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Abstract 

Humans have the ability to make sense of the world around them in only a single glance. This 

astonishing feat requires the visual system to extract information from our environment with 

remarkable speed. How quickly does this process unfold across time, and what visual information 

contributes to our understanding of the visual world? We address these questions by directly 

measuring the temporal dynamics of the perception of colour photographs and line drawings of 

scenes with electroencephalography (EEG) during a scene-memorization task. Within a fraction 

of a second, event-related potentials (ERPs) show dissociable response patterns for global scene 

properties of content (natural versus manmade) and layout (open versus closed). Subsequent 

detailed analyses of within-category versus between-category discriminations found significant 

dissociations of basic-level scene categories (e.g., forest; city) within the first 100ms of perception. 

The similarity of this neural activity with feature-based discriminations suggests low-level image 

statistics may be foundational for this rapid categorization. Interestingly, our results also suggest 

that the structure preserved in line drawings may form a primary and necessary basis for visual 

processing, whereas surface information may further enhance category selectivity in later-stage 

processing. Critically, these findings provide evidence that the distinction of both basic-level 

categories and global properties of scenes from neural signals occurs within 100ms. 
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Introduction 

A fundamental property of human perception is the ability to efficiently perceive and 

understand the visual world, from dense forests to soaring cityscapes, in only a single glance 

(Greene & Oliva, 2009). Investigations have often explored the neural mechanisms underlying 

scene perception within the spatial domain. These investigations have revealed that in addition to 

early visual cortex, the scene-selective parahippocampal place area (PPA) (Epstein & 

Kanwisher, 1998) is part of a network of regions subserving the ability to distinguish among 

natural scene categories (Walther et al., 2009). Critically, category-specific neural activity 

patterns were found to be similar between colour photographs and line drawings (Walther et al., 

2011), suggesting that the structure preserved in line drawings is sufficient for scene 

categorization. Yet recent investigations have revealed a role for the PPA in processing the 

surface information of a scene (Lowe et al., 2016; 2017; Park & Park, 2017). Both these features 

may therefore be integral to our experience of the visual world. To fully understand the 

mechanisms underlying these processes, however, we must not only seek to explore these 

dynamics across space, but also across time. These features may be closely interwoven spatially 

within the human brain, affording us limited precision when exploring their unique neural 

markers. Within the temporal domain, however, they may unfold on different timescales along a 

hierarchy of visual processing.  

Pioneering work using electroencephalography (EEG) has shown event-related potentials 

(ERPs) reflect properties of a visual stimulus within the first 150ms following an image (Thorpe, 

Fize, & Marlot, 1996; Vanrullen & Thorpe, 2001). Intracranial recordings have reported 

selectivity for object categories within only 100ms in monkeys (Vogels, 1999) and humans (Liu 

et al., 2009). Multiple category levels may be extracted, including basic-level categories and 
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global scene properties (Oliva & Torralba, 2001). Basic-level categories correspond to the most 

common categorical representation (e.g., forest, mountain), and members of these categories tend 

to share similar shapes and functions. In contrast, global scene properties correspond to various 

kinds of abstraction, which include descriptors of scene content (natural or manmade) as well as 

spatial boundary (open or closed scene boundaries) and scene affordance (navigability), among 

others. These global properties capture the holistic and diagnostic structure of an image and 

typically represent category resemblance at a low level rather than the more high-level meaning 

of a scene (Oliva & Torralba, 2006). An important question of concern involves defining the 

precise temporal ordering of these different levels of categorization (e.g., basic versus global). 

Neurophysiological evidence in humans has revealed sensitivity to global scene properties within 

~250ms (Groen et al., 2013; 2016; Cichy et al., 2016; Harel et al., 2016), yet basic-level 

categories may differ from these global categorizations. There is some behavioural research 

which suggests that basic categories emerge prior to global scene properties (Rosch et al., 1976; 

Tversky & Hemenway, 1983), but there is also work which suggests the opposite is true (Greene 

& Oliva, 2009; Loschky & Larson, 2010; Kadar & Ben-Shahar, 2012; Sun et al., 2016). In 

contrast, evidence has indicated that a basic or global category advantage may be flexible (Banno 

& Saiki, 2015), or require the same amount of information for scene recognition (Fei-Fei et al., 

2007).  

Visual properties may influence properties of the neural signal. For instance, there is 

evidence to suggest that edge-based information is processed with higher priority than surface 

information within the visual stream (Fu et al., 2016). The precise temporal dynamics of this 

relationship in scene perception, however, are unclear. The present study applied a multifaceted 

approach using EEG to examine the neural time course of natural scene processing for six scene 
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categories (beach; city; forest; highway; mountain; office) of colour photographs and line 

drawings during an orthogonal memorization task. Our approach explored the temporal 

dynamics of scene perception across basic-level categories and global scene properties using 

traditional event-related potentials (ERPs), and a novel classification analysis which examined 

the correlations of within-category versus between-category discriminations at a precise temporal 

scale. The aims of the present study were therefore twofold: To investigate the relative neural 

timing for basic- versus global-scene categorization, and to explore how available scene 

information contained within line drawings and colour photographs influences this timing. 

Materials and Methods 

Participants 

Sixteen paid participants (13 females, mean age 19.1 ± 2.3 years; all right-handed) with 

normal or corrected-to-normal visual acuity and no history of neurological impairments were 

recruited from the University of Toronto community. This sample size is consistent with those 

used in previous research exploring image categorization and EEG (e.g., Thorpe, 1996; 

Vanrullen & Thorpe, 2001; Groen et al., 2013; Harel et al., 2016). All participants gave informed 

consent in accordance with the University of Toronto Ethics Review Board. No participants were 

excluded from the analysis. 

Experimental Design and Statistical Analysis 

The experiment was programmed, displayed, and analyzed using Matlab (MathWorks, 

Natick, MA, R2014a) software running on a desktop computer, with a ViewSonic 21-inch 

monitor (1280x1024 resolution, 85 Hz refresh rate). The viewing distance was 57 cm, and 

participants made responses with their right hand on the mouse, and their left hand on the “z”, 
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and “x” keys of a standard keyboard. To initiate the start of either the study or test phase between 

experimental blocks, participants pressed the “enter” key with either hand. Continuous, 

unreferenced EEG was recorded at a sampling rate of 512 Hz using a BioSemi ActiveTwo 

system with 64 Ag/AgCl scalp electrodes in standard 10-20 placement with additional electrodes 

at each mastoid for off-line re-referencing, below each eye for blink detection, and at the outer 

canthus of each eye for lateral eye movement detection. All re-referencing and filtering was done 

off-line using ERPLAB (v13.0.0) software.  

432 colour photographs from six real-world scene categories (three natural: beaches, 

forests, and mountains; three man-made: city streets, highways, and offices; 72 per category; See 

Figure 1 for stimuli examples) were used following previous research (Walther et al., 2011). 

These images were chosen from a set of 4,025 images downloaded from the Internet as the best 

exemplars of their categories according to ratings by an average of 137 observers per image 

(Torralbo et al., 2013). Images were resized to 800 × 600 pixels. Line drawings were produced 

by trained artists at the Lotus Hill Research Institute (Wuhan, Hubei Province, People’s Republic 

of China), who traced outlines in the colour photographs using a custom graphical user interface. 

Line drawings were rendered by connecting the anchor points with black straight lines on a 800- 

× 600-pixel white background. Note that line drawings, while largely preserving scene structure 

and content, alter the spatial frequency spectrum drastically. Photographic images of natural 

scenes typically contain most contrast energy at low spatial frequencies, with a drop-off in 

energy following an inverse power law for higher spatial frequencies (Field, 1987). By contrast, 

for line drawings, almost all energy is shifted to high spatial frequencies (Walther et al., 2011, 

Figure S5). 
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Figure 1. Stimuli examples from each of the six scene categories as colour photographs (above), and their corresponding 

line drawings (below). 

  

 

 

 

 

 

Participants were instructed to view and memorize a series of images, after which they 

would receive a recall test. During each trial, participants were asked to maintain central fixation 

and refrain from all eye movements, including blinking. In the study-phase, images were 

presented within twelve randomized blocks. Each block contained sixty-six randomly-presented 

images obtained from all of the six scene categories, either for colour photographs or line 

drawings. Images from each stimulus category were evenly distributed across blocks of images. 

After the initial instruction to view and memorize a series of images, participants initiated each 

block by pressing “enter” on the keyboard, and began each trial by clicking the left mouse 

button. Trials were self-initiated to allow for sufficient time for rest between trials which would 

therefore minimize artifacts caused by eye movements. The onset of each trial with respect to 

participants’ button presses was randomly jittered across three temporal selections (300ms, 

500ms, or 700ms), and each image was displayed for 1500ms. Following the presentation of 

sixty-six randomly presented study images, participants were asked to recall whether an image 

was new or old during the test-phase. The test-phase consisted of twelve self-initiated and 

randomly-presented trials containing six new and six old images, and participants were 
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instructed to press the “x” key if the image was old (familiar), and the “z” key if the image was 

new (unfamiliar). 

Each individual data set was filtered using a finite impulse response (FIR) filter high-

passed at 0.01 Hz and low-passed at 70 Hz. The continuous data were then re-referenced to the 

average of the two mastoids. Lateral eye movements were detected using a step-like function 

(horizontal eye electrodes, threshold: 30 μv) and blinks were detected using a moving window 

peak-to-peak threshold (vertical eye electrodes, threshold: 80 μv). Data was segmented into 

1200ms analysis windows – composed of the 200ms immediately preceding onset of scene 

stimuli as the baseline period, which was baseline corrected to zero, and 1000ms post-stimulus 

onset as the critical window. Analyses focused on a single site of interest: centro-occipital (Oz) 

cortex, because we were interested in the earliest neural activity as visual information arrives in 

neocortex. Only study-phase trials were used in the analysis. 

To identify the time-course of content and boundary, we calculated t-statistics comparing 

the amplitude of pairs of ERPs (e.g., natural versus man made) at each time point of the ERP, 

using an alpha value of 0.01, to determine the first time point at which they differed. Given that 

this entailed calculating a large number of t-values, the possibility of a false alarm is high. To 

account for this possibility, we sought to distinguish between spuriously significant comparisons 

at random points in the time series from meaningfully significant comparisons that would cluster 

in time (that is, consecutive time-points would also show differences in amplitude). To this end, 

we calculated the number of consecutive, significant time points that would be expected by 

chance in a series of paired comparisons where no differences exist using a Monte Carlo 

simulation. We generated 100,000 epochs of normally distributed noise data. The data were 

temporally filtered the same way as the experimental data, and thresholded at the value where the 
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cumulative normal distribution was smaller than α = 0.01 or exceeded (1-α) = 0.99. The time 

points passing either threshold were deemed to be significant purely by chance. We analyzed 

clusters of temporally contiguous significant time points in all 100,000 samples. Our simulation 

revealed that a run of length 11 or greater occurred in fewer than 5% of the simulated noise data 

sets, and thus used this as a criterion for considering a given pairwise comparison’s statistical 

significance as meaningful (i.e., it needed to be followed by at least 10 statistically significant 

time-points).  

Results 

Global scene properties 

Previous research has shown that the distinction between global scene properties, such as 

the content of a scene (i.e., natural versus manmade), and the spatial boundary, or layout, of a 

scene (i.e., open versus closed) is an important factor mediating scene perception and our ability 

to navigate through an environment (Kravitz et al., 2011; Park et al., 2011). We therefore began 

our analysis by investigating the time course of these scene properties across scene categories 

and stimulus type (stimulus examples can be seen in Figure 1). To do so, we examined scene 

content by comparing natural (beach, forest, mountain) and manmade (city, highway, office) 

scenes, and we examined boundary by comparing open (beach, highway) and closed (forest, city) 

scenes, following previous research (Oliva & Torralba, 2001; 2006). We then examined, in 

colour photographs and line drawings separately, whether conditions (e.g., natural versus 

manmade) could be dissociated from patterns of responses during early electrophysiological 

activity. By including both colour photographs and line drawings in our investigation, we could 

examine the extent to which surface information, such as colour and texture, influences the time 

course of scene categorization in the human brain. Site selection was based on the distribution of 
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Figure 2. Site selection (above) was based on overall higher posterior response amplitudes using scalp maps 

averaged across participants for colour photographs and line drawings (below) from 100-800ms. Site selection 

therefore included centro-occipital site (Oz) cortex. 

electrophysiological activity across the scalp for all study-phase images averaged across 

participants, irrespective of image type and scene category (Figure 2). This activity revealed 

maximal response amplitudes over central occipital electrodes, and thus a centro-occipital site 

(Oz) was chosen as our region of interest. Note that we only used overall EEG power for site 

selection and not any of the discriminations between conditions. This site selection technique 

avoids statistical circularity similar to the “most active voxel” voxel selection technique (Pereira, 

Mitchell, and Botvinick, 2009). 

 

 

 

 

 

 

 

 

 

An ERP analysis was performed for both colour photographs and line drawings, 

separately, for scene content (Figure 3), and scene boundary (Figure 4). After computing a 

difference wave for conditions in our site of interest, we compared each time point in the 

difference waves to zero using a paired-samples t-test (α = .01) to find the earliest point at which 

the ERPs diverged. To ensure that these differences were not statistically spurious, we only 
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Figure 3. Event-related potentials (ERPs) and their difference waves for centro-occipital (Oz) cortex plotted in 

microvolts (μV) for natural (beach, forest, mountain) versus manmade (city, highway, office) scenes averaged 

across participants (N = 16). An asterisk indicates the earliest significant time point (p < 0.01) within a time 

component. 

considered time-points where a significant comparison was followed by 10 additional 

statistically significant time points. We were therefore able to identify the earliest time point at 

which a cluster was significantly different from zero using a moving window with a minimum of 

11 consecutive significant t-tests. The leading edge of said clusters occurred within the early 

visually-evoked P1 (50 – 130ms) and P2 (150-275ms) components (Busch et al., 2004; Calvo & 

Beltrán, 2014).  
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Figure 4. Event-related potentials (ERPs) and their difference waves for centro-occipital (Oz) cortex plotted in 

microvolts (μV) for open (beach, highway) versus closed (forest, city) scenes averaged across participants (N = 16). 

An asterisk indicates the earliest significant time point (p < 0.01) within a time component. 

 

 

 

 

 

 

 

 

When examining scene content in line drawings, the earliest significant discrimination 

between natural and manmade scenes during the examined time windows occurred during the P1 

component (84ms). For colour photographs, the earliest significant discrimination for natural and 

manmade scenes occurred during the tail-end of the P1 component (125ms), with sustained 

discrimination into the P2 component. To determine whether these earliest time points are 

significantly different we performed a bootstrap analysis. We randomly resampled subject data 

with replacement and then performed the same ERP analyses to determine the earliest time 

points for scene content and boundary in line drawings and colour photographs. We repeated this 

bootstrap for 1000 resamples and assessed the difference in the earliest time points that 

significantly discriminated between image types using a paired-samples t-test (two-tailed) over 

these 1000 resamples. The difference between the earliest significant discrimination for scene 

content in line drawings (84ms) and colour photographs (125ms) was statistically significant (t = 

21.4, p < .001).  
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When examining spatial boundary, early discrimination between open and closed scenes 

occurred during the P1 component for both line drawings (82ms) and colour photographs 

(100ms), with subsequent discrimination occurring during the P2 component for colour 

photographs. This difference was not statistically significant (t = 0.6, p = .55).  

These results show that neural categorization of global scene properties occurs rapidly in 

both colour photographs and line drawings, even as early as the P1 component. Thus, the 

findings here provide evidence that neural processing as early as the P1 component (50 – 130ms) 

with sustained activity extending through the P2 component (150-275ms), may be used to extract 

and differentiate information from scene categories. Statistical comparisons of the first times at 

which scene content could be discriminated using colour photographs compared to line drawings 

showed that line drawings led to earlier discrimination than colour photographs. This was not 

true for boundary discrimination. These findings suggest that the structure preserved in line 

drawings forms a primary and necessary basis for the distinction of scene content (natural versus 

manmade), and that additional information from colour and texture is taken into account in a 

later-stage, or subsequent wave, of processing.  

Basic-level scene categories 

Our next investigation aimed to determine the earliest time point at which basic category 

levels of scenes can be extracted from neural activity. We first plotted averaged ERPs for each 

scene category in both colour photographs and line drawings (Figure 5). ERP traces for the 

individual categories are very similar, and therefore investigating the differences between each 

pair of categories is impractical. We instead derive a measure of category selectivity using 

correlational similarity analysis of the ERP traces as a function of time. This analysis is inspired 

by the successful representational similarity analysis of fMRI data (Kriegeskorte et al. 2008). 
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Figure 5. Event-related potentials (ERPs) for centro-occipital (Oz) cortex plotted in microvolts (μV) for all scene 

categories (beach, forest, mountain, city, highway, office) averaged across participants (N = 16).  

Specifically, we analysed the similarity of voltage changes over time within and between scene 

categories. To do this, we computed two ERPs for each category. For each participant, scene 

category (beach, forest, mountains, city, highway, office), and stimulus type (colour 

photographs; line drawings), trials that remained after artifact rejection were randomly divided 

into two disjoint sets. 24 grand-average ERPs were then calculated by averaging across trials and 

participants for each scene category, stimulus type, and subset.  

 

 

 

 

 

 

 

 

 

 

 

We next calculated similarity matrices by correlating the grand average ERPs at Oz for 

each scene category in set 1 with those in set 2, separately for photographs and line-drawings 

(Figure 6A). This was done by computing the correlation of the ERP time courses between these 

independently computed average ERPs for every possible category pair (e.g., beach (half 1) with 

beach (half 2), beach (half 1) with city (half 2) etc.). For the correlation, the average amplitude at 

each time point at Oz was interpreted as a vector element, and the two vectors composed of the 
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Figure 6. (A) Similarity matrices showing the grand-averaged correlations of each scene category for all participants 

(N = 16) averaged across time (0 – 1000 ms) in centro-occipital (Oz) cortex. (B) Independent samples t-tests 

comparing diagonal and off-diagonal values. In each of these cases, r values were transformed to a normal 

distribution using the inverse hyperbolic tangent (Fisher’s z transform). ***p < 0.001 

 

two corresponding ERP time courses were Pearson correlated. The diagonal entries of the 

resulting matrices contain correlations of ERPs for matching categories, and the off-diagonal 

entries for non-matching categories. We quantified scene selectivity by contrasting the average 

similarity (i.e., r value) of the diagonal entries with the average similarity of the off-diagonal 

entries (Figure 6B), converting r values to a normal distribution using the inverse hyperbolic 

tangent (Fisher’s z transform). In general, this approach computes a “categorization signal”, 

which measures the extent to which scene category can be recovered from temporal voltage 

patterns in the ERP being measured. This analysis is common for analyzing spatial patterns of 

brain activity from fMRI data (Kriegeskorte et al. 2008). We apply it here to the temporal pattern 

of neural activity measured from each EEG electrode.  
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Figure 7. Grand-averaged discriminations (N = 16) of scene categories (diagonal vs. off-diagonal) for colour 

photographs (above) and line drawings (below) in centro-occipital (Oz) cortex. Green traces depict the category 

signal over time for individual iterations of subsampling, and the mean category signal over all 1000 iterations is the 

solid, black trace. Scalp plots (left) depict the topology of the category signal derived from the entire ERP at each 

electrode. These plots show the differences in within-category versus between-category Fisher-z corrected 

correlations. The colour bar presents the basic category signal; the difference between the average correlation on the 

diagonal and on the off-diagonal scene ERP correlation matrix. 

 

 

 

Average categorization signals over the entire time-course revealed that whole-ERP basic 

category similarity was strongest at the posterior electrode for both image types (Figure 7). 

Given our interest in the time-course of this similarity and the general scalp distributions of the 

signal, we calculated similarity indices again, but using a moving window containing 30 samples 

from ERPs in each window (spanning 58.6ms) for channel Oz. We chose to use 30 samples in 

this analysis to strike an optimal balance between temporal resolution (i.e., smaller time 

windows) and statistical power (i.e., reliable estimations of the correlation between time-series). 

These time courses of scene selectivity are shown in Figure 7. Green traces depict the category 

signal over time for individual iterations of sub-dividing the data, and the mean category signal 

over all 1000 iterations is the solid, black trace. To quantify the time at which basic category 

selectivity emerges in the ERP, we isolated the earliest time point at which the diagonal and off-

diagonal entries differed on each of the 1000 iterations, using an independent samples t-test, with 

an alpha threshold of .01. 
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For colour photographs, the median of the earliest time points that exhibited scene 

selectivity across the 1000 iterations was 92ms, SD = 11ms, with all 1000 iterations showing at 

least one time point with a significant categorization signal at p < .01. For line drawings, the 

median of the earliest scene category signals appeared at 86ms, SD = 17ms, with 997 iterations 

showing at least one time point with significant categorization. Comparing with Figure 7, these 

values align with the time course of the average categorization signal. Note that, given the 

moving-window approach, these are conservative estimates: the 92ms estimate of scene category 

discrimination at Oz for colour photographs, for example, is based on a correlation of the voltage 

in the 34ms-92ms range window of grand average ERPs, and thus may reflect differences in 

neural responses even earlier than 92ms for different scene categories. For line drawings, we also 

observe a second wave of category-specific signals over the P300 component (~300 ms after 

stimulus onset). This later-stage wave of activity may reflect decision-making processing 

attributed to resolving task demands.  

Our ERP results indicate that the structure preserved in line drawings is sufficient to 

discriminate neural signals for different categories of scenes. Differences in the discrimination of 

colour photographs and line drawings for global- and basic-level categorizations suggest that the 

colour and texture information present in colour photographs may influence category selectivity 

in the brain. One possible explanation for these results may relate to our understanding of the 

visual world: structure may form a primary basis for recognition, and surface information may 

contribute to recognition by filling in details not readily available from structure alone. To 

explore the time course of these contributions, we sought to determine to what extent and when 

in time neural activity patterns generalize between colour photographs and line drawings. When 
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analyzing the time course of the cross-image type analysis, we again rely on the 1000 iterations 

of the bootstrap in order to derive robust information about the earliest time point.  

Correlations across colour photographs and line drawings 

To answer this question, we examined similarities between scene categories in colour 

photographs and line drawings at Oz. We first created similarity matrices for all scene categories 

across colour photographs and line drawings (Figure 8A) and examined whether diagonal 

entries (e.g., the similarity between colour photographs of beaches and line drawings of beaches, 

and vice-versa) would differentiate from off-diagonal entries (e.g., the similarity between colour 

photographs of beaches and line drawings of highways, and vice versa) across the full time 

course of scene perception, by converting r scores to Fisher Z values and subtracting the mean 

Fisher Z value of off-diagonal elements from on-diagonal elements. Even though data from line 

drawings and colour photographs are completely separate, we nevertheless performed a similar 

bootstrap analysis as before by randomly dividing the data into two halves for 1000 iterations. 

This approach provides us with a better estimate of the robustness of our findings than would be 

the case with a single correlation matrix.  
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507 of our 1000 iterations showed at least one time point with greater similarity within 

than between scene categories, across stimulus type. Examination of this time course showed a 

median significant category signal in Oz at 338ms, SD = 168ms. Given that the latency of this 

signal is considerably later than within-image type signals reported earlier, it is presumably 

related to feedback from higher-level brain regions following an initial feedforward perceptual 

encoding stage (Van Rullen & Thorpe, 2001). These higher-level, later-stage signals are likely to 

encode higher-order scene properties, which, unlike low-level features, transfer between line 

drawings and colour photographs (Figure 8B). Later stages of scene processing may represent 

the abstract content of a scene and may be tolerant to low-level image changes (Dilks et al., 

2011). Given that this signal exhibited considerably more variability, however, this result should 

be interpreted with caution. 

 

Figure 8. (A) Similarity matrix showing the grand-averaged cross-decoding correlations of each scene category for 

all participants (N = 16) averaged across time (0 – 1000 ms) in centro-occipital (Oz) cortex (left), and an independent 

samples t-test comparing diagonal and off-diagonal values where r values were transformed to a normal distribution 

using the inverse hyperbolic tangent (Fisher’s z transform) (right). (B) Grand-averaged cross-decoding 

discriminations (N = 16) of scene categories (diagonal vs. off-diagonal) in centro-occipital (Oz) cortex. Green traces 

depict the category signal over time for individual iterations of subsampling, and the mean category signal over all 

1000 iterations is the solid, black trace. *p < 0.05   
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Correlations with low-level image features 

To assess to what extent decoding from the EEG signal was driven by low-level image 

features, we computed a profile of orientation features for the stimulus images. To this end, we 

convolved the images with oriented Gabor filters at four orientations at four scales, as 

implemented in the orientation pyramids in the SaliencyToolbox (Walther & Koch, 2006). Filter 

responses were then averaged within a 3 x 3 grid, resulting in a feature vector of 144 elements 

for each image (4 orientations x 4 scales x 9 grid cells). We computed Pearson correlations of the 

feature vectors of all pairs of images, separately for photographs and line drawings, and averaged 

the Fisher z-transformed correlations for all pairings of categories, e.g., averaging all pairs of 

individual forest and highway images for the (forest, highway) entry. This procedure resulted in 

a symmetric 6x6 category similarity matrix.  

For diagonal cells, we excluded the correlation of an image with itself, which is one by 

default and would artificially inflate the diagonal entries. We then calculated the correlation 

between off-diagonal cells in the image feature-based similarity matrices and the off-diagonal 

cells in the same ERP-based scene similarity matrices that were used to calculate the basic 

category signal, separately for colour photographs and line drawings. This allowed us to estimate 

the degree to which scene similarity in ERPs was related to scene similarity based on image 

features. The similarity matrices for photographs and line drawings are shown in Figure 9. For 

Oz, both CP and LD had a median of 128.91ms as the first point where off-diagonals in the EEG 

matrix correlated with the off diagonals in the image feature category matrix (p < .05). 
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Exploratory Analyses 

In addition to the hypothesis-driven analysis of the data recorded from the occipital site 

of interest (Oz), we also performed the same analysis with an exploratory-driven approach for all 

other electrode sites. The data are summarized in the Supplemental Information. Supplemental 

Figure 1 shows the earliest time points of first significance for scene categories in colour 

photographs, line drawings, and across colour photographs and line drawings for the basic-level 

category signal. Supplemental Table 1 shows the earliest time points for scene content (manmade 

versus natural) and boundary (open versus closed) discriminations for colour photographs and 

line drawings across the scalp. For colour photographs, we find discriminatory signals for both 

types of global scene properties even earlier in frontal than occipital electrodes. It is not 

uncommon to find early activity in frontal sites, and there is evidence to suggest that frontal 

cortex may be directly involved with stimulus processing (Imamoglu et al., 2014). Yet it should 

also be noted that, since the human head is a volume conductor, brain activity recorded across 

Figure 9. Scene image feature correlations (N = 16) between off-diagonal cells in the image feature-based similarity 

matrices and the off-diagonal cells in the ERP-based similarity matrices in centro-occipital (Oz) cortex. Gray traces 

depict the category signal over time for individual iterations of subsampling, and the mean category signal over all 

1000 iterations is the solid, black trace.  
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the scalp does not necessarily imply that this activity was generated at the electrode site. 

Nevertheless, this phenomenon will require further study in the future. Indeed, the scalp 

distribution of the time-course of ERP correlations with low-level features show a similarly 

widespread distribution, suggesting the signal is visually-driven.  

The earliest time points for discriminating basic-level scene categories are listed in 

Supplemental Table 2.  For both colour photographs and line drawings we find the earliest 

times at Oz and adjacent electrode sites. Correlations between colour photographs and line 

drawings appear to be successful earliest and most robustly at the centro-parietal electrodes (191 

ms), which could potentially reflect later-stage processing in higher-level cortex. Importantly, the 

exploratory analysis of discriminatory signals across the scalp was not used for selecting the site 

of interest (Oz) for the present study, yet the results of the exploratory analysis provide a post-

hoc validation of the selection of Oz as the recording site of interest. Supplemental Table 3 

shows the earliest time points for significant correlations between ERP-based similarity matrices 

and feature-based similarity matrices for all electrode sites.  

Behavioural Accuracy  

 Participants performed well on the memorization test with an average accuracy of 68.5% 

± 15.5%, confirming their attention to the task. To further analyze behavioural accuracy for 

recognition performance during the test phase, we conducted a two (stimulus type: colour 

photographs versus line drawings) by six (category: beach, city, forest, mountain, highway, 

office) repeated-measures ANOVA. This analysis revealed main effects of stimulus type (F1, 15 = 

43.27, p < 0.001) and category (F5, 75 = 7.82, p < 0.001), but no interaction (F5, 75 = 1.83, p < 

0.118). Overall, recognition rates for colour photographs (M = 73.8% ± 14.2%) were higher than 

for line drawings (M = 63.37% ± 15.0%). Response accuracy for all categories can be seen in 



Early Discrimination of Scene Categories 22 
 

Table 1. To explore these results in more detail, we conducted paired-samples t-tests (two-tailed) 

to examine differences across scene content (natural versus manmade) and boundary (open 

versus closed) collapsed across stimuli type (colour photographs and line drawings). These 

results revealed significantly higher recognition accuracy for manmade scenes compared with 

natural scenes (t15 = 4.62, p < 0.001), but no significant differences between open versus closed 

scenes (t15 = 0.10, p = 0.925). Given that closed scenes elicited overall larger response 

amplitudes compared with open scenes, despite no behavioural differences in recognition 

performance between these global properties, however, it is unlikely that task difficulty alone is 

driving neural differences across scene categories in the present study. While manmade scenes 

are defined by the presence of manmade artifacts, natural scenes are defined by their absence. 

For instance, adding a building to a forest turns the scene into a manmade scene. Adding a tree to 

a city, on the other hand, does not turn the city into a natural scene. It is therefore possible that 

manmade scenes are made intrinsically more memorable because they are defined by the 

presence of manmade object information within a scene. In fact, these results are consistent with 

previous work showing that natural scenes tend to be less memorable than manmade scenes 

(Isola et al., 2014).  

 

 

 

 

 

 

Table 1. Behavioral recognition performance in the old/new memory task 

 
Beaches City Forest Highway Mountain Office 

Colour Photographs 
72.40 
± 2.82 

79.69 
± 3.22 

73.96 
± 1.84 

73.44 
± 4.18 

58.85 
± 2.69 

85.38 
± 2.93 

Line Drawings 
65.15 
± 4.09 

66.15 
± 3.99 

57.81 
± 3.91 

67.19 
± 3.69 

56.25 
± 2.99 

67.19 
± 3.18 

All values represent mean (percent correct) ± SEM, chance = 50%. 
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Discussion 

Our findings indicate that scene categories can be discriminated from neural response 

amplitudes within a fraction of a second within the human visual system. Notably, both global 

scene properties (scene content, spatial boundary), and basic-level categories (beach, forest, 

mountain, city, highway, office) emerged from neural activity within the first 100ms of 

perception in both line drawings and colour photographs. These findings provide evidence that 

information that can be used to make fundamental characterizations of natural scenes required 

for the perception of the visual environment is available even earlier than previously believed. 

Given the early onset of these categorizations, and the similarity of this neural activity with 

feature-based discriminations, it is likely that the categorizations observed here are driven by 

low-level image features. Low-level image statistics are highly correlated with scene scale and 

scene category (Torralba & Oliva, 2003), and may form a powerful basis for perception, as they 

capture the holistic and diagnostic structure of a scene (Oliva & Torralba, 2006). The findings 

presented here suggest that these statistics may form an efficient foundation for scene 

categorization in the human brain, and thus support evidence that scene information may be 

computed by extracting diagnostic image statistics from pooled responses in early visual cortex 

(Groen et al., 2013). Critically, these properties emerged from neural activity during an 

orthogonal memorization task, supporting previous suggestions that these properties form a 

concrete and fundamental basis to our understanding of the visual world and may be 

automatically extracted (Oliva & Torralba, 2006).  

Overall, the time course of categorization over occipital cortex was similar for line 

drawings and colour photographs for early-stage recognition, which may highlight the role of 

scene structure, which is preserved in line drawings, as sufficient for both global scene properties 
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and basic category levels. Notably, the structure preserved in line drawings, and the subsequent 

ability of the visual system to process both global scene properties and basic category levels in 

line drawings suggests that structure may be a fundamental property of scene perception. This 

suggestion is supported with the emergence of an earlier category signal for scene content in line 

drawings than for colour photographs, which may point to the importance of structural properties 

in the discrimination of natural versus manmade scenes. In further support of this conclusion, 

recent evidence shows that contour junctions underlie neural representations of scene categories 

(Choo & Walther, 2016), and evidence has linked deficits in scene perception from 

topographical disorientation to a primary reliance on structural properties (Robin et al., 2017). 

Together with the present findings, this highlights an integral role for structure in perception.  

Yet texture and colour information also have a role in mediating scene recognition 

(Castelhano et al., 2008; Goffaux et al., 2005; Oliva & Schyns, 2000; Steeves et al., 2004; 

Renninger & Malik, 2004), and may interact across object and scene perception (Lowe et al., 

2015). Our results reflect a role for surface information: For colour photographs, but not for line 

drawings, category discrimination for global scene properties extended over the later-stage P2 

component. One explanation to account for these findings is that the processing of structure may 

be resolved earlier in time than surface information, and that surface information may provide 

additional context to further visual understanding. This explanation is consistent with previous 

ERP evidence suggesting edge-based information is processed with higher priority than surface 

information within the visual stream (Fu et al., 2016). Scene categorization is also influenced by 

diagnostically driven information (Malcolm, Nuthmann, & Schyns, 2014; Lowe et al., 2016), and 

these visual features may therefore shape scene categorization in distinct ways. We did not 

observe significant correlations across colour photographs and line drawings within the first 
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250ms of activity over our occipital site of interest, which indicates that the human brain uses 

low-level image statistics that do not generalize well between line drawing and colour 

photographs for initial, first-wave scene processing.  

The present findings also provide insight into a heated debate surrounding the temporal 

relationship between global scene properties, which represent the meaning of a scene, and basic-

level categories, which represent the most common category descriptors. This debate concerns 

the hierarchical nature of scene processing, and which distinction (basic or global) emerges first 

in the visual processing stream. Behavioural evidence has suggested that global properties of a 

scene (e.g., scene content) may emerge prior to even basic-level distinctions (Greene & Oliva, 

2009; Loschky & Larson, 2010; Kadar & Ben-Shahar, 2012; Sun et al., 2016). In contrast, some 

evidence suggests that basic-level distinctions emerge prior to global categorizations (Rosch et 

al., 1976; Tversky & Hemenway, 1983). Our results suggest these properties may be 

discriminated from neural activity within a similar time window within the visual processing 

stream: Both global scene properties and basic-level categories could be differentiated from brain 

activity within the first 100ms of scene processing over early visual areas for both colour 

photographs and line drawings. Neural markers for these distinctions in the present study 

therefore support behavioural evidence suggesting that these properties may require the same 

amount of information in recognition (Fei-Fei et al., 2007). It is also important to note that our 

results provide evidence that the information contained within early neural signatures can be 

used to discriminate between scene categories, yet behavioural performance may differ from this 

temporal scale. For instance, while the information used to distinguish between scene categories 

may be present as early as 100ms, human performance and recognition may be linked to task 
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context and observer goals. Future research should therefore examine the extent to which task 

context influences how these different properties emerge during behavioural performance.  

In summary, our results show that the separation of scene-related information occurs 

within the first 100ms of activity in the human brain, suggesting that an efficient neural network 

is able to discern information from the environment in only an instant. Distinctions of global 

scene properties, such as content and layout, emerge within a similar time frame to basic-level 

distinctions, and these distinctions may be influenced by different visual information (e.g., line 

drawings versus colour photographs). These findings highlight the fundamental basis of 

categorization for the purposes of perceiving and understanding our visual environment, and the 

conjunctive roles of structure and surface information underlying neural representations of scene 

perception. 
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