NH3-Sensing Mechanism Using Surface Acoustic Wave Sensor with AlO(OH) Film

Xu, Xiaofeng, Zu, Xiaotao, Ao, Dongyi, Yu, Jingxia, Xiang, Xia, Xie, Wanfeng, Tang, Yongliang, Li, Sean and Fu, Richard (2019) NH3-Sensing Mechanism Using Surface Acoustic Wave Sensor with AlO(OH) Film. Nanomaterials, 9 (12). p. 1732. ISSN 2079-4991

[img]
Preview
Text
nanomaterials-09-01732.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Official URL: https://doi.org/10.3390/nano9121732

Abstract

In this study, AlO(OH) (boehmite) film was deposited onto a surface acoustic wave (SAW) resonator using a combined sol-gel and spin-coating technology, and prepared and used as a sensitive layer for a high-performance ammonia sensor. The prepared AlO(OH) film has a mesoporous structure and a good affinity to NH3 (ammonia gas) molecules, and thus can selectively adsorb and react with NH3. When exposed to ammonia gases, the SAW sensor shows an initial positive response of the frequency shift, and then a slight decrease of the frequency responses. The sensing mechanism of the NH3 sensor is based on the competition between mass-loading and elastic-loading effects. The sensor operated at room temperature shows a positive response of 1540 Hz to 10 ppm NH3, with excellent sensitivity, selectivity and stability.

Item Type: Article
Uncontrolled Keywords: AlO(OH) film; Surface acoustic wave; Ammonia sensor
Subjects: F200 Materials Science
F300 Physics
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Elena Carlaw
Date Deposited: 13 Dec 2019 11:30
Last Modified: 13 Dec 2019 11:30
URI: http://nrl.northumbria.ac.uk/id/eprint/41740

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics