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Impact of Channel Correlation on Different
Performance Metrics of OSSK-Based FSO System

Richa Priyadarshani, Student Member, IEEE, Anshul Jaiswal, Member, IEEE, Manav R. Bhatnagar, Senior
Member, IEEE, Jan Bohata, Stanislav Zvanovec, Member, IEEE,

and Zabih Ghassemlooy, Senior Member, IEEE

Abstract—In this paper, we study the impact of correlation
on the bit error rate (BER) and the channel capacity of a
free-space optical (FSO) multiple-input-multiple-output (MIMO)
system employing optical space shift keying (OSSK) over a fading
channel. In order to study a practical correlated channel, we
consider the effect of channel correlation due to both small-and
large-scale eddies and show that the use of OSSK over correlated
FSO channel can lead to an improved system performance
with increasing correlation level of upto 0.9. In this work, we
first develop an analytical framework for different performance
metrics of the OSSK multiple-input single-output system with
correlation and then extend our investigation by proposing an
asymptotically accurate mathematical framework for MIMO. We
also validate all the analytical results using MATLAB simulations.
Finally, we develop an experimental setup of FSO with two
correlated links to study the throughput and latency of the links
at different turbulence levels.

Index Terms—Arbitrary correlation, bit error rate, discrete-
input continuous-output (DCMC) capacity, free-space opti-
cal (FSO) communications, Gamma-Gamma (ΓΓ) distribution,
Green’s matrix, MIMO, optical space shift keying

I. INTRODUCTION

Recently, spatial modulation (SM) has been proposed as
a novel and promising technique for radio-frequency (RF)
communications, which offers improved spectral efficiency
(SE) and performance at reduced data-processing complexity,
compared with other widely adopted multiple-input-multiple-
output (MIMO) schemes [2]–[4]. SM exploits both signal and
spatial-constellations for data transfer by encoding a unique
sequence of bits for intensity modulation of a single transmitter
(Tx)-laser, while the remaining Txs are in the off-state. In [5],
optical SM (OSM) was proposed, which provided a simple
solution in free-space optical (FSO)-MIMO systems with
reduced inter-channel interference (ICI), simpler decoding,
and improved inter-antenna synchronization (IAS). Space shift
keying (SSK)– a special case of SM for an RF channel and
introduced in [6]–[8]–exploits only the spatial positions of
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Txs to encode the information bits thereby trading off the
receiver’s complexity against the data rate. A similar concept
was adopted in [9], to develop the doppelganger of SSK for
FSO with atmospheric turbulence (AT), termed as optical SSK
(OSSK).

OSSK is a simplified version of OSM benefiting from
its advantages such as reduced ICI, simpler decoding, etc.,
and has motivated researchers to investigate for indoor and
outdoor environments. In [10], [11], analyses and practical
implementations of these schemes in indoor scenarios (i.e.,
static channel with no randomness) were reported. However,
in outdoor applications with AT, which is caused due to
inhomogeneities in the temperature and pressure of the atmo-
sphere with time, evaluation of various performance metrics
for OSM/OSSK becomes a tedious task [12], [13]. In [12],
it was shown that OSM offers an improved performance than
conventional optical modulation methods in terms of power
and SE with reduced decoding complexity. In [9], the bit
error rate (BER) performances of OSSK under saturated and
weak AT regimes are evaluated using negative exponential and
lognormal models, respectively.

In [9]–[14], it was assumed that the channel is uncorrelated,
which is not true for practical outdoor FSO-MIMO links
with closely spaced multiple apertures. The spatial correlation
among different channel gains can be caused due to various
reasons such as close proximity of optical Txs and receivers
(Rxs), antenna arrangement, angle spread, and angle of arrival
(AOA), etc. However, for the line of sight (LOS) path between
the Txs and the Rxs, angle spread and AOA are usually not
considered as the dominant reasons for spatial correlation.
Therefore, the effect of correlated channels due to insufficient
antenna spacing on different performance metrics of a FSO
system must be considered for a more realistic study [15].
There exist few works on OSM/OSSK under the correlated
indoor environment [16]–[18]. In [16], OSM was shown to be
more robust to high channel correlation compared with other
multi-antenna schemes, however, AT was not considered in
this work. In addition, the performance of SM/SSK consid-
ering correlated RF channels were investigated in [19] and
[20]. But to the best of authors knowledge, no literature is
available on the performance of OSM/OSSK under correlated
outdoor FSO-MIMO channels. Therefore, the evaluation of
different performance metrics of OSSK/OSM under correlated
AT channels is still an important open research problem. In
this paper, for the first time, the BER performance and the
achievable capacity of an OSSK based FSO-MIMO system
over an AT induced correlated channel are investigated. The
reason for considering OSSK over OSM in this work is
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because of the fact that OSSK is a special case of OSM
with the dominant error in OSM (an error in the detection
of the Tx’s index - see Type-IV error in [12]) is the only
error in OSSK. Therefore, the conclusions drawn from this
work can also be used to infer the behavior of OSM over the
correlated outdoor environment. In the above-rendered context,
we outline the following novel contributions claimed in this
paper:
• A generalized statistical analysis is performed to derive

the joint probability density function (pdf) expression
of arbitrarily correlated gamma-gamma (ΓΓ) random
variables (RVs) by considering correlation among small-
and-large-scale eddies (SLSE). Note that, the derived pdf
can be easily mapped to the uncorrelated pdf and also to
the scenario where only large-scale eddies are correlated.

• Using the joint pdf of the correlated ΓΓ RVs, we derive
a novel analytical expression for the pdf of the difference
of arbitrarily correlated RVs. The resulting expression
is used to derive average pair-wise error probability
(APEP), average BER (ABER), and channel capacity
(b/s/Hz) of OSSK over correlated FSO-MIMO.

• In order to extricate some useful insights on coding gain
(Gc) and diversity order (Gd) of the proposed system, we
perform asymptotic BER analysis at high signal-to-noise
ratio (SNR) levels.

• Finally, we develop an experimental setup of the corre-
lated FSO-MISO system and studied the impact of AT
and correlation on the throughput and latency of the link.

Note that, in our previous work on OSSK in [1], we
considered only FSO-MISO with correlation because of large-
scale eddies, which corresponds to a special case of the
correlation model considered in the present work. Moreover,
analytical results presented in [1] were limited only to ABER
for MISO system as opposed to our current work, where we
present both ABER and capacity of a OSSK MIMO followed
by the experimental results. Also in [1], the asymptotic results
discussing Gc and Gd were not considered.

II. PRELIMINARIES
A. System Model

Consider an Nt × Nr OSSK FSO-MIMO system, where
Nt and Nr are the number of Tx-lasers and Rx-apertures,
respectively. In OSSK, the encoder encodes log2Nt = m bits
into the index of a single Tx by mapping each symbol into
the spatial constellation vector s = [s1, s2, ..., sNt ]

T , where
s ∈ {i1, i2, ..., iNt}, with il being the lth column of the
Nt ×Nt identity matrix and 1 ≤ l ≤ Nt [6], [8]. A sequence
of m-bits is transmitted using the index of the Tx, which is
only active for data transmission while all other laser Txs
are off. The transmitted optical signal from the active jth Tx
propagates through the AT induced correlated fading channel
and is collected by a photodetector using an optical lens at the
Rx. The regenerated electrical signal vector y ∈ RNr×1 at the
Rx is given as:

y =
√
EbHs + n, (1)

where the energy per bit Eb =
R2P 2

t

N2
r

, Pt is the transmit
power, and R is the photodetector responsivity, which is

considered 1 in this work [21, Fig. 2.21]. Further, s denotes
an Nt dimensional vector as defined earlier, n represents an
Nr dimensional noise vector (i.e., zero mean additive white
Gaussian noise (AWGN)) with a power spectral density of
N0/2, and H is the Nr × Nt arbitrarily correlated channel
gain matrix, containing the channel coefficients hr,l, which
denotes the correlated channel gain between the lth Tx-laser
and the rth Rx-aperture specifying the channel gain coefficient
with 1 ≤ r ≤ Nr.

It is assumed that, a perfect channel state information
is available at the Rx and the detector demaps the unique
sequence of bits emitted by the encoder by estimating the
active Tx-laser index. Accordingly, the Rx applies optimal
detector as the maximum likelihood detector:

l̂ = arg max
l
fY (y|sl,h)

= arg min
l

Nr∑
r=1

|yr −RPthr,l|2, (2)

where l̂ is the estimated Tx-laser index and 1 ≤ l̂ ≤ Nt.
B. Channel Model

It is well established in literature that, the ΓΓ AT model
provides an excellent match between the theoretical and
experimental data for weak-moderate-strong AT [21]–[23].
Therefore, in this paper, we will model the channel fading hr,l
using the correlated ΓΓ distribution. Note that, we consider
the outdoor downlink wireless channel model from the base
station (BS) to the subscriber unit (SU). It is assumed that,
antennas at the SU are sufficiently spaced and the correlated
fading channel exists due to the closely spaced Txs at the
BS [24]. Therefore, for the rest part of the paper we will
drop the subscript r from hr,l for simple notations. In case
of ΓΓ model, the received irradiance hl is considered to be
the product of two gamma RVs, xl and yl, which denote the
irradiance fluctuation contributions due to large- and small-
scale eddies, respectively. The pdf of ΓΓ Rv (hl = xlyl) with
no correlation can be expressed as [21], [23]:

fHl(hl) =
2
(
αβ
) (α+β)

2 h
(

(α+β)
2 )−1

l

Γ(α)Γ(β)
Kα−β(2

√
αβhl), (3)

where Kv(·) and Γ(·) are the modified Bessel function of the
2nd kind of order v [25] and the Gamma function, respectively,
α and β are the AT parameters, which denote the effective
numbers of large-scale and small-scale eddies, respectively
with the effective sizes varying from the inner-scale to the
outer-scale of turbulence denoted by l0 and L0, respectively.
For a plane wave propagation with l0 close to 0, i.e., a zero
inner scale condition, α and β are given by [21], [23]:

α =

(
exp

[
0.49σ2

R

(1 + 1.11σ
12/5
R )7/6

]
− 1

)−1

. (4)

β =

(
exp

[
0.51σ2

R

(1 + 0.69σ
12/5
R )5/6

]
− 1

)−1

, (5)

where σ2
R is Rytov variance, represents irradiance fluctuations

due to AT, which is given by σ2
R = 1.23C2

nk
7/6L11/6 and
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σ2
R = 0.5C2

nk
7/6L11/6 for the plane and spherical waves,

respectively; C2
n is the refractive index structure parameter

and k = 2π/λ is the wavenumber [23].
In order to present a generalized and a practical model for

the correlated AT channel, we consider moderate-to-strong
AT by assuming both small-and-large-scale turbulent eddies
contribute to the fading correlation. The correlation among
the two gamma RVs xi and xj is defined by the correlation
matrix Σ with elements of σi,j ≡ 1 for i = j and σi,j ≡ ρi,j ,
i 6= j, with i, j = 1, ..., Nt. Note, σi,j ∈ Σ. ρi,j is defined as
ρi,j ,

cov(xi,xj)√
var(xi)var(xj)

, where 0 ≤ ρi,j < 1, cov(·) and var(·)
denote the covariance and variance, respectively [26], [27],
[28]. According to [29], the correlation coefficient ρi,j also
depends on the transversal distance between the apertures dri,j
and the spatial coherence radius r0, and for a given separation
between the apertures, it can be obtained using:

ρi,j = exp

(
−
(
dri,j/r0

)5/3)
. (6)

Further, let us consider that, ρi,j represents the effective
correlation coefficient between the ith and the jth Txs, ρ(β)

i,j

and ρ
(α)
i,j denote the correlation coefficients corresponding

to the SLSE, respectively. Since, the large-and small-scale
fading are considered to be independent of each other, for
the identically-distributed and correlated ΓΓ model, ρ can be
given by [30]:

ρi,j =
αρ

(β)
i,j + βρ

(α)
i,j + ρ

(α)
i,j ρ

(β)
i,j

α+ β + 1
. (7)

It is evident from (7) that, for a given ρ there are an infinite
number of possible solutions for ρ(α)

i,j and ρ(β)
i,j . Therefore, to

generate the correlated ΓΓ RVs, the challenge is to find the
appropriate values of ρ(α)

i,j and ρ(β)
i,j using (7) for the considered

channel. Note, in [30, Section 5], the specific criteria for
setting the large- and small-scale correlation coefficients based
on the scintillation theory were proposed, which we can use
to determine the parameters ρ(α)

i,j and ρ(β)
i,j . Following are the

two most appropriate solutions valid for weak-moderate and
moderate-strong AT:
• Scenario 1: The correlation among the large-scale edies

is assumed to be dominant compared with the small-scale
eddies, i.e., ρ(α)

i,j < 1, ρ
(β)
i,j = 0.

• Scenario 2: Both SLSE are equally contributing to the
effective correlation, i.e., ρ(α)

i,j = ρ
(β)
i,j .

It is well established in literature that, for moderate AT, both
Scenarios 1 and 2 are applicable, however, in case of strong
AT only Scenario 1 is applicable [30].

Remark 1 (Limitations of Scenario 1): Since correlation
among small-scale eddies is ignored in Scenario 1, the model
is applicable for only lower values of ρ. E.g., for the minimum
value of ρ(α)

i,j = 0 in (7) for moderate AT with α = 4, β = 1.9,
the solution of ρ(β)

i,j = 0 will result in ρ = 0, while for the
maximum value of ρ(α)

i,j = 0.99 in (7), we will have ρ ≈ 0.27.

C. Statistics of the Correlated ΓΓ AT Model
In order to study the system’s behavior at high correlation

values, the joint pdf applicable to Scenario 2 must also be

derived. Therefore, by considering Scenario 2 in this section,
we will derive a generalized joint pdf of the correlated ΓΓ
RVs, which will also be valid for both Scenario 1 and the
uncorrelated system.

Consider [x1, ..., xNt ] be a set of Nt correlated Gamma RVs
with AT parameter α and correlation matrix Σ(α), which can
be modelled using the following joint pdf expression [26],
[28]:

fX1,....,XNt
(x1, ..., xNt) =

|W(α) |αexp(−
∑Nt
n=1

w(α)
n,nxn

Ω(α) )

Γ(α)

×
∞∑

i1,..,iNt−1=0

xα+i1−1
1 x

α+iNt−1−1
Nt

(Ω(α))−Ntα−2
∑Nt−1
j=1 ij

×
Nt−1∏
j=2

x
α+ij−1+ij−1
j

Nt−1∏
n=1

[
| w(α)

n,n+1 |2in

in!Γ(α+ in)

]
, (8)

where | · | denote the determinant and Ω(α) = E[xi]/α.
Further, W(α) = (Σ(α))

−1
and w(α)

i,j denotes the elements of
W(α). Note that, (8) is valid only for W(α) following the tridi-
agonal property. However, the inverse of Σ(α) is not always
tridiagonal for all practical correlation models. Therefore, in
this paper we will use Green’s matrix approximation of Σ(α)

and Σ(β), respectively, in the analysis [28]. Similarly, the joint
pdf of Nt correlated Gamma RVs, [y1, ..., yNt ], with the AT
parameter β and the correlation matrix Σ(β) can be obtained
by replacing α with β and W(α) with W(β) in (8).

Then, a set of Nt correlated ΓΓ RVs [h1, ...., hNt ] can
be generated as a product of two multivariate Gamma RVs
[x1, ..., xNt ] and [y1, ..., yNt ], which arise from the large-and
small-scale eddies, respectively [26], [30]; such that hi = xiyi.
Therefore, the joint pdf of the multivariate arbitrarily corre-
lated ΓΓ-distributed RVs can be obtained using:

fH1,..,HNt
(h1, ., hNt) =

∫ ∞
0

· · ·
∫ ∞

0

fX1,..,XNt
(x1, .., xNt)

x1 · x2 · · ·xNt

×fY1,..,YNt

(
h1

x1
, ..,

hNt
xNt

)
dx1 · · · dxNt . (9)

By substituting (8) and fY1,.....,YNt
(y1, ...., yNt) in (9) and

employing [31, Eq. (3.471/9)], the joint pdf of correlated ΓΓ
RVs, with both SLSE contributing to the correlation, can be
derived. Let us establish the following theorem based on the
above-stated analysis:

Theorem 1: The joint pdf of arbitrarily correlated ΓΓ RVs,
by considering that correlation is stimulated due to both SLSE,
is given by:

fH1,...,HNt
(h1, .., hNt) =

∞∑
i1,..,iN−1=0
t1,..,tN−1=0

%αβ

Nt∏
j=1

[
2h

β+mβj−1

j

×
(
w

(β)
j,j hjΩ

(α)

w
(α)
j,j Ω(β)

)α+mαj
−β−mβj
2

×Kα+mαj−β−mβj

(
2

√
w

(α)
j,j w

(β)
j,j hj

Ω(α)Ω(β)

)]
, (10)
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where mαj = ij and mβj = tj for j = 1, mαj = iNt−1

and mβj = tNt−1 for j = Nt, mαj = ij−1 + ij and mβj =
tj−1 + tj for j = 2, 3, .., Nt − 1, and

%αβ =
Ω(α)(−Ntα−2

∑Nt−1
j=1 ij)

Ω(β)(−Ntβ−2
∑Nt−1
j=1 tj)

Γ(α)Γ(β)

×|W(α) |α|W(β) |β
Nt−1∏
n=1

[
| w(α)

n,n+1 |2in | w
(β)
n,n+1 |2tn

in!Γ(α+ in)tn!Γ(β + tn)

]
. (11)

Note that, we have derived (10) by considering the correlation
of Scenario 2, nevertheless, the derived expression is gener-
alised and it can be easily mapped to the pdfs applicable to
the correlation of Scenario 1 as well as the uncorrelated case.
Later, we will discuss the mapping technique following the
derivation of the ABER in Section III.
D. Instantaneous BER

We can use the widely accepted union bound technique to
find a tight upper bound of BER for OSSK-FSO-MIMO in
the form of [9]:

BER(u)
OSSK ≤

1

Nt log2(Nt)

Nt∑
l1=1
l2=1

dH(cl1 , cl2)P(l1 → l2), (12)

where dH(cl1 , cl2) is Hamming distance between the transmit-
ted and received symbols cl1 and cl2 , respectively, by counting
the number of bits in error. Note, for cl1 = cl2 , Hamming
distance is zero. Moreover, P(l1 → l2) is the PEP between
symbols cl1 and cl2 , which is given by:

P(l1→ l2) =Q

(
1

Nr

√√√√γ̄ log2Nt
2

Nr∑
r=1

| hrl1 − hrl2 |2
)
, (13)

where Q(·) is Gaussian-Q function, γ̄ = EbTb/(N0 log2Nt)
is the average SNR and Tb is the symbol period. Note, hrl1 and
hrl2 are the fading coefficients corresponding to the channel
gain between the rth Rx and the l1 and l2 Txs, respectively,
which are mathematically characterized as correlated ΓΓ RVs.
E. Channel Capacity

There exists only a few works in literature, which have
studied the capacity of the correlated FSO system. Most of
the existing works have studied Shannon capacity of a FSO
system, which is applicable to a continuous-input continuous-
output memoryless channel. In such cases, the channel input
is continuous-amplitude discrete-time defined by Gaussian
distribution. E.g., the ergodic capacity of FSO-MIMO was
studied in [32] by assuming a continuous input with Gaussian
distribution. Nevertheless, in the case of a practical FSO-
OSSK system, only a single laser is activated at a time.
Therefore, it will be more pertinent to derive the discrete-
input continuous-output (DCMC) capacity by considering the
input alphabets to be finite instead of a Gaussian input and
also the channel to be correlated. The DCMC capacity of a
FSO system with OSSK is given as [33]:

CDCMC = max
f(x1),...,f(xNt )

Nt∑
l=1

∫ ∞
0

· · ·
∫ ∞

0

f(y | xl)f(xl)

× log2

(
f(y | xl)∑Nt

m=1 f(y | xm)f(xm)

)
dy, (14)

where y is the received signal vector (as given in (1)) and xl
is the signal vector transmitted over the channel, i.e., xl =√
EbHsl. Note that, the capacity in (14) can be maximized

for equally likely inputs, i.e., f(xl) = 1/Nt, which gives:

CDCMC =

Nt∑
l=1

∫
Nr

1

Nt
f(y | xl) log2

(
f(y | xl)

)
dy

−
Nt∑
l=1

∫
Nr

1

Nt
f(y | xl) log2

( Nt∑
m=1

1

Nt
f(y | xm)

)
dy

= I1 − I2, (15)

where,

f(y | xl)=
1

(
√

2πσ2)Nr
exp

(
−

Nr∑
r=1

(yr − xrl)2

2σ2

)
. (16)

By using the results of [34], the integral I1 can be written
as:

I1 = log2

(
1

(2πσ2)Nr/2

)
− Nr

2 loge 2
. (17)

By following the Jensen’s inequalty-based approach described
in [35], [36] and employing (16) in the integral I2, we can
simplify it to obtain:

I2 ≥ −2 log2Nt +
Nr
2

log2

(
1

2πσ2

)
− Nr

2

+ log2

[
Nt∑

l,m=1

exp

[ Nr∑
r=1

− (xr,l − xr,m)2

4σ2

]]
. (18)

Now, the DCMC capacity of OSSK can be obtained by
substituting (17) and (18) in (15), and by following the
approximating approach of [36] as:

CDCMC ≈ 2 log2Nt − log2

[
Nt

+

Nt∑
l,m=1
m6=l

exp

[
− γ̄ log2Nt

2N2
r

Nr∑
r=1

(hr,l − hr,m)2

]]
. (19)

Remark 2: From (13) and (19), it is palpable that, in order to
calculate APEP and the DCMC capacity, we need to find the
pdf of difference of two correlated ΓΓ RVs, i.e., hl1−hl2 = z.

Proposition 1 (PDF of difference of two correlated ΓΓ
RVs): The pdf of difference of two arbitrarily correlated ΓΓ
RVs for z ≥ 0 is given by:

fZ(z) =
∞∑
i1=0

∞∑
t1=0

∞∑
k=0

[(
w

(β)
1,1 Ω(α)

w
(α)
1,1 Ω(β)

)2Υ1
(
w

(α)
1,1w

(β)
1,1

Ω(α)Ω(β)

)τ
× (−z)k

k!
G2,3

3,3

(
1

∣∣∣∣v1

v2

)
%αβ |(Nt=2)

]
, (20)

where z = h1− h2, τ = k+ 1−α− i1− β− t1, Υ1 = Υ2 ,
((α+i1−β−t1)/2), v1 =

[
0, (k−α−i1+1), (k−β−t1+1)

]
,

and v2 =
[
(α+ i1 − 1), (β + t1 − 1), k

]
. The pdf fZ(z), for

z < 0 can also be derived with the help of [37, Eq. (6-55)] by
following the similar steps as followed for z ≥ 0, which will
lead to the same expression as (20) but with negated z.
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TABLE I: Special cases of (20) and the mapping parameters

Mapping method Resulting pdf
Scenario 1: Ω(β) = 1/β, w(β)

1,1 =

1, w
(β)
1,2 = 0, t1 = 0, and |

W(β) |= 1 fZ(z) =

∞∑
i1,k=0

[(
β

Ω(α)

)k+1( 1

w
(α)
1,1

)2α+2i1−k−1 (−z)k

k!

×G2,3
3,3

(
1

∣∣∣∣0, (k − α− i1 + 1), (k − β + 1)
(α+ i1 − 1), (β − 1), k

) |W(α) |α| w(α)
1,2 |2i1

i1!Γ(α)Γ(α+ i1)(Γ(β))2

]

No correlation: Ω(α) = 1/α,
Ω(β) = 1/β, w(α)

1,1 , w
(β)
1,1 = 1,

w
(α)
1,2 , w

(β)
1,2 = 0, i1, t1 = 0, and

|W(α) |, |W(β) |= 1

fZ(z) =

∞∑
k=0

[ (
αβ
)k+1(

Γ(α)Γ(β)
)2 (−z)k

k!
G2,3

3,3

(
1

∣∣∣∣0, (k − α+ 1), (k − β + 1)
(α− 1), (β − 1), k

)]

Proof: See Appendix A.
Note that, the pdf proposed in (20) is a generalized pdf

where correlation is considered to be arising due to both SLSE.
However, special cases of this pdf applicable to Scenario
1 of correlation (correlation among large-scale eddies are
dominant) and no correlation can also be derived from (20)
by using the mapping technique summarized in Table I.

III. AVERAGE PERFORMANCE EVALUATION

In this section, we will evaluate ABER and the average
achievable capacity of the considered OSSK-MIMO system
with arbitrary correlation. We will first present the perfor-
mance analysis of OSSK-MISO and in order to extricate some
useful insights about Gc and Gd, we will perform asymptotic
analysis. Finally, we will extend the analysis to MIMO.

A. Performance Metrices of OSSK-MISO

From Proposition 1, where pdf fZ(z) is already given in
(20), we can easily find the pdf of the absolute of difference
of two correlated ΓΓ RVs, i.e., a =| z |, by employing the
transformation of RVs of fA(a) = fZ(a) + fZ(−a), where
fZ(a) = fZ(z) |(z=a) for z ≥ 0 and fZ(−a) = fZ(z) |(z=−a)

for z < 0. From (20) and the discussion following it, we
can reasonably state that, fZ(a) = fZ(−a), which leads to
fA(a) = 2fZ(a), therefore the pdf is given by:

fA(a) =
∞∑

i1,t1=0

∞∑
k=0

2

[(
w

(β)
l1,l1

Ω(α)

w
(α)
l1,l1

Ω(β)

)2Υ1
(
w

(α)
l1,l1

w
(β)
l1,l1

Ω(α)Ω(β)

)τ

× (−a)k

k!
G2,3

3,3

(
1

∣∣∣∣v1

v2

)
%
′

αβ |(Nt=2)

]
, (21)

where %
′

αβ = %αβ , except for replacing w
(α)
n,n+1 and w

(β)
n,n+1

by w(α)
l1,l2

and w(β)
l1,l2

, respectively.
1) ABER: Substituting Nr = 1 in (13), APEP for MISO

can be written as:

APEP(l1 → l2) =

∫ ∞
0

Q

(
a

√
γ̄ log2Nt

2

)
fA(a)da. (22)

Substituting (21) in (22) followed by some rearrangement,
simplifications, and algebraic manipulations we obtain the

APEP of OSSK for the considered correlated system in the
form of:

APEP(l1 → l2) =
∞∑

i1,t1,k=0

[(
w

(β)
l1,l1

Ω(α)

w
(α)
l1,l1

Ω(β)

)2Υ1
(
w

(α)
l1,l1

w
(β)
l1,l1

Ω(α)Ω(β)

)τ

×G2,3
3,3

(
1

∣∣∣∣v1

v2

)
(−1)kΓ((k + 2)/2)%

′

αβ |(Nt=2)

k!(k + 1)
(√γ̄ log2 Nt

2

)k+1√
π

]
. (23)

Let us make the following remarks about the derived APEP
expression (23).

• Equation (23) is derived from (22) by using Cher-
noff bound Q(x) ≤ 1/2 exp(−x2/2). Nevertheless,
a tighter upper bound can be obtained by using
Q(x) ≤ 1/12 exp(−x2/2) + 1/4 exp(−2x2/3). More-
over, a lower bound can also be obtained by using
Q(x) ≥ 1/2 exp(−x2/2 −

√
2/πx) [38]. Further, in

the next subsubsection, we will also perform asymptotic
performance analysis, which give the ABER bounds for
higher SNRs.

• The APEP expression in (23) has been derived for
Scenario 2 of correlation. However, we can easily obtain
APEP for Scenario 1 by setting Ω(β) = 1/β,w

(β)
l1,l1

=

1, w
(β)
l1,l2

= 0, tj = 0, and |W(β) |= 1 in (23) to obtain:

APEP(l1→l2)

ρ(β)=0
=
|W(α) |α

Γ(α)
[
Γ(β)

]2 ∞∑
i1,k=0

[[ | w(α)
l1,l2
|2i1

i1!Γ(α+ i1)

]

×
( β

Ω(α)

)(k+1) (−1)k

k!
(w

(α)
l1,l1

)
1−2α−2i1+k

× Γ((k + 2)/2)

(k + 1)
(√γ̄ log2 Nt

2

)k+1√
π
G2,3

3,3

(
1

∣∣∣∣v′1v′2

)]
, (24)

where v′1 =
[
0, (k − α − i1 + 1), (k − β + 1)

]
, and

v′2 =
[
(α+ i1 − 1), (β − 1), k

]
.

• We have derived (23) for the correlated ΓΓ AT channel,
nevertheless it is valid for the uncorrelated scenario as
well. By setting | W |= 1, Ω(α) = 1/α,Ω(β) =

1/β,w
(α)
l1,l1

= w
(β)
l1,l1

= 1, w
(α)
l1,l2

, w
(β)
l1,l2

= 0 and ij , tj = 0,
in (23), we can obtain the APEP expression for OSSK
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over the uncorrelated channel as:

APEP(l1→l2)

ρ(α),ρ(β)=0
=

1

Γ(α)
[
Γ(β)

]2 ∞∑
k=0

[[
1

Γ(α)

]
×
(
αβ
)(k+1) (−1)k

k!

Γ((k + 2)/2)

(k + 1)
(√γ̄ log2 Nt

2

)k+1√
π

×G2,3
3,3

(
1

∣∣∣∣0, (k − α+ 1), (k − β + 1)
(α− 1), (β − 1), k

)]
. (25)

Note, in [39, Eq. (22)] APEP was derived for uncorrelated
FSO-SSK MISO with weighted Txs. For unity weights,
[39, Eq. (22)] becomes the same as (25), which confirms
correctness of the mapping technique and the generalized
nature of our derived APEP result in (23).

• The expression (23) is valid for arbitrary correlation.
However, in case of constant correlation, where all the
apertures are equally spaced and because of that all
the non-diagonal elements of the correlation matrices
Σ(α),Σ(β) have a constant value, i.e., σ(α)

i,j , σ
(β)
i,j = ρ

for i 6= j and the elements of W(α),W(β) become
independent of the Tx’s indices. Therefore, for this case,
the derived analytical expression APEP, (23), also become
independent of the Tx indices (l1 and l2), which allows
us to take the Q-function outside the summations of (12),
and therefore the paired summation reduces to:

1

Nt log2(Nt)

Nt∑
l1=1

Nt∑
l2=1

dH(cl1 , cl2) =
Nt
2
. (26)

Employing (23) and (26) in (12), ABER of OSSK for the
ΓΓ AT channel with constant correlation can be derived
in the form of:

ABER =
∞∑

i1,t1,k=0

Nt
2

[(
w

(β)
1,1 Ω(α)

w
(α)
1,1 Ω(β)

)2Υ1
(
w

(α)
1,1w

(β)
1,1

Ω(α)Ω(β)

)τ
×

(−1)kΓ((k + 2)/2)%′′αβ |(Nt=2)

k!(k + 1)
(√γ̄ log2 Nt

2

)k+1√
π
G2,3

3,3

(
1

∣∣∣∣v1

v2

)]
, (27)

where %
′′

αβ = %αβ , except for replacing w
(α)
n,n+1 and

w
(β)
n,n+1 by w(α)

1,2 and w(β)
1,2 , respectively.

• Equation (23) is in power series form, nevertheless, it
converge for a small and finite number of summations, see
Table II. The convergence results and the truncation error
(caused by use of finite terms instead of the infinite series)
for (23) are summarized in Table II, which shows that
the number of summation terms required for convergence
and the truncation error increase with the increasing
correlation level. We will also prove convergence of the
series in the result section (Section IV) by considering
an example of convergence test of (24) for Scenario 1,
which was obtained from (23) 1.

1The convergence of the series and truncation error can also be analytically
proved by following the method given in [1], [40]. However, because of the
limited space in this paper, we have not included these analytical derivation
in this paper.

2) Asymptotic characteristics: At very high SNR, asymp-
totic APEP can be characterized by two parameters of the Gc
and the Gd. The former specifies the relative horizontal shift
of BER against the SNR on a log-log scale; whereas, the latter
shows the slope of decay of these plots, at asymptotically high
values of SNR. Mathematically we have:

lim
γ̄→∞

APEP(γ̄) ≈ (Gcγ̄)−Gd . (28)

The asymptotic APEP of the considered Nt × 1 system can
be obtained by substituting k = 0 in (23), since the term
corresponding to the smallest exponent of γ̄ in the power series
dominates APEP. Therefore, we have:

lim
γ̄→∞

APEP(l1 → l2) =
∞∑

i1,t1=0

[(
w

(β)
l1,l1

Ω(α)

w
(α)
l1,l1

Ω(β)

)Υ1

%′αβ|(Nt=2)

×2

(
w

(α)
l1,l1

w
(β)
l1,l1

Ω(α)Ω(β)

)τ |(k=0)
G2,3

3,3

(
1

∣∣∣∣v1 |(k=0)

v2 |(k=0)

)
√
γ̄ log2Nt

√
π

]
. (29)

By adopting the same substitutions, which was used to obtain
(24), the asymptotic APEP expression for Scenario 1 can be
obtained as:

lim
γ̄→∞

APEP(l1→l2)

ρ(β)=0
=
|W(α) |α

Γ(α)
[
Γ(β)

]2 ∞∑
i1=0

[[ | w(α)
l1,l2
|2i1

i1!Γ(α+ i1)

]

×
2β(w

(α)
l1,l2

)
1−2α−2i1

G2,3
3,3

(
1

∣∣∣∣v′1 |(k=0)

v′2 |(k=0)

)
Ω(α)

√
γ̄ log2Nt

√
π

]
. (30)

Remark 3: Meijer-G function in (30), which indicates
complexity in the expression, is independent of average SNR,
therefore results in a simple asymptotic BER expression. On
comparing (29) and (30) with (28) gives Gd = 1/2, which
shows that, Gd of correlated OSSK FSO-MISO is independent
of correlation and number of Txs and is always equal to 0.5.
Moreover, comparing (29) with (28), Gc of OSSK-MISO for
Scenario 2 is:

Gc =

[ ∞∑
i1,t1=0

(
w

(β)
l1,l1

Ω(α)

w
(α)
l1,l1

Ω(β)

)2Υ1
(
w

(α)
l1,l1

w
(β)
l1,l1

Ω(α)Ω(β)

)τ |(k=0)

×
2G2,3

3,3

(
1

∣∣∣∣v1 |(k=0)

v2 |(k=0)

)
√
γ̄ log2Nt

√
π

%′αβ |(Nt=2)

]−2

. (31)

Likewise, Gc for Scenario 1 can also be obtained by compar-
ing (28) and (30).

Remark 4 (Dependence of Gc on ρ): For a given AT pa-
rameters, Gc in (31) depends on two parameters of correlation
level ρ and Nt. However, for Scenario 1, Gc will depend on ρα
(as only large-scale eddies are correlated) and Nt. Note that, in
(31) the exponent of correlation parameters (w(α)

l1,l1
and w(β)

l1,l1
)

is negative, i.e., with increasing level of correlation, Gc must
increase. Fascinating insights can be extracted by observing
the dependence of Gc on correlation, by using the parameter–
coding gain variance (∆Gvc ); ∆Gvc can be evaluated by taking
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TABLE II: Upper limits of i1, t1, k
α = 4, β = 1.9 α = 2, β = 1.4

1 > ρ > 0.9 ρ ≤ 0.9 ρ = 0 1 > ρ > 0.9 ρ ≤ 0.9 ρ = 0
iu1 15 10 6 10 6 4
tu1 15 10 6 10 6 4
ku 1 1 1 1 1 1

Truncation error 2× 10−4 9× 10−5 1× 10−6 1× 10−4 1× 10−5 2× 10−6

the logarithmic of the ratio of Gc at a positive value of ρ to
the value of Gc at ρ = 0 as given below [41]:

∆Gvc = 10 log10

G
(ρ<1)
c

G
(ρ=0)
c

, (32)

where the positive value of ∆Gvc is the coding gain advantage,
while its negative value represents the loss in Gc.

Observation 1: In Fig. 1a, we have shown ∆Gvc versus
ρα and ρ for Scenarios 1 and 2 using (32). The discontinuos
line denote the ∆Gvc v/s ρ plot for Scenario 2 and solid
line represent the ∆Gvc v/s ρα plot for Scenario 1. It can be
observed from the figure that, Scenario 2 offers higher gain
compared to Scenario 1. We will further verify this observation
in the result section based on the analytical and simulated BER
plots.

3) Achievable DCMC capacity: In (19), let us denote∑Nr
r=1 (hr,l − hr,m)2 = a2

l,m by sl,m (note that, for a MISO
system Nr = 1). In order to obtain the achievable DCMC
capacity, we first need to evaluate E

[
exp

(
− γ̄ log2 Nt

2N2
r

sl,m
)]

using (21) as:

E
[

exp
(
− γ̄ log2Nt

2N2
r

sl,m
)]

=
∞∑

i1,t1,k=0

[
κG2,3

3,3

(
1

∣∣∣∣v1

v2

)

×Γ

(
k + 1

2

)(
2N2

r

γ̄ log2Nt

)(k+1)/2
]
, (33)

where, κ =

(
w

(β)
l1,l1

Ω(α)

w
(α)
l1,l1

Ω(β)

)2Υ1
(
w

(α)
l1,l1

w
(β)
l1,l1

Ω(α)Ω(β)

)τ
×

(−1)k%
′

αβ |Nt=2

k!
. (34)

By substituting (33) into (19), the achievable DCMC capacity
is obtained in the form of:

CDCMC ≥ 2 log2Nt − log2

[
Nt+

Nt∑
l,m=1
m6=l

∞∑
i1,t1,k=0

[
κ

×G2,3
3,3

(
1

∣∣∣∣v1

v2

)
Γ

(
k + 1

2

)(
2N2

r

γ̄ log2Nt

) (k+1)
2

]]
. (35)

B. Performance Metrices of Nt ×Nr OSSK-MIMO

1) Approximation of absolute value of difference of two cor-
related ΓΓ RVs: To extend the BER results obtained for MISO
in previous subsections, we will use the conditional PEP from
(13). Note that, the exact BER analysis from this formulation
requires pdf of summation of the squared absolute value of
difference of two correlated ΓΓ RVs. To the best of authors
knowledge, no closed-form of the required pdf is reported in
the literature, which makes the BER analysis of correlated

OSSK-MIMO computationally intractable. Nevertheless, we
can significantly simplify our analysis by approximating the
pdf.
Proposition 2: The pdf of absolute value of difference of
two correlated ΓΓ RVs in case of Scenario 1 (with solution
ρ

(β)
i,j = 0) for the plane wave under moderate and strong AT

can be approximated by an uncorrelated Gamma distribution
with q = 1 and θ ≈ 2, and the approximation remains valid
for any level of correlation with ρ(α)

i,j < 1.
Proof: See Appendix B.

Proposition 3: The pdf of absolute value of difference of
two correlated ΓΓ RVs in case of Scenario 2 (with solution
ρ

(α)
i,j = ρ

(β)
i,j ) for the plane wave under moderate AT can be

approximated by an uncorrelated Gamma distribution with q
and θ; where q is independent of ρ with q = 1, whereas θ
depends on the correlation level, i.e., ρ(α)

i,j and ρ(β)
i,j .

Proof: See Appendix C.
2) BER of Nt×Nr Correlated MIMO-OSSK: By applying

the transformation of RVs to the asymptotic pdf of Gamma
distributed RV (46), the asymptotic pdf of γr is obtained as:

fγr (γr) =
1

2
√
γrγ̄

fAr (ar) |ar=
√

γr
γ̄

≈ 1

2
√
γrγ̄

fX(x) |x=
√

γr
γ̄

=
1

2
√
γrγ̄Γ(q)θq

(
γr
γ̄

)
q−1

2 , (36)

where q = 1 and θ ≈ 2. Using the standard definition of MGF
and employing the identity [31, Eq. (3.381.4)] to it, we can
easily obtain MGF of γr in the following form:

Mγr (s) =
1

2θγ̄q/2
Γ( q2 )

s
q
2

. (37)

Consider
∑Nr
r=1 γr = γsm and uncorrelated Rxs, MGF of

γsm can be obtained as Mγsm(s) =
(
Mγr (s)

)Nr
. We can

derive APEP for MIMO-OSSK using (13), by rewritting it in
terms of γsm and then averaging it over γsm. Moreover, in
the resulting expression we replace Gaussian-Q function by
its alternative form of Q(y) = 1

π

∫ π/2
0

exp
(
− y2

2 sin2 θ

)
dθ

and then follow MGF-based approach to write APEP in terms
of MGF as follows:

APEP(l1 → l2) =
1

π

∫ π/2

0

Mγsm

(
log2Nt

4N2
r sin2 θ

)
dθ. (38)

Substituting Mγsm(s) from (37) in (38) and employing [31, eq.
(3.621.3)], the approximate closed-form expression of APEP
for MIMO-OSSK with correlation can be obtained as:

APEP(l1→ l2) =
0.5(qNr − 1)!!

qNr!!

×
[Γ( q2 )

2θ

(
4N2

r

γ̄ log2Nt

) q
2]Nr

. (39)
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Fig. 1: Plots illustrating the variation of coding gain advantage/loss with correlation (ρ, ρα and Nt).
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i,j = 0 under moderate AT

at α = 4, β = 1.9.

Employing (39) and (26) in (12), the asymptotic BER of
MIMO-OSSK can be expressed as:

ABER =
Nt
4

(qNr − 1)!!

qNr!!

[Γ( q2 )

2θ

(
4N2

r

γ̄ log2Nt

) q
2 ]Nr

. (40)

By comparing (40) with (28), we can compute Gd of
MIMO-OSSK, which readily gives Gd = Nr/2. Therefore, as
compared to MISO, in MIMO the Gd of OSSK is increased
by the Nr factor. Note, Gc can be expressed as:

Gc =

(
Nt
4

(qNr − 1)!!

qNr!!

[Γ( q2 )

2θ

(
4N2

r

log2Nt

)q
2 ]Nr) −2

qNr

. (41)

It can be observed from (41) that, Gc of OSSK-MIMO
depends on q, θ (which changes with the correlation level),
Nt, and Nr. Similar to Fig. 1a (where we have shown ∆Gvc
v/s ρ), in Fig. 1b we depict ∆Gvc vs. Nt using (41) and the
relation ∆Gvc = 10 log10

G(Nt>2)
c

G
(Nt=2)
c

to observe the loss in Gc
incurred in the system for Nt > 2 as compared to Nt = 2.

Observation 2: It can be observed from Fig. 1b that, for
OSSK-MISO with Nr = 1, loss in Gc is 4.26 dB at Nt = 8
compared to Nt = 4. However, for OSSK-MIMO for Nr = 2,

improvement in the SE can be achieved at Nt = 4 with no
SNR penalties as compared to Nt = 2, since ∆Gvc at Nt = 4
is zero.

3) Achievable DCMC Capacity of Correlated MIMO-
OSSK: We can employ the results of previous subsection
and Propositions 2 and 3 to denote (hr,l − hr,m)2 by γr
in (19), where the pdf of γr is derived as (36). Now, to
derive the achievable capacity from (19), we first need to
evaluate E

[
exp

(
− γ̄ log2 Nt

2N2
r

∑Nr
r=1 γr

)]
. By following MGF-

based approach and (37) we get:

E
[

exp
(
− γ̄ log2Nt

2N2
r

Nr∑
r=1

γr
)]

=

Nr∏
r=1

[
Mγr

( log2Nt
2N2

r

)]
≈

Nr∏
r=1

[
Γ(q/2)

2θγ̄rq/2

(
2N2

r

log2Nt

)q/2]
. (42)

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present a brief discussion of the numeri-
cal results obtained using the analytical derivations outlined in
Section III and validate the theory using MATLAB simulation.
It must be noted that, simulation results are obtained for a cor-
related ΓΓ channel with 106 samples using the algorithm given
in Fig. 4, and Green’s matrix approximation of the correlation
matrices given in [42]. Moreover, we have calculated values of
AT parameters for both plane (L = 3 km, λ = 1550 nm) and
spherical waves (L = 1.5 km, λ = 850 nm) under moderate
(α = 4, β = 1.9 and α = 2.35, β = 1.9, respectively)
and strong AT (α = 4.2, β = 1.4 and α = 2, β = 1.4,
respectively), using the equation for α and β given in [43]. In
Fig. 2, we show the BER obtained from (24) as a function
of SNR by varying the upper limits of i1 and k in (24)
to demonstrate the convergence of the power series. For
SNR ≥ 30 dB, it can be seen from the figure that the BER
plots converge after i1 = t1 = 10, k = 1 in case of moderate
AT with α = 4, β = 1.9, Nt = 2, and ρ = 0.795. However,
for strong AT (α = 2 and β = 1.4) the series converges early
at i1 = t1 = 6, k = 1.

Figure 3 demonstrates the analytical and simulated BER
performance as a function of the average SNR for OSSK-based
FSO-MISO with 2 Txs for both uncorrelated (ρ ≈ 0) and
correlated (ρ = 0.2, 0.77, 0.886, 0.92, 0.956) channels under
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Fig. 3: Analytical and simulated BER vs. the average SNR of OSSK
for 2 × 1 FSO-MISO at different ρ.

moderate AT with α = 4, β = 1.9,Ω(α) = Ω(β) = 1
[21]. It must be pointed out that, the analytical results for
ρ ≈ 0.2 (Scenario 1: ρ(α)

i,j = 0.795, ρ
(β)
i,j = 0) and the plots

for ρ = 0.77, 0.786, 0.886 (corresponding to Scenario 2) are
obtained using (24) and (23), respectively. The analytical plots
corresponding to the correlation of ρ > 0.9 are obtained
using the ensemble average of (13). Note the following
important observations: (i) there is a good match between the
simulation and predicted results for all the considered cases,
thus validating the correctness of analysis; (ii) the BER plots
for ρ = 0.2 (Scenario 1: ρ(α)

i,j = 0.795, ρ
(β)
i,j = 0) offer a Gc of

≈ 2.5−3 dB over the uncorrelated case; and (iii) for Scenario 2
(ρ(α)
i,j = ρ

(β)
i,j ) with 0.9 > ρ > 0.2, the BER performance

is improved at higher correlation levels by providing Gc up
to 15 dB. For the plane wave under moderate AT, a Gc of
approximately 13 dB is achieved at ρ = 0.886 compared with
ρ ≈ 0.2. Note, a higher level of Gc of 8.2 dB is achieved
as ρ is merely increased from 0.77 to 0.886. However, as the
correlation increases beyond ρ > 0.9, a crossover is observed
with the plots of lower correlation value. It means that, the
OSSK performs poorer for ρ > 0.9 at the lower SNR range of
0-25 dB as compared with the system with ρ < 0.9. However,
at higher SNR values (i.e., > 25 dB), it can still provide a
significant Gc of 3-17 dB over the system with ρ < 0.9. The
intuitive and logical explanation for this unanticipated result
can be given as follows.
Remark 5 (Reason for the improved performance at high
ρ and crossover at ρ > 0.9): In the case of OSSK for the
correlated system, rather than a single channel with several
sub-channels, the effective channel is actually the difference
of two sub-channels, i.e., hl1 −hl2 , and the BER performance
depends on the statistics of the effective channel. If we
calculate the variance of hl1−hl2 at different correlation levels,
it will be observed that, the value of variance reduces with the
increasing value of correlation level, thus making the effective
channel more deterministic at higher value of correlation2.
Furthermore, at high correlation, fading fluctuations of each of

2We have not given the numerical data to support this observation because
of lack of space.

the effective channel change jointly. These conditions jointly
lead to improved BER performance at very high correlation
levels for Scenario 2. A similar observation of an improvement
in BER performance at higher correlation level was also
reported in [7, Fig. 5], which was applicable to a MISO-RF
system. However, at ρ > 0.9 and for the lower SNR range
(0-25 dB) differentiating between different channels become a
challenging task at the Rx, thus resulting in poor performance.
At SNR > 25 dB, we notice a significant Gc over the lower
correlation levels.
Observation 3: Under moderate AT, OSSK-MISO employed
to correlated FSO with Scenario 2 of correlation (ρ(α)

i,j = ρ
(β)
i,j ),

offers substantial increase in Gc by 13 dB at a BER of 10−3

with ρ = 0.886 compared with ρ ≈ 0.2 for Nt = 2.

Figure 5 compares the BER performance of the considered
system under moderate (α = 4, β = 1.9) and strong AT (α =
2, β = 1.4) with Nt = 4, 8, for a range of correlation models
of constant, circular, and linearly arbitrary correlation matrices
proposed in [42] and the calculated AT parameters (mentioned
at the beginning of this section). It should be noted that,
ρ

(α)
const, ρ

(α)
circ, and ρ

(α)
arbit in the figure denote the correlation

coefficients between the large-scale eddies of the first and the
ith Tx (for i = 2, 3, 4) corresponding to constant, circular, and
arbitrary correlation models, respectively. We have obtained
the BER of OSSK for 4 × 1 FSO from (12) and (24) using
BER = 1

4

(
P(1→ 2) + 2P(2→ 3) + P(3→ 4) + P(2→ 4) +

P(1→ 3) + 2P(1→ 4)
)

by considering correlation between
every two links. Following are the important observations to
be noted: (i) for the considered correlation levels/models, the
linearly arbitrary correlation model offers a marginal coding
gain of 1.5-2 dB over the other two correlation models in case
of moderate AT; however, in case of strong AT, the BER plots
corresponding to all the correlation models almost overlap
with each other; and (ii) there is an improvement in the BER
performance with the reduced number of Txs. At a BER of
2 × 10−4, the SNR penalties are 3.5 and 6 dB for moderate
and strong AT, respectively, as Nt is increased from 4 to 8,
thus the trade-off between the SE and the BER performance.

Figure 6 depicts Monte Carlo simulations (◦ marker) and
predicted (solid lines) BER against the SNR for Nt = 2 and
Nr = 1, 2, 3, 4, and under moderate AT and low correlation
(i.e., ρ ≈ 0.2), obtained from the correlated MIMO-OSSK
model (Scenario 1) proposed in Subsection III-B. At asymp-
totically high values of SNR (> 20 dB), there is a good
agreement between analytical and simulation results, which
verifies the correctness of the proposed analytical model, and
also validates the accuracy of the approximation propsed as
Proposition 2. In addition, the BER performance is unchanged
for ρ(α)

i,j < 1, ρ
(β)
i,j = 0 (as was observed in Fig. 3 for MISO)

regardless of AT. We also observe that, the BER sharply
improve with Nr for SNR > 15 dB. Note that, all BER plots
except for Nr = 1 are below the forward error correction
(FEC) BER limit of 3.8 × 10−3. Further, Gd of the system
from BER plots is obtained by taking the logarithm of the
ratio of two BER values at the SNR values with a step of 10
dB for different values of ρ and Nt. E.g., in case of MIMO
with Nr = 2, the BER values are 7.17×10−5 and 6.4×10−4
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Fig. 5: Analytical and simulated BER vs. the average SNR of OSSK
for 2 × 1 FSO-MISO at different ρ.

at the SNR values of 40 and 30 dB, respectively from Fig.
6, which gives Gd = 0.95 ≈ Nr/2 = 1. Similar sets of
calculations are repeated for Nr = 1, 3, 4 and it is observed
that Gd = Nr/2.

Figure 7 compares the predicted BER results of correlated
MIMO-OSSK (Scenario 1) under moderate AT (α = 4, β =
1.9) for a range of Nt and Nr = 1, 2, 3. Having established
in Figs. 3-5 that, the correlation in Scenario 1 with ρ(β)

i,j = 0
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Fig. 6: Comparison between Monte Carlo simulation and analytical
BER versus the average SNR of MIMO-OSSK for Nt = 2 and for
strong and moderate AT at a correlation level of ρ(α)i,j = 0.795, ρ

(β)
i,j =

0 (ρ ≈ 0.2).

does not significantly affect the BER performance of OSSK
and therefore, we have obtained the BER plots for Scenario
1 at a fixed correlation of ρ(α)

i,j = 0.795, ρβ = 0. Detailed
study of the figure shows that, (i) the BER improves with Nr
as expected; and (ii) at a BER of 10−3 (i.e., below the FEC
limit) and for Nr = 1, the SNR penalities are 2.6 and 7 dB
for Nt of 4 and 8 compared to Nt of 2. However, for Nr = 3,
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Fig. 7: Moderate AT (α = 4, β = 1.9) for Nt = 2, 4, 8, and
Nr = 1, 2, 3 for Scenario 1 of correlation.
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Fig. 8: Moderate AT (α = 4, β = 1.9) and different correlation
levels for Nt = 2, 4, and Nr = 1 and 2 for Scenario 2 of correlation.

the SNR penalties significantly reduces to 0.4 and 1.4 dB.
In Fig. 8, we compare the predicted analytical and simulated

BER plots of MIMO-OSSK with correlation for Scenario 2
where both large-and small-scale eddies equally contribute to
the effective correlation level under moderate AT (α = 4, β =
1.9). Contrary to the Figs. 6-7 (where no significant effect of
correlation on the BER performance was noticed), in Fig. 8,
very interesting and surprising results are noticed when the
BER at low correlation (ρ = 0.043) is compared with that
at a high (ρ = 0.77) correlation level. The existence of a
correlated channel (which in general is supposed to degrade
the system’s performance) has been turned to the considered
system’s advantage with Nt = 2, 4, as Gc of 6 and 7.2 dB are
observed for Nr of 1 and 2, respectively, at higher levels of
correlation.

Observation 4: Similar to MISO, in MIMO also an im-
proved SE is achieved at the cost of increased SNR penalties.
However, for MIMO, the amount of SNR penalty is substan-
tially reduced and also Gd is improved with Nr. Note that, in
case of MIMO-OSSK (i.e., Nr = 2), the BER plots of Nt = 2
and Nt = 4 overlap, which means that without incurring any
SNR penalty, a higher SE of 2 bits/s/Hz can be achieved with
Nt = 4 as compared to 1 bit/s/Hz with Nt = 2. (Note that, this
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Fig. 9: Achievable DCMC capacity versus the average SNR plots
of MISO-OSSK system under moderate AT (α = 4, β = 1.9) for
Nt = 2, 8 with ρ = 0.13 and 0.915.
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Fig. 10: Achievable DCMC capacity versus the average SNR plots
of MISO-OSSK system under moderate AT (α = 4, β = 1.9) for
Nt = 4 and ρ = 0.13 and 0.915.

observation is in agreement with Observation 2). Moreover, a
Gc of 7.2 dB can be achieved at ρ = 0.77 compared with
ρ = 0.05. The explanation of this unpredictable result is same
as that of Fig. 3 for MISO.

Having established that, the correlated AT channel offers
improved error performance for OSSK, let us analyse the
impact of correlation on the achievable DCMC capacity of
OSSK 3. In Figs. 9 and 10, we compare the achievable
capacity of OSSK-MISO for two different correlation levels
of ρ = 0.13 (low) and ρ = 0.915 (high), α = 4, β = 1.9, and
different values of Nt. We also compare the analytical results
with the plots obtained through simulation (ensemble average
of (19)). It is evident from the figure that, the simulation
results closely follow the analytical plots, thus validating the
analysis presented in Section III-A. The term γ̄th used in
the figure denotes the threshold level for the SNR at which
90% of the maximum achievable capacity (Cmax) is attained,
whereas ∆γ̄th shows the change in the two γ̄th observed at

3Unless otherwise stated, the DCMC plots considering correlation of ρ ≤
0.25 corresponds to scenario 1 of correlation while the results with ρ > 0.25
corresponds to the scenario 2 of correlation.
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Fig. 12: Achievable DCMC capacity versus the average SNR plots of
MIMO-OSSK with 1bit/s/Hz under moderate AT (α = 4, β = 1.9)
and for ρ = 0.13, 0.22 and 0.77.

two different correlation levels, i.e., ∆γ̄th = γ̄ρ1

th − γ̄
ρ2

th . Note
that, for all the three cases considered with the SE of 1, 2, and
3 bits/s/Hz, ∆γ̄th ≈ 5 dB. Moreover, the capacity of OSSK
improves at higher value of correlation, since the value of γ̄th
reduces with the increasing value of ρ, i.e., when ρ1 < ρ2

then γ̄ρ1

th > γ̄ρ2

th .
Figure 11 compares the simulated results with the predicted

asymptotic achievable capacity ((42)) of MIMO-OSSK for
different values of Nr and the spectral efficiencies of 1, 2,
and 3 bits/s/Hz. Note that, all plots are obtained for ρ = 0.13
by employing the approximate pdf proposed in Proposition
2. A good matching between the analysis and simulation is
observed within the useful range of SNR. As expected, the SE
improves with the increasing value of Nr, i.e., γ̄Nr2th < γ̄

Nr1
th if

Nr2 > Nr1 . Moreover, the difference in two threshold SNRs
(∆γ̄th) observed at two different values of Nr increases with
the increasing value of Nt. For instance, ∆γ̄th = 3.5 dB for
Nt = 2, however, for Nt = 4 it increases to 5 dB and further
increases to 7.5 dB for Nt = 8.
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Fig. 13: Achievable DCMC capacity versus the average SNR plots of
MIMO-OSSK with 3 bits/s/Hz under moderate AT (α = 4, β = 1.9)
and for ρ = 0.13, 0.22 and 0.77.

In Figs. 12 and 13, the achievable capacity of the OSSK-
MIMO (Nr = 3) is compared for ρ of 0.13, 0.22, and 0.77
and for Nt of 2 and 8, repectively. Similar to MISO, the
achievable capacity of MIMO-OSSK significantly improves
with the higher correlation levels. Note, (i) γ̄th is 23 dB for
ρ = 0.13 and reduces to 14 dB for ρ = 0.77, which results
in improved system performance in terms of the achievable
capacity with ∆γ̄th = 9 dB; (ii) ∆γ̄th values are nearly
same for Nt = 2 and 8 and a similar trend was observed in
MISO-OSSK as well; and (iii) the improvement achieved in
the DCMC capacity at higher correlation levels is substantially
more for MIMO-OSSK.

V. EXPERIMENTAL INVESTIGATION

In this section, we introduce the experimental setup de-
veloped for a correlated FSO system 4 followed by the
performance evaluation of the correlated links.

1) Experimental Setup: The laboratory experimental setup
for the correlated FSO system is composed of two Tx apertures
(Tx1, Tx2), a FSO channel with a link length (L) of 3 m,
and a Rx (see Fig. 14). Since in SSK, only one Tx is active
at a time, both Txs are connected to a signal source (i.e.,
BER tester - BERT-VeEX VEPAL TX300) via a fiber optic
switch (Thorlabs OSW-1310E). The laser outputs from both
Txs are launched into the free space channel via two gradient-
index (GRIN) fiber optic collimators (Thorlabs 50-1550A-
APC). Two plano convex lenses (aperture of 2.54 cm) with
focal lengths of 10 cm and 15 cm, respectively, are used to
minimize the beam divergence. At the Rx, a plano convex
lens of f = 15 cm and a GRIN fiber collimator are used
to couple the incoming optical beam onto single mode fibers
(SMF). The output of SMF, which is attenuated using a digital
variable attenuator in order to adjust the level of optical SNR,
is amplified using the erbium-doped fiber amplifier (EDFA).
The amplifier output is applied to the optical spectrum analyzer

4The experimental setup was developed at Czech Technical University in
Prague.
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Fig. 14: Block diagram and snapshot of experimental setup of the correlated FSO system.
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(a) Comparison of throughput vs. the attenuation for FSO links
with C2

n = 2.116 × 10−14m−2/3 (same AT in both the links)
at ρ = 0.98 (Case A).
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(b) Comparison of throughput vs. attenuation for FSO links 1
and 2 with C2

n = 6.569×10−10m−2/3 and 1.67×10−10m−2/3,
respectively, at ρ ≈ 0 (Case B).

Fig. 15: Experimental results for the throughput against the attenuation for FSO links 1 and 2.

(OSA) and BERT for measurement and the characterization
of the proposed system. The correlated links’ throughput and
latency with and without turbulance at low and high correlation
levels are measured using BERT. Note that, we have used an
controlled indoor AT chamber to create turbulence by blowing
hot air using two fans. The strength of turbulence is varied
by controlling the speed/heating level of fans. 20 temperature
sensors each placed 0.225 m apart between the Tx and the Rx
are used to record the temperature profile along the FSO path,
which are used to calculate C2

n by using the equation given in
[23].

2) Experimental Results: It is well known that, the channel
capacity is a theoretical term and practically the throughput
of the system, which gives the lower limit of the capacity,
can be measured. Therefore, we have recorded the measured
throughput and latency for a 3m FSO link by considering two

different scenarios. Case A - The Txs are placed 6 cm aparts
and we measured C2

n of 2.116×10−14m−2/3 and σ2
R of 0.778

common for links. These parameters were used to determine
AT parameters using (4) and (5) of α = 4.8, β = 3. Further,
using (6) we calculated ρ to be 0.98. Case B - Both fans were
on, blowing hot air into the particular channels which were
partly separated near Tx end (by 1.12 m) and part of link
was common, thus this setup resulted to an uncorrelated FSO
system with C2

n = 6.569× 10−10m−2/3, σ2
R = 0.309 in Link

1 and C2
n = 1.67× 10−10m−2/3, σ2

R = 0.078 in Link 2.

From Fig. 15a it can be observed that, the throughputs are
the same for both links under AT and high correlation of 0.98
level. Moreover, the required threshold OSNR to achieve a
threshold throughput of 80% for both links at an attenuation
of 6 dB is 35 dB and the links become unreliable for the
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(b) Latency recorded during experiment at different attenuation
levels in both FSO links 1 and 2 with C2

n = 6.569 ×
10−10m−2/3 and 1.67 × 10−10m−2/3, respectively, at ρ ≈ 0
(Case B).

Fig. 16: Experimental results for the latency against the attenuation for FSO links 1 and 2.

attenuation ≥ 8 dB 5. Figure 15b corresponds to Case B
with a very low correlation level (ρ ≈ 0) and unbalanced
AT links (measured AT levels in both links are not similar
and the turbulence is comparatively higher than the previous
case). In this case, the performances of both links are not
comparable and therefore, γ̄opth = max(γ̄op1th , γ̄op2th ) = 37.5 dB,
which is higher than γ̄opth = 35 dB for the correlated setup,
where γ̄op1th and γ̄op2th are the threshold OSNR for links 1 and
2, respectively. Note that, the link with a higher AT level (Link
1) offers an improved performance in terms of the throughput
than the other link with a comparatively lower AT level.

Remark 6: The required threshold value of OSNR to
achieve the throughput of 80% for the correlated setup is
2.5 dB lower than the uncorrelated setup, i.e., the system
with correlation performs better in terms of the throughput.
Note that, this observation is in agreement with the analytical
findings for the DCMC capacity shown in Fig. 9, where the
required threshold SNR to achieve a threshold capacity of 90%
reduces with the increasing correlation level.

In Figs. 16a and 16b, we have measured the latency (in
µs) for both setups under different attenuation levels. Figure
16a exhibits the latency measured for Case A when both links
are balanced (i.e., same AT) and highly correlated. In order
to study the impact of symbol (or bit) duration on the latency
and throughput of the considered system, we have taken the
readings by changing the frame size from 64 byte to 1024
byte. It can be observed that, the latency increases with frame
size, however, it does not affect the throughput 6. In Fig.
16b, we illustrate the latency measured for Case B with two
uncorrelated unbalanced links. Since the Tx2 was kept at a
small angle to maintain a LOS path with the Rx, the measured
latency of link 2 is greater than that of link 1.

VI. CONCLUSIONS
We have conducted the BER and the achievable capacity

performance analysis of the OSSK-based FSO-MIMO system

5Note, at an attenuation of 0 and 8 dB, the measured OSNR in links 1 and
2 of Case A were 41 dB and 33 dB, and for Case B were 39.5 dB and 31.5
dB.

6Since both the links are balanced and highly correlated in this case,
latencies measured in both the links are same.

over an arbitrarily correlated ΓΓ turbulence channel. A cor-
related channel is in general likely to degrade the system’s
performance, nonetheless, we have shown that the use of
OSSK in a correlated FSO system leads to an unanticipated
and interesting observation of significant improvement in the
BER performance in terms of SNR by 13 dB at a high
correlation level of ρ = 0.886 compared to ρ ≈ 0.2 for Nt =
2, Nr = 1. Improvement in BER performance with increasing
correlation level can be obtained upto the correlation value
of ρ ≤ 0.9. In addition, we outlined that, the Gd of OSSK
depends only on the number of receiving apertures. Moreover,
a substantial improvement in the capacity of OSSK-MISO is
achieved at higher correlation levels, as compared with low
correlation levels. Further, from the experimental investigation,
an improvement in the performance of the system in terms
of throughput has been observed in the system with higher
correlation levels and lower AT levels as compared to the
system with lower correlation and higher AT levels.

APPENDIX A
PROOF OF PROPOSITION 1

By employing some mathematical simplification to the
earlier derived pdf (10) for Nt = 2, we can obtain the joint
pdf fH1,H2(h1, h2) in the following form:

fH1,H2
(z + h2, h2)=

∞∑
i1,t1=0

[(
w

(β)
1,1 Ω(α)

w
(α)
1,1 Ω(β)

)Υ1
(
w

(β)
2,2 Ω(α)

w
(α)
2,2 Ω(β)

)Υ2

×
(
w

(α)
1,1w

(β)
1,1

Ω(α)Ω(β)

)−µ1+1

G2,0
0,2

(
w

(α)
2,2w

(β)
2,2h2

Ω(α)Ω(β)

∣∣∣∣., .v
)
%αβ |Nt=2

×
(
w

(α)
2,2w

(β)
2,2

Ω(α)Ω(β)

)−µ2+1

G2,0
0,2

(
w

(α)
1,1w

(β)
1,1 (z + h2)

Ω(α)Ω(β)

∣∣∣∣., .v
)]

, (43)

where v =
[
(α+ i1−1), (β+ t1−1)

]
, µ1 = µ2 , ((α+ i1 +

β+ t1)/2) and Υ1 = Υ2 , ((α+ i1−β− t1)/2). Substituting
(43) in [37, Eq. (6-55)] for z ≥ 0, followed by some algebraic

Authorized licensed use limited to: Northumbria University Library. Downloaded on February 24,2020 at 11:59:51 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2019.2955449, IEEE
Transactions on Wireless Communications

15

0 2.5 5 7.5 10 12.5 15 17.5 20

Irradiance, (a)

0

0.2

0.4

0.6

0.8

1

F
A
(a

)

Simulated cdf of |hrl1 − hrl2 |, ρ = 0.05 (ρ(α) = 0.2, ρ(β) = 0)

Simulated cdf of |hrl1 − hrl2 |, ρ = 0.2 (ρ(α) = 0.795, ρ(β) = 0)

Analytical-predicted Gamma cdf (q = 1, θ = 2)

(a) Cdfs of absolute value of difference of two correlated ΓΓ
RVs for Scenario 1 (ρ(α)i,j = 0.795, 0.2) and its predicted
approximation as uncorrelated Gamma RV (q = 1, θ = 2)
for moderate AT α = 4, β = 1.9.

0 2.5 5 7.5 10 12.5 15 17.5 20

Iradiance, (a)

0

0.2

0.4

0.6

0.8

1

F
A
(a

)

Simulated cdf of |hrl1
− hrl2

|, ρ = 0.043 (ρ(α) = ρ(β) = 0.05)

Analytical-predicated Gamma cdf (q = 1, θ = 2.6)

(b) Cdfs of absolute value of difference of two correlated ΓΓ
RVs for Scenario 2 (ρ(α)i,j = ρ

(α)
i,j = 0.05) and its predicted

approximation as uncorrelated Gamma RV (q = 1, θ = 2.6)
for moderate AT α = 4, β = 1.9.

Fig. 17: Comparison of simulated cdfs of absolute of diffrence of two correlated ΓΓ and its predicted approximations for Scenarios 1 and
2 at different values of correlation.

manipulations 7, we have:

fZ(z) =
∞∑

i1,t1=0

Tcorr

[∫ ∞
0

G2,0
0,2

(
w

(α)
1,1w

(β)
1,1 z

Ω(α)Ω(β)
+ t

∣∣∣∣., .v
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×G2,0
0,2

(
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)(

w
(α)
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(β)
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Ω(α)Ω(β)

)−1

%αβ |Nt=2 dt

]
, (44)

where Tcorr =

(
w

(β)
1,1 Ω(α)

w
(α)
1,1 Ω(β)

)2Υ1
(
w

(α)
1,1w

(β)
1,1

Ω(α)Ω(β)

)−2µ1+2

. Using [44,

Eq. (2.24.1.3)] in (44), we can derive the pdf (20) of difference
of two arbitrarily correlated ΓΓ RVs.

APPENDIX B
PROOF OF PROPOSITION 2

In PEP formulation (13), let us denote the absolute value of
difference of two correlated ΓΓ RVs at rth Rx, | hrl1 − hrl2 |,
by another RV ar, i.e., ar =| hrl1−hrl2 |=| z | and γr = a2

rγ̄.
We can obtain the asymptotic pdf of ar for Scenario 1 from
(21) by considering the series in the equation near origin at
k = 0 and employing the same transformation method for (24)
to procure:

fAr (ar) =
∞∑
i1=0

2 |W(α) |α

Γ(α)
[
Γ(β)

]2 (w
(α)
l1,l1

)
1−2α−2i1( β

Ω(α)

)
×
[ | w(α)

l1,l2
|2i1

i1!Γ(α+ i1)

]
G2,3

3,3

(
1

∣∣∣∣0, (1− α− i1), (1− β)
(α+ i1 − 1), (β − 1), 0

)
. (45)

Let x be another RV following Gammma distribution with the
asymptotic pdf near origin given as:

fX(x) =
1

Γ(q)θq
xq−1. (46)

where q and θ are the shape-and scale-parameters, respectively,
with q, θ > 0. In order to approximate the pdf of ar by another
known statstical model, we first compare the exponents of
RVs ar and x in (45) and (46), respectively. It can be
easily observed from the comparison that we can describe the

7 when we consider the correlation between only two RVs, generally
w

(α)
1,1w

(β)
1,1 = w

(α)
2,2w

(β)
2,2 , and it simplifies the two Meijer-G terms of (43)

by making their arguments identical.

behavior of Ar using the Gamma pdf only if q = 1. Having
obtained one parameter, further we employ the curve fitting
technique using MATLAB to obtain the best fit parameter θ
for a given set of AT parameters and correlation level.

Remark 7: From curve fitting we find that, for ρ(α)
i,j <

1, ρ
(β)
i,j = 0 and under moderate (α = 4, β = 1.9) and strong

AT (α = 4.2, β = 1.4), the value of θ remains unaltered, i.e.,
θ ≈ 2 in all the cases of Scenario 1.

APPENDIX C
PROOF OF PROPOSITION 3

Considering (21) near origin at k = 0, the asymptotic pdf
of aR for Scenario 2 can be obtained as:

fAr (ar) =
∞∑

i1,t1=0

2

(
w

(α)
l1,l1

w
(β)
l1,l1

Ω(α)Ω(β)

)τ |k=0
(
w

(β)
l1,l1

Ω(α)

w
(α)
l1,l1

Ω(β)

)2Υ1

×G2,3
3,3

(
1

∣∣∣∣0, (1− α− i1), (1− β − t1)
(α+ i1 − 1), (β + t1 − 1), 0

)
%′αβ |(Nt=2) . (47)

By comparing the exponents of x in (46) and ar in (47),
we can easily obtain one parameter, i.e., q = 1. Nonetheless,
the best fit values of θ for different correlation levels can
be evaluated with the help of curve fitting technique using
MATLAB. For instance, under moderate AT at ρ = 0.043 and
0.77, the absolute value of difference of two correlated ΓΓ
RVs, | hrl1 − hrl2 |, can be approximated by an uncorrelated
gamma RV with q = 1, θ = 2.6 and q = 1, θ = 6, respectively.

We have validated the correctness of Propositions 2 and 3
in Figs. 17a and 17b by comparing the analytical cummulative
distribution function (cdf) of the proposed approximation with
the cdf of Ar obtained through MATLAB simulation by
considering the moderate AT at ρ(α)

i,j = 0.2, 0.795, ρ
(β)
i,j = 0 in

Fig. 17a and ρ(α)
i,j = ρ

(β)
i,j = 0.043 in Fig.17b.

In Fig. 17a, the plot with discontinuous line represents the
simulated cdf of | hrl1 − hrl2 | with ρ

(α)
i,j = 0.2, dash-dot

line denote the simulated cdf of | hrl1 − hrl2 | with ρ
(α)
i,j =

0.795, and the solid line represents the analytical result of
the proposed approximation as Gamma cdf with q = 1, θ =
2. It is evident from Fig. 17a that, all the three plots very
closely follow each other, thus validating the correctness of
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our proposed approximation. Likewise, in Fig. 17b the dashed
blue line represents the simulated cdf of | hrn1 − hrn2 | with
ρ

(α)
i,j = ρ

(β)
i,j = 0.043 and the black solid line represents the

analytical result of the proposed approximation as Gamma cdf
with q = 1, θ = 2.6. A very good match between the simulated
and the approximate analytical results can be observed from
Fig. 17b, which substantiates the approximation proposed for
Scenario 2 of correlation in Proposition 3.

Remark 8: Similarly, we can compare the simulated cdf of
| hrl1 − hrl2 | for Scenario 1 under strong AT (with α =

4.2, β = 1.4, and ρ
(α)
i,j < 1, ρ

(β)
i,j = 0) with the predicted

analytical gamma cdf (q = 1, θ ≈ 2) and a good match will
be observed between them.

Remark 9: In case of Scenario 2 of correlation, at a
correlation level of ρ = 0.77 (ρ(α)

i,j = ρ
(β)
i,j = 0.795),

| hrl1−hrl2 | can be approximated by an uncorrelated gamma
distribution with q = 1, θ = 6, which can also be validated by
obtaining similar cdf plots as obtained in Fig. 17b.
It concludes our proof that, Gamma pdf fX(x) with q = 1, θ ≈
2 can be used as an approximate pdf of fAr (ar) for Scenario
I. Moreover, q remains unchanged for Scenario 2, however, θ
increases with ρ.
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