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Abstract. Bohmian trajectories are considered for a particle that is free (i.e. the
potential energy is zero), except for a half-line barrier. On the barrier, both Dirichlet
and Neumann boundary conditions are considered. The half-line barrier yields one of
the simplest cases of di�raction. Using the exact time-dependent propagator found
by Schulman, the trajectories are computed numerically for di�erent initial Gaussian
wave packets. In particular, it is found that di�erent boundary conditions may lead
to qualitatively di�erent sets of trajectories. In the Dirichlet case, the particles tend
to be more strongly repelled. The case of an incoming plane wave is also considered.
The corresponding Bohmian trajectories are compared with the trajectories of an oil
drop hopping on the surface of a vibrating bath.

1. Introduction

Bohmian mechanics (also known as de Broglie-Bohm theory or pilot-wave theory)
describes point-particles moving in physical space with a velocity that depends on
the wave function (which satis�es Schr•odinger's equation) [1{3]. It is an alternative
to standard quantum theory that is free of the conceptual problems, such as the
measurement problem, that plague the latter. It reproduces the predictions of standard
quantum theory insofar the latter are unambiguous. Bohmian mechanics has been used
for more practical purposes recently: electronic transport [4], molecular reaction [5],
see e.g. the recent review [6]. Another virtue of Bohmian mechanics is that it allows
for the visualisation of physical processes, in particular di�raction situations. Many
examples have been presented in the literature: single slit, double slit, di�raction by
gratings, see e.g. [7{11]. Recently, using weak measurements, the Bohmian trajectories
have also been found experimentally in the case of the double-slit experiment for a single
particle [12] and for entangled particles [13]. Also recently, the Bohmian dynamics is
being studied in the context of hydrodynamic analogues of quantum mechanics [14{17].
These analogues concern silicon oil droplets bouncing on the surface of a harmonically
vibrating bath. The bounces of the droplets, dubbedwalkers, create surface waves
which in turn inuences the droplet dynamics. These systems were claimed to show
some analogy with Bohmian mechanics due to the coupling between droplet and wave.

In di�raction situations it is often hard to �nd solutions to the Schr•odinger equation.
Often simpli�cations are introduced. A general solution can be expressed in terms of the
quantum time propagator. In the case of a single slit, the propagator is only expressible
as a Fourier integral of a series of special functions (Mathieu functions) [18]. In the case
of two slits the propagator is not known and often approximations are used, see e.g. [19].
In the �rst simulation of the Bohmian trajectories for the double-slit experiment, a
superposition of Gaussian wave packets is used to model the actual slits [7]. A much
more realistic yet approximate modelling was done in [8], where the wave function was
numerically integrated.

In the present paper, we consider the half-line barrier. For this system, the
quantum mechanical propagator is exactly known and is given in terms of special
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functions (Fresnel integrals) [20]. This greatly simpli�es the numerical simulations for
the Bohmian trajectories. We will consider both Neumann and Dirichlet boundary
conditions, and present the trajectories in the case of initial Gaussian wave functions and
stationary states with di�erent momenta. While Neumann boundary conditions do not
seem relevant for quantum systems, they are very common in uid dynamics, especially
relevant here for a direct comparison with the droplet trajectory. Indeed Faraday surface
waves obey those boundary conditions in the limit of vanishing viscosity [21]. As such
we provide a visualisation of one of the simplest quantum di�raction situations. It is
also of interest for comparing with the droplet dynamics. The reason is that it is still
unclear to what extent the Bohmian dynamics is similar to droplet dynamics. While the
initial work of Couder and Fort [14] showed a great similarity with quantum mechanics
concerning the droplet distribution in the case of a double slit experiment, more recent
attempts to reproduce this result have so far not been successful [15,22,23]. It is therefore
important to investigate the possible similarities in a much more simpler system like in
the case of di�raction from a half-line barrier. Such an investigation has been initiated
in [22].

The outline of the paper is as follows. First, in section 2 we give an introduction to
Bohmian mechanics and some details concerning the propagator method for solutions to
the Schr•odinger equation. Then in section 3 we consider the case of a Bohmian particle
in the half-plane, which corresponds to having an in�nite potential barrier along a
line. We turn to the half-line barrier in section 4. For the half-line barrier we consider
Gaussian initial wave packets and stationary states. The latter case is important for the
comparison with the droplet dynamics. Our conclusions are presented in section 5.

2. Bohmian dynamics

The Bohmian dynamics for a single particle with positionX is given by

_X (t) = v  (X (t); t) ; (1)

where

v  (x; t) =
~
m

Im
r  (x; t)
 (x; t)

=
1
m

r S(x; t) ; (2)

with m the mass and = j jeiS=~ the wave function which satis�es the Schr•odinger
equation

i~
@
@t

 (x; t) = �
~2

2m
r 2 (x; t) + V(x) (x; t) : (3)

The Bohmian dynamics preserves the distributionj j2. That is, if the initial particle
distribution is given by j (x; t0)j2 at some time t0, then the distribution is given by
j (x; t)j2 at other times t. This property is calledequivarianceand is crucial in deriving
the usual quantum predictions [3]. It follows from the fact that an arbitrary distribution
� (x; t) of particles satis�es the continuity equation

@�
@t

+ r � (v  � ) = 0 ; (4)
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which is also satis�ed byj j2 as a consequence of the Schr•odinger equation.
For the systems we will consider here, the e�ect of the potentials can be completely

expressed in terms of Dirichlet or Neumann boundary conditions for the wave function.
In the case of Dirichlet boundary conditions the wave function is zero along the boundary
and as such the Bohmian velocity is not de�ned there. In the case of Neumann boundary
conditions the directional derivative of the wave function normal to the boundary is zero
and as such the component of the Bohmian velocity normal to the boundary vanishes.

We will often use the propagator to express solutions of the Schr•odinger equation.
For a single particle, solutions of the Schr•odinger equation (3) will be written as

 (x; t) =
Z

K (x; tjx0; 0) 0(x0)dx0 ; (5)

for t > 0 and where 0 is the initial wave function at time t = 0 and K is the quantum
propagator, which satis�es

i~
@
@t

K (x; tjx0; 0) = �
~2

2m
r 2K (x; tjx0; 0) ; t > 0 (6)

lim
t ! 0+

K (x; tjx0; 0) = � (x � x0) ; (7)

together with appropriate boundary conditions. In the case of Dirichlet boundary
conditions, the propagator should be zero along the boundary, i.e.,

K D (x; tjx0; 0) = 0 : (8)

In the case of Neumann boundary conditions, the normal derivative should be zero along
the boundary, i.e.,

@
@n

K N (x; tjx0; 0) = 0 ; (9)

with @=@nthe normal derivative.
A particular solution is given by the propagator itself, by taking

 0(x) = � (x � x0) : (10)

While this solution is not in the Hilbert space, we can nevertheless consider the Bohmian
trajectories. Namely, for the trajectories to be well de�ned, the wave function merely
needs to be su�ciently di�erentiable. (For example, while plane waves are also not
in the Hilbert space, one can consider the Bohmian trajectories, which correspond to
straight lines in the direction of the wave vector.) In the case of the half-line barrier
the trajectories corresponding with the propagator will be qualitatively very similar to
those corresponding to an initially Gaussian wave function with zero momentum.

Throughout this paper, the units for all the plots are chosen such that~ = 1 and
m = 1=2.
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3. Bohmian particle in the presence of a wall

Consider a particle moving in the presence of a wall which restricts the motion to a half-
plane. This problem is separable if the axis of Cartesian coordinates are conveniently
chosen. In this section we will assume that the wall lies along the axisy = 0. Then the
problem can be split into two di�erent one� dimensional problems. In thex� direction,
it simply amounts to a free motion and the solution is recalled in Appendix A. In the
y� direction, the motion is restricted to the half-line y > 0. The wave functions we
consider will be separable because both the initial wave function and the propagator are
separable. We will treat the two one� dimensional problems separately before showing
pictures for the full two� dimensional problem.

3.1. Bohmian dynamics in one dimension: One particle in the presence of a wall

In this section the dynamics is restricted to one Cartesian coordinate, which is denoted
by y. In order to model a wall aty = 0, it is �rst assumed that the wave function obeys
Neumann boundary conditions at this point:

@ 
@y

�
�
�
�
y=0

= 0 : (11)

Initially the wave packet, de�ned only along the half liney � 0, is a superposition of a
Gaussian wave packet and centred aty > 0, with an initial momentum p, and its mirror
image{ :

 0(y) =
a

p
�

�
e� ( y � y ) 2

4� 2 +i py
~ + e � ( y + y ) 2

4� 2 � i py
~

�
; (12)

a =
1

(2� )1=4

�
1 + e� 2(p�= ~)2

�
1 � Re erf

�
� i

2p�
~

��� � 1=2

:

We introduced the error function de�ned by:

erf(Y) =
2

p
�

Z Y

0
e� u2

du : (13)

Note that for a large center positiony � � , the contribution of the mirror image is
small, and the whole wave function is well approximated by a Gaussian wave packet.
Assume further that p < 0 so that the particle guided by the wave (12) is sent towards
the wall: the centre of the wave packet will �rst travel towards the wall then be reected.
The quantum time propagator can be found by taking a suitable superposition of free
propagators:

K (1D )
N (y; tjz;0) =

r
m

2� i~t

�
eim ( y � z ) 2

2~t + e im ( y + z ) 2

2~t

�
; y; z > 0 : (14)

{ The constant a comes from the normalisation ofj 0j2 along the positive real axis.
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Using linearity and (A.7), the propagated wave packet is:

 N (y; t) =
a ei p y

~

q
�

�
1 + i~t

2m� 2

� exp

(
im
2~t

"

(y � y)2 �
(y � y � pt

m )2

1 + i~t
2m� 2

#)

+
a ei p y

~

q
�

�
1 + i~t

2m� 2

� exp

(
im
2~t

"

(y + y)2 �
(y + y + pt

m )2

1 + i~t
2m� 2

#)

: (15)

It is more convenient to rewrite this expression in the form:

 N (y; t) = R(t)ei ' (y;t )
�
eis(y;t )=~ + e � is(y;t )=~

�
; (16)

with the following de�nitions:

R(t) =
a ei p y

~

q
�

�
1 + i~t

2m� 2

� ;

' (y; t) =
m
2~t

"

(y2 + y2) �
y2 + ( y + pt

m )2

1 + i~t
2m� 2

#

;

s(y; t) =
py � i

~t
2m� 2

myy
t

1 + i
~t

2m� 2

: (17)

The expression (16) enables one to compute the gradient more easily:

@
@y

 N (y; t) = i
�

@
@y

' (y; t)
�

 N (y; t) +
i
~

�
@
@y

s(y; t)
�

R(t)ei ' (y;t )
�
eis(y;t )=~ � e� is(y;t )=~

�
:

(18)
Using the de�nition (2), the Bohmian velocity �eld is

v 
N (y; t) =

�
~t

2m� 2

� 2

1 +
�

~t
2m� 2

� 2

y
t

+ Re

8
><

>:

p
m

� i
~t

2m� 2

y
t

1 + i
~t

2m� 2

eis(y;t )=~ � e� is(y;t )=~

eis(y;t )=~ + e � is(y;t )=~

9
>=

>;
: (19)

This can be compared to the Bohmian velocity �eld obtained directly from the
propagator (14):+

v (y; t) =
y
t

: (20)

This extreme case can also be recovered by taking the limit� 2 going to 0 in (19). Note
that, in (20), the Bohmian particle is immediately repelled from the wall (remind that
y > 0). Both expressions (19) and (20) agree at large distance and long time.

+ Contrarily to what might perhaps be expected, the position moves to the wall rather than to y in
the limit t ! 0.
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The same method can be used for the case of Dirichlet boundary conditions at the
wall y = 0. The quantum time propagator, similar to (14), is now:

K (1D )
D (y; tjz;0) =

r
m

2� i~t

�
eim ( y � z ) 2

2~t � eim ( y + z ) 2

2~t

�
; y; z > 0 ; (21)

and the initial Gaussian wave packet, given by the odd version of (12), evolves as:

 D (y; t) = R(t)ei ' (y;t )
�
eis(y;t )=~ � e� is(y;t )=~

�
; (22)

with the same notation as above. Following the same derivation, the Bohmian velocity
�eld can be written:

v 
D (y; t) =

�
~t

2m� 2

� 2

1 +
�

~t
2m� 2

� 2

y
t

+ Re

8
><

>:

p
m

� i
~t

2m� 2

y
t

1 + i
~t

2m� 2

eis(y;t )=~ + e � is(y;t )=~

eis(y;t )=~ � e� is(y;t )=~

9
>=

>;
(23)

with the same notation as before.

3.2. Bohmian dynamics in two dimension: One particle in the presence of a wall

The results obtained in the previous paragraph can be directly used in order to display
the trajectory of a Bohmian particle moving in the two� dimensional Euclidean plane,
in the presence of a wall located aty = 0 in Cartesian coordinates. The wave function
is a product of a Gaussian wave packet in thex� direction, centred at x with initial
momentum px , and of the symmetrised Gaussian state as in (12) in they� direction. It
has the same width� in both x� and y� directions.. Using (A.10) for the dynamics
along thex direction, and (19) or (23) along they� direction, the Bohmian velocity �eld
has the Cartesian coordinates (v 

x ; v 
y ) with:

v 
x =

px

m
+

�
~t

2m� 2

� 2 x � x
t

1 +
�

~t
2m� 2

� 2 ; (24)

v 
y =

�
~t

2m� 2

� 2

1 +
�

~t
2m� 2

� 2

y
t

+ Re

8
><

>:

py

m
� i

~t
2m� 2

y
t

1 + i
~t

2m� 2

eis(y;t )=~ � "e� is(y;t )=~

eis(y;t )=~ + "e� is(y;t )=~
;

9
>=

>;
(25)

where" = +1 (resp. � 1) for Neumann (resp. Dirichlet) boundary condition on the wall
and s(y; t) is given by (17).

We computed the trajectories for Neumann boundary conditions, see Fig. 1, and
for Dirichlet boundary conditions at the wall, see Fig. 2. The �rst observation is that,
as expected, the trajectory of a Bohmian particle guided by a wave packet can be close
to the classical trajectory of the corresponding Hamiltonian classical system. Such a
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Figure 1. Bohmian trajectories of a 2D particle hitting a wall located at y = 0 with
Neumann boundary conditions. The initial state is a Gaussian wave packet centred
(x; y), with width � and an initial momentum ( px ; py ). The initial positions of the
Bohmian trajectories are along a circle centred at (x; y) with radius � at time t init .
Here: (x; y) = ( � 4; 4), � = 1 ; � = 0 :1. The magnitude of the initial momentum is jpj
and its direction in polar coordinates is � 0 = �= 4 such that px = py = jpj=

p
2. Black:

jpj = ~
2�

y
� . Green: jpj = ~

2�
�
y . Left: t init = 0 :01. Right: t init = 0 :1.

Figure 2. Same as Fig. 1 with Dirichlet boundary conditions.

similarity is reached by taking an initial wave packet with a small width (� � j yj), and
an initial momentum magnitude jpj such that the real and the imaginary parts of the
�rst factor of the numerator in the last term of (25) are of the same magnitude, i.e.
jpy j = ~jyj

2� 2 � ~
� . This can be equivalently described in words as the regime where the
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momentum associated with the motion of the centre of the initial wave packet is much
larger that the intrinsic momentum describing the spreading of the initial wave packet.

For sake of comparison, we also displayed the Bohmian trajectories for the same
initial and times when the \spreading" momentum is much larger than the initial
classical momentum in Fig. 1 and Fig. 2 (green curves). The similarity with classical
dynamics is less obvious then.

Trajectories may also display di�erent behaviour for di�erent initial positions.
Those di�erences are less important for Dirichlet than for Neumann boundary conditions
at the wall. This can be seen by comparing the �gures on the left with those on the
right. Rather than varying the initial positions, the initial time at which a �xed position
is considered, was varied.

Finally, another di�erence with the classical dynamics is that classical particles will
actually hit the wall, which causes a discontinuity in their velocity, while the Bohmian
trajectories do not hit the wall and have smooth trajectories.

4. Bohmian particle in the presence of a half-line barrier

In the context of classical optics, the problem of a half-line barrier is well-studied. The
solution is discussed in detail in [24]. In the context of quantum mechanics, the solution
by means of the propagator for both Dirichlet and Neumann boundary conditions was
provided by Schulman [20]. It was revisited within the path integral approach in [25].
The half-line barrier scattering problem is somewhat exceptional since it is one of the
cases for which the propagator is a simple expression in terms of special functions.
Already for the scattering by a single slit, the propagator is much more complicated as
it is given by a Fourier integral of a series of special (Mathieu) functions, see e.g. [26].

Similarly to the previous section three types of wave functions can be considered.
One may indeed consider the time propagator, for which the initial wave function is
a Dirac delta distribution. In order to improve the readability, the corresponding
trajectories are displayed in Appendix B.2. Below we display a more realistic example of
an initial Gaussian wave packet. In the case of zero initial momentum of the Gaussian
packet, the trajectories agree very well qualitatively with those corresponding to the
propagator. We also consider an initial Gaussian wave packet with non-zero initial
momentum. Moreover we will consider a stationary state corresponding to an incoming
plane wave. Such a state is sometimes called a scattering state in scattering theory, see
e.g. [27]. This last wave function is especially suitable for direct comparison with the
dynamics of a walker.

4.1. Quantum time propagator

We consider the half-line barrierO along the negativex-axis, i.e.,

O : y = 0; x � 0 : (26)
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The propagator for the half-line barrier is [20]:

K N;D (x; tjx0; 0) =
m

2� i~t
ei m ( r + r 0 ) 2

2~t [F (u1) � F (u2)] ; (27)

where (r; � ) and (r0; � 0) respectively denote the polar coordinates ofx and x0, with
� � � �; � 0 < � ,

u1 =

r
2mrr 0

~t
cos

�
� � � 0

2

�
; u2 = �

r
2mrr 0

~t
cos

�
� + � 0

2

�
; (28)

and

F (u) =
1

p
�

e� iu2 � i �= 4
Z u

�1
eiv2

dv : (29)

Neumann boundary conditions, indicated by the indexN , give the relative plus sign,
whereas the Dirichlet boundary conditions (indexD) give the relative minus sign.

4.2. Initial Gaussian wave packet

We consider the following initial Gaussian wave packet:

 0(x) =
1

2�� 2
e� ( x � x ) 2

4� 2 +i px
~ : (30)

We did not �nd a way to compute the expression the wave function and its gradient,
which are respectively given by (5) and

r  (x; t) =
Z

[r K N;D (x; tjx0; 0)]  0(x0)dx0 ; (31)

where the gradient of the propagator is given in B.12, analytically (neither for Neumann
nor Dirichlet boundary conditions). Consequently we did not �nd an analytic expression
for the Bohmian velocity. Therefore, to evaluate the wave function and its gradient, a
numerical integration by means of the Gaussian-quadrature algorithm was employed. In
this numerical integration, the spatially localised feature of the initial wave function was
exploited for the e�ciency of the numerical computation. As the initial wave function is
given by a Gaussian wave packet, the integration could be performed in the �nite region
[x � 3�; x + 3� ] � [y � 3�; y + 3� ] instead of the whole space� . This guarantees faster
computation with a better accuracy. The initial Bohmian positions were taken circularly
around the centre of the initial Gaussian wave packet with radius� at some timet init .
For the numerical integration of the Bohmian velocity, the 4th-order Runge-Kutta was
implemented.

First, in Figs. 3, 4, 5 and 6, the Bohmian trajectories are computed for a wave
function with zero initial momentum, i.e. p = 0. One can see strong similarities with
the trajectories computed from the propagator, see the �gures in Appendix B.2. This
may be viewed as a benchmark: in the case of an initially highly localised wave packet

� That is the reason why we do not worry about imposing the actual boundary conditions in Eq. (30).
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Figure 3. Bohmian trajectories in the presence of a half-line obstacle with Neumann
boundary conditions. The initial wave function is the Gaussian (30) centred at
(x; y) = (4 ; � 4), with � = 0 :1 andp = 0. The initial positions are along a circle centred
at (x; y) with radius � = 0 :02 at time t init . Left: t init = 0 :01. Right: t init = 0 :05.

Figure 4. Bohmian trajectories in the presence of a half-line obstacle with Neumann
boundary conditions. The initial wave function is the Gaussian (30) centred at
(x; y) = ( � 4; � 4), with � = 0 :1 and p = 0. The initial positions are along a
circle centred at (x; y) with radius � = 0 :02 at time t init . Left: t init = 0 :01. Right:
t init = 0 :05.

(� � 1, and � � j x j) it is reasonable to compute the Bohmian trajectories from the
quantum propagator directly (unlike the case of non-zero initial momentum).

In the cases the initial point sits in a region where at large distance, the wave
function is a superposition of the incident wave and the reected wave (i.e. the initial



Bohmian trajectories for the half-line barrier 12

Figure 5. Bohmian trajectories in the presence of a half-line obstacle with Dirichlet
boundary conditions. The initial wave function is the Gaussian (30) centred at
(x; y) = (4 ; � 4), with � = 0 :1 andp = 0. The initial positions are along a circle centred
at (x; y) with radius � = 0 :02 at time t init . Left: t init = 0 :01. Right: t init = 0 :05.

Figure 6. Bohmian trajectories in the presence of a half-line obstacle with Dirichlet
boundary conditions. The initial wave function is the Gaussian (30) centred at
(x; y) = ( � 4; � 4), with � = 0 :1 and p = 0. The initial positions are along a
circle centred at (x; y) with radius � = 0 :01 at time t init . Left: t init = 0 :001. Right:
t init = 0 :005.

point is the third quadrant in our choice of coordinates), see Figs. 4, 6, the Bohmian
trajectories are similar to those of a particle in the presence of a wall and the di�ractive
e�ects are less important.

Comparing Fig. 3 right and Fig. 5 right, there is a very important di�erence between
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Neumann and Dirichlet boundary conditions at the barrier. What is seen in Fig. 3 right
for Neumann boundary conditions is that the particle is not repelled by the barrier but
may ow next to it. In Fig. 5 right which concerns Dirichlet boundary conditions, the
particle is repelled strongly atmoderatedistances from the tip. Similar behaviour was
observed in the case of the particle in the half-plane. The reason is that in the case of
Dirichlet boundary conditions the probability density j j2 is zero at the barrier. Hence
due to the low density near the barrier, the particle tends to avoid that region.

Note that the particles move radially at large enoughdistance, in agreement with
our analytical asymptotic formulas derived in Appendix B.1 for the propagator, which
are valid at large distance at any�xed time.

Finally, we also computed the Bohmian trajectories for a Gaussian wave packet
with a non-zero initial momentum, see Fig. 7. It can be seen that as in the case of the
half-plane barrier, the Bohmian trajectories are closer to the classical trajectories given
by Hamiltonian dynamics.

Figure 7. Bohmian trajectories in the presence of a half-line obstacle with Dirichlet
boundary conditions. The initial wave function is the Gaussian (30) centred at
(x; y) = (4 ; � 4), with � = 0 :5 and jpj = ~jy j

2� 2 . The initial positions are along a
circle centred at (x; y) with radius � = 0 :25 at time t init = 0 :001. Inset: As Dirichlet
boundary conditions are assigned in this computation, the repulsion of a Bohmian
trajectory from the tip is observed in a small scale.

4.3. Incoming plane wave. Comparison with walking droplets.

Recently, a uid dynamical system has been suggested to have similar characteristic
features as Bohmian quantum mechanics [14,16]. In this system, a droplet is bouncing
on the surface of a vibrating uid bath. Due to the vibration of the bath, the bouncing
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dynamics can be kept for a long time if the system (vibration frequency and amplitude,
droplet size,. . . ) is carefully prepared. At each bounce, the droplet emits a standing
surface wave due to Faraday instability, which acts as a propelling wave for the droplet
at later time. The behaviour of droplet and the surface wave seem similar to that of
the particle and wave function in Bohmian mechanics. As such this uid dynamical
system was investigated as a possible classical analogue of quantum mechanics. One
fascinating aspect is that one can observe the motion of the droplet and the surface
wave without disturbing them, whereas in Bohmian mechanics an observation of the
trajectories causes strong disturbance.

In the uid dynamical system, the depth of the vibrating bath can vary. If it is
small enough, the dispersion relation is changed so that no surface Faraday wave can
be emitted and the droplet is e�ectively expelled from this region. This is how a barrier
has been engineered in the experiment. In the experiment detailed in [22], a walking
droplet is sent towards a half-line barrier with an initial velocity in they� direction] .

The analogous situation for a Bohmian particle is to consider an initial plane wave,
so that the initial momentum is �xed to the y� direction. It amounts to solve the
scattering problem for an incoming plane wave with momentum~k0. Therefore one
needs to solve the Schr•odinger equation (3) for a �xed energyE = ~2k2

0=2m, which
reduces to solve Helmholtz equation:

(� + k2
0) = 0 ; (32)

This equation needs to be supplemented with boundary conditions on the obstacle
and at in�nity. At in�nity the wave is the sum of the incident plane wave and a
scattered wave. The initial momentumk0 is assumed to have the Cartesian coordinates
(kx ; ky) = � (k0 cos� 0; k0 sin� 0) with � 0 de�ned in Fig. 8. Along the obstacle we

Figure 8. Choice of coordinates for an incoming plane wave.

will assume that the surface wave obeys Neumann boundary conditions as recently

] The position of the obstacle and the choice of coordinates are the same as in (26).
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proposed in [17]. This is exactly the optical problem, which was solved originally by
Sommerfeld [24]. So here we only give the result (see also [28] for a more detailed
derivation):

 (x) = e ik0 r [F (a1) + F (a2)] ; (33)

with

a1 =
p

2k0r cos
�

� � � 0

2

�
; a2 = �

p
2k0r cos

�
� + � 0

2

�
; (34)

and F as de�ned in (29). A simple computation shows that

r  = e ik0 r

(

i [F (a1)k0 + F (a2)k0
0]+e � i �= 4

r
2k0

�r
sin

�
� 0

2

� �
� sin

�
�
2

�
ex + cos

�
�
2

�
ey

� )

;

wherek0
0 = ( kx ; � ky). The Bohmian velocity �eld is then, using (2):

v  =
~kx

m
ex +

~ky

m
ey

jF (a1)j2 � j F (a2)j2

jF (a1) + F (a2)j2

+
~
m

r
2k0

�r
Im

�
e� i �= 4

F (a1) + F (a2)

�
sin

�
� 0

2

� �
� sin

�
�
2

�
ex + cos

�
�
2

�
ey

�
: (35)

Note that the wave function (33) is time-independent, hence so is the Bohmian velocity
�eld. As such, the initial time assigned to an initial position is not relevant. Some
Bohmian trajectories corresponding to this wave function are displayed in Fig. 9. First

Figure 9. Bohmian trajectories in the presence of a half-line obstacle with Neumann
boundary conditions. The velocity �eld is computed for an incident plane wave (33)
with k0 = 5. The background colour map stands for the modulus of the scattering
state (33). Left: � 0 = �= 3. Right: � 0 = �= 2.

it is worth observing that the Bohmian particle spends more time in the region where the
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probability density is higher. It is also avoiding the zeros by circulating around them,
see more precisely aclosed trajectory around the point (� 1:5; � 4:7) in Fig. 9 right.
Second, in the droplet case, see Figs. 5-10 p.142 in [22], the trajectories passing near the
tip seem to have a �xed outgoing direction unlike in the Bohmian case. This is another
reason to believe that while both systems certainly have pilot-wave features, they di�er
signi�cantly in the details of the obtained pattern.

From the quantum perspective, one may also consider the case of an incoming plane
wave in the case of Dirichlet boundary conditions on the half-line barrier. The analysis
is similar and the results are presented in Appendix C.

5. Conclusion

We have studied the Bohmian trajectories in the case of the half-line barrier with
Neumann and Dirichlet boundary conditions. This is one of the simplest examples
of a di�ractive scattering problem (simpler than e.g. the single or double slit set-up).
Making use of the quantum time propagator (which is known exactly in this case), we
numerically computed the Bohmian trajectories.

We considered wave functions that are initially Gaussian and stationary wave
functions, with di�erent momenta. In both cases, the trajectories are repelled more
strongly by the barrier in the case of Dirichlet boundary conditions compared to
Neumann boundary conditions. Unlike in the classical case, the trajectories do not
hit the barrier but rather curve around it.

A comparison was made with the bouncing droplet system in the case of the
stationary state with incoming momentum orthogonal to the barrier with Neumann
boundary conditions. A clear di�erence was found in the scattering pattern.

In future work, the single and double slit setup could be considered using
approximate propagators, like considered in [19]. Moreover the computation of Bohmian
trajectories via the propagator formalism might be helpful for more practical problems,
as recently listed in [6].
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Appendix A. Free Bohmian particle in the plane

Appendix A.1. Time propagator

The time propagator for a free quantum particle in thed� dimensional plane is given
by, see e.g. [29]:

K (x; t; x0; 0) =
� m

2� i~t

� d=2
eim ( x � x 0 ) 2

2~t ; t > 0 ; (A.1)

This explicit expression allows one to check easily one general property of the
time propagators. The quantum time propagator is not an element in the Hilbert
space L2(Rd), hence, within standard mechanics, it cannot be considered as a physically
observable state.

Appendix A.2. Bohmian velocity �eld computed from the propagator

The Bohmian velocity �eld corresponding to the propagator (A.1) is

v  (x; t) =
x � x0

t
; t > 0 : (A.2)

So the trajectories are straight lines starting atx0:

x = x0 + ct; t > 0 ; (A.3)

wherec is a constant vector.
Note that the corresponding density

jK (x; t; x0; 0)j2 =
� m

2� ~t

� d
(A.4)

is not normalisable when integrating overx, which is another way to see that the
propagator cannot be a physical state. This also means that it does not yield a
probability measure over trajectories.

Appendix A.3. Bohmian velocity �eld computed from a Gaussian wave packet

The explicit expression of the quantum propagator (A.1) can be used to compute how
a Gaussian wave packet propagates in the two� dimensional plane. As the problem is
separable in Cartesian coordinates we will start to treat a one� dimensional wave packet.
Consider the following initial Gaussian wave packet:

 0(x) =
e� ( x � x ) 2

4� 2 +i px
~

(2�� 2)1=4
: (A.5)

It is centred at the position x, and has an initial width � in position and an initial
momentum p. In order to determine how it is propagating, one can e.g. compute the
convolution of (A.5) with the one� dimensional analogue of (A.1).

 (x; t ) =
Z 1

�1

r
m

2� i~t
eim ( x � y ) 2

2~t  0(y)dy : (A.6)
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Doing the change of variableu � y � x leads to a standard Gaussian integral and the
result can be written:

 (x; t ) =
ei m ( x � x ) 2

2~t +i p x
~

(2�� 2)1=4
q

1 + i~t
2m� 2

exp

(

�
im
2~t

(x � x � pt
m )2

1 + i~t
2m� 2

)

: (A.7)

In particular one recovers that the centre of the wave packet follows the trajectory:

hxi �
Z 1

�1
x j (x; t )j2 dx = x +

pt
m

; (A.8)

and that the width of the wave packet is:

� x =
p

hx2i � h xi 2 = �

�
�
�
�1 +

i~t
2m� 2

�
�
�
� � � (t) : (A.9)

Using (2) the Bohmian velocity �eld for a one� dimensional free Gaussian wave packet
is:

v (x; t ) =

p
m

+
�

~t
2m� 2

� 2 x � x
t

1 +
�

~t
2m� 2

� 2 : (A.10)

The corresponding trajectories are presented in [2].
The probability density is:

j (x; t )j2 =
e� ( x � x � pt=m ) 2

2� ( t ) 2

p
2�� (t)2

: (A.11)

The expression (A.10) can be used to deduce the result in the two� dimensional case. If
one assumes for simplicity that the initial Gaussian wave packet has the same width in
the x� and in the y� direction, the Bohmian velocity �eld is:

v  (x; t ) =

p
m

+
�

~t
2m� 2

� 2 x � x
t

1 +
�

~t
2m� 2

� 2 : (A.12)

In particular it is worth noticing that we recover the expression (A.3) at large distance
and at long time.

Appendix B. Further results for the quantum propagator of the scattering
problem by a half-line barrier

We detail some properties of the quantum time propagator (27). First its large distance
asymptotics is recalled. Second the corresponding Bohmian trajectories are displayed.
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Appendix B.1. Large distance asymptotics

We investigate here the far-�eld asymptotics of the quantum time propagator (27) for
our scattering problem, for both Neumann and Dirichlet boundary conditions. Using
the asymptotic expansion of the functionF (u) in the propagator, we �nd that in the
far �eld, the Bohmian velocity �eld becomes radial in all directions.

The asymptotic behaviour ofF (u) can be obtained by expressing it with more usual
special functions. Indeed it is customary to identifyF (u) de�ned by (29) as related to
Fresnel integrals via:

F (u) = e � iu2

�
1
2

+
e� i �= 4

p
2

(C (u) + i S (u))
�

; (B.1)

with the Fresnel integrals de�ned by, see e.g. [30]:

C(x) =

r
2
�

Z x

0
cost2dt; S(x) =

r
2
�

Z x

0
sint2dt : (B.2)

Therefore one can deduce its large argument asymptotics, see also [20,31]:

F (u) ' e� iu2

"

�( u) �
eiu2+i �= 4

2
p

�u

#

for u ! �1 ; (B.3)

where �( u) is the Heaviside step function. The asymptotic behaviour of the propagator
(27) depends on the signs ofu1 and u2. Taking (without loss of generality) � � < � 0 � 0,
we have

� � � � � � + � 0 , u1 � 0 ; � � � � 0 � � < � , u2 � 0 : (B.4)

As such, there are three regions with di�erent asymptotic behaviour, see Fig. B1:

� Region I: � + � 0 < � < � , i.e., u1 < 0 andu2 < 0; the total wave is a scattered wave

� Region II: � � � � 0 < � < � + � 0, i.e., u1 > 0 and u2 < 0; the total wave is the sum
of the incident wave and a scattered wave

� Region III: � � < � < � � � � 0, i.e., u1 > 0 and u2 > 0; the total wave is the sum
of the incident wave and a reected wave

There are two optical boundaries, i.e. two directions where the far �eld asymptotics
signi�cantly changes, given by� 0 + � and � � 0 � � .

In order to employ (B.3), we need to consider largeu1 and u2. Hencex cannot be
too close to one of the optical boundaries (where eitheru1 = 0 or u2 = 0). In addition,
mrr 0

~t
needs to be large. For region I, this leads to

K N;D (x; tjx0; 0) '

1
4� i

r
m

2� ~trr 0
ei m ( r + r 0 ) 2

2~t +i �= 4

2

6
6
4�

1

cos
�

� � � 0

2

� �
1

cos
�

� + � 0

2

�

3

7
7
5 ; (B.5)



Bohmian trajectories for the half-line barrier 20

Figure B1. Regions I, II and III, corresponding to di�erent asymptotic behaviour.
The angle � 0 is the polar angle of the source point.

so that at leading order the Bohmian velocity �eld is:

vN;D '
�

r + r0

t

�
x
r

; 1 � r; r 0 and � + � 0 � � � � : (B.6)

In region II, we have

K N;D (x; tjx0; 0)'
m

2� i~t
ei m ( x � x 0 ) 2

2~t (B.7)

with Bohmian velocity �eld

vN;D '
x � x0

t
; 1 � r; r 0 and � � � � 0 � � � � + � 0 : (B.8)

Lastly, in region III, we have

K N;D (x; tjx0; 0)'
m

2� i~t

�
ei m ( x � x 0 ) 2

2~t � ei
m ( x � x 0

0 ) 2

2~t

�
; (B.9)

where
x0

0 = ( x0; � y0) ; (B.10)

is the mirror image ofx0 under reection along thex� axis. The Bohmian velocity �eld
is:

vN;D ' Re

2

4
x � x 0

t ei m ( x � x 0 ) 2

2~t � x � x 0
0

t ei
m ( x � x 0

0 ) 2

2~t

ei m ( x � x 0 ) 2

2~t � ei
m ( x � x 0

0 ) 2

2~t

3

5 =
1
t
(x � x0ex ) : (B.11)

In each case, the Bohmian velocity �eld becomes radial in the limit wherex � x0

and y � y0.
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Appendix B.2. Bohmian trajectories computed from the propagator

The gradient of the propagator (27) is given by

r K N;D =
m2

2� i~2t2
ei m ( r + r 0 ) 2

2~t

(

i [(x � x0)F (u1) � (x � x0
0)F (u2)]

+

r
r0~t

2�mr
e� i �= 4

" �
cos

�
� + � 0

2

�
� cos

�
� � � 0

2

��
ex

+
�

sin
�

� + � 0

2

�
� sin

�
� � � 0

2

��
ey
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; (B.12)

wherex0
0 is de�ned in (B.10). This yields the Bohmian velocity �eld
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(B.13)

The Bohmian trajectories can easily be computed using these expressions and 4th order
Runge Kutta method to solve (1). They are displayed in Figs. B2 and B3 for Neumann
boundary conditions on the barrier, in Figs. B4 and B5 for Dirichlet boundary conditions
on the barrier. In Figs. B2 and B4, one can see that the trajectories follow an intuitive
radial behaviour around the initial point at small time. Conversely, in Figs. B3 and B5,
the Bohmian particle is immediately repelled as the initial wave immediately interferes
with the reected wave.

Appendix C. Bohmian trajectories for an incoming plane wave with
Dirichlet boundary conditions on the barrier

For sake of completeness the Bohmian trajectories have also been computed for an
incoming plane wave with Dirichlet boundary conditions in the half-line barrier. The
wave function is, similarly to (33), given by

 (x) = e ik0 r [F (a1) � F (a2)] ; (C.1)

with the same de�nition as before. Bohmian trajectories can be computed following
the same steps as for Neumann boundary conditions. Therefore we only give here the
formula for the gradient

r  = e ik0 r
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(C.2)
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Figure B2. Bohmian trajectories in the presence of a half-line obstacle with
Neumann boundary conditions. The velocity �eld is computed for the propagator
(27), i.e. the \initial state" is a Dirac distribution supported at x0 = (4 ; � 4). The
initial positions are along a circle centred at (x0; y0) with radius � = 0 :1 at time t init .
Left: t init = 0 :01. Right: t init = 0 :1.

Figure B3. Same as in Fig. B2 for (x0; y0) = ( � 4; � 4).

and the Bohmian velocity �eld
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~kx
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~ky
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Figure B4. Bohmian trajectories in the presence of a half-line obstacle with Dirichlet
boundary conditions. The velocity �eld is computed for the propagator (27), i.e. the
\initial state" is a Dirac distribution supported at x0 = (4 ; � 4). The initial positions
are along a circle centred at (x0; y0) with radius � = 0 :1 at time t init . Left: t init = 0 :01.
Right: t init = 0 :1.

Figure B5. Same as in Fig. B4 for (x0; y0) = ( � 4; � 4).

The trajectories are displayed in Fig. C1. The trajectories are very similar to the ones
in the case of Neumann boundary conditions.
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Figure C1. Bohmian trajectories in the presence of a half-line obstacle with Dirichlet
boundary conditions. The velocity �eld is computed for an incident plane wave (C.1)
with k0 = 5. The background colour map stands for the modulus of the scattering
state (C.1). Left: � 0 = �= 3. Right: � 0 = �= 2.
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