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Decrease in Ab42 predicts dopa-resistant
gait progression in early Parkinson disease

ABSTRACT

Objective: This prospective observational study investigates the role of CSF biomarkers in pre-
dicting progression of dopa-resistant gait impairments in Parkinson disease (PD) in the first 36
months from diagnosis.

Methods: Quantitative gait analysis was carried out longitudinally using an instrumented walkway
(GAITRite) in 108 people with PD and 130 age-matched controls. A subgroup of 44 people with
PD underwent lumbar puncture fromwhich a battery of CSF biomarkers wasmeasured: b-amyloid
1–42 and 1–40 (Ab42 and Ab40), total and phosphorylated tau protein (t-tau/p-tau181), and
a-synuclein (aSyn). Linear mixed models examined the association between CSF and dopa-
resistant gait characteristics (defined as substantial progression despite optimal medication).

Results: Low baseline CSF Ab42, and to a lesser extend Ab40, predicted decline in gait charac-
teristics in the first 3 years following diagnosis, independently explaining up to 12% of progres-
sion of step time variability (single task) and step length variability (dual-task). Interestingly, these
findings were independent of age and cognition.

Conclusions: These findings implicate underlying amyloid pathology in neural networks involved in
locomotor control. Results suggest that disturbed Ab metabolism may be a biomarker for dopa-
resistant gait impairments in early PD. Our findings raise interesting questions regarding
therapeutic interventions such as compounds or molecules aimed at reducing amyloid burden
to mitigate gait disturbance in early PD and potentially falls risk. Finally, progression of discrete
gait characteristics suggests they may have potential as clinical biomarkers of pathology and
disease progression. Neurology® 2017;88:1501–1511

GLOSSARY
aSyn 5 a-synuclein; Ab 5 b-amyloid; ICICLE 5 Incidence of Cognitive Impairment in Cohorts with Longitudinal Evaluation;
LEDD5 levodopa equivalent dose; LP5 lumbar puncture;MoCA5Montreal Cognitive Assessment; PD5 Parkinson disease;
PIGD 5 postural instability and gait.

Parkinson disease (PD) is a common neurodegenerative disorder, second to Alzheimer disease.1

Gait impairments are significant in very early disease, and even at this stage dominate as risk
factors for falls.2 While some aspects of gait are well-controlled by dopaminergic therapies in the
early stages, resistance to levodopa makes clinical management challenging.

Recent work highlights the significant contribution of cholinergic disturbance to gait,3,4 and
recent trials targeting the cholinergic system have met with moderate success.5 CSF proteins (e.
g., b-amyloid [Ab] 40 and Ab42; total and p-tau181), traditionally biomarkers of dementia and
dementia risk,6–9 have also been implicated in motor impairment, highlighting a role for path-
ologic protein accumulation other than Lewy body and PD-specific a-synuclein (aSyn). Cross-
sectional studies in early and advanced PD show an association between CSF biomarkers and
postural instability and gait (PIGD) phenotype.10,11 However, lack of quantitative gait analysis
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in these studies limits interpretation of find-
ings. More importantly, longitudinal studies
are lacking and urgently required in order to
establish prediction.

The aims of this study were to investigate
the role of CSF biomarkers to predict pro-
gression of dopa-resistant gait impairments
in the first 36 months from diagnosis in
PD. We were interested in the mechanisms
underpinning dopa-resistant gait progres-
sion to provide an essential platform for

future therapeutic interventions to mitigate
gait disturbance and potential falls risk.
Based on previous cross-sectional literature,
we hypothesized that Ab42 and p-tau181
would predict progression in dopa-resistant
gait characteristics.

METHODS Participants. Participants were recruited into

Incidence of Cognitive Impairment in Cohorts with Longitudinal

Evaluation (ICICLE)–GAIT a median of 5 months from diag-

nosis. This is a nested study within ICICLE-PD, an incident

cohort study conducted between June 2009 and December 2011.

Figure 1 Participant flowchart

Flowchart of participants recruited and assessed as part of the ICICLE-Gait study.
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A subset of the cohort was recruited into ICICLE-Gait at the

same time (figure 1). Controls of a similar age and sex were re-

cruited from community sources. The methods have been

described in full in previous publications,12–14 and are included as

supplemental material at Neurology.org. Participants were tested

“on” medication, which was defined as 1 hour after PD medi-

cation. Participants were evaluated at the Clinical Ageing

Research Unit, Newcastle University, UK.

Standard protocol approvals, registrations, and patient
consents. The study was approved by the Newcastle and North

Tyneside research and ethics committee and all participants gave

informed consent.

Demographic and clinical measures. Clinical assessments

included a standardized neurologic examination and theMovement

Disorder Society–revised Unified Parkinson’s Disease Rating

Scale,15 from which Hoehn & Yahr stage16 and motor phenotype

were calculated.17 Levodopa equivalent dose (LEDD) scores were

calculated according to established methods.18 Global cognition

was assessed using Montreal Cognitive Assessment (MoCA).19

Quantitative gait analysis and gait characteristics. Gait was
assessed using a 7 meters long 3 0.6 meters wide instrumented

walkway (Platinum model GAITRite, software version 4.5, CIR

Systems, Franklin, NJ). Participants were instructed to walk at

their comfortable walking pace for 2 minutes around a 25-meter

oval circuit under single and dual-task conditions. The dual-task

protocol involved walking and memorizing digits, based on the

Wechsler Forward Digit Span, which was used as the concurrent

cognitive task.20,21 Gait was repeatedly sampled as participants

walked over the GAITRite mat (included in the 25-meter circuit)

for a minimum of 5 passes (.40 steps per participant).22 Gait was

quantified according to an a priori model developed for older

adults23 and validated in PD24 that describes 16 discrete gait

characteristics.25 We examined change in each gait characteristic

over 36 months and characteristics that exhibited substantial

change (despite optimal medication) were defined as dopa-

resistant. Figure e-1 provides further details of the acquisition

and processing of the gait data.

Quantification of CSF biomarkers. CSF biomarkers were

measured using a robust protocol.13 Lumbar puncture (LP) was

performed on a subset of consenting participants using a standard-

ized method as detailed previously.13 All LPs were done between 8

and 10 AM after an overnight fast and while withholding PD

medications. Samples were centrifuged within 15 minutes of

collection at 2,000 g at 48C for 10 minutes. The supernatant

was divided into aliquots and frozen at 2808C, then analyzed

for Ab42 and Ab40 using commercially available assays: Ab42:

Innotest TH b-amyloid (1–42), Fujirebio Inc./Innogenetics,

Gent, Belgium; total and p-tau and Ab40: hAmyloid b40, ELISA

AbGmbH, Heidelberg, Germany.12,13,26,27 Samples with artificial

blood contamination (as assessed by visual inspection during LP,

erythrocyte count .50/mL3, or semiquantitative analysis of

hemoglobin [using Hemastix, Siemens Healthcare Diagnostics

GmbH, Eschborn, Germany]) were excluded from analysis. No

samples were excluded in the current analysis.

Statistical analysis. CSF biomarkers were selected for analysis

on the basis of previous reports.10,11 Dopa-resistant gait impair-

ments were identified as follows: first, change per year for all (16)

gait characteristics derived from single and dual task testing was

assessed with a linear mixed-effects model (lme4 package, R sta-

tistical software version 3.2.2, Vienna, Austria).28,29 Participants

and time (from baseline assessment to subsequent testing ses-

sions) were included as random effects and age at baseline and sex

as fixed effects. We then examined between-group change in gait

with group (control, PD) as a fixed effect. Rate of progression was

determined in the total cohort (n 5 108 PD and 130 controls)

over 36 months (repeat assessments every 18 months from

diagnosis) and then extracted for each individual for further

analysis. Finally, bivariate correlations between change in LEDD

and change in gait over 36 months for all CSF markers were

conducted (data not shown), with significant relationships

revealing dopa-resistant gait characteristics. These 3 steps vali-

dated the dopa-resistant classification; namely, substantial pro-

gression of gait impairment despite optimal medication;

progression greater than controls; and no association between

change in LEDD and gait over 36 months.

The second stage of analysis established whether CSF markers

could predict progression in dopa-resistant gait characteristics using

general linear modeling and controlling for age, global cognition

(MoCA), and baseline gait. Preliminary data analysis suggested

a potential interaction between baseline gait and CSF markers in

predicting gait progression, and models were examined with and

without this interaction. Baseline gait was dichotomized around

the group median (to ensure balanced groups) for each variable.

Linearity of progression, normality, and homoscedasticity

were inspected to ensure robustness of the fitted mixed and gen-

eral linear models. There was moderate positive skewness in gait

decline for step length and step time variability. Rerunning the

models with log transformations did not affect findings; therefore

the final models are presented using untransformed data to aid

interpretation. A threshold of p , 0.05 was used to inform

interpretation and 2-tailed 95% confidence intervals were calcu-

lated as interval estimates for rate of progression of gait impair-

ment and its predictors in the general linear model.

RESULTS Participant characteristics. Demographic
and clinical data are shown in table 1. Of the 158
participants recruited to ICICLE-PD, 56 consented
to LP and of these, 47 also consented to ICICLE-
Gait. Participants without longitudinal assessment at
each time point were excluded, leaving 44 partic-
ipants for analysis. Participants were a median of 5
months postdiagnosis at baseline and 41 months at
the 36-month follow-up assessment. They had mild
disease with little difference between the subgroup
who underwent CSF examination and the total PD
cohort. There were no differences in global cognitive
scores between the subgroup and total group of par-
ticipants with PD. The UPDRS-III scores, PIGD
phenotype, and mean LEDD dose were lower than
the entire group, indicating less severe disease.

Gait progression in early PD.Gait outcomes were stable
over 36 months for controls. For participants with PD,
dopa-resistant gait characteristics (and % yearly pro-
gression rate) under single task conditions included
variability of step time (4.5% per year), step length
(5.7% per year), and step width (3.4% per year), and
under dual-task conditions, variability of step length
(5.7% per year) (table 2 for descriptive data and change
depicted in absolute values). Progression of gait
impairment was defined by an increase in variability
(expressed as the SD). Increased dosage of levodopa
(LEDD) over the 36 months was not related to

Neurology 88 April 18, 2017 1503

http://neurology.org/lookup/doi/10.1212/WNL.0000000000003840


progression of variability of step time (single-task r 5
0.015, p 5 0.877), or step length (single-task r 5

20.039, p5 0.687; dual-task r5 0.155, p5 0.108),
corroborating that these variables represented dopa-
resistant progression. However, an increase in levo-
dopa dosage was related to an increase in single-task
step width variability (r5 0.218, p5 0.023), and was
therefore not included in subsequent analysis.

Table 3 and figure 2 describe the relationship
between baseline CSF and change in gait. Low base-
line Ab42 was an independent predictor of progres-
sion of step time variability (single task) in people
with high baseline step time variability (above
median: .16.7 ms). The overall model accounted
for 48.5% of variance in progression of step time
variability with Ab42 independently accounting for

12.0%, independent of age and global cognition,
which were not significant predictors. Ab42 pre-
dicted progression of step length variability (dual-
task) independent of baseline gait values, explaining
26.6% of the overall model variance and Ab42 inde-
pendently explaining 9.8%. Age and global cognition
were not significant predictors in the model. In addi-
tion, we found that Ab40 was a significant predictor
of progression of step length variability (dual-task),
with the full model explaining 22% of variance and
Ab40 alone explaining 11.1%. A significant interac-
tion indicated a low baseline Ab40 predicted progres-
sion in step length variability in participants with
a high baseline step length variability (above median:
.2.36 3 1022 meters). There were no associations
with total and p-tau181, Ab40/42, or aSyn.

Table 1 Baseline demographic and clinical characteristics of participants included in longitudinal gait analysis

Characteristic Control (n 5 130) PD (n 5 108)
Group difference,
p value

PD with CSF
data (n 5 44)

Age, y 69.5 (7.7) 66.9 (10.5) 0.073 66.9 (10.5)

Sex, F/Ma 72/58 36/72 0.001b 16/28

Height, m 1.70 (0.09) 1.70 (0.08) 0.304 1.70 (0.08)

Body mass, kg 78.3 (14.9) 78.7 (15.1) 0.765 78.3 (15.5)

MoCA (control n 5 73;
PD 5 103)

27 (2) 25 (4) ,0.001c 25 (4)

MMSE 29.2 (1.1) 28.7 (1.3) ,0.001c 28.8 (1.0)

NART 117 (8) 115 (11) 0.052 117 (12)

UPDRS-III — 25.4 (10.4) — 24.7 (10.0)

Hoehn & Yahr stage, n (%)

I — 28 (23) — 10 (23)

II 70 (59) 25 (57)

III 21 (18) 9 (20)

Motor phenotype, n (%)

PIGD — 51 (47) — 17 (39)

ID 10 (9) 6 (13)

TD 47 (44) 21 (48)

NFoG, n (%) who report FoG — 11 (9) — 3 (7)

LEDD, mg/d — 176 (143) — 145 (107)

t-Tau, pg/mL — — — 139 (76)

p-Tau181, pg/mL — — — 48 (20)

Ab42, pg/mL — — — 958 (276)

Ab40, pg/mL — — — 10,532 (4,035)

Ab40/Ab42 ratio — — — 11.2 (3.9)

a-Synuclein, pg/mL — — — 86 (35)

Data presented as the group mean (SD) unless otherwise stated.
Abbreviations: Ab 5 b-amyloid; FoG 5 freezing of gait; ID 5 indeterminate; LEDD 5 levodopa equivalent daily dose;
MMSE 5 Mini-Mental State Examination; MoCA 5 Montreal Cognitive Assessment; NART 5 National Adult Reading Test;
NFoG 5 freezing of gait questionnaire; p-tau 5 phosphorylated tau; PD 5 Parkinson disease; PIGD 5 postural instability
and gait difficulty; t-tau 5 total tau; TD 5 tremor dominant; UPDRS 5 Unified Parkinson’s Disease Rating Scale.
aNonparametric comparison between groups.
bp , 0.01.
cp, 0.001.
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Table 2 Baseline and change (Δ) of gait per year in 130 control participants and 108 people with Parkinson disease (PD)

Domain Gait characteristic

Controls PD

Control vs PD, Δ per yearBaseline Δ per year Baseline Δ per year

Single task

Pace Step velocity, m/s 1.30 (1.26, 1.33) 20.0054 (20.0124, 0.0017) 1.11 (1.05, 1.18)a 20.0099 (20.0204, 0.0005) 20.0044 (20.0164, 0.0077)

Step length, m 0.66 (0.65, 0.67) 20.0048 (20.0075, 20.0022)b 0.59 (0.56, 0.62)a 20.0086 (20.013, 20.0041)b 20.0036 (20.0085, 0.0013)

Swing time SD, ms 13.8 (12.9, 14.7) 20.156 (20.377, 0.066) 16.9 (14.9, 19.0)a 0.594 (20.058, 1.247) 0.733 (0.114, 1.352)c

Variability Step time SD, ms 15.2 (14.2, 16.2) 20.074 (20.357, 0.21) 18.8 (16.7, 20.8)a 0.841 (0.192, 1.491)d,e 0.864 (0.225, 1.502)e,g

Stance time SD, ms 18.5 (17.0, 19.9) 20.19 (20.612, 0.232) 23.2 (19.8, 26.5)a 0.818 (20.094, 1.73) 1.004 (0.072, 1.936)c

Step velocity SD, m/s 0.054 (0.051, 0.056) 20.0004 (20.0011, 0.0004) 0.054 (0.049, 0.059) 0.0009 (20.0005, 0.0022) 0.0013 (20.0001, 0.0027)

Step length SD, m 0.019 (0.018, 0.020) 0.0004 (0.0002, 0.0007)f 0.021 (0.019, 0.023)a 0.0012 (0.0005, 0.0019)b,e 0.0008 (0.0002, 0.0014)c,e

Rhythm Step time, ms 513 (504, 522) 21.17 (22.93, 0.58) 539 (525, 552)c 22.56 (24.71, 20.4)d 21.37 (24.14, 1.39)

Swing time, ms 372 (366.2, 378) 20.45 (21.42, 0.53) 379 (369, 388) 22.31 (24.06, 20.55)d 21.81 (23.67, 0.05)

Stance time, ms 654 (641, 668) 21.78 (24.58, 1.01) 699 (677, 722)a 22.67 (25.91, 0.57) 20.74 (25.07, 3.59)

Asymmetry Step time asymmetry, ms 8.0 (6.1, 9.9) 0.61 (0.075, 1.144)d 17.3 (10.1, 24.5)a 0.114 (21.34, 1.568) 20.479 (21.904, 0.946)

Swing time asymmetry, ms 7.1 (5.3, 8.9) 0.082 (20.342, 0.506) 13.7 (8.0, 19.5)a 20.567 (21.736, 0.602) 20.712 (21.802, 0.379)

Stance time asymmetry, ms 6.9 (5.1, 8.7) 0.026 (20.412, 0.464) 13.9 (8.2, 19.6)a 20.428 (21.646, 0.791) 20.529 (21.654, 0.597)

Postural control Step length asymmetry, m 0.017 (0.013, 0.020) 0.0005 (20.0003, 0.0013) 0.015 (0.009, 0.020) 0.0011 (20.0005, 0.0027) 0.0007 (20.001, 0.0023)

Step width, m 0.082 (0.076, 0.087) 0.0004 (20.0005, 0.0012) 0.082 (0.073, 0.092) 0.001 (20.0003, 0.0022) 0.0006 (20.0008, 0.0021)

Step with SD, m 0.021 (0.020, 0.022) 0.0000 (20.0003, 0.0002) 0.018 (0.016, 0.019)a 0.0006 (0, 0.0011)d,e 0.0006 (0.0001, 0.0012)c,e

Dual task

Pace Step velocity, m/s 1.22 (1.18, 1.26) 20.0023 (20.0091, 0.0046) 1.05 (0.98, 1.12)a 20.0063 (20.0165, 0.0039) 20.0041 (20.0159, 0.0077)

Step length, m 0.68 (0.62, 0.65) 20.0036 (20.0061, 20.0011)f 0.57 (0.54, 0.60)a 20.0072 (20.0117, 20.0026)f 20.0036 (20.0084, 0.0012)

Swing time SD, ms 15.4 (10.15, 20.7) 0.903 (21.146, 2.953) 18.9 (16.6, 21.3) 1.657 (0.878, 2.436)b 0.4 (22.052, 2.852)

Variability Step time SD, ms 17.6 (14.8, 20.4) 20.648 (21.722, 0.426) 20.8 (18.2, 23.3) 0 (21.08, 1.08) 0.576 (20.917, 2.069)

Stance time SD, ms 22.3 (20.4, 24.3) 20.041 (20.837, 0.754) 27.9 (23.7, 32.1)a 0.463 (20.593, 1.518) 0.566 (20.735, 1.867)

Step velocity SD, m/s 0.060 (0.056, 0.064) 20.001 (20.0024, 0.0004) 0.055 (0.050, 0.060) 0.001 (20.0005, 0.0025) 0.0019 (20.0002, 0.004)

Step length SD, m 0.020 (0.019, 0.0222) 0.0000 (20.0004, 0.0003) 0.021 (0.019, 0.024) 0.0012 (0.0006, 0.0019)b,e 0.0013 (0.0006, 0.0020)a,e

Rhythm Step time, ms 526 (515, 536) 21.44 (23.66, 0.78) 552 (537, 568) 23.5 (26.07, 20.93)f 22.05 (25.49, 1.39)

Swing time, ms 376 (369, 382) 20.67 (21.88, 0.54) 382 (372, 393) 22.59 (24.58, 20.61)f 21.91 (24.1, 0.28)

Stance time, ms 676 (660, 693) 22.17 (25.65, 1.3) 723 (697, 749)g 24.28 (28.19, 20.38)d 22.02 (27.34, 3.3)
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Because previous reports highlight a relationship
with motor phenotype (PIGD), we carried out addi-
tional analysis to see if PIGD phenotype predicted
gait progression. While we saw a relationship at base-
line, additional analysis of variance showed that gait
progression did not differ between PIGD and TD
motor phenotypes (p 5 0.407).

DISCUSSION We report a study exploring the role
of CSF biomarkers in the progression of gait impair-
ment in early PD. We prioritized dopa-resistant gait
characteristics because of the need to understand
mechanisms explaining progression and identify
potential therapeutic targets. Low baseline CSF
Ab42, and to a lesser extent Ab40, predicted decline
in gait characteristics in the first 3 years following
diagnosis. The nature of the findings suggests a role
for amyloid pathology. Our study included longitu-
dinal evaluation in very early PD, the use of a robust
model to inform (a priori) the selection of gait char-
acteristics, and a broad battery of CSF proteins. The
study was carried out in a community-based pro-
spective incident cohort with robust case ascertain-
ment and thus generalizes to idiopathic PD. Our
findings are important for 2 key reasons. First, they
point to potential mechanisms and novel targets for
intervention to mitigate dopa-resistant gait distur-
bance (and by implication fall risk) at a very early
stage of PD, and second, they identify discrete gait
characteristics as potential clinical biomarkers for
disease progression and therapeutic response.

Two previous studies have explored the relation-
ship between CSF proteins and motor features, clas-
sified by motor phenotype. Lower values of Ab42
and to a lesser extent Ab40 were predictors indepen-
dently explaining up to 12% of the variance in pro-
gression of dopa-resistant gait characteristics
compared with CSF total and p-tau181, Ab40/42,
and aSyn, which were not associated with gait pro-
gression. Our findings broadly concur with previous
cross-sectional reports showing a relationship with
amyloid (from CSF and PET imaging) and motor
disturbance especially in the PIGD phenotype in
early and advanced PD.10,11,30 However, importantly,
our findings highlight limitations of previous work
and argue for a more selective investigation of gait
impairment.

We found that motor phenotype is not a proxy
for dopa-resistant gait impairments as it is not spe-
cific to dopa-resistant features or their progression,
highlighting the limitations of cross-sectional study
design and the use of motor phenotype. This is
most likely explained by recent work that shows
motor phenotype is unstable in early disease and in-
dividuals transition between phenotypes, question-
ing its longitudinal utility.31 This study provides
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evidence implicating amyloid in the pathogenesis
of dopa-resistant gait characteristics in early PD,
although direct causality is unknown.

Our findings highlight a possible role for dis-
turbed amyloid metabolism in the neural networks
involved in gait control. A number of explanations
are possible to explain the mechanisms by which
disturbed amyloid metabolism may exert an influ-
ence on gait. Lower values of Ab42 and Ab40 are

generally considered to correlate with plaque for-
mation in the brain.7,32 Ab plaque formation may
exert a direct effect on synaptic function in the
absence of tau33 influencing the neural circuitry
subserving dopa-resistant gait. Alternatively, it is
possible that amyloid has a synergistic effect on
other proteins such as tau or aSyn catalyzing pro-
tein misfolding,34–36 leading to a more aggressive
rate of progression in gait disturbance. However,

Table 3 General linear models to predict change in gait using CSF (n 5 44) of people with Parkinson disease

Dependent variable (R2) Predictor
Unstandardized estimates
(95% CI) p Value

Models including Ab42

Change in single-task step time
SD, m/s (R2

adj 5 48.5%)

Intercept 3.441 (22.825, 9.707) 0.273

Age, y 20.01 (20.071, 0.051) 0.733

MoCA (0–30) 20.124 (20.264, 0.015) 0.079

Ab42, pg/mL 21.70 3 1025 (22.32 3 1023,
2.29 3 1023)

0.988

High baseline step time SD (.16.7
ms)

6.212 (2.267, 10.157) 0.003a

Ab42 (pg/mL) 3 high baseline step
time SD (.16.7 ms)

24.48 3 1023 (28.50 3 1023,
24.48 3 1024)

0.030a

Change in dual-task step length
SD, m/s (R2

adj 5 26.6%)

Intercept 1.373 1023 (21.543 1023, 4.283
1023)

0.347

Age, y 28.16 3 1026 (23.84 3 1025,
2.20 3 1025)

0.588

MoCA (0–30) 23.41 3 1025 (23.73 3 1025,
1.05 3 1024)

0.340

Ab42, pg/mL 21.07 3 1026 (22.04 3 1026,
21.01 3 1027)

0.031b

High baseline step length SD
(.2.36 3 1022)

9.70 3 1024 (4.39 3 1024, 1.50 3
1023)

0.001c

Ab42 (pg/mL) 3 high baseline step
length SD (.2.36 3 1022)

Not included in the final model

Models including Ab40

Change in dual-task step length
SD, m/s (R2

adj 5 22.0%)

Intercept 21.72 3 1024 (23.259 3 1023,
2.91 3 1023)

0.910

Age, y 26.29 3 1026 (22.65 3 1025, 3.91
3 1025)

0.700

MoCA (0–30) 2.043 1025 (24.713 1025, 8.783
1025)

0.544

Ab40, pg/mL 27.77 3 1029 (20.847 3 1028,
7.31 3 1028)

0.847

High baseline step length SD
(.2.36 3 1022)

2.34 3 1023 (8.80 3 1024, 3.40 3
1023)

0.002a

Ab40 (pg/mL) 3 baseline gait
(.2.36 3 1022)

21.47 3 1027 (22.82 3 1027,
21.24 3 1028)

0.033b

Data presented as group means (95% confidence intervals).
Abbreviations: Ab 5 b-amyloid; CI 5 confidence interval; MoCA 5 Montreal Cognitive Assessment.
ap , 0.01.
bp , 0.05.
cp , 0.001.
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contrary to our hypothesis, we did not see a rela-
tionship with total tau or p-tau181. These findings,
however, concur with other reports that tau per se is
not a primary driver of pathogenesis in PD.8 A
combination of plaque formation, aSyn aggrega-
tion, and disturbance of neurotransmitter function
(e.g., through synaptic rarefication via protein
aggregation) is most likely to contribute to mecha-
nisms underpinning gait progression. Age-related
white matter burden may also contribute, although
our results argue that for this cohort age was not
a significant feature. Postmortem follow-up is
required to confirm the precise mechanism. It ap-
pears that a combination of different pathologic
influences mediate gait progression in a discrete
manner in PD, emphasizing the need for a multi-
modal therapeutic approach.

We determined whether gait characteristics were
dopa-resistant by modeling gait progression over 3 years
from baseline, despite optimal medication. We also
identified only those variables that showed significantly
greater change compared to controls over the same time
period to avoid confounding due to age-associated
decline. Controls showed very little change in gait.

Participants with PD exhibited significant decline in 3
gait characteristics over and above controls under single
task (variability in step time, step length, and step width)
and one under dual task (variability of step length). Var-
iability of step time and step length were prominent, in
accordance with earlier work. Step time variability in
particular is a sensitive marker of incipient pathology.37

Establishing the functional and structural correlates
using multimodal brain imaging will help inform the
neural basis of these findings. We were also able to
discern those gait characteristics that were controlled
by levodopa (not reported) (e.g., step length and asym-
metry), highlighting specific positive benefits of levo-
dopa medication in early stages.

The effect of single and dual task protocols on
results is also worthy of comment. During single-
task gait, participants are able to recruit additional
attentional resources to maintain gait performance,
in contrast to dual-task conditions, which preclude
cognitive compensation by distracting attention.
Our findings imply that dual task step length vari-
ability is mediated through motor circuits, whereas
single task step time variability is more likely to be
subserved by motor and cognitive networks, as

Figure 2 Correlation between baseline CSF and change in gait

Relationship between baseline CSF markers and change in gait in people with Parkinson disease.
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indicated by a (tentative) significant association
between the MoCA and step time variability. Brain
imaging with amyloid and tau in early PD will help
clarify the topographic distribution of pathology
driving these changes.

Our findings have interesting clinical implica-
tions. CSF Ab42 is a validated in vivo marker of
Ab accumulation and is implicated in progression
of dopa-resistant gait impairments in early PD.
Early targeting of Ab pathology has been proposed
as a potential strategy to halt or prevent cognitive
decline and dementia in PD.8,9 Therapies to reduce
accumulation of amyloid or target its production
are under way. We argue that this may also offer
the potential to target early gait impairments, and
moreover, may provide a global strategy to concur-
rently target gait and cognitive impairment.
Recently, amyloid deposition in the brain and
decreased CSF amyloid have also been shown to
predict falls in older adults at risk of dementia,37

in support of this. Longer follow-up will determine
the relationship with fall risk in our cohort.

Our data also suggest that selective gait character-
istics may have a role to play in identifying early PD
pathology and specific gait characteristics may be use-
ful markers of progression in disease modification tri-
als. Evidence that motor changes precede cognitive
changes is common in older adults38 and has fueled
an interest in the role of gait as a clinical biomarker of
cognitive decline.6 The shared pathologic mecha-
nisms of gait and cognitive decline support the poten-
tial of gait characteristics as clinical biomarkers of
cognitive decline in PD14,39 and work is under way
investigating this.

Some study limitations should be acknowl-
edged. The population was drawn from an incident
PD cohort followed from diagnosis with repeat as-
sessments every 18 months. While misdiagnosis
may have contributed, this is unlikely to have had
a major effect. Diagnosis followed a stringent pro-
cess and the flowchart highlights revised diagnosis
over the time course of the study, showing that
the numbers are low. Dropout may also have con-
founded our analysis; however, this was low, sug-
gesting it would not exert any undue influence. It
is difficult to compare the absolute values of our
CSF data with those of others due to the use of dif-
ferent assays across studies. Moreover, we did not
have a control cohort with CSF. However, we were
able to control for the effects of aging in our gait
characteristics, only considering those that changed
with respect to controls, and are therefore confident
that our findings are PD-specific. Given the diffi-
culty of obtaining CSF, this emphasizes the impor-
tance of clinically available biomarkers (such as
high step time variability at diagnosis).

Our findings suggest that disturbed Abmetabolism
is a biomarker for dopa-resistant gait impairments in
early PD. They also raise interesting questions with
respect to therapeutic interventions such as com-
pounds or molecules aimed at reducing amyloid
burden to mitigate gait disturbance in early PD
and by implication fall risk. Comprehensive report-
ing of gait characteristics was critical to this study
and helped explain the heterogeneity of gait distur-
bance and therapeutic response. Moreover, selec-
tive progression of gait characteristics suggests
they may have potential as clinical biomarkers of
pathology and disease progression. Finally, the
overlap in the pathologic substrates of gait and cog-
nitive decline raises an interesting question as to
whether a monotherapy may be able to concur-
rently target gait and cognitive dysfunction in the
future.
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Editor’s Choice

Section Editor
Robert C. Griggs, MD

Editors’ Note: Commenting on “Long-term cortisol measures

predict Alzheimer disease risk,” Drs. Lattanzi and Silvestrini

point out the interrelationships among cortisol dysregulation,

insulin resistance, and blood pressure variability in Alzheimer

disease (AD) and suggest that the authors study the

association between cortisol exposure and the risk of non-

AD dementias. Dr. Onofrj critiques “Mediodorsal nucleus and

its multiple cognitive functions” because it omitted discussion

of confabulations. He also shares a case he described

with confabulations due to isolated bilateral lacunes of

mediodorsal nuclei. Golden et al., authors of the study,

agree and suggest a possible laterality to the role of the

thalamus in the phenomenon of confabulations.

—Chafic Karam, MD, and Robert C. Griggs, MD

LETTER RE: LONG-TERM CORTISOL MEASURES
PREDICT ALZHEIMER DISEASE RISK

Simona Lattanzi, Mauro Silvestrini, Ancona, Italy:
We read with interest the article by Ennis et al.,1

which found cortisol dysregulation to be related to
an increased risk for Alzheimer disease (AD), and
built on the unresolved question of whether sys-
temic homeostasis primarily contributes to AD
expression or represents an epiphenomenon of the
underlying brain pathology. Additional considera-
tions might provide useful insights toward a better
and more comprehensive understanding of this
issue. Within their pleiotropic effects, corticoste-
roids can greatly influence metabolic functions as
well as blood pressure levels and fluctuations, all of
which play key roles in dementia onset and course.2

In the CNS, corticosteroid receptors are not uni-
formly localized and abnormal glucocorticoid sig-
naling can result in cell type and site-specific
differences.3 Accordingly, it would be of great
interest to address the interrelationships among
cortisol dysregulation, insulin resistance, and blood
pressure variability,4 and to investigate the associa-
tions between cortisol exposure and the risk of non-
AD dementias.5
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AUTHOR RESPONSE: LONG-TERM CORTISOL
MEASURES PREDICT ALZHEIMER DISEASE RISK

Scott D. Moffat, Atlanta: I thank Drs. Lattanzi and
Silvestrini for the thoughtful response to our article.1

I fully agree with their suggested mechanisms of action
by which cortisol may increase risk for AD. In our
sample, we had very few non-AD dementias, which
precluded a more comprehensive assessment of how
cortisol dysregulation may affect risk for other de-
mentias, though it is a fascinating question.

1. Ennis GE, An Y, Resnick SM, et al. Long-term cortisol

measures predict Alzheimer disease risk. Neurology 2017;

88:371–378.
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LETTER RE: MEDIODORSAL NUCLEUS AND ITS
MULTIPLE COGNITIVE FUNCTIONS

Marco Onofrj, Chieti, Italy: The review on medio-
dorsal (thalamic) nucleus by Golden et al.1 omitted
referencing relevant information. Mediodorsal nucleus
was the focus of a historic debate on the origin of
confabulations in Korsakoff syndrome,2–4 which is
characterized by confabulations (beyond amnesia) only
if mediodorsal nuclei are involved.2–4 Clinical findings
observed in isolated lacunes of mediodorsal nuclei
could elucidate the point, yet isolated lacunes, like
the one described in the representative case,1 are
extraordinarily rare.
I recently described one case with confabulations

due to isolated bilateral and symmetric lacunes of
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mediodorsal nuclei where connectivity could also be
studied.5 In this report,5 the possible role of projec-
tions to medial prefrontal cortex, node of the anterior
default mode network associated with self-referential
narrative, was underlined (same as in the review by
Golden et al.). The omission of considering confab-
ulations in the review may be due to the fact that the
representative case described did not have confabula-
tions.1 However, the patient’s lesions were only in the
left mediodorsal nucleus,1 while from analysis of my
patient and discussion of the only 5 documented
cases, a key role emerged for the right mediodorsal
nuclei (or bilaterality) in the genesis of thalamic
confabulations.5

1. Golden EC, Graff-Radford J, Jones DT, Benarroch EE.

Mediodorsal nucleus and its multiple cognitive functions.

Neurology 2016;87:2161–2168.

2. Victor M, Adams RD, Collins GH. The Wernicke-

Korsakoff Syndrome. Philadelphia: FA Davis; 1971.

3. Mair WG, Warrington EK, Weiskrantz L. Memory disorder in

Korsakoff’s psychosis: a neuropathological and neuropsycholog-

ical investigation of two cases. Brain 1979;102:749–783.
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AUTHOR RESPONSE: MEDIODORSAL NUCLEUS
AND ITS MULTIPLE COGNITIVE FUNCTIONS

Erin C. Golden, Jonathan Graff-Radford, David T.
Jones, Eduardo E. Benarroch, Rochester, MN: We
thank Dr. Onofrj for the comments on our review,1

and for highlighting past literature that suggested the
mediodorsal nucleus of the thalamus may also be
involved in the development of confabulations in addi-
tion to the clinical features described in our case of an
isolated left-sided lesion. Indeed, Dr. Onofrj’s group’s
recent clinical case of bilateral lesions of the medi-
odorsal thalamic nuclei and the associated imaging data
lend further support to this concept. Their study and
case series would interestingly suggest a possible later-
ality to the role of the thalamus in the phenomenon of
confabulations and provide valuable groundwork for
future study in this area.

1. Golden EC, Graff-Radford J, Jones DT, Benarroch EE.

Mediodorsal nucleus and its multiple cognitive functions.

Neurology 2016;87:2161–2168.
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CORRECTIONS
Prespecified dose-response analysis for A Very Early Rehabilitation Trial (AVERT)

In the article “Prespecified dose-response analysis for A Very Early Rehabilitation Trial (AVERT)” by J. Bernhardt et al.,1

there was an error in the Creative Commons (CC) license statement. The article, funded by NIHR, should have published
with a CC-BY license rather than a CC BY-NC-ND license. An article with the corrected license statement was republished
on June 5, 2017. The authors regret the error.

REFERENCE
1. Bernhardt J, Churilov L, Ellery F, et al. Prespecified dose-response analysis for A Very Early Rehabilitation Trial

(AVERT). Neurology 2016;86:2138–2145.

Decrease in Ab42 predicts dopa-resistant gait progression in early Parkinson disease

The article “Decrease in Ab42 predicts dopa-resistant gait progression in early Parkinson disease” by L. Rochester et al.,1

funded by Parkinson’s UK (COAF Partnership), should have published with the Creative Commons Attribution License
(CC BY). The article with the corrected license statement was republished on June 3, 2017. The authors regret the error.
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