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Abstract

Adjustment on resonance frequency stability against the sintering temperature of 

Sr3V2O8 was realized through adjusting the Sr:V mole ratio. Effects of Sr:V ratio on 

sintering behavior and dielectric properties of Sr3V2O8 were studied. The sintering 

temperature was sucessfully reduced to 950 oC from 1150 oC. With increasing 

vanadium content, both relative permittivity and quality factor decreased, while the 

temperature coefficient of resonance frequency shifted from positive to negative values. 

Especially, a near-zero f of -1.1 ppm/°C along with a low permittivity (εr) of 9.8 and a 

quality factor Q×f of 24,120 GHz was successfully achieved in Sr3-yV2O8-y ceramic (y 

= 0.6, sintered at 950 °C). The wide compositional and processing adjustment window, 

favorable dielectric performances, and good chemical compatibility with silver render 

Sr3-yV2O8-y ceramics potential candidates in multilayer electronic devices.
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ceramics

1. Introduction

The developments of commercial wireless technologies, especially the fifth-

generation (5G) telecommunication, Internet of Things (IoTs) and military radar 

systems, have expanded the operating frequency to the millimeter-wave range. This 

new technological paradigm brings out the increasing demands of high-speed signal 

propagation at high-frequency regions [1-4]. For ceramics used as substrates, low 

permittivity (r < 15) is required for fast signal transmission and minimizing the 

crosscoupling between the substrates and the conductors [5-7]. Other properties such 

as high quality factors (Q×f) and near-zero temperature coefficient of resonant 

frequency (f) are also essential for practical applications [8-10]. To date, a large 

number of dielectric materials have been reported, however, only a few numbers of 

available options could meet the combination requirements simultaneously. Thus, 

developing new materials with desired microwave dielectric properties is still a 

challenge. 

To reduce the permittivity, two possible approaches have been proposed in the 

literatures [11, 12], one of which is to decrease the number of dipoles while the second 

is to lower the dipole strength. The former method involves lowering the density 

through introduction of porosity. This however sacrifices mechanical strength and 

thermal conductivity while increasing dielectric loss. Lowering the dipole strength is 

more desirable through introducing covalent bond. To date, a number of promising low-

permittivity materials (r < 15) have been reported. All of those materials have 
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tetrahedral unit cell, such as borates, silicates, phosphates, and vanadates [3, 12-14]. 

Amongest them, vanadates have attracted considerable attention due to cheap raw 

materials, simple synthetic process, and good microwave dielectric properites [15-18]. 

For example, alkaline earth orthovanadates, M3(VO4)2 (M = Mg, Ba, Sr) are promising 

candidates with low dielectric loss and low-r for high-frequency application [17-19]. 

Mg3(VO4)2 sintered at 950 °C possesses εr = 9.3, Q×f = 65,540 GHz and τf = -89.5 

ppm/°C [19], and Ba3(VO4)2 exhibited good dielectric performances with εr ~ 11.3, Q×f 

~ 62,347 GHz and τf ~ 28.8 ppm/°C when sintered at 1400 °C [20]. In our previous 

work, Ba3-xSrx(VO4)2 solid solution series were reported to have promising microwave 

dielectric properties with εr = 11-16, Q×f = 40,000-66,000GHz, and τf = 20-70 ppm/°C 

[21]. Particularly, Sr3(VO4)2 has the lowest densification temperature (~ 1150 °C) along 

with a combination of promising dielectric performances with a high quality factor of 

44,340 GHz and a low dielectric permittivity of 12.2. The high sintering temperature 

(>1000 oC) and relatively large positive f value (~ +63.5 ppm/oC), however, still limits 

its potential utilization in low temperature cofired ceramics (LTCC) application in 

which the ceramic layers should be cofired with the inner electrodes (generally silver) 

[22]. Thus, reduction in sintering temperature to below the melting temperature of silver 

(961 oC) and tailoring f to near-zero is necessary for M3(VO4)2 [23-25].

According to the binary phase diagram of SrO-V2O5, there are two stable phases 

Sr2V2O7 with triclinic structure and Sr3(VO4)2 and both of the phases can coexist [26]. 

Importantly, one of the advantages of Sr2V2O7 is to have a negative τf value ~ -34.8 

ppm/°C which can behave as a τf compensator for Sr3(VO4)2 . Both phases can coexist 
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by adjusting Sr:V mole ratio in the binary SrO-V2O5 system to complement each other 

[27]. Based on this rationale, this paper proposed the formation of the second phase to 

compensate f value in-situ by compositional modification, a reliable and simple 

method, which was validated and verified in Sr3-yV2O8-y ( 0 ≤ y ≤ 1) ceramics system. 

A series of different Sr:V ratio compounds in the Sr3-yV2O8-y (y = 0.2-0.8) system were 

prepared and characterized for the relationships between the phase composition and 

microwave dielectric properties.

2. Experimental Procedure

2.1 Sample preparation

Sr3-yV2O8-y (y = 0.2, 0.4, 0.6, 0.8) ceramics were prepared via conventional solid-

state method from individual reagent-grade oxide powders: SrCO3, (> 99.95%, Guo-

Yao Co., Ltd Shanghai, China) and NH4VO3 (> 99.9%, Guo-Yao Co., Ltd Shanghai, 

China). The powders were weighted according to the stoichiometric composition of Sr3-

yV2O8-y, and ball milled in alcohol medium for 6 h in nylon battle with zirconia balls. 

After drying the slurry at 120 °C for 1 h, the obtained powders were calcined at 850 °C 

for 6 h in air. The calcined powders were ball-milled again for 6 h followed by cold-

pressing into cylinders (10 mm in diameter and 6 mm in thickness) in a steel die under 

a pressure of 200 MPa with polyvinyl alcohol (PVA, 10 vol.%) as s binder. The Sr3-

yV2O8-y pellets were sintering at in the range of 900-1150 °C for 6h in the air. 

2.2 Characteristics

The crystal structure and phase(s) of the specimens were analyzed using X-ray 

diffraction (CuKα1, 1.54059 Å, Model X’Pert PRO, PANalytical, Almelo, Holland). 
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The diffraction patterns were taken at room temperature in the range of 10 °-80 ° by 

step scans. The bulk density was determined by the Archimedes’ method and the 

theoretical density was obtained by the following equation:

                (1)𝜌𝑡ℎ =
𝜔1 + 𝜔2

𝜔1
𝜌1

+
𝜔2

𝜌2

where ω1, ω2, and ρ1, ρ2 are the mass fractions and theoretical density of Sr2V2O7 and 

Sr3(VO4)2, respectively.

The surface morphologies of the sintered samples were observed by scanning 

electron microscope (FE-SEM, Model S4800, Hitachi, Japan). The relative permittivity 

(εr) and quality factor (Q×f ) of the samples were measured using a network analyzer 

(Model N5230A, Agilent Co., Palo Alto, America). The temperature coefficient of 

resonant frequency (f) was measured by noting the temperature shift of the resonance 

scope in the temperature range of 25-85 oC using a temperature chamber (Delta 9039, 

Delta Design, San Diego, CA) and were calculated as follows:

τf (ppm/oC) =         (2)
𝑓2 ― 𝑓1

𝑓1(𝑇2 ― 𝑇1) × 106

where, f1 and f2 represent resonant frequencies at temperatures T1 and T2, respectively.

3. Results and discussion

In order to get a clear understanding of the chemical reaction happening within 

Sr3-yV2O8-y system, thermal analysis was carried out. Fig. 1(a) shows the TG/DSC 

thermograph of the mixed precursor of the y = 0.2 sample. Three endothermic peaks 

between 150 oC to 450 oC were observed in the DSC curve, accompanied by a total 

mass loss of nearly 8% on the TGA curve. These three peaks, located at 200 °C, 225 °C 

and 370 °C correspond to the gradual decomposition of NH4VO3 into V2O5 and NH3 
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with the first as the primary decomposition process. A broad exothermic peak around 

527 °C can be related to the chemical reaction of V2O5 with SrCO3 to form Sr2V2O7 

and/or Sr3V2O8 with mass loss of nearly 8% due to the release of carbon dioxide. The 

endothermic peak at 880 oC is associated with the complete decomposition of SrCO3. 

Fig. 1(b) shows the XRD pattern of the y = 0.2 sample sintered at 860 and 960 °C. A 

peak belonging to SrCO3 is visible at 860 °C, which disappeared at 960 °C, hence 

confirming the thermal analysis.

Fig. 2(a) illustrates the XRD patterns of Sr3-yV2O8-y (y = 0.2-0.8) ceramics sintered 

at 950 oC. Within the range of 0.2 ≤ y ≤ 0.8, only two main crystalline phases, Sr2V2O7 

with a space group P-1 (No. 2) and Sr3(VO4)2 were observed and the volume fraction 

of Sr2V2O7 increased with increasing y value, as listed in Table 1, which was verified 

based on the bi-phase Rietveld refinement. As representatives, Figs. 2(b, c) show the 

refined XRD patterns with y = 0.2 and y = 0.8. The reasonable reliability factors indicate 

that a mixed-phase of Sr3(VO4)2 and Sr2V2O7 were obtained in all samples. Additionally, 

Fig. 2(d) shows the change of relative density as a function of y value and phase fraction 

of Sr2V2O7 calculated from refinement. All the sintered Sr3-yV2O8-y samples exhibited 

a relative density of over 95% and an upward trend with an increase in y value, 

indicating that the increment of V2O5 content facilitates densification of Sr3-yV2O8-y. 

The phase content of Sr2V2O7 increased from 20.47% to 81.31%, which is very close 

to the theoretical values (17.88% to 77.7%) obtained from the nominal formula Sr3-

yV2O8-y.

Fig. 3(a-d) present the SEM images of Sr3-yV2O8-y (y = 0.2-0.8) sintered at their 
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optimum temperatures. Following the high relative density (over 95%, Table 1), all the 

samples show well-densified microstructures. It can be seen that two different shapes 

of grains (round and columnar grains) coexisted in the samples in the composition range 

studied. Fig. 3(e, f) presented the elemental content in different grains (spot 1 and 2) 

captured using EDS. The Sr/V ratio of the columnar phases is approximately 1.52, 

which is close to the composition of Sr3V2O8, while Sr/V ratio for the round phase is 

around 1.01, corresponding to Sr2V2O7 phase. The EDS results confirmed that the 

round-like grains were Sr2V2O7 phase and the columnar-like grains were Sr3V2O8 phase.

The microwave dielectric properties (εr, Q×f, and f) of Sr3-yV2O8-y (y = 0.2-0.8) 

ceramics exhibited a downward trend with increasing y value as shown in Fig. 4. 

Particularly, the f value of the Sr3-yV2O8-y ceramics decreased from +48.7 ppm/oC to -

20.1 ppm/oC. Sr3-yV2O8-y composite having y = 0.6 and sintered at 950 oC demonstrated 

a near-zero f of -1.1 ppm/oC, along with εr of 9.8 and quality factor Q×f of 24,120 

GHz. According to the empirical Lichtenecker mixing rule for a two-phase composite, 

the effective εr, Q×f, and f values can be theoretically estimated by the following 

equations [28]:

 (-1≤ n ≤ 1)             (3)𝜀𝑛 = 𝑉1𝜀𝑛
1 + 𝑉2𝜀𝑛

2

                       (4)𝜏𝑓 = 𝑣1𝜏𝑓1 + 𝑣2𝜏𝑓2

                          (5)
1
𝑄 =

𝑣1

𝑄1
+

𝑣2

𝑄2

where ε1 and ε2 are the respective permittivities of Sr3(VO4)2 and Sr2V2O7 phase; f1 

and f2 are the f values of the pure Sr3(VO4)2 and Sr2V2O7 phase, V1 and V2 (V1 + V2 = 

1) are the volume fractions of the corresponding phases. And n = 1 or -1 correspond to 
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the parallel and series mixing law, respectively. When n approaches 0, Eq. (3) becomes 

logarithmic, usually used for randomly distributed composites: 

                      (6)𝑙𝑛 𝜀 = 𝑉1𝑙𝑛 𝜀1 + 𝑉2𝑙𝑛 𝜀2

As shown in Fig. 4(a), the measured values of εr for Sr3-yV2O8-y (y = 0.0-1.0) composites 

are matched with values calculated using equations of parallel or series mixing law, and 

Eq. (6). This indicates that the measured values of εr follow the logarithmic mixing law 

with the respective volume fraction. The theoretical Q×f and f values of Sr3-yV2O8-y (y 

= 0.2-0.8) are calculated using the Eq. (4) and (5) and shown in Figs. 4(b, c). The 

measured Q×f and f values were in agreement with the theoretical values, confirming 

that the dielectric properties can be conveniently and precisely tailored by this method.

The low sintering temperature (950 ̊ C) of sample with y = 0.6 enables its potential 

application in LTCC technology. To evaluate the chemical compatibility with silver, 

cofiring was carried out between the y = 0.6 and 20 wt.% Ag powders at 950 ˚C for 2 

h. As shown, XRD pattern recorded on the cofired sample only exhibits peaks of silver 

(ICDD No. 87-0717), Sr3V2O8, and Sr2V2O7. In addition, backscattered electron image 

(BEI) shows distinguish grains with different element contrasts and the bright grains 

were verified as silver by EDS analysis. These results suggest that the present ceramics 

have a good chemical compatibility with Ag electrode, rendering their potential use in 

LTCC technology.

4. Conclusions

To tailor the temperature coefficient of resonance frequency and lower the 

sintering temperature of Sr3V2O8, in-situ composite formation through modified Sr:V 
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ratio was proposed and a series of Sr3-yV2O8-y were prepared. Successful reduction in 

sintering temperature was achieved from 1150 oC to 950 oC, rendering their future 

possible application in LTCC technology. Microwave dielectric properties can also be 

tuned by varying the Sr:V ratio. In particular, a composition with y = 0.6 sintered at 950 

oC possessed a near-zero f of -1.1 ppm/oC, along with εr of 9.8 and quality factor Q×f 

of 24,120 GHz. This work paves the way for Sr3(VO4)2 ceramics to utilize in multilayer 

electronic devices.
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Table 1 Comparison of calculated and theoretical values, sintering temperature, and 

microwave dielectric properties of Sr3-yV2O8-y ceramics

The volume fraction of Sr2V2O7 Dielectric properties

y Calculation from 

Fullprof (%)

Theoretical 

Values (%)

Theoretical 

density

(g/cm3)

Relative 

density (

%)

Optimum 

sintering 

temperatur

e (oC) 

εr
Q×f

(GHz)

f 

(ppm/oC)

0.2 20.47 17.88 4.39 96.36 1000 11.8 36,400 48.7

0.4 37.19 36.70 4.31 97.21 1000 10.6 34,960 20.6

0.6 57.48 56.51 4.24 98.11 950 9.8 27,550 -1.1

0.8 81.31 77.67 4.14 98.55 950 9.4 24,100 -20.1
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Figure 1 (a) TG/DSC analysis of the y = 0.2 sample, (b) XRD patterns of Sr3-yV2O8-y (y = 0.2) sintered at 
860 oC and 960 oC. 
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Figure 2 (a) XRD patterns of the Sr3-yV2O8-y (y = 0.2, 0.4, 0.6, and 0.8) sintered at optimum 
temperature, (b) Rietveld refinement profiles for y = 0.2, and (c) for y = 0.8 and (d) change of phase 

fraction of Sr2V2O7 calculated from refinement. 
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Figure 3 SEM images recorded on the polished and thermally etched surfaces of Sr3-yV2O8-y ceramics: (a) 
y = 0.2, (b) y = 0.4, (c) y = 0.6, (d) y = 0.8; (e) and (f) EDS for spot 1 and 2, respectively. 
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Fig. 4 Variations in microwave dielectric properties as a function of y in the Sr3-yV2O8-y ceramics; the 
corresponding calculated values are also given for comparison. 
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Figure 5 (a) XRD patterns and (b) SEM micrograph of Sr2.4V2O7.4 + 20 wt.% Ag powders at 950 ˚C for 2 h 
(EDS analysis of Ag is shown in the inset of Fig. 5(b)). 
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