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 15 

Intertropical convergence zone (ITCZ) position is the dominant control on low-latitude 16 

precipitation distribution and is largely controlled by hemispheric temperature 17 

contrasts1,2. Recent modelling1,3,4 and observational5,6 studies suggest that 18 

anthropogenic aerosols may have contributed to southward ITCZ shifts by moderating 19 

Northern Hemisphere (NH) relative to Southern Hemisphere (SH) warming1,7,8. Despite 20 

this abundant evidence suggesting that NH-SH temperature contrasts affected low 21 

latitude rain belts over the last few decades, differentiating between anthropogenic 22 

forcing and century-scale natural variability is problematic and requires a record with 23 

nearly no chronological error and very high temporal resolution. Unfortunately, these 24 

types of records are extremely uncommon in tropical regions affected by the ITCZ.  25 

Here, we use an exceptionally well-dated and monthly-resolved 456 year-long stalagmite 26 
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record from Belize to demonstrate that unprecedented rainfall decreases coincided with 27 

increasing anthropogenic aerosol emission rates. The record also suggests that short-28 

lived drying occurred after large NH volcanic eruptions since 1550. These results 29 

strongly suggest that aerosol injections into the NH atmosphere result in southward 30 

ITCZ repositioning, and firmly implicate anthropogenic aerosol emissions as having 31 

caused 20th Century rainfall reductions in the northern tropics. Future changes in the 32 

distribution of aerosol emissions should therefore be a critical consideration when 33 

predicting regional susceptibility to severe rainfall variations.      34 

 35 

ITCZ position largely controls low latitude seasonal rainfall distribution. Relative ITCZ 36 

position is strongly influenced by hemispheric temperature contrasts and subsequent 37 

atmospheric restructuring, which draw the ITCZ toward the warmer hemisphere1,2,5. Indeed, 38 

considerable proxy evidence links Northern Hemisphere temperature to low-latitude rainfall 39 

throughout the Holocene9,10. Since 1900 however, limited instrumental evidence suggests a 40 

southward shift in ITCZ position3,5, a trend possibly driven by asymmetrical hemispheric 41 

warming due to the cooling effect of anthropogenic aerosols (e.g., sulphates3,4 and black 42 

carbon11) in the NH, but that could also arise from undetected natural variability. Climate 43 

models have attempted to assess the relative contributions of greenhouse gases (GHG) and 44 

aerosols to ITCZ displacement with contradictory results1,7. Limited long-term instrumental 45 

climate records from low latitudes complicates detecting climate shifts attributable to 46 

anthropogenic influences, and consequently future precipitation projections remain 47 

ambiguous12. Furthermore, chronological uncertainties associated with low latitude rainfall 48 

proxy records prevent establishing robust links between low-latitude rainfall amount and 49 

atmospheric aerosol distributions at a suitable resolution. Here, we discuss an exceptionally 50 

well-dated, monthly-scale stalagmite rainfall record covering 456 years from 1550 to 2006 51 
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C.E., thus covering the critical transition into the Current Warm Period (CWP) with 52 

unprecedented detail and providing much needed evidence to support modelling work.  53 

Stalagmite YOK-G was obtained from Yok Balum Cave in southern Belize (16° 12’ 30.780” 54 

N, 89° 4’ 24.420” W; 336 m.a.s.l.) (Supplementary Fig. S7). This site is near the 55 

northernmost extent of the ITCZ, a remarkably sensitive location for reconstructing even 56 

minor variations in ITCZ position.  The cave was undisturbed prior to 2005 and is 57 

characterised by a stable low-pCO2 atmosphere, consistent year round temperatures (22.3°C 58 

± 0.5), and high relative humidity (>95%) (Supplementary Fig. S17 and S18). The cave is 59 

remote and located below steep, dense forest that is unsuitable for farming or mechanised 60 

logging, minimising potential past human interferences at the site. Outside air temperature 61 

only varies between 20°C (December through February) and 24°C (June through August). 62 

However, rainfall is distinctly seasonal, ranging from 40-70mm per month in the peak dry 63 

season (February through April) to 400-700mm per month during the peak wet season (June 64 

through September) due to seasonal ITCZ and associated trade wind migrations that track the 65 

thermal equator13. Evapotranspiration surpasses precipitation during the dry months14, 66 

reducing effective rainfall and water input to the karst system. Stalagmite YOK-G was 67 

collected in 2006 and is 1090mm tall, but only the top 365mm are discussed here. 3648 68 

carbonate samples were collected by milling continuously at 100μm increments along the 69 

central growth axis, and carbon and oxygen stable isotope ratios were determined using a 70 

Thermo MAT 253 gas source mass spectrometer. 71 

Annual carbon isotope ratio (δ13C) cycles apparent throughout most of the record provide 72 

exceptional chronological control. The uppermost 8mm milled at a 100μm spatial resolution 73 

did not reveal δ13C cycles, which prevented counting cycles back from the date of collection. 74 

The δ13C cycle chronology is instead anchored to the first evidence of atmospheric ‘bomb’ 75 
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radiocarbon in 1955 (Supplementary Information and Fig. S14). Higher resolution (25 μm; 76 

weekly-scale) re-milling over the top 8mm also failed to detect δ13C cycles (Supplementary 77 

Fig. S12), strongly suggesting that no δ13C cycles exist in the most recent part of the 78 

stalagmite. If 2006 is used as the cessation of sample growth (due to collection), the calculate 79 

growth rate for this interval deviates significantly from the nearly uniform growth rate for the 80 

preceding ~500 years. This suggests that either that: a) carbonate precipitation slows down at 81 

some point since 1984, b) that the sample stopped growing earlier than the date of collection, 82 

or c) a combination of both a and b. This short interval (from 1984 to 2006) is therefore not 83 

included in the discussion due to increased chronological uncertainty. XRD results indicate 84 

that YOK-G is entirely aragonitic, which, due to its high capacity for uranium inclusion, 85 

permits the construction of a precise 230Th chronology (Fig. 1; Supplementary Table S1). 86 

Eighteen high precision MC-ICP-MS 230Th dates confirm that the δ13C cycle-derived model 87 

is robust (Fig.1). Between 1550 and 1983 C.E. YOK-G grew continuously with a mean 88 

growth rate of 0.82mm a-1. 89 

Here we utilise the YOK-G δ13C record as a palaeorainfall proxy. Stalagmite δ13C in low 90 

latitude regions not experiencing temporal shifts in vegetation type (e.g., shifts from C3 to C4 91 

vegetation) largely reflects effective rainfall amount and the hydrology of the drip feeding the 92 

stalagmite. Dry intervals promote: a) prior carbonate precipitation (due to lower groundwater 93 

flow rates), b) increased bedrock carbon contributions, and c) reduced soil bioproductivity, 94 

all contributing to a more positive δ13C. Conversely, wetter conditions result in more negative 95 

δ13C (see Supplementary Information). This interpretation is supported by the remarkable, 96 

demonstrably annual δ13C cycle reflecting seasonal water recharge conditions, as well as by 97 

interpretations of other Belizean stalagmite δ13C records as reflecting rainfall, notably 98 

Frappier et al.15, linking pronounced δ13C increases to El Niño related rainfall reductions, and 99 
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Webster et al.16 linking δ13C shifts over the last 3,300 years to rainfall. We note that these two 100 

studies represent the two published speleothem records from cave sites closest to Yok Balum 101 

cave (ATM Cave, ~100km to the north, and Macal Chasm,  ~80km to the north), and that 102 

both utilised δ13C as a palaeorainfall proxy (Supplementary Fig. S4). The YOK-G δ13C 103 

record is also corroborated as a proxy of ITCZ related rainfall variability by the Cariaco 104 

Basin record10. We stress that δ18O is also an extremely useful complementary rainfall proxy 105 

(see Supplementary Information), but we believe that under the conditions at our site, δ13C is 106 

more sensitive to subtle shifts in recharge.  107 

Both wet and dry season δ13C values (δ13Cwet and  δ13Cdry) are clearly distinguishable in the 108 

YOK-G record (Fig. 1c), providing a rare opportunity to isolate rainfall amount during 109 

specific seasons at a low latitude site. YOK-G δ13Cwet and the NINO3.4 Center of Action 110 

(COA) sea surface temperature (SST) reconstruction17 are anticorrelated (r = -0.3, p < 0.001 111 

with a nine-year moving average applied) during the preindustrial period (1550-1850), 112 

suggesting that eastern equatorial Pacific SST exerted a significant control on Belizean 113 

rainfall (Fig. 2a). Additionally, a weak but significant negative relationship (r = -0.19, p < 114 

0.001) exists between the Esper Northern Hemisphere Temperature (NHT) reconstruction18 115 

and δ13Cwet during the preindustrial interval of the record (Fig. 2c). This suggests a warmer 116 

NH tends to draw the ITCZ to a more northerly position, consistent with the results of 117 

numerous previous studies7,10,19. No relationship exists between δ13Cdry and NHT (r = 0.05, p 118 

= 0.43), again consistent with the interpretation of YOK-G δ13Cwet as an ITCZ rainfall proxy. 119 

Elevated NHT tended to cause a more seasonal rainfall distribution (greater seasonality) 120 

during the preindustrial portion of the YOK-G record (r = 0.32, p < 0.001 with nine-year 121 

moving average applied) (Fig. 2b).  122 
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However, post-1850 all the δ13C data (mean annual, wet season, and dry season) strongly 123 

suggest a steady drying trend coinciding with increasing NHT, suggesting a dramatic reversal 124 

in the relationship between NHT and ITCZ position (Fig. 3). Additionally, post-1850 YOK-G 125 

annual mean δ13C tracks trends in global GHG concentrations and anthropogenic aerosol 126 

emissions (Fig. 4). This indicates a southward ITCZ migration despite increasing NHT.  127 

The timing of this relationship reversal suggests an anthropogenic link. Recent research 128 

highlights the competing effects of GHG and anthropogenic aerosols on low latitude rain 129 

belts, with GHG increases believed to force the ITCZ to the north, and aerosols to the 130 

south5,7. Modelling studies suggest that a heterogeneous regional cooling effect induced by 131 

NH mid-latitude anthropogenic aerosol emissions drove the southward migration of the ITCZ 132 

over recent decades1,3,4,7, leading to drought in the Sahel8,20 and parts of monsoonal Asia21,22.  133 

The rainfall decreases implied by the YOK-G record closely follow patterns of regional 134 

industrialisation and aerosol emissions in North America and western Europe since ~1880 135 

(Figs. 4 and Supplementary Fig. S24). Peak US aerosol production during the period 1970-136 

1990 is estimated to have had a direct radiative forcing of -6 Wm-2 over the central and 137 

eastern US resulting in relative cooling of 0.5-1.0oC23,24. Cooling over the North Atlantic 138 

region modifies atmospheric circulation to accommodate cross equatorial thermal contrasts 139 

and subsequently drives the ITCZ southward 25. 140 

The YOK-G record also illustrates that very similar ITCZ repositioning occurred following 141 

large NH volcanic eruptions that injected sulphate aerosols into the atmosphere. These 142 

affected the ITCZ through a similar mechanism as anthropogenic aerosols, causing 143 

preferential NH cooling, southward ITCZ migration, and consequently drying in Belize. 144 

Particularly noteworthy is the coincidence of the large and climatologically significant Laki 145 

eruption (1783-1784) with the height of the largest preindustrial drought in Belize since 1550 146 
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C.E., evident in both the YOK-G and the historical records. The Laki eruption produced a 147 

peak estimated direct radiative forcing in August 1783 of -5.5 Wm-2 in the NH26, similar to 148 

the magnitude of the anthropogenic aerosol peak during 1970-1990 (-6 Wm-2), and resulted in 149 

comparable drying in Belize. However, we note that the direct climate effects attributable to 150 

the Laki eruption were unlikely to have lasted more than three years26,  so the 1783 eruption 151 

may have exacerbated or prolonged the 1765-1800 drought but was not the principal driver. 152 

SH volcanic eruptions, including those at low southerly latitudes, appear to force the ITCZ to 153 

the north. Most notable of these is the Tambora eruption in 1815, associated with increased 154 

Belizean rainfall the following year (Fig. 4). Of the nine largest NH eruptions identified in 155 

the GISP2 ice core sulphate record and the historical record since 155027, all are associated 156 

with drying in Belize; conversely, all three large SH eruptions are associated with increased 157 

rainfall at our site. Specifically, the YOK-G record indicates that NH eruptions result in 158 

substantially elevated δ13Cdry, and we suggest that this reflects a longer dry season caused by 159 

delayed onset of the summer wet season. Our data suggest that NH eruptions shortened the 160 

duration of the wet season, and SH eruptions extended wet season duration. The record 161 

provides compelling evidence that stratospheric sulphate aerosol injections associated with 162 

explosive volcanism resulted in short-lived ITCZ migration (Fig. 4). This result is consistent 163 

with recent modelling results suggesting that large volcanic eruptions that inject aerosols into 164 

the NH cause the ITCZ to migrate to the south, whereas SH eruptions push the ITCZ to the 165 

north (HAYWOOD et al., 2013), and with historical records suggesting reduced Nile 166 

discharge following the 1783 Laki eruption (Oman et al. 2006). Similarly, continuous NH 167 

anthropogenic aerosol emissions during the 20th Century drove sustained southward ITCZ 168 

repositioning. 169 

The monthly-resolved YOK-G δ13C rainfall record provides the strongest proxy evidence 170 

currently available that recent droughts in the northern tropics are attributable to extra-171 
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tropical anthropogenic forcing. Rather than being a cyclic natural phenomenon, sustained 172 

rainfall reductions only occurred after atmospheric aerosols increased following regional 173 

industrialization in the NH. The record also indicates that similar (albeit shorter lived) ITCZ 174 

repositioning occurred in response to sulphate aerosol forcing associated with large NH 175 

volcanic eruptions. Future modelling should focus on determining how shifts in regional 176 

aerosol emission rates might affect ITCZ position. This is particularly relevant to currently 177 

industrialising regions where large populations are dependent on seasonal rainfall. 178 

  179 

180 
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Figure captions 261 

 262 

Figure 1. YOK-G δ13C record and chronology. a, 230Th dates with errors (black line) and δ13C cycle 263 

chronology (red line). Shaded grey boxes indicate intervals where the δ13C cycles are present but 264 

somewhat less clear. The shaded pink box indicates the interval (1983-2006) where δ13C cycles are 265 

absent. Both chronological models are fitted with cubic splines. The 230Th dates were used to verify 266 

the accuracy of the δ13C cycle count chronology, but were not used directly in developing the 267 

chronological model. b, The YOK-G δ13C record against depth spanning the last 456 years, with inset 268 

expanded in c, illustrating δ13C annual cycles with peak wet (‘W’ = low δ13C) and dry (‘D’ = higher 269 

δ13C) season δ13C values identified. These were used as a further chronological tool, permitting 270 

identification of season of deposition. The grey shaded area to the right illustrates cycles during an 271 

interval where the δ13C cycles are less clear. 272 

Figure 2. YOK-G δ13C record. a, YOK-G δ13Cwet record and the Niño 3.4 COA reconstruction 17 for 273 

the period 1550 to 1850. b, Seasonality defined by the amplitude of each annual δ13C from peak wet 274 

season to peak dry season and Esper NHT 18 for the period 1550-1850. c, YOK-G δ13Cwet against NHT 275 

for the period 1550-1850. d, as in a but for the industrial interval of the record, 1851-1983. e, as in b 276 

but for the period 1851-1983. f, as in c but for the period 1851-1983.  277 

Figure 3. Scatterplot of YOK G δ13Cwet versus Esper NHT18. During the preindustrial period 278 

(1550-1849) (unfilled circles), showing weak significant negative correlation (r = -0.19, p < 0.005), 279 

and during the CWP (1850-1983) (black filled circles), which exhibits a switch to a significant 280 

positive correlation (r = 0.43, p < 0.001).  281 

Figure 4.  Annual mean YOK-G δ13C links to aerosols. a, Annual mean δ13C (black) and GISP2 282 

total sulphate record (blue) 27 for the period 1550-1983. Estimated aerosol production based on CO2 283 

emission rates relative to 1992 levels 28,29 for western Europe (green) and North America (yellow) 284 

post 1850. Major NH eruptions (red labels) and SH eruptions (dark blue labels) with a Volcanic 285 

Explosivity Index (VEI) of 5 or above, identified from the historical and GISP2 record. The dashed 286 
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lines designate the date of the eruption thought to have caused the GISP2 sulphate peak rather than the 287 

sulphate peak itself; occasionally the eruption occurred the year preceding the sulphate peak in the ice 288 

core. The location of the volcano responsible for producing the large 1809 sulphate peak evident in 289 

the GISP2 record is unknown. (*) denotes eruptions with a VEI of 6 or 7. The brown vertical bar 290 

indicates the timing of a large drought identified in the historical record 30. b, Relative climate 291 

response to NH and SH eruptions exemplified by YOK-G δ13C values (normalized to monthly means 292 

in the year prior to the eruption) in the year preceding the volcanic eruptions identified in panel a 293 

(‘Year -1’), the year of the volcanic eruptions (‘Year of eruption’), and three years following the 294 

eruptions (‘Years +1, +2, and +3’). The grey shaded area represents one standard deviation from the 295 

monthly mean values over the entire preindustrial period. Thick lines represent the average δ13C 296 

response for NH eruptions (red line) and SH eruptions (blue line). 297 


