ p3 . ˆ 2 ) )

,(−4) +4.∗p1 .∗ . . .

11 p3+(−1) .∗((−8)+p2 .∗(4+ p2 ) ) .∗ p3 .ˆ2+2.∗ p1 .∗((−2)+p2 ) .∗ p3

.ˆ3+(−1) . ∗ ( . . .
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12 4+p1 .ˆ2+(−4) .∗ p2 ) .∗ p3 .ˆ4+(−2) .∗ kk . ˆ 2 .∗ ( ( −3 )+p3 . ˆ 2 ) , 4 .∗

kk .∗((−1)+ . . .

13 p3 . ˆ 2 ) ,((−1)+p3 . ˆ 2 ) . ˆ 2 ] ) ;

14 omega ( j , : ) = r o o t s ( polH ) ;

15 d i s p ( [ ’ omegaext ract ionH : p1 = ’ , num2str ( p1 ) , ’ , p2 = ’ ,

num2str ( p2 ) , ’ , p3 = ’ , num2str ( p3 ) , . . .

16 ’ : j = ’ , i n t 2 s t r ( j ) , ’ , f i n a l j = ’ , i n t 2 s t r ( jmax ) ] ) ;

17 end

18 r e t u r n
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Sinc Interpolation

1 f u n c t i o n y new = s i n c i n t e r p r ( y o l d , x o l d , x new )

2 %i f n a r g i n==3

3 %dx = x o l d ( 2 )−x o l d ( 1 ) ;

4 %end

5 d x o l d = x o l d ( 2 )−x o l d ( 1 ) ;

6 dxnew = x new ( 2 )−x new ( 1 ) ;

7 s i z e x o l d = s i z e ( x o l d ) ;

8 s i z e x n e w = s i z e ( x new ) ;

9 s i z e y o l d = s i z e ( y o l d ) ;

10

11 % r o t a t e s i n p u t a r r a y s c o n v e n i e n t l y

12 i f min ( s i z e x o l d ) ˜=1 | |min ( s i z e y o l d ) ˜=1 | |min ( s i z e x n e w )˜=1

13 e r r o r ( [ ’ s i n c i n t e r p e r r o r : i n p u t arguments o f s i n c i n t e r p

mustbe v e c t o r s ’ ] )

14 end

15 i f max ( s i z e x o l d )˜=max ( s i z e y o l d )

16 e r r o r ( [ ’ s i n c i n t e r p e r r o r : d i m e n s i o n mismatch i n i n p u t

arguments ’ ] )

17 end

18 i f s i z e x o l d ( 1 )˜=min ( s i z e x o l d )

19 X o ld = x o l d . ’ ;
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20 e l s e

21 X o ld = x o l d ;

22 end

23 i f s i z e x n e w ( 1 )˜=min ( s i z e x n e w )

24 X new = x new . ’ ;

25 e l s e

26 X new = x new ;

27 end

28 i f s i z e y o l d ( 1 )˜=min ( s i z e y o l d )

29 Y o ld = y o l d ;

30 r o t f l a g = 0 ;

31 e l s e

32 Y o ld = y o l d . ’ ;

33 r o t f l a g = 0 ;

34 end

35

36 %s h i f t

37 %[ Y o ld ( 1 ) Y o ld ( end ) ]

38 [ Y min ext , i n d m i n e x t ] = min ( [ abs ( Y o ld ( 1 ) ) abs ( Y o ld (

end ) ) ] ) ;

39 i f i n d m i n e x t==1

40 s i g m i n e x t = s i g n ( Y o ld ( 1 ) ) ;

41 e l s e

42 s i g m i n e x t = s i g n ( Y o ld ( end ) ) ;

43 end

44 Y o ld = Y old−s i g m i n e x t ∗Y m in e xt ;

45 %[ Y o ld ( 1 ) Y o ld ( end ) ]

46

47 %f l i p

48 i f y o l d ( 1 )˜= y o l d ( end )

49 % f l i p i s needed

50 i f i n d m i n e x t==1
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51 X o l d c = X o ld + ( X o ld ( end )−X o ld ( 1 )+d x o l d ) ;

52 X o ld = [ X old , X o l d c ] ;

53 %s i z e X o l d = s i z e ( X o ld )

54

55 X new c = X new + ( X new ( end )−X new ( 1 )+dxnew ) ;

56 X new = [ X new , X new c ] ;

57 %sizeXnew = s i z e ( X new )

58

59 Y o ld = [ Y o ld ; f l i p u d ( Y o ld ) ] ;

60 %s i z e Y o l d = s i z e ( Y o ld )

61 e l s e

62 X o l d c = X o ld + ( X o ld ( 1 )−X o ld ( end )−d x o l d ) ;

63 X o ld = [ X o l d c , X o ld ] ;

64 %s i z e X o l d = s i z e ( X o ld )

65

66 X new c = X new + ( X new ( 1 )−X new ( end )−dxnew ) ;

67 X new = [ X new c , X new ] ;

68 %sizeXnew = s i z e ( X new )

69

70 Y o ld = [ f l i p u d ( Y o ld ) ; Y o ld ] ;

71 %s i z e Y o l d = s i z e ( Y o ld )

72 end

73 end

74

75 % i f Y o ld ( 1 )˜=Y o ld ( end )

76 % i f i n d m i n e x t==1

77 % Y o ld = [ Y o ld ; Y o ld ( 1 ) ] ;

78 % X o ld = [ X old , X o ld ( end )+d x o l d ] ;

79 % e l s e

80 % Y o ld = [ Y o ld ( end ) ; Y o ld ] ;

81 % X o ld = [ X o ld ( 1 )−dxold , X o ld ] ;

82 % end
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83 % end

84 %S = @( xo ld , xnew ) s i n c ( ( p i / dx ) ∗xnew − p i ∗( f l o o r ( ( xo ld−x o l d ( 1 )

) / dx ) ) ) ;

85 %S = @( x s h i f t , xnew ) s i n c ( ( p i / dx ) ∗xnew − p i ∗ x s h i f t ) ;

86 %[ X s h i f t , Xnew ] = meshgr id ( [ 0 : N−1] , X new ) ;

87 [ Xnew , Xold ] = n d g r i d ( X new , X o ld ) ;

88 SS = s i n c ( ( Xnew−Xold ) / d x o l d ) ;

89 %[ Xnewsh i f t , X o l d s h i f t ] = n d g r i d ( [ 0 : l e n g t h ( X new ) −1 ] , [ 0 : l e n g t h (

X o ld ) −1]) ;

90 %SS = s i n c ( Xnewsh i f t−X o l d s h i f t ) ;

91 %S S s i z e = s i z e ( SS )

92 %Y o l d s i z e = s i z e ( Y o ld )

93 Y new = SS∗Y o ld ;

94

95 %r e s h i f t

96 Y new = Y new+s i g m i n e x t ∗Y m in e xt ;

97 % i f Y o ld ( 1 )˜=Y o ld ( end )

98 % i f i n d m i n e x t==1

99 % Y new = Y new ( 1 : end−1) ;

100 % e l s e

101 % Y new = Y new ( 2 : end ) ;

102 % end

103 % end

104 i f i n d m i n e x t==1

105 Y new = Y new ( 1 : l e n g t h ( x new ) ) ;

106 e l s e

107 Y new = Y new ( l e n g t h ( x new ) +1: end ) ;

108 end

109 i f r o t f l a g ==1

110 y new = Y new . ’ ;

111 e l s e

112 y new = Y new ;
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113 end

114 r e t u r n
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Pseudospectral Fourier Discrtization

1 f u n c t i o n [ x , t , u1 , u2 , u3 ] = t w r i s o l v e r ( c , s , a , eta , u0 , L , Nx , T, Nt )

2 % pseudo−s p e c t r a l code f o r t he 3WRI

3 %

4 % c = [ c1 , c2 ] i s t he a r r a y o f th e s p e e d s

5 % s = [ s1 , s2 , s3 ] i s t he a r r a y o f th e s i g n s

6 % a = [ a1 , a2 ] i s the a r r a y o f t he a m p l i t u d e s

7 % e t a = [ eta1 , e t a 2 ] i s t he a r r a y o f th e f r e q u e n c i e s

8 %

9 % u0 i s th e i n i t i a l c o n d i t i o n , which has to be p r o v i d e d as Nx−

by−3 a r r a y ,

10 % w i t h th e f i r s t column b e i n g t he v a l u e s o f u1 at t =0, th e

second column

11 % b e i n g t he v a l u e s o f u2 at t =0, and t he t h i r d column b e i n g

th e v a l u e s o f

12 % u3 a t t=0

13 %

14 % [−L : dx : L−dx ] i s the r an ge o f i n t e g r a t i o n , where dx=2∗L/Nx

and Nx i s t he

15 % number o f s p a t i a l nodes

16 %
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17 % T i s t he t ime r ang e o f t he i n t e g r a t i o n , i n c l u d i n g Nt t ime

p o i n t s

18 %

19 % x i s the v e c t o r o f t he nodes

20 % t i s the t ime v e c t o r

21 % u1 , u2 , u3 i s th e s o l u t i o n i n th e form o f t h r e e Nx−by−3

a r r a y s

22

23

24 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 % s e t t i n g g l o b a l v a r i a b l e s

26 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27 g l o b a l t i m e s t a r t t o u t

28

29 % r i d e f i n e s t he f i n a l t ime as a g l o b a l v a r i a b l e

30 t o u t = T ;

31

32 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 % c o m p u t a t i o n a l g r i d i n F o u r i e r s p a c e

34 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35

36 % s e t u p g r i d

37 dx = 2∗L/Nx ;

38 x = [−L : dx : L−dx ] ;
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39

40 % f o u r i e r wavenumbers

41 dk = p i /L ;

42 k = f f t s h i f t ([−Nx / 2 : ( Nx/2)−1]∗dk ) ;

43 k = k . ’ ; %k2 = k . ˆ 2 ;

44

45 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46 % p a r a m e t e r s

47 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

48

49 % Given speeds , s i g n s , a m p l i t u d e s and f r e q u e n c i e s , r e c o n s t r u c t

th e

50 % p a r a m e t e r s i n t he e q u a t i o n and i n th e p l a n e wave s o l u t i o n .

51 aq = a . ˆ 2 ;

52 r = ( c ( 1 )−c ( 2 ) ) /( e t a ( 1 )+e t a ( 2 ) ) ;

53 nu1 = ( e t a ( 1 ) / c ( 1 ) )+s ( 1 ) ∗ s ( 3 ) ∗aq ( 2 ) ∗( c ( 2 ) / c ( 1 ) ) ∗ r ;

54 nu2 = ( e t a ( 2 ) / c ( 2 ) )+s ( 2 ) ∗ s ( 3 ) ∗aq ( 1 ) ∗( c ( 1 ) / c ( 2 ) ) ∗ r ;

55 nu3 = −(nu1+nu2 ) ;

56 omega = c ( 1 ) ∗nu1+c ( 2 ) ∗nu2 ;

57

58 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59 % i n i t i a l c o n d i t i o n

60 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 U1 = u0 ( : , 1 ) ; U2 = u0 ( : , 2 ) ; U3 = u0 ( : , 3 ) ;
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62 V1 = exp (1 i ∗( nu1∗x ( : ) ) ) .∗U1 ;

63 V2 = exp (1 i ∗( nu2∗x ( : ) ) ) .∗U2 ;

64 V3 = exp (1 i ∗( nu3∗x ( : ) ) ) .∗U3 ;

65

66 V0 = [ V1 ( : ) ; V2 ( : ) ; V3 ( : ) ] ;

67

68 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69 % p a r a m e t e r s f o r th e ODE s o l v e r

70 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

71

72 % s e t s a p p r o p r i a t e ODE s o l v e r o p t i o n s

73 o p t s = o d e s e t ( ’ OutputFcn ’ , @ t w r i o u t p u t , . . .

74 ’ R e f i n e ’ , 1 , . . .

75 ’ S t a t s ’ , ’ on ’ , . . .

76 ’ R e l T o l ’ ,1 e−9, ’ AbsTol ’ ,1 e − 6 , . . .

77 ’ MaxStep ’ ,1 e − 3 , . . .

78 ’ I n i t i a l S t e p ’ ,1 e − 9 , . . .

79 ’ NormControl ’ , ’ on ’ ) ;

80

81 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

82 % i n t e g r a t i o n

83 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

84

85 % s t a r t s th e c l o c k
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86 t i m e s t a r t = t i c ;

87 d i s p ( [ ’ pseudo−s p e c t r a l code f o r HF : c a l c u l a t i o n s t a r t e d ’ ] )

88

89 % p e r f o r m s t he i n t e g r a t i o n i n t ime

90 dt = T/Nt ;

91 [ t , y ] = ode45 (@( t t , yy ) t w r i r h s ( t t , yy , Nx , k , c , s , omega ) , [ 0 : dt : T

] , V0 , o p t s ) ;

92

93 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

94 % r e c o v e r i n g output s o l u t i o n from i n t e g r a t i o n

95 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

96 v1 = y ( : , 1 : Nx) ;

97 v2 = y ( : , Nx+1:2∗Nx) ;

98 v3 = y ( : , 2 ∗Nx+1:3∗Nx) ;

99 [MX,MT] = meshgr id ( x , t ) ;

100 u1 = exp (−1 i ∗nu1 ∗(MX−c ( 1 ) ∗MT) ) .∗ v1 ;

101 u2 = exp (−1 i ∗nu2 ∗(MX−c ( 2 ) ∗MT) ) .∗ v2 ;

102 u3 = exp (−1 i ∗( nu3∗MX+omega∗MT) ) .∗ v3 ;

103 d i s p ( [ ’ pseudo−s p e c t r a l code f o r 3WRI : c a l c u l a t i o n completed ’ ] )

104

105 % computing th e t ime e l a p s e d s i n c e t he b e g i n n i n g o f th e

i n t e g r a t i o n

106 t o t a l t i m e e l a p s e d = t o c ( t i m e s t a r t ) ;

107 t o t a l d a y s = datenum ( [ 0 0 0 0 0 t o t a l t i m e e l a p s e d ] ) ;

108 t i m e l e f t = d a t e v e c ( t o t a l d a y s − f l o o r ( t o t a l d a y s ) ) ;

109 d i s p ( [ ’ t o t a l t ime taken f o r t he i n t e g r a t i o n = ’ , . . .

110 i n t 2 s t r ( f l o o r ( t o t a l d a y s ) ) , ’ d ’ , . . .

111 i n t 2 s t r ( t i m e l e f t ( 4 ) ) , ’ h ’ , . . .
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112 i n t 2 s t r ( t i m e l e f t ( 5 ) ) , ’m ’ , . . .

113 num2str ( t i m e l e f t ( 6 ) ) , ’ s ’ ] )

114 r e t u r n

115

116 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

117 % t w r i o u t p u t f u n c t i o n , c a l l e d a t each t ime s t e p

118 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119

120 f u n c t i o n s t a t u s = t w r i o u t p u t ( t t , yy , f l a g )

121 g l o b a l t i m e s t a r t t o u t

122 s t a t u s = 0 ;

123 i f ( s t rcmp ( f l a g , ’ ’ ) )

124 t i m e e l a p s e d = t o c ( t i m e s t a r t ) ;

125 s e c o n d s l e f t = ( ( t o u t / t t ( end ) )−1)∗ t i m e e l a p s e d ;

126 d a y s l e f t = datenum ( [ 0 0 0 0 0 s e c o n d s l e f t ] ) ;

127 t i m e l e f t = d a t e v e c ( d a y s l e f t − f l o o r ( d a y s l e f t ) ) ;

128 d i s p ( [ ’ 3 w r i s o l v e r : t ime = ’ , num2str ( t t ( end ) ) , . . .

129 ’ ( ’ , num2str ( t o u t ) , ’ ) computat ion t ime l e f t = ’ , . . .

130 i n t 2 s t r ( f l o o r ( d a y s l e f t ) ) , ’ d ’ , . . .

131 i n t 2 s t r ( t i m e l e f t ( 4 ) ) , ’ h ’ , . . .

132 i n t 2 s t r ( t i m e l e f t ( 5 ) ) , ’m ’ , . . .

133 num2str ( t i m e l e f t ( 6 ) ) , ’ s ’ ] )

134 end

135 r e t u r n

136

137 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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138 % t w r i r h s , th e r i g h t−hand s i d e o f th e 3WRI system

139 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

140

141 f u n c t i o n dvdt = t w r i r h s ( t t , vv , Nx , k , c , s , omega )

142 %s i z e v v = s i z e ( vv )

143 v = r e s h a p e ( vv , Nx , 3 ) ;

144 v1 = v ( : , 1 ) ; v2 = v ( : , 2 ) ; v3 = v ( : , 3 ) ;

145 v1c = c o n j ( v1 ) ; v2c = c o n j ( v2 ) ; v3c = c o n j ( v3 ) ;

146 v1x = i f f t (1 i ∗k .∗ f f t ( v1 ) ) ;

147 v2x = i f f t (1 i ∗k .∗ f f t ( v2 ) ) ;

148 %v3x = i f f t ( k .∗ f f t ( v3 ) ) ;

149

150 v1 t = −c ( 1 ) ∗ v1x+c ( 2 ) ∗ s ( 1 ) ∗ v2c .∗ v3c ;

151 v2 t = −c ( 2 ) ∗ v2x+c ( 1 ) ∗ s ( 2 ) ∗ v1c .∗ v3c ;

152 v3 t = 1 i ∗omega∗v3+(c ( 1 )−c ( 2 ) ) ∗ s ( 3 ) ∗ v1c .∗ v2c ;

153

154 dvdt = [ v 1t ; v 2t ; v 3t ] ;

155 r e t u r n
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Numerical Integration

1 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % F l a g s f o r s a v i n g f i g u r e s and g e n e r a t i n g data

3 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % D a t a f l a g . I f ’ d a t a f l a g =0’ no data i s g e n e r a t e d . I f ’ d a t a f l a g

=1 ’ , data i s

5 % g e n e r a t e d .

6 d a t a f l a g = 0 ;

7 % S a v e f l a g . I f ’ s a v e f l a g =0’ no f i g u r e i s saved . I f ’ s a v e f l a g

=1 ’ , a l l

8 % f i g u r e s a r e saved .

9 s a v e f l a g = 1 ;

10 % E x t r a c t i o n f l a g . I f ’ e x t r a c t i o n f l a g =0’ no i n t e r p o l a t e d p l o t

i s e x t r a c t e d .

11 % I f ’ e x t r a c t i o n f l a g =1 ’ , an i n t e r p o l a t e d p l o t i s e x t r a c t e d at

th e t ime and

12 % s p a c e s p e c i f i e d .

13 e x t r a c t i o n f l a g = 1 ;
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14

15 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % Parameter s f o r the p l a n e wave and p e r t u r b a t i o n

17 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 % i f c1 = −c2 , then use t he f o l l o w i n g s y n t a x :

19 % e p s i l o n = 1e−3; % e p s i l o n a p p r o a c h e s z e r o

20 % [ c , s , a ] = t w r i f r o m p ( [ p1 p2 p3/ e p s i l o n e p s i l o n ] )

21 % f o r some v a l u e s p1 , p2 , p3

22 p = [ 0 . 2 0 . 3 −0.6 1 ] ;

23 [ c , s , a ] = t w r i f r o m p ( p ) ;

24 s p e c t r u m t o p o l o g y = [ 2 0 0 1 0 ] ; % G SG B L TL

25 exp er im ent num ber = [ ’ 01 ’ ] ; % update w i t h t he e x p e r i m e n t

number , namely ,

26 % s p e c f y i f t h i s i s th e f i r s t , second , t h i r d , . . . e x p e r i m e n t

w i t h the same

27 % t o p o l o g y o f the spectrum .

28

29 % do not modi fy e t a

30 e t a = [ 1 , 1 ] ;

31

32 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 % Computat iona l g r i d

34 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35 L = 2 0 ;
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36 numx = 2ˆ(10) ;%5∗ ( 2 ˆ ( 7 ) ) ;%2ˆ(9)

37 dx = 2∗L/numx ; x = [−L : dx : L−dx ] ;

38 xspan = [ x ( 1 ) x ( end ) ] ;

39

40 T = 1 2 0 ;

41 numt = 6 0 0 ;

42 t s p a n = [ 0 T ] ;

43 dt = ( t s p a n ( 2 )−t s p a n ( 1 ) ) /numt ;

44 t = [ t s p a n ( 1 ) : dt : t s p a n ( 2 ) ] ;

45

46 %[ XX,TT] = meshgr id ( x , t ) ;

47

48 % v a l u e s o f t he s u b g r i d from the zoom−i n

49 xmin =0; xmax = 2 0 ;

50 tmin =100; tmax = 1 2 0 ;

51 i f tmax>T ; tmax=T ; end

52 i f xmax>L−dx ; xmax=L−dx ; end

53 i f xmin<−L ; xmin=−L ; end

54

55 % v a l u e o f the t ime and s p a t i a l ran ge f o r e x t r a c t i n g an

i n t e r p o l a t e d p l o t

56 t e x t r a c t i o n = 1 2 0 ;

57 x e x t r a c t i o n m i n = 0 ; x e x t r a c t i o n m a x =20;

58 n u m x e x t r a c t i o n = 1 e4 ; % i n t e r p o l a t i o n p o i n t s

59 i f t e x t r a c t i o n >T ; t e x t r a c t i o n=T ; end

60 i f x e x t r a c t i o n m a x>L−dx ; x e x t r a c t i o n m a x=L−dx ; end

61 i f x e x t r a c t i o n m i n<−L ; x e x t r a c t i o n m i n=−L ; end

62

63 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

64 % P e r t u r b a t i o n



Appendix P. Numerical Integration 220

65 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

66

67 % a m p l i t u d e o f th e p e r t u r b a t i o n i n each component

68 e p s i l o n 1 = 1e−3;

69 e p s i l o n 2 = 1e−3;

70 e p s i l o n 3 = 1e−3;

71

72 % P e r t u b r a t i o n mode . I f pert mode =0, then l o c a l i s e d

p e r t u r b a t i o n . I f

73 % pert mode =1, then random p e r t u b r a t i o n .

74 pert mode = 1 ;

75

76 i f per t mode==0

77 p e r t = @( x ) cos ( p i ∗x /(2∗L ) ) .∗ exp (−(2∗( x ) . ˆ 2 ) ) ;

78 e l s e i f pert mode==1

79 %p e r t = @( x ) 2∗ rand ( s i z e ( x ) )−1;

80 numnod = numx / 8 ; dnod = (2∗L−dx ) /numnod ;

81 p e r t = @( x ) s i n c i n t e r p r ( [ 0 , 0 , 0 , 0 , 0 , 2∗ rand ( [ 1 , numnod−9])

−1, 0 , 0 , 0 , 0 , 0 ] , [ x ( 1 ) : dnod : x ( end ) ] , x ) . ’ ;

82 end

83

84 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

85 % Plane wave s o l u t i o n

86 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

87 % p1 = ( cq ( 1 ) ∗ a l p h a q ( 1 ) ∗ s ( 1 )+cq ( 2 ) ∗ a l p h a q ( 2 ) ∗ s ( 2 ) ) /( s ( 1 ) ∗ s ( 2 ) ∗

s ( 3 ) ) ;
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88 % p2 = ( cq ( 1 ) ∗ a l p h a q ( 1 ) ∗ s ( 1 )−cq ( 2 ) ∗ a l p h a q ( 2 ) ∗ s ( 2 ) ) /( s ( 1 ) ∗ s ( 2 ) ∗

s ( 3 ) ) ;

89 % p3 = ( c ( 1 )−c ( 2 ) ) /( c ( 1 )+c ( 2 ) ) ;

90

91 aq = a . ˆ 2 ;

92 r = ( c ( 1 )−c ( 2 ) ) /( e t a ( 1 )+e t a ( 2 ) ) ;

93 nu1 = ( e t a ( 1 ) / c ( 1 ) )+s ( 1 ) ∗ s ( 3 ) ∗aq ( 2 ) ∗( c ( 2 ) / c ( 1 ) ) ∗ r ;

94 nu2 = ( e t a ( 2 ) / c ( 2 ) )+s ( 2 ) ∗ s ( 3 ) ∗aq ( 1 ) ∗( c ( 1 ) / c ( 2 ) ) ∗ r ;

95 nu3 = −(nu1+nu2 ) ;

96 e t a 3 = −( e t a ( 1 )+e t a ( 2 ) ) ;

97 %omega = c ( 1 ) ∗nu1+c ( 2 ) ∗nu2 ;

98

99 u1ex = @( x , t ) a ( 1 ) ∗ exp (1 i ∗( e t a ( 1 ) ∗ t−nu1∗x ) ) ;

100 u2ex = @( x , t ) a ( 2 ) ∗ exp (1 i ∗( e t a ( 2 ) ∗ t−nu2∗x ) ) ;

101 u3ex = @( x , t ) 1 i ∗ s ( 3 ) ∗a ( 1 ) ∗a ( 2 ) ∗ r ∗ exp (1 i ∗( e t a 3 ∗ t−nu3∗x ) ) ;

102

103 U10 = u1ex ( x , 0 )+e p s i l o n 1 ∗ p e r t ( x ) .∗ exp (1 i ∗(−nu1∗x ) ) ;

104 U20 = u2ex ( x , 0 )+e p s i l o n 2 ∗ p e r t ( x ) .∗ exp (1 i ∗(−nu2∗x ) ) ;

105 U30 = u3ex ( x , 0 ) +1 i ∗ e p s i l o n 3 ∗ p e r t ( x ) .∗ exp (1 i ∗(−nu3∗x ) ) ;

106

107 U0 = [ U10 ( : ) U20 ( : ) U30 ( : ) ] ;

108

109 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

110 % Numer i ca l i n t e g r a t i o n

111 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

112 i f d a t a f l a g == 1

113 [ xx , t t , u1 , u2 , u3 ] = t w r i s o l v e r ( c , s , a , eta , U0 , L , numx , T, numt )

;
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114 end

115

116 %d i s p ( [ ’ p1 = ’ , num2str ( p1 ) ] )

117 %d i s p ( [ ’ p2 = ’ , num2str ( p2 ) ] )

118 %d i s p ( [ ’ p3 = ’ , num2str ( p3 ) ] )

119

120 reu1min = f l o o r (10∗min ( min ( r e a l ( u1 ) ) ) ) / 1 0 ; reu1max = c e i l (10∗

max ( max ( r e a l ( u1 ) ) ) ) / 1 0 ; r e u 1 t i c k s = l i n s p a c e ( reu1min ,

reu1max , 5 ) ;

121 imu1min = f l o o r (10∗min ( min ( imag ( u1 ) ) ) ) / 1 0 ; imu1max = c e i l (10∗

max ( max ( imag ( u1 ) ) ) ) / 1 0 ; i m u 1 t i c k s = l i n s p a c e ( imu1min ,

imu1max , 5 ) ;

122 absu1min = f l o o r (10∗min ( min ( abs ( u1 ) ) ) ) / 1 0 ; absu1max = c e i l (10∗

max ( max ( abs ( u1 ) ) ) ) / 1 0 ; a b s u 1 t i c k s = l i n s p a c e ( absu1min ,

absu1max , 5 ) ;

123 reu2min = f l o o r (10∗min ( min ( r e a l ( u2 ) ) ) ) / 1 0 ; reu2max = c e i l (10∗

max ( max ( r e a l ( u2 ) ) ) ) / 1 0 ; r e u 2 t i c k s = l i n s p a c e ( reu2min ,

reu2max , 5 ) ;

124 imu2min = f l o o r (10∗min ( min ( imag ( u2 ) ) ) ) / 1 0 ; imu2max = c e i l (10∗

max ( max ( imag ( u2 ) ) ) ) / 1 0 ; i m u 2 t i c k s = l i n s p a c e ( imu2min ,

imu2max , 5 ) ;

125 absu2min = f l o o r (10∗min ( min ( abs ( u2 ) ) ) ) / 1 0 ; absu2max = c e i l (10∗

max ( max ( abs ( u2 ) ) ) ) / 1 0 ; a b s u 2 t i c k s = l i n s p a c e ( absu2min ,

absu2max , 5 ) ;

126 reu3min = f l o o r (10∗min ( min ( r e a l ( u3 ) ) ) ) / 1 0 ; reu3max = c e i l (10∗

max ( max ( r e a l ( u3 ) ) ) ) / 1 0 ; r e u 3 t i c k s = l i n s p a c e ( reu3min ,

reu3max , 5 ) ;

127 imu3min = f l o o r (10∗min ( min ( imag ( u3 ) ) ) ) / 1 0 ; imu3max = c e i l (10∗

max ( max ( imag ( u3 ) ) ) ) / 1 0 ; i m u 3 t i c k s = l i n s p a c e ( imu3min ,

imu3max , 5 ) ;

128 absu3min = f l o o r (10∗min ( min ( abs ( u3 ) ) ) ) / 1 0 ; absu3max = c e i l (10∗

max ( max ( abs ( u3 ) ) ) ) / 1 0 ; a b s u 3 t i c k s = l i n s p a c e ( absu3min ,
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absu3max , 5 ) ;

129

130 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

131 % Exact s o l u t i o n

132 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

133

134 [ XX,TT] = meshgr id ( xx , t t ) ;

135 U1 = u1ex (XX,TT) ; U2 = u2ex (XX,TT) ; U3 = u3ex (XX,TT) ;

136

137 reU1min = f l o o r (10∗min ( min ( r e a l (U1) ) ) ) / 1 0 ; reU1max = c e i l (10∗

max ( max ( r e a l (U1) ) ) ) / 1 0 ; r e U 1 t i c k s = l i n s p a c e ( reU1min ,

reU1max , 5 ) ;

138 imU1min = f l o o r (10∗min ( min ( imag (U1) ) ) ) / 1 0 ; imU1max = c e i l (10∗

max ( max ( imag (U1) ) ) ) / 1 0 ; i m U 1 t i c k s = l i n s p a c e ( imU1min ,

imU1max , 5 ) ;

139 absU1min = f l o o r (10∗min ( min ( abs (U1) ) ) ) / 1 0 ; absU1max = c e i l (10∗

max ( max ( abs (U1) ) ) ) / 1 0 ; a b s U 1 t i c k s = l i n s p a c e ( absU1min ,

absU1max , 5 ) ;

140 reU2min = f l o o r (10∗min ( min ( r e a l (U2) ) ) ) / 1 0 ; reU2max = c e i l (10∗

max ( max ( r e a l (U2) ) ) ) / 1 0 ; r e U 2 t i c k s = l i n s p a c e ( reU2min ,

reU2max , 5 ) ;

141 imU2min = f l o o r (10∗min ( min ( imag (U2) ) ) ) / 1 0 ; imU2max = c e i l (10∗

max ( max ( imag (U2) ) ) ) / 1 0 ; i m U 2 t i c k s = l i n s p a c e ( imU2min ,

imU2max , 5 ) ;

142 absU2min = f l o o r (10∗min ( min ( abs (U2) ) ) ) / 1 0 ; absU2max = c e i l (10∗

max ( max ( abs (U2) ) ) ) / 1 0 ; a b s U 2 t i c k s = l i n s p a c e ( absU2min ,

absU2max , 5 ) ;
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143 reU3min = f l o o r (10∗min ( min ( r e a l (U3) ) ) ) / 1 0 ; reU3max = c e i l (10∗

max ( max ( r e a l (U3) ) ) ) / 1 0 ; r e U 3 t i c k s = l i n s p a c e ( reU3min ,

reU3max , 5 ) ;

144 imU3min = f l o o r (10∗min ( min ( imag (U3) ) ) ) / 1 0 ; imU3max = c e i l (10∗

max ( max ( imag (U3) ) ) ) / 1 0 ; i m U 3 t i c k s = l i n s p a c e ( imU3min ,

imU3max , 5 ) ;

145 absU3min = f l o o r (10∗min ( min ( abs (U3) ) ) ) / 1 0 ; absU3max = c e i l (10∗

max ( max ( abs (U3) ) ) ) / 1 0 ; a b s U 3 t i c k s = l i n s p a c e ( absU3min ,

absU3max , 5 ) ;

146

147 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

148 % Parameter s

149 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

150 d i s p ( [ ’ ’ ] )

151 d i s p ( [ ’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’ ] )

152 d i s p ( [ ’ p a r a m e t e r s : p1= ’ , num2str ( p ( 1 ) ) , ’ , p2= ’ , num2str ( p ( 2 ) ) , ’ ,

p3= ’ , num2str ( p ( 3 ) ) , ’ , p4= ’ , num2str ( p ( 4 ) ) ] ) ;

153 d i s p ( [ ’ v e l o c i t i e s : c1= ’ , num2str ( c ( 1 ) ) , ’ , c2= ’ , num2str ( c ( 2 ) ) ] )

154 d i s p ( [ ’ s i g n s : s1= ’ , i n t 2 s t r ( s ( 1 ) ) , ’ , s2= ’ , i n t 2 s t r ( s ( 2 ) ) , ’ , s3= ’

, i n t 2 s t r ( s ( 3 ) ) ] )

155 d i s p ( [ ’ a m p l i t u d e s : a1= ’ , num2str ( a ( 1 ) ) , ’ , a2= ’ , num2str ( a ( 2 ) ) ] )

156 d i s p ( [ ’ ’ ] )

157

158 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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159 % D i f f e r e n c e s

160 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

161 d i s p ( [ ’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’ ] )

162 i f per t mode==0

163 d i s p ( [ ’ l o c a l i s e d p e r t u b r a t i o n : ’ , c h a r ( p e r t ) ] )

164 e l s e i f pert mode==1

165 d i s p ( [ ’ random p e r t u r b a t i o n : ’ , c h a r ( p e r t ) ] )

166 end

167 i n i t r e l e r r u 1 = 100∗max ( max ( abs (U1 ( 1 , : )−u1 ( 1 , : ) ) ) ) /max ( max ( abs (

U1 ( 1 , : ) ) ) ) ;

168 i n i t r e l e r r u 2 = 100∗max ( max ( abs (U2 ( 1 , : )−u2 ( 1 , : ) ) ) ) /max ( max ( abs (

U2 ( 1 , : ) ) ) ) ;

169 i n i t r e l e r r u 3 = 100∗max ( max ( abs (U3 ( 1 , : )−u3 ( 1 , : ) ) ) ) /max ( max ( abs (

U3 ( 1 , : ) ) ) ) ;

170 m a x r e l e r r u 1 = 100∗max ( max ( abs (U1−u1 ) ) ) /max ( max ( abs (U1) ) ) ;

171 m a x r e l e r r u 2 = 100∗max ( max ( abs (U2−u2 ) ) ) /max ( max ( abs (U2) ) ) ;

172 m a x r e l e r r u 3 = 100∗max ( max ( abs (U3−u3 ) ) ) /max ( max ( abs (U3) ) ) ;

173 d i s p ( [ ’ d e v i a t i o n from u n p e r t u r b e d s o l u t i o n ’ ] ) ;

174 d i s p ( [ ’U1>> i n i t i a l : ’ , num2str ( i n i t r e l e r r u 1 ) , ’% −−− maximum : ’ ,

num2str ( m a x r e l e r r u 1 ) , ’%’ ] )

175 d i s p ( [ ’U2>> i n i t i a l : ’ , num2str ( i n i t r e l e r r u 2 ) , ’% −−− maximum : ’ ,

num2str ( m a x r e l e r r u 2 ) , ’%’ ] )

176 d i s p ( [ ’U3>> i n i t i a l : ’ , num2str ( i n i t r e l e r r u 3 ) , ’% −−− maximum : ’ ,

num2str ( m a x r e l e r r u 3 ) , ’%’ ] )

177 d i s p ( [ ’ ’ ] )

178

179 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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180 % E x t r a c t i n g a s u b p l o t ( zoom−i n ) i n t he r e g i o n [ xmin xmax tmin

tmax ]

181 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

182 [ Nr , Nc ] = s i z e (XX) ;

183 YY = (XX>=xmin ) &(XX<=xmax ) &(TT>=tmin ) &(TT<=tmax ) ;

184 c o l i n d = c e i l ( f i n d (YY) /Nr ) ;

185 rowind = f i n d (YY)−( c o l i n d −1)∗Nr ;

186 c o l i n d = u n i q u e ( c o l i n d ) ;

187 rowind = u n i q u e ( rowind ) ;

188 sX = XX( rowind , c o l i n d ) ;

189 sT = TT( rowind , c o l i n d ) ;

190 su1 = u1 ( rowind , c o l i n d ) ;

191 su2 = u2 ( rowind , c o l i n d ) ;

192 su3 = u3 ( rowind , c o l i n d ) ;

193

194 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

195 % E x t r a c t i n g a s u b p l o t a t a g i v e n s p e c i f i c t ime i n a g i v e n

s p a t i a l ra ng e

196 % w i t h i n t e r p o l a t i o n o f th e r e s u l t f o r h igh−d e f i n i t i o n

p l o t t i n g

197 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

198

199 i f e x t r a c t i o n f l a g==1

200 d x i n t e r p = ( x e x t r a c t i o n m a x−x e x t r a c t i o n m i n ) /

n u m x e x t r a c t i o n ;
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201 x i n t e r p = x e x t r a c t i o n m i n : d x i n t e r p : x e x t r a c t i o n m a x ;

202 [ ˜ , i n d e x t r a c t i o n ] = min ( abs ( t−t e x t r a c t i o n ) ) ;

203 t e x t r a c t i o n e f f = t ( i n d e x t r a c t i o n ) ;

204

205 x e x t r a c t i o n = xx ;

206 u 1 e x t r a c t i o n = u1 ( i n d e x t r a c t i o n , : ) ;

207 u 2 e x t r a c t i o n = u2 ( i n d e x t r a c t i o n , : ) ;

208 u 3 e x t r a c t i o n = u3 ( i n d e x t r a c t i o n , : ) ;

209 %s i z e u 1 e x t r a c t i o n = s i z e ( u 1 e x t r a c t i o n )

210 %s i z e x e x t r a c t i o n = s i z e ( x e x t r a c t i o n )

211 x e x t r a c t i o n r a n g e = ( x e x t r a c t i o n>=x e x t r a c t i o n m i n ) &(

x e x t r a c t i o n<=x e x t r a c t i o n m a x ) ;

212 x e x t r a c t i o n = x e x t r a c t i o n ( x e x t r a c t i o n r a n g e ) ;

213 u 1 e x t r a c t i o n = u 1 e x t r a c t i o n ( x e x t r a c t i o n r a n g e ) ;

214 u 2 e x t r a c t i o n = u 2 e x t r a c t i o n ( x e x t r a c t i o n r a n g e ) ;

215 u 3 e x t r a c t i o n = u 3 e x t r a c t i o n ( x e x t r a c t i o n r a n g e ) ;

216 %s i z e u 1 e x t r a c t i o n = s i z e ( u 1 e x t r a c t i o n )

217 %s i z e x e x t r a c t i o n = s i z e ( x e x t r a c t i o n )

218 u 1 i n t e r p = s i n c i n t e r p r ( u 1 e x t r a c t i o n , x e x t r a c t i o n ,

x i n t e r p ) ;

219 u 2 i n t e r p = s i n c i n t e r p r ( u 2 e x t r a c t i o n , x e x t r a c t i o n ,

x i n t e r p ) ;

220 u 3 i n t e r p = s i n c i n t e r p r ( u 3 e x t r a c t i o n , x e x t r a c t i o n ,

x i n t e r p ) ;

221 end

222

223 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

224 % G e n e r a l p l o t t i n g p a r a m e t e r s

225 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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226

227 % % l o a d c o l o r m a p s

228 % l o a d ( ’ r e d b l u e ’ )

229 % l o a d ( ’ b l u e r e d y e l l o w ’ )

230 % l o a d ( ’ b l u e r e d b l u e ’ )

231 % l o a d ( ’ r e d b l u e r e d ’ )

232 % l o a d ( ’ r e d b l u e r e d 2 ’ )

233

234 % o p t i o n s f o r p l o t t i n g

235 l i n w d t h = 1 . 5 ; % L i n e Width

236 f n s z t l = 1 6 ; % Font S i z e f o r P l o t T i t l e s

237 f n w g t l = ’ b o l d ’ ; % Font Weight f o r P l o t T i t l e s

238 f n s z l b = 1 4 ; % Font S i z e f o r P l o t A x i s L a b e l s

239 f n w g l b = ’ b o l d ’ ; % Font Weight f o r P l o t A x i s L a b e l s

240 f n s z t k = 1 4 ; % Font S i z e f o r P l o t T i c k s

241 fnwgtk = ’ normal ’ ; % Font Weight f o r P l o t T i c k s

242 f n s z c b = 1 4 ; % Font S i z e c o l o r bar

243 fnwgcb = ’ normal ’ ; % Font Weight c o l o r bar

244 fnnmcb = ’ S e r i f ’ ; % Font Name c o l o r bar

245

246 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

247 % P l o t t i n g t he output

248 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

249

250 hf 1 = f i g u r e ( 1 ) ;

251 c l f

252 % colormap ( j e t ) % use t h i s map as an a l t e r n a t i v e co lormap



Appendix P. Numerical Integration 229

253 f i g 1 a = s u b p l o t ( 2 , 3 , 1 ) ;

254 p c o l o r ( xx , t t , abs ( u1 ) )

255 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

256 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

257 t i t l e ( ’ \boldmath$ { | u {1} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

258 co lormap ( f i g 1 a , j e t )

259 s h a d i n g f l a t

260 a x i s ([−L L t s p a n ( 1 ) t s p a n ( 2 ) ] )

261 ax = gca ;

262 ax . F o n t S i z e = f n s z t k ;

263 ax . FontWeight = fnwgtk ;

264 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

265 c a x i s ( [ absu1min absu1max ] ) ;

266 hBarhf1a = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 1 t i c k s ) ;

267 l a b e l s h f 1 a = { absu1min : ( absu1max−absu1min ) / 4 : absu1max } ;

268 s e t ( hBarhf1a , ’ XTickLabe l ’ , l a b e l s h f 1 a , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

269 hf1b = s u b p l o t ( 2 , 3 , 2 ) ;

270 p c o l o r ( xx , t t , abs ( u2 ) )

271 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

272 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

273 t i t l e ( ’ \boldmath$ { | u {2} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

274 co lormap ( hf1b , j e t )

275 s h a d i n g f l a t

276 a x i s ([−L L t s p a n ( 1 ) t s p a n ( 2 ) ] )
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277 ax = gca ;

278 ax . F o n t S i z e = f n s z t k ;

279 ax . FontWeight = fnwgtk ;

280 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

281 c a x i s ( [ absu2min absu2max ] ) ;

282 hBarhf1b = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 2 t i c k s ) ;

283 l a b e l s h f 1 b = { absu2min : ( absu2max−absu2min ) / 4 : absu2max } ;

284 s e t ( hBarhf1b , ’ XTickLabe l ’ , l a b e l s h f 1 b , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

285 f i g 1 c = s u b p l o t ( 2 , 3 , 3 ) ;

286 p c o l o r ( xx , t t , abs ( u3 ) )

287 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

288 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

289 t i t l e ( ’ \boldmath$ { | u {3} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

290 co lormap ( f i g 1 c , j e t )

291 s h a d i n g f l a t

292 a x i s ([−L L t s p a n ( 1 ) t s p a n ( 2 ) ] )

293 ax = gca ;

294 ax . F o n t S i z e = f n s z t k ;

295 ax . FontWeight = fnwgtk ;

296 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

297 c a x i s ( [ absu3min absu3max ] ) ;

298 hBarhf1c = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 3 t i c k s ) ;

299 l a b e l s h f 1 c = { absu3min : ( absu3max−absu3min ) / 4 : absu3max } ;

300 s e t ( hBarhf1c , ’ XTickLabe l ’ , l a b e l s h f 1 c , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

301 f i g 1 d = s u b p l o t ( 2 , 3 , 4 ) ;
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302 p c o l o r ( sX , sT , abs ( su1 ) )

303 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

304 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

305 t i t l e ( ’ \boldmath$ { | u {1} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

306 co lormap ( f i g 1 d , j e t )

307 s h a d i n g f l a t

308 a x i s ( [ xmin xmax tmin tmax ] )

309 ax = gca ;

310 ax . F o n t S i z e = f n s z t k ;

311 ax . FontWeight = fnwgtk ;

312 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

313 c a x i s ( [ absu1min absu1max ] ) ;

314 hBarhf1d = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 1 t i c k s ) ;

315 l a b e l s h f 1 d = { absu1min : ( absu1max−absu1min ) / 4 : absu1max } ;

316 s e t ( hBarhf1d , ’ XTickLabe l ’ , l a b e l s h f 1 d , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

317 f i g 1 e = s u b p l o t ( 2 , 3 , 5 ) ;

318 p c o l o r ( sX , sT , abs ( su2 ) )

319 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

320 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

321 t i t l e ( ’ \boldmath$ { | u {2} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

322 co lormap ( f i g 1 e , j e t )

323 s h a d i n g f l a t

324 a x i s ( [ xmin xmax tmin tmax ] )

325 ax = gca ;
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326 ax . F o n t S i z e = f n s z t k ;

327 ax . FontWeight = fnwgtk ;

328 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

329 c a x i s ( [ absu2min absu2max ] ) ;

330 hBarhf1e = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 2 t i c k s ) ;

331 l a b e l s h f 1 e = { absu2min : ( absu2max−absu2min ) / 4 : absu2max } ;

332 s e t ( hBarhf1e , ’ XTickLabe l ’ , l a b e l s h f 1 e , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

333 f i g 1 f = s u b p l o t ( 2 , 3 , 6 ) ;

334 p c o l o r ( sX , sT , abs ( su3 ) )

335 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

336 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

337 t i t l e ( ’ \boldmath$ { | u {3} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

338 co lormap ( f i g 1 f , j e t )

339 s h a d i n g f l a t

340 a x i s ( [ xmin xmax tmin tmax ] )

341 ax = gca ;

342 ax . F o n t S i z e = f n s z t k ;

343 ax . FontWeight = fnwgtk ;

344 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

345 c a x i s ( [ absu3min absu3max ] ) ;

346 h B a r h f 1 f = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 3 t i c k s ) ;

347 l a b e l s h f 1 f = { absu3min : ( absu3max−absu3min ) / 4 : absu3max } ;

348 s e t ( hBarhf1 f , ’ XTickLabe l ’ , l a b e l s h f 1 f , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

349 f i g = g c f ;

350 f i g . PaperPos i t ionMode = ’ auto ’ ;
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351 f i g p o s = f i g . P a p e r P o s i t i o n ;

352 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

353

354 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

355

356 hf 2 = f i g u r e ( 2 ) ;

357 c l f

358 j t n = 5 ;

359 f o r j t = 1 : j t n

360 i n d = f l o o r ( numt∗ j t /( j t n −1)+1−numt /( j t n −1) ) ;

361 s u b p l o t ( j t n , 3 , 3∗ ( j t −1)+1)

362 p l o t ( xx , abs (U1( ind , : ) ) , ’ b ’ )

363 h o l d on

364 p l o t ( xx , abs ( u1 ( ind , : ) ) , ’ r ’ )

365 h o l d o f f

366 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g lb )

367 y l a b e l ( ’ \boldmath$ { | u {1} |} $ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

368 t i t l e ( [ ’ t= ’ , num2str ( t t ( i n d ) ) , ’ , ( ex /b , num/ r ) ’ ] , ’

i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’

, f n w g t l )

369 %a x i s ([−L L absu1min absu1max ] )

370 a x i s t i g h t

371 s u b p l o t ( j t n , 3 , 3∗ ( j t −1)+2)

372 p l o t ( xx , abs (U2( ind , : ) ) , ’ b ’ )

373 h o l d on

374 p l o t ( xx , abs ( u2 ( ind , : ) ) , ’ r ’ )

375 h o l d o f f
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376 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

377 y l a b e l ( ’ \boldmath$ { | u {2} |} $ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

378 t i t l e ( [ ’ t= ’ , num2str ( t t ( i n d ) ) , ’ , ( ex /b , num/ r ) ’ ] , ’

i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’

, f n w g t l )

379 %a x i s ([−L L absu2min absu2max ] )

380 a x i s t i g h t

381 s u b p l o t ( j t n , 3 , 3∗ ( j t −1)+3)

382 p l o t ( xx , abs (U3( ind , : ) ) , ’ b ’ )

383 h o l d on

384 p l o t ( xx , abs ( u3 ( ind , : ) ) , ’ r ’ )

385 h o l d o f f

386 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g lb )

387 y l a b e l ( ’ \boldmath$ { | u {3} |} $ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

388 t i t l e ( [ ’ t= ’ , num2str ( t t ( i n d ) ) , ’ , ( ex /b , num/ r ) ’ ] , ’

i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’

, f n w g t l )

389 %a x i s ([−L L absu3min absu3max ] )

390 a x i s t i g h t

391 end

392 f i g = g c f ;

393 f i g . PaperPos i t ionMode = ’ auto ’ ;

394 f i g p o s = f i g . P a p e r P o s i t i o n ;

395 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

396

397 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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398

399 i f e x t r a c t i o n f l a g==1

400 hf 3 = f i g u r e ( 3 ) ;

401 c l f

402 s u b p l o t ( 3 , 1 , 1 )

403 h o l d on

404 p l o t ( x e x t r a c t i o n , abs ( u 1 e x t r a c t i o n ) , ’ r . ’ )

405 p l o t ( x i n t e r p , abs ( u 1 i n t e r p ) , ’ b ’ )

406 h o l d o f f

407 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

408 y l a b e l ( ’ \boldmath$ { | u {1} |} $ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

409 t i t l e ( [ ’ t= ’ , num2str ( t e x t r a c t i o n e f f ) , ’ , (num/ r ,

i n t e r p /b ) ’ ] , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ , f n s z t l

, ’ f o n t w e i g h t ’ , f n w g t l )

410 a x i s t i g h t

411 s u b p l o t ( 3 , 1 , 2 )

412 h o l d on

413 p l o t ( x e x t r a c t i o n , abs ( u 2 e x t r a c t i o n ) , ’ r . ’ )

414 p l o t ( x i n t e r p , abs ( u 2 i n t e r p ) , ’ b ’ )

415 h o l d o f f

416 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g lb )

417 y l a b e l ( ’ \boldmath$ { | u {2} |} $ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

418 t i t l e ( [ ’ t= ’ , num2str ( t e x t r a c t i o n e f f ) , ’ , (num/ r ,

i n t e r p /b ) ’ ] , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ , f n s z t l

, ’ f o n t w e i g h t ’ , f n w g t l )

419 a x i s t i g h t

420 s u b p l o t ( 3 , 1 , 3 )

421 h o l d on
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422 p l o t ( x e x t r a c t i o n , abs ( u 3 e x t r a c t i o n ) , ’ r . ’ )

423 p l o t ( x i n t e r p , abs ( u 3 i n t e r p ) , ’ b ’ )

424 h o l d o f f

425 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g lb )

426 y l a b e l ( ’ \boldmath$ { | u {3} |} $ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

427 t i t l e ( [ ’ t= ’ , num2str ( t e x t r a c t i o n e f f ) , ’ , (num/ r ,

i n t e r p /b ) ’ ] , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ , f n s z t l

, ’ f o n t w e i g h t ’ , f n w g t l )

428 a x i s t i g h t

429 f i g = g c f ;

430 f i g . PaperPos i t ionMode = ’ auto ’ ;

431 f i g p o s = f i g . P a p e r P o s i t i o n ;

432 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

433 end

434

435 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

436 % S a v i n g th e f i g u r e s

437 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

438

439 i f s a v e f l a g==1

440

441 i f per t mode==0

442 p e r t t a g = [ ’ l o c a l i s e d ’ ] ;

443 e l s e i f pert mode==1

444 p e r t t a g = [ ’ random ’ ] ;

445 end
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446 f i l e n a m e = [ ’ t w r i p l a n e w a v e ’ , . . .

447 i n t 2 s t r ( s p e c t r u m t o p o l o g y ( 1 ) ) , ’ G ’ , . . .

448 i n t 2 s t r ( s p e c t r u m t o p o l o g y ( 2 ) ) , ’ SG ’ , . . .

449 i n t 2 s t r ( s p e c t r u m t o p o l o g y ( 3 ) ) , ’ B ’ , . . .

450 i n t 2 s t r ( s p e c t r u m t o p o l o g y ( 4 ) ) , ’ L ’ , . . .

451 i n t 2 s t r ( s p e c t r u m t o p o l o g y ( 5 ) ) , ’ TL ’ , . . .

452 p e r t t a g , ’ ’ , ’ e x p ’ , expe r ime nt num ber ] ;

453

454 f i g 1 a = f i g u r e ( 4 ) ;

455 c l f

456 p c o l o r ( xx , t t , abs ( u1 ) )

457 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

458 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

459 %t i t l e ( ’\ boldmath$ { | u {1} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

460 co lormap ( f i g 1 a , j e t )

461 s h a d i n g f l a t

462 a x i s ([−L L t s p a n ( 1 ) t s p a n ( 2 ) ] )

463 ax = gca ;

464 ax . F o n t S i z e = f n s z t k ;

465 ax . FontWeight = fnwgtk ;

466 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

467 c a x i s ( [ absu1min absu1max ] ) ;

468 hBarhf1a = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 1 t i c k s ) ;

469 l a b e l s h f 1 a = { absu1min : ( absu1max−absu1min ) / 4 : absu1max } ;

470 s e t ( hBarhf1a , ’ XTickLabe l ’ , l a b e l s h f 1 a , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

471 f i g = g c f ;

472 f i g . PaperPos i t ionMode = ’ auto ’ ;



Appendix P. Numerical Integration 238

473 f i g p o s = f i g . P a p e r P o s i t i o n ;

474 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

475

476 f i g 1 b = f i g u r e ( 5 ) ;

477 c l f

478 p c o l o r ( xx , t t , abs ( u2 ) )

479 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

480 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

481 %t i t l e ( ’\ boldmath$ { | u {2} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

482 co lormap ( f i g 1 b , j e t )

483 s h a d i n g f l a t

484 a x i s ([−L L t s p a n ( 1 ) t s p a n ( 2 ) ] )

485 ax = gca ;

486 ax . F o n t S i z e = f n s z t k ;

487 ax . FontWeight = fnwgtk ;

488 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

489 c a x i s ( [ absu2min absu2max ] ) ;

490 hBarhf1b = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 2 t i c k s ) ;

491 l a b e l s h f 1 b = { absu2min : ( absu2max−absu2min ) / 4 : absu2max } ;

492 s e t ( hBarhf1b , ’ XTickLabe l ’ , l a b e l s h f 1 b , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

493 f i g = g c f ;

494 f i g . PaperPos i t ionMode = ’ auto ’ ;

495 f i g p o s = f i g . P a p e r P o s i t i o n ;

496 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

497

498 f i g 1 c = f i g u r e ( 6 ) ;

499 c l f
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500 p c o l o r ( xx , t t , abs ( u3 ) )

501 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

502 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

503 %t i t l e ( ’\ boldmath$ { | u {3} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

504 co lormap ( f i g 1 c , j e t )

505 s h a d i n g f l a t

506 a x i s ([−L L t s p a n ( 1 ) t s p a n ( 2 ) ] )

507 ax = gca ;

508 ax . F o n t S i z e = f n s z t k ;

509 ax . FontWeight = fnwgtk ;

510 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

511 c a x i s ( [ absu3min absu3max ] ) ;

512 hBarhf1c = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 3 t i c k s ) ;

513 l a b e l s h f 1 c = { absu3min : ( absu3max−absu3min ) / 4 : absu3max } ;

514 s e t ( hBarhf1c , ’ XTickLabe l ’ , l a b e l s h f 1 c , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

515 f i g = g c f ;

516 f i g . PaperPos i t ionMode = ’ auto ’ ;

517 f i g p o s = f i g . P a p e r P o s i t i o n ;

518 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

519

520 f i g 1 d = f i g u r e ( 7 ) ;

521 c l f

522 p c o l o r ( sX , sT , abs ( su1 ) )

523 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

524 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )
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525 %t i t l e ( ’\ boldmath$ { | u {1} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

526 co lormap ( f i g 1 d , j e t )

527 s h a d i n g f l a t

528 a x i s ( [ xmin xmax tmin tmax ] )

529 ax = gca ;

530 ax . F o n t S i z e = f n s z t k ;

531 ax . FontWeight = fnwgtk ;

532 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

533 c a x i s ( [ absu1min absu1max ] ) ;

534 hBarhf1d = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 1 t i c k s ) ;

535 l a b e l s h f 1 d = { absu1min : ( absu1max−absu1min ) / 4 : absu1max } ;

536 s e t ( hBarhf1d , ’ XTickLabe l ’ , l a b e l s h f 1 d , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

537 f i g = g c f ;

538 f i g . PaperPos i t ionMode = ’ auto ’ ;

539 f i g p o s = f i g . P a p e r P o s i t i o n ;

540 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

541

542 f i g 1 e = f i g u r e ( 8 ) ;

543 c l f

544 p c o l o r ( sX , sT , abs ( su2 ) )

545 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

546 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

547 %t i t l e ( ’\ boldmath$ { | u {2} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

548 co lormap ( f i g 1 e , j e t )

549 s h a d i n g f l a t

550 a x i s ( [ xmin xmax tmin tmax ] )
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551 ax = gca ;

552 ax . F o n t S i z e = f n s z t k ;

553 ax . FontWeight = fnwgtk ;

554 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

555 c a x i s ( [ absu2min absu2max ] ) ;

556 hBarhf1e = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 2 t i c k s ) ;

557 l a b e l s h f 1 e = { absu2min : ( absu2max−absu2min ) / 4 : absu2max } ;

558 s e t ( hBarhf1e , ’ XTickLabe l ’ , l a b e l s h f 1 e , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

559 f i g = g c f ;

560 f i g . PaperPos i t ionMode = ’ auto ’ ;

561 f i g p o s = f i g . P a p e r P o s i t i o n ;

562 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

563

564 f i g 1 f = f i g u r e ( 9 ) ;

565 c l f

566 p c o l o r ( sX , sT , abs ( su3 ) )

567 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

568 y l a b e l ( ’ \boldmath${ t }$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

569 %t i t l e ( ’\ boldmath$ { | u {3} |} $ ( n u m e r i c a l ) ’ , ’ i n t e r p r e t e r ’ , ’

Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t ’ , f n w g t l )

570 co lormap ( f i g 1 f , j e t )

571 s h a d i n g f l a t

572 a x i s ( [ xmin xmax tmin tmax ] )

573 ax = gca ;

574 ax . F o n t S i z e = f n s z t k ;

575 ax . FontWeight = fnwgtk ;

576 ax . T i c k L a b e l I n t e r p r e t e r = ’ l a t e x ’ ;

577 c a x i s ( [ absu3min absu3max ] ) ;
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578 h B a r h f 1 f = c o l o r b a r ( ’ l o c a t i o n ’ , ’ s o u t h o u t s i d e ’ , ’ x t i c k ’ ,

a b s u 3 t i c k s ) ;

579 l a b e l s h f 1 f = { absu3min : ( absu3max−absu3min ) / 4 : absu3max } ;

580 s e t ( hBarhf1 f , ’ XTickLabe l ’ , l a b e l s h f 1 f , ’ f o n t s i z e ’ , f n s z c b , ’

f o n t w e i g h t ’ , fnwgcb , ’ fontname ’ , fnnmcb ) ;

581 f i g = g c f ;

582 f i g . PaperPos i t ionMode = ’ auto ’ ;

583 f i g p o s = f i g . P a p e r P o s i t i o n ;

584 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

585

586 f i g 3 a = f i g u r e ( 1 0 ) ;

587 c l f

588 h o l d on

589 p l o t ( x e x t r a c t i o n , abs ( u 1 e x t r a c t i o n ) , ’ r . ’ )

590 p l o t ( x i n t e r p , abs ( u 1 i n t e r p ) , ’ b ’ )

591 h o l d o f f

592 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

593 y l a b e l ( ’ \boldmath$ { | u {1} |} $ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

594 %t i t l e ( [ ’ t = ’ , num2str ( t e x t r a c t i o n e f f ) , ’ , (num/ r , i n t e r p /b

) ’ ] , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t

’ , f n w g t l )

595 a x i s t i g h t

596 f i g = g c f ;

597 f i g . PaperPos i t ionMode = ’ auto ’ ;

598 f i g p o s = f i g . P a p e r P o s i t i o n ;

599 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

600

601 f i g 3 b = f i g u r e ( 1 1 ) ;

602 c l f

603 h o l d on
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604 p l o t ( x e x t r a c t i o n , abs ( u 2 e x t r a c t i o n ) , ’ r . ’ )

605 p l o t ( x i n t e r p , abs ( u 2 i n t e r p ) , ’ b ’ )

606 h o l d o f f

607 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

608 y l a b e l ( ’ \boldmath$ { | u {2} |} $ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

609 %t i t l e ( [ ’ t = ’ , num2str ( t e x t r a c t i o n e f f ) , ’ , (num/ r , i n t e r p /b

) ’ ] , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t

’ , f n w g t l )

610 a x i s t i g h t

611 f i g = g c f ;

612 f i g . PaperPos i t ionMode = ’ auto ’ ;

613 f i g p o s = f i g . P a p e r P o s i t i o n ;

614 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

615

616 f i g 3 c = f i g u r e ( 1 2 ) ;

617 c l f

618 h o l d on

619 p l o t ( x e x t r a c t i o n , abs ( u 3 e x t r a c t i o n ) , ’ r . ’ )

620 p l o t ( x i n t e r p , abs ( u 3 i n t e r p ) , ’ b ’ )

621 h o l d o f f

622 x l a b e l ( ’ \boldmath${x}$ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ ,

f n s z l b , ’ f o n t w e i g h t ’ , fn w g l b )

623 y l a b e l ( ’ \boldmath$ { | u {3} |} $ ’ , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’

f o n t s i z e ’ , f n s z l b , ’ f o n t w e i g h t ’ , f n w g l b )

624 %t i t l e ( [ ’ t = ’ , num2str ( t e x t r a c t i o n e f f ) , ’ , (num/ r , i n t e r p /b

) ’ ] , ’ i n t e r p r e t e r ’ , ’ Latex ’ , ’ f o n t s i z e ’ , f n s z t l , ’ f o n t w e i g h t

’ , f n w g t l )

625 a x i s t i g h t

626 f i g = g c f ;

627 f i g . PaperPos i t ionMode = ’ auto ’ ;
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628 f i g p o s = f i g . P a p e r P o s i t i o n ;

629 f i g . P a p e r S i z e = [ f i g p o s ( 3 ) f i g p o s ( 4 ) ] ;

630

631

632 p r i n t ( f i g 1 a , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u1 . j p e g ’ ] , ’−d j p e g

’ )

633 p r i n t ( f i g 1 b , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u2 . j p e g ’ ] , ’−d j p e g

’ )

634 p r i n t ( f i g 1 c , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u3 . j p e g ’ ] , ’−d j p e g

’ )

635 p r i n t ( f i g 1 d , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u1 zoom . j p e g ’ ] , ’−

d j p e g ’ )

636 p r i n t ( f i g 1 e , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u2 zoom . j p e g ’ ] , ’−

d j p e g ’ )

637 p r i n t ( f i g 1 f , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u3 zoom . j p e g ’ ] , ’−

d j p e g ’ )

638 p r i n t ( f i g 3 a , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u 1 ( t ’ , num2str (

t e x t r a c t i o n ) , ’ ) . j p e g ’ ] , ’−d j p e g ’ )

639 p r i n t ( f i g 3 b , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u 2 ( t ’ , num2str (

t e x t r a c t i o n ) , ’ ) . j p e g ’ ] , ’−d j p e g ’ )

640 p r i n t ( f i g 3 c , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u 3 ( t ’ , num2str (

t e x t r a c t i o n ) , ’ ) . j p e g ’ ] , ’−d j p e g ’ )

641

642 p r i n t ( f i g 1 a , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u1 . eps ’ ] , ’−depsc ’

, ’− t i f f ’ , ’−r600 ’ )

643 p r i n t ( f i g 1 b , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u2 . eps ’ ] , ’−depsc ’

, ’− t i f f ’ , ’−r600 ’ )

644 p r i n t ( f i g 1 c , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u3 . eps ’ ] , ’−depsc ’

, ’− t i f f ’ , ’−r600 ’ )

645 p r i n t ( f i g 1 d , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u1 zoom . eps ’ ] , ’−

depsc ’ , ’− t i f f ’ , ’−r600 ’ )
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646 p r i n t ( f i g 1 e , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u2 zoom . eps ’ ] , ’−

depsc ’ , ’− t i f f ’ , ’−r600 ’ )

647 p r i n t ( f i g 1 f , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u3 zoom . eps ’ ] , ’−

depsc ’ , ’− t i f f ’ , ’−r600 ’ )

648 p r i n t ( f i g 3 a , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u 1 ( t ’ , num2str (

t e x t r a c t i o n ) , ’ ) . eps ’ ] , ’−depsc ’ , ’− t i f f ’ , ’−r600 ’ )

649 p r i n t ( f i g 3 b , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u 2 ( t ’ , num2str (

t e x t r a c t i o n ) , ’ ) . eps ’ ] , ’−depsc ’ , ’− t i f f ’ , ’−r600 ’ )

650 p r i n t ( f i g 3 c , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u 3 ( t ’ , num2str (

t e x t r a c t i o n ) , ’ ) . eps ’ ] , ’−depsc ’ , ’− t i f f ’ , ’−r600 ’ )

651

652 p r i n t ( f i g 1 a , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u1 . pdf ’ ] , ’−dpdf ’ ,

’−r600 ’ ) %−p a i n t e r s

653 p r i n t ( f i g 1 b , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u2 . pdf ’ ] , ’−dpdf ’ ,

’−r600 ’ )

654 p r i n t ( f i g 1 c , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u3 . pdf ’ ] , ’−dpdf ’ ,

’−r600 ’ )

655 p r i n t ( f i g 1 d , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u1 zoom . pdf ’ ] , ’−

dpdf ’ , ’−r600 ’ )

656 p r i n t ( f i g 1 e , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u2 zoom . pdf ’ ] , ’−

dpdf ’ , ’−r600 ’ )

657 p r i n t ( f i g 1 f , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u3 zoom . pdf ’ ] , ’−

dpdf ’ , ’−r600 ’ )

658 p r i n t ( f i g 3 a , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u 1 ( t ’ , num2str (

t e x t r a c t i o n ) , ’ ) . pdf ’ ] , ’−dpdf ’ , ’−r600 ’ )

659 p r i n t ( f i g 3 b , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u 2 ( t ’ , num2str (

t e x t r a c t i o n ) , ’ ) . pdf ’ ] , ’−dpdf ’ , ’−r600 ’ )

660 p r i n t ( f i g 3 c , [ pwd ’ / F i g u r e s / ’ f i l e n a m e ’ u 3 ( t ’ , num2str (

t e x t r a c t i o n ) , ’ ) . pdf ’ ] , ’−dpdf ’ , ’−r600 ’ )
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