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Abstract 

In this article, a chaos analysis is performed for the viscoelastic nonlinear coupled dynamics 

of perfectly straight nanotubes conveying pulsatile fluid for the first time. A size-dependent 

advanced elasticity model is developed with consideration of stress nonlocality as well as 

the gradient of strain components. After presenting the nonlinear motion equations using 

Hamilton’s  approach, they are numerically solved via application of a time-integration 

technique for a system with a large number of degrees of freedom. Chaos analysis is 

performed for the nanotube at both subcritical and supercritical flow regimes. Both mean 

fluid velocity and the amplitude of velocity pulsation are varied as the bifurcation 

parameter. The proposed size-dependent continuum modelling and numerical results would 

be useful in order to tailor the system parameters to avoid chaos in nanoelectromechanical 

devices using fluid-conveying nanotubes.    
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1. Introduction 

Nanoelectromechanical systems (NEMS) have many applications in different fields such 

as engineering, agriculture and medicine [1, 2]. NEMS-based devices are classified based on 

various aspects such as geometry, application and manufacturing process. In a class of 

NEMS-based devices such as nanoresonators and nanogenerators, in which the 

fundamental part of the system oscillates, understanding the motion of the components of 

the system becomes important.  

Although there are experimental techniques and molecular dynamics (MD) simulations, 

the size-dependent continuum modelling of nanoscale structural components has attracted 

increasing attention from researchers [3-7]. The main reasons are that experimental 

techniques and MD simulations are difficult to perform and computationally costly, 

respectively. The majority of the size-dependent continuum models have been developed 

for nano/microbeams [8-10], nano/microshells [11] and nano/microplates [12, 13] as they 

usually form the structural components of many NEMS-based devices [14-16]. Some 

important studies in this field are mentioned in the following. The deformation of 

nanocantilevers was analysed utilising a nonlocal model developed by Peddieson et al. [17]. 

Tounsi et al. [18] studied thermal and size influences on the wave dispersion characteristics 

of double-walled nanoscale tubes via the nonlocal theory; they concluded that the results of 

the local elasticity theory is not reliable for the wave propagation in nanotubes. The 

vibration of graphene sheets of a sector shape was also investigated using Eringen’s theory 

by Civalek and Akgöz [19]. In another study, Zenkour and Sobhy [20] examined the thermal 

instability of nanoplates resting on a Winkler-Pasternak substrate; incorporating nonlocal 

parameter yields a decrease in the critical temperature. Ready [21] also proposed a size-
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dependent nonlinear formulation for the static deflection of nonlocal beams and plates. 

Malekzadeh and Shojaee [22] utilised a nonlocal plate theory with shear, surface and size 

effects to examine the vibration of plates at nanoscales.  

Fluid-conveying tubes at nanoscales have been the focus of recent studies in the field of 

size-dependent continuum modelling. Soltani et al. [23] developed an Euler-Bernoulli model 

with size effects for the mechanics of a single nanotube conveying fluid. In an another study, 

wave dispersion in a double-walled nanotube conveying nanofluid was explored by Wang et 

al. [24]; they found that size effects should be captured for an accurate estimation of wave 

propagation characteristics. Liang and Su [25] also developed a continuum model to 

examine the influence of pulsatile viscous fluid on the instability of nanotubes. Moreover, 

Filiz and Aydogdu [26] studied the wave dispersion behaviour of fluid-conveying nanotubes 

with non-homogeneous material properties. In an another investigation by Maraghi et al. 

[27], the mechanics of fluid-conveying boron nitride nanotubes was analysed. In addition, an 

elasticity model with size effects was proposed by Amiri et al. [28] for the wave dispersion 

analysis of nanofluid-conveying nanotubes made of piezoelectric materials. Besides these 

valuable studies, both linear [29] and nonlinear [30] vibrations of fluid-conveying tubes at 

nanoscales have been studied employing size-dependent elasticity models. Furthermore, 

Azrar et al. [31] developed a beam model with nonlocal effects so as to examine the 

influence of pulsatile flow on the parametric instability of nanotubes. More recently, 

Atashafrooz et al. [32] has examined nonlocal and strain gradient effects on the linear 

mechanics of nanofluid-conveying nanotubes; they found that the critical fluid velocity 

decreases as nonlocal effects become stronger.  
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In a number of important micro/nanoscale electromechanical systems such as 

ultrasmall pipettes, biomimetic ultrasmall devices and microfluidic devices, there is an 

ultrasmall fluid-conveying tube. These systems can be subject to external excitation, and 

thus chaos may happen. For instance, in microfluidic systems, non-uniform external 

electromechanical loads are used so as to separate small-scale particles. In these systems, it 

is very important to adjust the system parameters to avoid chaos. This study paves the way 

for thoroughly understanding of the chaotic behaviour of fluid-conveying nanotubes subject 

to flow pulsations. 

Table 1 briefly summarises the most relevant studies on the mechanical responses of 

fluid-conveying nanotubes using size-dependent theories. Scrutinising the available 

literature on the size-dependent modelling of nanofluid-conveying nanosystems indicates 

that no nonlinear coupled viscoelastic models have been reported on the chaotic response 

of nanotubes conveying pulsatile nanofluid (see Table 1). Furthermore, the available 

nonlinear studies lack two major factors: 1) a through consideration of basis functions, and 

2) axial inertia effects. In this paper, this problem is investigated for the first time. Size 

effects are modelled using a continuum theory incorporating strain gradient and nonlocal 

influences. The motion equations of the nanotube conveying pulsatile nanofluid are 

presented via Hamilton’s approach incorporating axial inertia. Galerkin’s scheme is 

employed for turning the nonlinear partial differential equations into their ordinary 

counterparts. Finally, bifurcation results are obtained, and chaotic analysis is performed for 

the fluid-conveying nanosystem with flow pulsation via help of a time-integration technique. 

The present continuum modelling would be helpful in designing NEMS-based devices in 

which nanotubes conveying pulsatile nanofluid are used.  
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2. A size-dependent nonlinear continuum model for nanotubes conveying pulsatile fluid  

In the following, a nonlinear continuum model with both strain gradient and nonlocal 

effects is proposed for nanotubes conveying pulsatile nanofluid. The influences of 

viscoelasticity and axial inertia are considered. Figure 1 illustrates the schematic 

representation of a nanotube conveying pulsatile nanofluid. The geometric properties of the 

tube are denoted by L (length) and D (outer diameter).  

Euler-Bernoulli assumptions are made in this analysis since the thickness of the 

nanotube is assumed to be small enough compared to its length. The mathematical 

formulations are briefly explained in Sections 2 and 3; interested readers are referred to 

Ref. [33] for more detailed formulations. The strain component ( xx ) incorporating 

stretching-type nonlinearity is expressed as [34]           
2 2 20.5 ,xx w x z w x u x  in 

which w and u represent the transverse deflection and axial displacement of the tube, 

respectively. The total stress resultants (Mxx and Nxx) are defined as 

  ,   ,xx xx xx xx

A A

M zt dA N t dA  where txx and A denote the total stress and tube cross-

sectional area, respectively.  

Let us assume that lsg
, 0e a  and 2  are the strain gradient coefficient, nonlocal 

coefficient and Laplacian operator, respectively [35-37]. Also,   and E are, respectively, the 

material viscosity and elasticity modulus. The total stress resultants are  
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in which I stands for the nanotube second moment of inertia. The elastic energy is given by  
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where  (1)
( )xx el

,   and  ( )xx el  are the elastic higher-order non-classical stress, gradient 

operator and elastic zeroth-order non-classical stress, respectively. The nanosystem kinetic 

energy is expressed as 
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In Eq. (4), m,  1nf , U(t) and M indicate the tube mass per length, velocity correction factor, 

fluid velocity and fluid mass per length, respectively. The viscous work is expressed as 

    

  

     

 
      

 

 

  

(1)
( ) ( )

0

(1)
( ) ( )

00

,

L

vis xx vis xx xx vis xx

A

L L

xx vis xx xx vis xx

A A

W dAdx

dA t dAdx

       (5) 

where  (1)
( )xx vis  and  ( )xx vis  are the viscoelastic higher-order non-classical stress and 

viscoelastic zeroth-order non-classical stress, respectively.  
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Hamilton’s approach for deriving the equations of motion is expressed as  

     
2

1

d 0.
t

vis el kt
W U T t          (6) 

It is assumed that the fluid velocity varies versus time according to the following relation 

  0 1 cos ,fU U U t           (7) 

where U0, U1 and  f  indicate the mean velocity, the amplitude of the fluid velocity and 

pulsation frequency, respectively. The fluid velocity profile is assumed to follow Eq. (7) due 

to the fact that this equation represents a typical pulsatile flow. Other profiles can be also 

considered in a similar way; however, this velocity profile is the most popular one. The first 

term of the profile (i.e. U0) represents the mean fluid speed while the second term denotes 

the velocity pulsation.  

In the present formulation, the following non-dimensional parameters are used   
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Using Eq. (7) together with the non-dimensional parameters defined in the above equation 

(i.e. Eq. (8)), the governing equations can be written as  
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Equations (9) and (10) describe the nonlinear bifurcation behaviour of nanotubes conveying 

pulsatile nanofluid; the influences of stress nonlocality, strain gradients and slip conditions 

are incorporated. It should be noticed that slip conditions are incorporated via the following 

velocity correction factor [32] 
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in which        0 64 3 4 .  Also,   and  v  are constant coefficients, which are 

obtained as   1  and   0.7v  for fluid-conveying nanotubes. In Eq. (12), the constant 

coefficients are given by  0 4  and  1 0.4 .  

 

3. Numerical solution method   

To make the solution procedure easier, the coupled differential equations of the 

nanosystem (i.e. Eqs. (9) and (10)) are discretised using the following relations [38] 
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Here (N1,N2)=the number of basis functions along (x,z);  ( , )j j =the basis functions for 

(u,w); ( , )j jr q =the generalised coordinates for (u,w) [39, 40]. Substituting Eq. (13) into Eqs. 

(9) and (10) gives the following discretised equations for the nonlinear coupled bifurcation 

behaviour of nanotubes conveying pulsatile nanofluid  
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It is assumed that the nanoscale tube is clamped at both ends. To determine the bifurcation 

behaviour of the nanosystem, a direct time-integration technique is applied to the above 

coupled ordinary differential equations.  

 

4. Results and discussion    

In this section, the effects of flow pulsation on the bifurcation behaviour of nanotubes 

are analysed through different examples. The mechanical properties of the nanotube are 

taken as v=0.3, E=610 MPa and t =1024 kg/m3 in which v, E and t  are, respectively, 

Poisson’s ratio, elasticity constant and density of the tube [41, 42]. The outer radius, 

thickness and length-to-diameter ratio are as Rout =290.5 nm, h=66.0 nm and L/dout =20, 

respectively. Furthermore, the Knudsen number, velocity correction factor and 

dimensionless mass ratio are as Kn=0.015,  1nf =1.119 and M =0.5915, respectively [29]. The 

dimensionless geometrical properties and scale coefficients are given by (s=20.0,

=4006.94) and (   0.04sg ,   0.09)nl , respectively. In the numerical solution, 20 degrees of 

freedom are assumed (10 for u and 10 for w), leading to a converged solution.   

4.1. U0 as the bifurcation parameter  

The pulsatile fluid depends on two different velocity factors: 1) the mean velocity, and 

2) the amplitude of fluid velocity. In this subsection, the mean fluid velocity is varied as the 

bifurcation parameter. Figure 2 indicates the bifurcations for a nanotube conveying fluid 
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without pulsation (U1=0). The nanotube itself is assumed to be viscoelastic so as to take into 

account the effects of internal energy loss. The vertical axis of the diagram shows the 

transverse deflection at x=0.5. The unstable configuration is also plotted in Fig. 2 (dashed 

line). The dimensionless critical velocity related to static instability, in which the transverse 

deflection starts growing, is 4.99989.  

The bifurcation diagram of nanotubes conveying pulsatile fluid for motions in z direction 

is indicated in Fig. 3 for ωf = 5.00 and U1= 0.05U0. The only difference between Figs. 2 and 3 

is in the value of U1. Comparing Fig. 2 to Fig. 3 indicates that the bifurcation behaviour of the 

nanotube conveying nanofluid with constant velocity is completely different from the case 

with flow pulsation. Only 5% flow velocity variation changes the nanosystem behaviour 

significantly and even causes chaotic motion. In addition, the critical fluid velocity of the 

system related to instability is lower than the case without pulsation.   

In Fig. 4, the bifurcation behaviour of nanotubes conveying pulsatile fluid is indicated; 

this time, the pulsation frequency and the amplitude of the fluid velocity are taken as ωf = 

5.00 and U1=0.10U0, respectively. It is observed that the bifurcation behaviour of the fluid-

conveying nanotube is very sensitive to the nanofluid velocity variation. Only 5% increase in 

the amplitude of the fluid velocity with respect to the previous case illustrated in Fig. 3, 

yields a significant change in the bifurcation response. The chaotic regions are noticeably 

increased when U1 increases. In addition, increasing the amplitude of the nanofluid velocity 

decreases the critical velocity related to instability. For clarification, the detail of the system 

chaotic behaviour of Fig. 4 at U0=5.94 is given in Fig. 5 for both motions in x and z directions.  
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4.2. U1 as the bifurcation parameter  

In the following subsection, the fluid velocity amplitude plays the role of the bifurcation 

parameter. Figures 6(a) and 6(b) depict the bifurcation behaviour of nanotubes conveying 

fluid with pulsation for the motions in z and x directions, respectively. The mean fluid 

velocity is set to U0 = 4.92. Since the mean velocity is lower than the critical velocity, the 

nanosystem operates at the subcritical regime. For sufficiently small values of U1 (i.e. less 

than 0.01), a periodic motion is found for the system. Nonetheless, the viscoelastic 

nanotube displays a period-2 motion as a small increase in U1 is imposed on the 

nanosystem. The period-2 motion is valid until U1 =0.1435 in which the motion type turns 

into a period-4 type. Different motion types are also seen from Fig. 6 as U1 is further 

increased. For clarification, the details of the period-2 and period-4 motions of Fig. 6 at U1 

=0.1 and U1 =0.15 are, respectively, plotted in Figs. 7 and 8, respectively.  

Subcritical bifurcation responses for the nanotube conveying pulsatile nanofluid for 

motions in z and x directions are, respectively, shown in Figs. 9(a) and 9(b); these diagrams 

are plotted for U0 = 4.96. Comparing Fig. 9 to Fig. 6 reveals that a bit increase in the mean 

velocity in the subcritical regime results in a considerable change in the bifurcation 

behaviour. Near the critical point related to instability, the bifurcation behaviour turns into 

chaos with increasing the fluid mean velocity. The chaotic response occurs when the non-

dimensional amplitude of the nanofluid velocity is in the range of 0.2-0.3. The detail of the 

chaotic response of the system at U1 = 0.25 is shown in Fig. 10.  

Figures 11 and 12 depict the supercritical bifurcation of nanotubes conveying pulsatile 

fluid for U0=5.02 and U0=5.06, respectively. It can be concluded that the supercritical 

response of the nanotube with viscoelastic properties subject to fluid pulsation is 
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dominated by chaos close to the critical point. However, a slight increase in the value of the 

mean velocity noticeably reduces chaotic response in the viscoelastic nanotube for motions 

in both directions.    

 

5. Conclusions 

A nonlinear coupled continuum model has been developed to analyse chaos in fluid-

conveying nanotubes with flow pulsation. The influences of viscoelasticity as well as axial 

inertia effects were taken into consideration. A combination of nonlocal theory and the 

theory of strain gradient was utilised to model size effects. The size-dependent nonlinear 

partial differential equations were obtained via help of Hamilton’s approach. After 

discretising the nonlinear equations using Galerkin’s technique, they were numerically 

solved via a time-integration method.  

From numerical results, it was observed that the chaotic response of the nanotube 

conveying nanofluid with constant velocity is substantially different from that of flow 

pulsation. The critical fluid velocity in the case with flow pulsation is lower than the case 

without pulsation. Both mean fluid velocity and the amplitude of velocity variation have a 

significant role to play in the chaotic behaviour of the fluid-conveying nanotube. 

Furthermore, it was found that near the critical point, the subcritical response of the 

nanosystem turns into chaos with a slight increase in the fluid mean velocity. Nonetheless, a 

small increase in the value of the mean velocity substantially decreases chaos in the 

supercritical nonlinear dynamic response of the viscoelastic nanotube conveying pulsatile 

nanofluid. 

Declarations of interest: none.  
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Appendix A 

To show the validity of the present model, the calculated results are compared to those 

determined via experimental measurement in Table 2. The experimental results were 

extracted by Garcia-Sanchez et al. [43] using a scanning force microscopy method. Young’s 

modulus, density and boundary conditions of the elastic nanotube without fluid flow are 

taken as 1 TPa, 2200 kg/m3 and clamped-clamped, respectively. The results calculated using 

both classical and size-dependent theories are provided in the table. It is observed that 

compared to the classical theory, the results of the size-dependent theory are in a 

reasonable agreement with those of experimental measurement. The appropriate scale 

parameters for each length and radius are also listed in the table.   
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Table 1: A brief literature review on the mechanics of fluid-conveying nanotubes. 

Problem Authors year 

Mechanics of a single nanotube conveying fluid Soltani et al. [23] 2010 

Wave dispersion in a double-walled nanotube 

conveying fluid 

Wang et al. [24] 2010 

Pulsatile fluid effect on the instability of nanotubes Liang and Su [25] 2013 

Wave dispersion in fluid-conveying non-

homogeneous nanotubes  

Filiz and Aydogdu [26] 2015 

Mechanics of fluid-conveying boron nitride nanotubes Maraghi et al. [27] 2013 

Wave dispersion in nanofluid-conveying piezoelectric 

nanotubes 

Amiri et al. [28] 2018 

Linear dynamics of fluid-conveying nanotubes Bahaadini et al. [29]  2018 

Forced vibrations of fluid-conveying nanotubes Askari and Esmailzadeh [30] 2017 

Pulsatile fluid effect on the parametric instability of 

nanotubes 

Azrar et al. [31] 2015 

Linear mechanics of nanotubes conveying fluid with 

stress nonlocality and strain gradient 

Atashafrooz et al. [32] 2018 
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Table 2: Validation of the results using experimental measurement [43]. 

Length (nm) Radius (nm) 

Classical 
theory 

f1 (MHz) 

Size-
dependent 
theory 

f1 (MHz) 

Appropriate 
scale 
parameters  

( nl ,  sg ) 

Experimental 
measurement  

f1 (MHz) [43] 

640 1 133 36 (1.0,0.0) 30 

465 0.6 155 257 (0.0,0.40) 260 

572 2 329 291 (0.15,0.0) 290 
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Figure 1: The schematic diagram of a viscoelastic nanotube conveying pulsatile nanofluid.  

 
 

 
Figure 2: Bifurcation diagram of the viscoelastic nanofluid-conveying nanotube showing the transverse 
deflection at x=0.50. U1= 0; dashed line shows unstable configuration. 
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Figure 3: Bifurcation diagrams for the nonlinear transverse motion of nanotubes conveying pulsatile fluid (at 
x=0.50); ωf = 5.00 and U1= 0.05U0. 
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Figure 4: Bifurcation diagrams for the nonlinear transverse motion of nanotubes conveying pulsatile fluid (at 
x=0.50); ωf = 5.00 and U1= 0.10U0. 
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(g) 

 

(h) 

 

Figure 5: Chaotic motion of Fig. 4 at U0=5.94: (a), (c), (e), and (g) time history, phase planes, FFT, and Poincaré 
sections for w(x=0.5), respectively; (b), (d), (f), and (h) time history, phase planes, FFT, and Poincaré sections 
for u(x=0.65), respectively. 
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(a) 

 

(b) 

 

Figure 6: Subcritical bifurcations for the nonlinear motion of nanotubes conveying pulsatile fluid: (a) w(x=0.50); 
(b) u(x=0.65); U0 = 4.92, ω1= 2.9296, and ωf /ω1=2.0. 
 



27 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 7: Period-2 motion of Fig. 6 at U1=0.10: (a) and (c) time history and phase planes for w(x=0.5), 
respectively; (b) and (d) time history and phase planes for u(x=0.65), respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 8: Period-4 motion of Fig. 6 at U1=0.10: (a) and (c) time history and phase planes for w(x=0.5), 
respectively; (b) and (d) time history and phase planes for u(x=0.65), respectively. 
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(a) 

 

(b) 

 

Figure 9: Subcritical bifurcations for the nonlinear motion of nanotubes conveying pulsatile fluid: (a) w(x=0.50); 
(b) u(x=0.65); U0= 4.96, ω1= 2.0590, and ωf /ω1=2.0. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 10: Chaotic motion of Fig. 9 at U1=0.25: (a)-(d) time history, phase planes, FFT, and Poincaré section of 
w at x=0.5, respectively. 
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 (a) 

 
(b) 

 

Figure 11: Supercritical bifurcations for the nonlinear motion of nanotubes conveying pulsatile fluid: (a) 
w(x=0.50); (b) u(x=0.65); U0 = 5.02, ω1= 2.0526, and ωf /ω1=2.0. 
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(a) 

 
(b) 

 

Figure 12: Supercritical bifurcations for the nonlinear motion of nanotubes conveying pulsatile fluid: (a) 
w(x=0.50); (b) u(x=0.65); U0 = 5.06, ω1= 3.5378, and ωf /ω1=2.0. 
  


