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Abstract

In this article, a chaos analysis is performed forfseoelastimonlinear coupled dynamics

of perfectly straightnanotubes conveying pulsatile fluid for the first time. A siependent

advanced elasticity model is developed with consideration of stress nonlocality as well as

the gradient of strain components. Aft@resentingthe nonlinear motion equations using

, uJo3}v]e % % E} ZU $Z C E vpu E] oo0C -lintAgratidn] %o %o 0]
technique for a system with éarge number ofdegrees of freedom. Chaos analysis is
performed for the nanotube at both sahitical and supercritical flow regimes. Both mean

fluid velocity and the amplitude of velocity pulsation are varied as the bifurcation
parameter. The proposed sikependent continuum modelling and numerical results would

be useful in order to tailor theystem parameters to avoid chaos iramoelectromechanical

devices using fluidonveying nanotubes.

Keywords: Nanotubes; Flow pulsation Nonlinear viscoelasticityAxial inertia Chaotic

response
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1. Introduction

Nanoelectromechanical systems (NEM&Yyemany applications in different fields such
as engineeng, agriculture and medicing, 2] NEM$hased deviceare classified based on
various aspects such as geometry, applicationdamanufacturing process. In a class of
NEMSbased devices such as nanoresonators and nanogenerators, in which the
fundamental part of the system oscillates, understanding the motion of the components of

the system becomes important.

Although there are exgrimental techniques and molecular dynamics (MD) simulations,
the sizedependent continuum modelling of nanoscale structural components has attracted
increasing attention from researcher8-7]. The main reasors are that experimental
techniques and MD simulations are difficult to perform amdmputationally costly,
respectively.The maprity of the sizedependent continuum models have been developed
for nand microbeams[8-10], nandmicroshells[11] and nandmicroplates[12, 13]as they
usually form the struwiral components of many NEMssed deviced14-16]. Some
important studies in this field are mentioned in the following. The deformation of
nanocantilevers was analysed utilising a nonlocal model developed by Peddieso[iLé}. al.
Tounsi et al[18] studied thermal and size influences on the wave dispersion characteristics
of doublewalled nanoscale tubes via the nonlocal theory; they concluded that the results of
the local elasticity theory is not reliable for the wave propagation imatabes. The
Al & 3]}v }( PE %Z v *Z 3¢ }( * S}E *Z % A ¢ o0} JVA «3]P
by Civalek and Akg$z9]. In another study, Zenkour and SolB@] examined the thermal
instability of nanoplates resting oa Winkler-Pasternak substrate; incorporating nonlocal

parameter yields a decrsa in he critical temperature. Read21] also proposed a size



dependent nonlinear formulation for the static deflection of nonlocal beams and plates.
Malekzadeh andShojaeg[22] utilised a nonlocal plate theory with shear, surface and size

effects to examine the vibration of plates at nanakes.

Fluidconveying tubes at nanoscales have been the focus of recent studies in the field of
sizedependent continuum modellingsoltani et al[23] developed an EuleBernoulli model
with size effects for the mechanics of a single nanotube conveying fluagh.dnother study,
wave dispersion in a doublealled nanotube conveying nanofluid was explt by Wang et
al. [24]; they found that size effects should be captured for an accurate estimation of wave
propagation characteristicsLiang and Su25] also developed a continuum model to
examine the influence of pulsatile viscous fluid on the instability of nanotubes. Moreover,
Filiz andAydogdu[26] studied the wave dispersion behaviour of flkadnveying nanotubes
with non-homogeneous material properties. Bn another investigation by Maraghi et al.
[27], the mechanics of fluidonveying boron nitride nanotubes was analysed. In addition, an
elasticity model with size effects wasoposed by Amiri et a[28] for the wave dispersion
analysis of naofluid-conveying nanotubes made of piezoelectric materials. Besides these
valuable studies, both lineg9] and nonlinear{30] vibrations of fluidconveying tubes at
nanoscales have been studied employing -siependent elasticity models. Furthermore,
Azrar et al.[31] developed a beam model with nonlocal effects so as to examine the
influence of pulsatile flow on the parametric instability of nanotub&%ore recently,
Atashafrooz et al[32] has examined nonlocal and strain gradiesffects on the linear
mechanics ofmandluid-conveyingnanaubes; theyfound that the critical fluid velocity

decreases as nonlocal effects become stronger.



In a number of important micro/nanoscale electromechanical systems such as
ultrasmall pipettes, biomimetic ultrasmall devices and microfluidic devices, there is an
ultrasmall fluidconveying tube. These systems can be subject to external excitation, and
thus chaos may happen. For instance, in microfluidic systems;uniborm external
electromechanical loads are used so as to separate soaleé particles. In these systs, it
is very important to adjust the system parameters to avoid chdbss study paves the way
for thoroughly understanding of the chaotic behaviour of flaimhveying nanotubes subject

to flow pulsations.

Table lbriefly summarises the most relevantusties on the mechanat resporses of
fluid-conveying nanotubes using sidependent theories. Scrutinising the available
literature on the sizedlependent modelling ohandluid-conveying nanosystems indicates
that no nonlinear couplediscalasticmodel havebeen reported on the chaotic response
of nanotubes conveying pulsatile nanoflu{dee Table 1)Furthermore, the available
nonlinearstudies lack two majofactors 1) a through consideration dfasis functionsand
2) axial inertia effed In this @per, this problem is investigated for the first time. Size
effects are modelled using a continuum theory incorporating strain gradient and nonlocal
influences. The motion equations of the nanotube conveying pulsatile nanofluid are
presented A] , u]oSapdreach incorporating axial inertiX ' o EIl]Jv[e <« Z u ]
employed for turning the nonlinear partial differential equations into their ordinary
counterparts. Finallybifurcation results are obtained, and chaotic analysigedormedfor
the fluid-conveying nanosystem with flow pulsation via help of a timeegration technique.

The present continuum modelling would be helpful in designing NE&Sd devicesn

which nanotubesonveyingpulsatilenandluid are used



2. A sizedependent nonlinear continum model for nanotubes conveying pulsatile fluid

In the following, a nonlinear continuum model with both strain gradient and nonlocal
effects is proposed for nanotubes conveying pulsatile nanofluid. The inflsente
viscoelasticity and axial inertia areonsidered. Figure 1 illustragethe schematic
representation of a nanotube conveying pulsatile nanofluid. The geometric properties of the

tube are denoted by (length) andD (outer diameter).

EulerBernoulli assumptions are made in this analysis sitiee thickness of the
nanotube is assumed to be small enough compared to its lengtle mathematical
formulations are briefly explained in Sections 2 and 3; interestattlers are referred to

Ref. [33] for more daailed formulations. The strain component ) incorporating

stretchingtype nonlinearity is expressed 484] A 0.5 w/ w oz 2\\ou;/ Xw U win

which w and u represent the transverse deflection and axial displacement of the tube,

respectively. The total stress resultantsMy and Ny) are defined as

M zt dA N, 3t dA where tw and A denote the total stress and tube cress

XX
A A

sectional area, respectively.
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Let us assume that_, €a and are the strain gradient coefficient, nonlocal

sg’

coefficient and Laplacian operator, respectivild$-37]. Also, x and Eare, respectively, the

material viscosityand elasticity moduluslhe total gress resultants are
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in whichl stands for the nanotubsecondmoment of inertia. The elastic energy is given by
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where V%, and Y, . are the elastic higheorder nonclassical stress, gradient

operator and elastic zerotbrder nonclassical stress, respectively. Tinosystenkinetic

energyis expressed as
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In Eqg. 4), m, A,, U(t)andM indicate the tube mass per length, velocity correction factor,

fluid velocity and fluid mass per length, respectively. The viscous work is expressed as
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and I s are the viscoelastic high@rder nonclassical stress and

viscoelastic zerotlorder nonclassical stress, respectively.



, uJo3}v[e %% E} Z (}E E]JAJvP 8Z «<pu 3]}ve }( u}s]iv Je
e, G 1@ o ©)
It is assumed that the fluid velocity varies versus time according to the following relation

U U Ucos 4t , 7)
where Up, U1 and Z indicate the mean velocity, the amplitude of the fluid velocity and

pulsation frequency, respectivelyhe fluid velocity profile is assumed to follow EQ.due

to the fact that this equation represents a typical pulsatile flow. Other profiles candme al
considered in a similar way; however, this velocity profile is the most popular one. The first
term of the profile (i.eUo) represents the mean fluid speed while the second term denotes
the velocity pulsation.

In the present formulation, the followingon-dimensional parameters are used
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Using Eq.7) together with the nordimensional parameters defined in the above equation

(i.e. Eqg.8)), the governing equationsan be written as

FE %o C



2 2
s3u 2 M U, UlcosttiW !

; @/? twx w
P, Ulcosttf@2 20
W
- . ugw
NN Disin £ s wor .
2
S mﬁz--§—%“‘ 2 MM U, Ucos 22—
;T we ol Ttwow
o1 ’ U, Ulcostt":Z@2 Z
W
: W
NAM D sin & % "o .

s— 0, ©)

w = ww
— 2 MU, Ulcostt‘:WW
w

2 2 — . W
M, U, Ucos A4 i 7 nNm fsin t%vl_xo%
§

w §w = Aw
/ﬁF@D—m 2 MM U, U,cos fZiW w

2 2 2\N — . W
N, U, Ucos ,Zi v n/ym [\ sin ft%vl—xz/

A

w p W w /__EWSW w w
Twak xWw T xw

; Wa_§slw 1§ ww™ WW e 2 &u }WiNzﬁww

2 T Ks— —=2 7 — 5 —
szv»u_@ W20 xwii; xw?® X Vg X 2W ©X =e®11/v1)
2 20y
woSw W Cuw Vgﬁ_ W 8w wh
W oW tw W t Xw: X X WXWt X W twk w
3 3
SpW3 U 5, MU, Ucosv 2 WY
DX O W Ttww
) 22 % m _ yzudo
N, U, Ucos ﬁ_.? ofY (& sin ftVR%/fk



CL,wW w8 sww. uw_, ww Bugy ® .wu

2 a3 &5 BN Fsg__wu_ S—

g quxv@g©XW1 X iy X&IZ@ X * W X
2 .

W W e W W SN W ww -

W MWXW X Wxwiw® X X wetwx  w twx * w

. o (10)

S w 8w’u W=

— F—-= 2 MU, Ucos .F°

"W @w tw MM Y, U, T wxw

) 22 \/T ' 2 4°
N, U, Ucos Z-.? JWM Z sin ftvwil)&lo

Equations 9) and (0) describe the nonlinear bifurcation behaviour of nanotubes conveying
pulsatile nanofluid; the influences of stress nonlocality, strain gradients and slip conditions
are inorporated. It should be noticed that slip conditions are incorporated via the following

velocity correction factof32]

42 \ Kn8
nf1 —F—— 1 NKn, (11)
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where
%)tan 1o, Kn? . 12

in which ¢ 64 /E3 S B3 . Also, £ and I/ are constant coefficients, which are

\

obtained as £ 1 and I/ 0.7 for fluid-conveying nanotubes. In EdL2), the constant

coefficients are given by 4 and ) 0.4.

3. Numerical solution method

To make the solutiorprocedure easier, the coupled differential equations of the

nanosystem (i.e. Eq®)(and (0)) are discretised using the following relatidBs]
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Here (N1,N2)=the number of basis functions alongZ; ( s ;)=the basis functions for
(uw); (r;,9,)=the generalised coordinates fou,{) [39, 40] Sulstituting Eq. {3) into Egs.

(9) and (LO) gives the following discretised equations for the nonlinear coupled bifurcation

behaviour of nanotubes conveying pulsatile nanofluid
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It is assumed that the nanoscale tube is clamped at both ends. To determine the bifurcation
behaviour of the nanosystem, a direct tiAngegration technique is applied to the above

coupled ordinary differential equations.

4. Results and discussion

In this section, theeffectsof flow pulsation on the bifurcation behaviour of nanotubes
are analysed through different examples. The mechanical properties of the nanotube are

taken asv=0.3, E=610 MPa and {=1024 kg/ni in whichv, Eand { are, respectively,

W}]ee}v[e €lstdihitonstant and density of the tubg4l, 42] The outer radius,
thickness and lengtto-diameter ratio are afout =290.5 nm,h=66.0 nm and./doyt =20,
respectively. Furthermore, the Knudsen number, velocity correction factor and

dimensionless mass ratio are lis=0.015, /\}, =1.119 andv =0.5915, respectivelj29]. The

dimensionless geometrical properties and scale coefficients are givenst80.0,;

=4006.94) and ¢, 0.04, £ 0.09), respectivelyln the numerical solution, 20 degrees of

' Tl

freedom are assumed (10 farand 10 forw), leading to a converged solution.

4.1.Up as the bifurcation parameter

The pulsatile fluid depends on two different velocity factors: 1) the mean velocity, and
2) theamplitude of fluid velocity. In this subsection, the mean fluid velocity is varied as the

bifurcation parameter. Figre 2 indicateshe bifurcations fora nanotube conveying fluid

12



without pulsation U1=0). The nanotube itself is assumed to be viscoelastias to take into
account the effects of internal energy loss. The vertical axis of the diagram shows the
transverse deflection ax=0.5. The unstable configuration is also plotted in Fig. 2 (dashed
line). The dimensionless critical velocity related tatist instability, in which the transverse

deflection starts growing, .99989.

The bifurcation diagram of nanotubeconveying pulsatilBuid for motions inz direction
is indicated in Fig. 3 fofs=5.00and U= 0.08Jo. The only difference between Figs. 2 and 3
isin the value ofU;. Comparing Fig. 2 to Fig. 3 indicates that the bifurcation behaviour of the
nanotube conveying nanofluid with constant velocity is completely different from the case
with flow pulsation. Ot 5% flow velocity variation changes the nanosystem behaviour
significantly and even causes chaotic motitm.addition, the critical fluid velocity of the

system related to instability is lower than the case without pulsation.

In Fig. 4, the bifurcatiobehaviour of nanotubgs conveying pulsatiléuid is indicated;
this time, the pulsation frequency and the amplitude of the fluid velocity are takefis as
5.00and U1=0.10Uo, respectively. It is observed that the bifurcation behaviour of the fluid
conveyng nanotube is very sensitive to the nanofluid velocity variation. Only 5% increase in
the amplitude of the fluid velocity with respect to the preus case illustrated in Fig. 3,
yieldsa significant change in the bifurcatioesponse The chaotic regia are noticeably
increased wherU; increases. In addition, increasing the amplitude of the nanofluid velocity
decreases the critical velocity related to instability. For clarification, the detail afytEem

chaoticbehaviourof Fig. 4 atJy=5.94 is give in Fig. 5 for both motions xwandzdirections.

13



4.2.U; as the bifurcation parameter

In the following subsection, thiduid velocityamplitudeplays the role othe bifurcation
parameter. Figures 6(a) and 6(b) depict the bifurcation behaviour of nanotubes conveying
fluid with pulsation for the motions irz and x directions, respectively. The mean fluid
velocity is set tdJo = 4.92. Since the mean velocity is lovikan the critical velocity, the
nanosystem operates ahe subcritical regime. For sufficiently small valuedJef(i.e. less
than 0.01),a periodic motion is found for the system. Nonetheless, the viscoelastic
nanotube displays a peried motion as a small increase id; is imposed on the
nanosystem. The perie@ motion is valid untilJ; =0.1435 in which the motion type turns
into a period4 type. Different motion types are also seen from Fig. 6Uags further
increased. For clarification, the details of the perd@nd periodd motionsof Fig. 6 atU;

=0.1 andJU1=0.15 are, respectively, plotted in Figs. 7 and 8, respectively.

Qubcritical bifurcation responsesfor the nanotube conveying pulsatile nanofluid for
motions inz and x directions are, respectively, shown in Figs. 9(a) and 9(b); these diagrams
are plotted forUp = 4.96. Comparing Fig. 9 to Fig. 6 reveals that a bit increase in the mean
velocity in the subcritical regime results in a considerable change in the bifurcation
behaviour. Near the critical point related to instability, the bifurcation behavitouns into
chaos with increasing the fluid mean velocity. The chaotic response occurs when the non
dimensional amplitude of th@anofluid velocity is in the range of G23. The detail of the

chaotic response of the systemldf= 0.25 is shown in Fig. 10.

Figures 11 and 12 depict the supercritical bifurcation of nanotsitlm®nveying pulsatile
fluid for Up=5.02 andUp=5.06, respectively. It can be concluded that the supercritical

response of the nanotube with viscoelastic properties subject to fluid pulsation is

14



dominated by chaos close to the critical point. However, a slight increase in the value of the
mean velocity noticeably reduces chaotic response in the viscoelastic nanotube for motions

in both directions.

5. Conclusions

A nonlinear coupled continuummodel has been developed to analyse chaos in fluid
conveying nanotubes with flow pulsation. The influences of viscoelasticity as well as axial
inertia effects were taken into consideration. A combination of nonlocal theory and the
theory of strain gradientvas utilised to model size effects. The siEpendent nonlinear
% ES] o ](( E v8] o «<u 8]lve A E } 3 v Al Z o% }( , u]c
discretising the nonlinear equations wsP ' o Etdohhtque, they werenumerically

solved via a timentegration method.

From numerical results, it was observed that tbleaotic responseof the nanotube
conveying nanofluid with constant velocity ssibstantially different from thatof flow
pulsation. The critical fluid velocityn the case with flow puldéon is lower than the case
without pulsation. Bth mean fluid velocity and the amplitude of velocity variatioave a
significant role toplay in the chaoticbehaviour of the fluidconveying nanotube.
Furthermore, it was found that near the critical pgirthe subcritical response of the
nanosystem turns into chaos with a slight increase in the fluid mean velblotyetheless, a
small increase in the value of the mean velocity substantially decreases chaos in the
supercritical nonlinear dynamic responsé the viscoelastic nanotube cwaying pulsatile

nanofluid.

Declarations of interest: none.
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Appendix A

To show the validity of the present model, the calculated results are compared to those
determined via exprimental measurement in Table. Zrhe experimentaresults were
extracted byGarciaSanchezt al.[43] using a scanning force microscopy methad} uv P [
modulus, density and boundary conditions of thkasticnanotube without fluid flow are
taken as 1 TPa, 2200 kgfmnd clampeeclamped, respectively. The results calculated using
both classical and sizependent theories are provided in the table. It is observed that
compared to the classical theory, the results of the siependent theory are in a
reasonable agreement with those of experimental measurement. The appropriate scale

parameters for each lggth and radius are also listed in the table.
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Table 1: A brief literature review on the mechanics of flicidhveying nanotubes.

Problem Authors year
Mechanics of a single nanotube conveying fluid Soltani et al[23] 2010
Wave dispersion in a doublealled nanotube Wang et al[24] 2010

conveying fluid

Pulsatile fluid effect on the instability of nanotubes Liang and S[25] 2013

Wave dispersion in fluidonveying non Filiz and Aydogd[26] 2015
homogeneous nanotubes

Mechanics of fluiecconveying boron nitride nanotube Maraghi et al[27] 2013
Wave dispersion in nanofluicbnveying piezoelectric Amiri et al.[28] 2018
nanotubes

Linear dynamics of fluidonveying nanotubes Bahaadini eal.[29] 2018
Forced vibrations of fluidonveying nanotubes Askari and Esmailzad§s0] 2017
Pulsatile fluid effect on the parametric instability of Azrar et al[31] 2015
nanotubes

Linear mechanics of nanotubes conveying fluid witt Atashafrooz et a[32] 2018

stress nonlocality and strain gradient
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Table 2: Validation of the results using experimental measuren#&jt

. Size Appropriate ,
Classical scale Experimental
_ dependent

Length (nm)  Radius (nm) theory theory parameters ~ Measurement
f1 (MHz f1 (MHZz)[43
1( ) fl(MHZ) ( ﬁ’ Eg) 1( )[ ]

640 1 133 36 (1.0,0.0) 30

465 0.6 155 257 (0.0,0.40) 260

572 2 329 291 (0.15,0.0) 290

20



Figurel: The schematic diagram of a viscoelastic nanotube conveying pulsatile nanofluid.

05}

Figure 2: Bifurcation diagram dhe viscoelastic nanofluidonveying nanotubeshowing the transverse
deflection atx=0.50.Us=0; dashed line shows unstable configuration.
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Figure 3: Bifurcation diagranier the nonlinear transversenotion of nanotubes conveying pulsatile fluidat
x=0.50; &=5.00andU:=0.0%.
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Figure 4: Bifurcation diagranier the nonlinear transverse motion of nanotubes conveying pulsatile flaid
x=0.50); &=5.00and U= 0.10Uo.

23



(@

1.5

15E

t

()

(e)

900 920 940

960

980

1000

(b)
0.03
0.02

0.01

-0.01

_0.02 L L 1 il
900 920 940 960 980 1000

(d)

(f)

t

24



(9) (h)

Figure 5: Chaotic motion of Fig. 4W&=5.94: (a), (c), (e), and (g) tirhestory, phaseplanes, FFT, and Poincaré
sectiors forw(x=0.5, respectively; (b), (d), (f), and (tine history, phase planes, FFT, and Poincaré sections
for u(x=0.65, respectively.
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(b)

Figure 6: Subcriticdlifurcations forthe nonlinear motion of nanotubes conveying pulsatile fia) w(x=0.50;
(b)u(x=0.69; Uo= 4.92,&=2.9296 and &/ &=2.0.
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(@) (b)

() (d)

Figure 7: Perio@ motion of Fig. 6 atJ;=0.10: (a) and (c) timdistory and phaseplanes for w(x=0.5),
respectively; (b) and (d) timeistoryand phaseplanesfor u(x=0.65, respectively.
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() (d)

Figure 8: Period motion of Fig. 6 atJ;=0.10: (a) and (c) timdistory and phaseplanes for w(x=0.5),
respectively; (b) and (d) timeistoryand phaseplanesfor u(x=0.65, respectively.
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Figure 9Subcritical bifurcations fahe nonlinear motion of nanotubes conveying pulsatile fl§a) wk=0.50);
(b) uf=0.65) Uo= 4.96, &=2.059Q and &/ &=2.0.
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(@) (b)

() (d)

Figure 10: Chaotic motion of Fig. 9lat=0.25: (aXd) time history, phaseplanes, FFT, and Poincaré section of
w at x=0.5, respectively.
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Figure 11: Supercriticddifurcations forthe nonlinear motion of nanotubes conveying pulsatile flufe)
w(x=0.50); (b) =0.65);Uo= 5.02, &=2.0526 and &/ &=2.0.
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Figure 12: Supercriticdbifurcations forthe nonlinear motion of nanotubes conveying pulsatile flufe)
w(x=0.50); (b) =0.65);Uo= 5.06, &=3.5378 and &/ &=2.0.

32



