Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet

Morlighem, Mathieu, Rignot, Eric, Binder, Tobias, Blankenship, Donald, Drews, Reinhard, Eagles, Graeme, Eisen, Olaf, Ferraccioli, Fausto, Forsberg, René, Fretwell, Peter, Goel, Vikram, Greenbaum, Jamin S., Gudmundsson, Hilmar, Guo, Jingxue, Helm, Veit, Hofstede, Coen, Howat, Ian, Humbert, Angelika, Jokat, Wilfried, Karlsson, Nanna B., Lee, Won Sang, Matsuoka, Kenichi, Millan, Romain, Mouginot, Jeremie, Paden, John, Pattyn, Frank, Roberts, Jason, Rosier, Sebastian, Ruppel, Antonia, Seroussi, Helene, Smith, Emma C., Steinhage, Daniel, Sun, Bo, Broeke, Michiel R. van den, Ommen, Tas D. van, Wessem, Melchior van and Young, Duncan A. (2020) Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 13 (2). pp. 132-137. ISSN 1752-0908

[img]
Preview
Text
BedMachinePaper.pdf - Accepted Version

Download (46MB) | Preview
Official URL: https://doi.org/10.1038/s41561-019-0510-8

Abstract

The Antarctic ice sheet has been losing mass over past decades through the accelerated flow of its glaciers, conditioned by ocean temperature and bed topography. Glaciers retreating along retrograde slopes (that is, the bed elevation drops in the inland direction) are potentially unstable, while subglacial ridges slow down the glacial retreat. Despite major advances in the mapping of subglacial bed topography, significant sectors of Antarctica remain poorly resolved and critical spatial details are missing. Here we present a novel, high-resolution and physically based description of Antarctic bed topography using mass conservation. Our results reveal previously unknown basal features with major implications for glacier response to climate change. For example, glaciers flowing across the Transantarctic Mountains are protected by broad, stabilizing ridges. Conversely, in the marine basin of Wilkes Land, East Antarctica, we find retrograde slopes along Ninnis and Denman glaciers, with stabilizing slopes beneath Moscow University, Totten and Lambert glacier system, despite corrections in bed elevation of up to 1 km for the latter. This transformative description of bed topography redefines the high- and lower-risk sectors for rapid sea level rise from Antarctica; it will also significantly impact model projections of sea level rise from Antarctica in the coming centuries.

Item Type: Article
Subjects: F800 Physical and Terrestrial Geographical and Environmental Sciences
Department: Faculties > Engineering and Environment > Geography and Environmental Sciences
Depositing User: Elena Carlaw
Date Deposited: 13 Dec 2019 12:38
Last Modified: 31 Jul 2021 11:20
URI: http://nrl.northumbria.ac.uk/id/eprint/41741

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics