Sr-isotope analysis of speleothems by LA-MC-ICP-MS: high temporal resolution and fast data acquisition

Michael Weber¹,²*, Jasper A. Wassenburg¹,², Klaus Peter Jochum², Sebastian F.M. Breitenbach³, Jessica Oster⁴, Denis Scholz¹

¹Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz, J.-J.-Becher-Weg 21, 55128 Mainz, Germany
²Climate Geochemistry Department, Max-Planck-Institute for Chemistry (Otto-Hahn-Institute), Postbox 3060, 55020 Mainz, Germany
³Sediment and Isotope Geology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
⁴Department of Earth and Environmental Science, Vanderbilt University, Nashville, TN, 37240, USA

*Corresponding author:
Michael Weber
Institute for Geosciences, University of Mainz, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany
Email: mweber02@students.uni-mainz.de
Abstract

Speleothems are well established climate archives. A wide array of geochemical proxies, including stable isotopes and trace elements are present within speleothems to reconstruct past climate variability. However, each proxy is influenced by multiple factors, often hampering robust interpretation. Sr isotope ratios ($^{87}\text{Sr} / ^{86}\text{Sr}$) can provide useful information about water residence time and water mixing in the host rock, as they are not fractionated during calcite precipitation. Laser ablation multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) has rarely been used for determination of Sr isotope signatures in speleothems, as speleothems often do not possess appropriately high concentrations of Sr to facilitate this analysis. Yet the advantages of this approach include rapid data acquisition, higher spatial resolution, larger sample throughput and the absence of chemical treatment prior to analysis. We present LA-MC-ICP-MS Sr isotope data from two speleothems from Morocco (Grotte de Piste) and India (Mawmluh Cave), and we compare linescan and spot analysis ablation techniques along speleothem growth axes. The analytical uncertainty of our LA-MC-ICP-MS Sr data is comparable to studies conducted on other carbonate materials. The results of both ablation techniques are reproducible within analytical error, implying that this technique yields robust results when applied to speleothems. In addition, several comparative measurements of different carbonate reference materials (i.e. MACS-3, JCt-1, JCp-1), including tests with standard bracketing and comparison of the $^{87}\text{Sr} / ^{86}\text{Sr}$ ratios with a nanosecond laser ablation system and a state-of-the-art femtosecond laser ablation system, highlight the robustness of the method.

Keywords: Speleothem; Strontium isotopes; Laser ablation, Multi-collector inductively coupled plasma mass spectrometry, Femtosecond
1. Introduction

Speleothems (cave CaCO$_3$ deposits) are well established climate archives and are found worldwide in karst environments (Asmerom et al., 2010; Cheng et al., 2016; Cruz et al., 2005; Genty et al., 2003; Hoffmann et al., 2016; Kennett et al., 2012; Luetscher et al., 2015; Wang et al., 2001). They can be dated with unprecedented precision using the 230Th/U-dating method (Richards and Dorale, 2003; Scholz and Hoffmann, 2008), and provide a range of climate proxies that record a number of environmental processes and can be analysed at up to sub-annual resolution.

Oxygen isotopes in speleothems (δ^{18}O values) depend on paleo-temperature and rainfall properties, such as amount, seasonality and moisture sources (e.g., Fairchild et al., 2006; McDermott, 2004), whereas carbon isotopes can provide information on soil productivity, vegetation characteristics and effective rainfall (McDermott, 2004). In addition, trace elements (e.g., Sr, Mg, P, Ba) may be interpreted in terms of effective infiltration, prior calcite precipitation, water residence time, source and reservoir effects, weathering processes in the epikarst zone and soil composition (Ayalon et al., 1999; Fairchild et al., 2000; Fairchild and Treble, 2009; Verheyden et al., 2000; Wassenburg et al., 2016a; Wassenburg et al., 2016b). Within the epikarst and soil zone, different sources of trace elements (for example aeolian dust vs. host rock) may be present and display varying compositions. A change in the dripwater pathway or in the relative contribution of different sources, may thus affect the dripwater trace element composition, which often renders their interpretation a challenging task (Banner et al., 1994).

Important information on the influence of different sources of trace elements in dripwaters may be provided by Sr isotopes, which have been shown to provide additional insights on precipitation and water residence time in the host rock (Banner et al., 1996; Oster et al., 2010).

In CaCO$_3$, the Sr$^{2+}$ ion substitutes at the Ca$^{2+}$ ion sites in the mineral lattices due to their similar
properties and ionic radii (Banner, 2004). No isotopic fractionation of Sr isotopes is observed during precipitation of CaCO₃ and the incorporation of Sr into the crystal lattice. Thus, the

\[^{87}\text{Sr} / ^{86}\text{Sr} \] ratio of carbonates is identical to that of the parent solution (Banner and Kaufman, 1994).

Although the first Sr isotope analyses on speleothems were conducted in 1990 (Avigour et al., 1990), relatively few studies have focused on this topic so far. The main source for Sr in speleothems is the host rock, but several factors have been proposed to affect Sr isotope ratios: varying water residence time in the epikarst (Banner et al., 1996); (Oster et al., 2010; Oster et al., 2014; Verheyden et al., 2000), changes in aeolian input in response to sea-level changes or atmospheric circulation (Goede et al. 1998; Ayalon et al. (1999); Bar-Matthews et al. (1999); Li et al. (2005); Zhou et al. 2009), changes in weathering intensity of soil and host rock in response to rainfall (Avigour et al., 1990), changes in the distance to the shoreline and incorporation of sea-salt signals (Fisher et al., 2010), as well as mixing of the Sr signals of different rock types and soils (Frumkin and Stein (2004); Hori et al. (2013). All these studies either used Thermal Ionization Mass Spectrometry (TIMS, Avigour et al. (1990); Goede et al. (1998); Frumkin and Stein (2004); Li et al. (2005); Zhou et al. (2009); Hori et al. (2013)), or solution MC-ICP-MS (multi-collector inductively coupled plasma mass spectrometry, Ayalon et al. (1999); Bar-Matthews et al. (1999); Verheyden et al. (2000); Fisher et al. (2010); (Oster et al., 2010; Oster et al., 2014). For both techniques samples need to be drilled/milled, and require chemical separation prior to mass spectrometric analysis. This is time-consuming, and limits the achievable spatial resolution of \[^{87}\text{Sr} / ^{86}\text{Sr} \] records. Strontium isotope analysis by laser ablation (LA-) MC-ICP-MS offers the opportunity to measure the \[^{87}\text{Sr} / ^{86}\text{Sr} \] ratio \textit{in-situ} at high spatial resolution and without any prior chemical treatment. Although this technique has been widely applied to petrological samples (e.g. Christensen et al. (1995); Davidson et al. (2001); Waight et al. (2002); Bizzarro et al. (2003); Ramos et al. (2004); Jackson and Hart (2006), and
carbonate and phosphate materials, such as gastropods, otoliths, teeth, clam shells, fine- and coarse-grained carbonates and corals (Christensen et al. (1995), Ehrlich et al., 2001, Outridge et al. (2002), Bizzarro et al., 2003, Ramos et al., 2004, Woodhead et al. (2005), Copeland et al. (2008), it has only recently been used for measuring $^{87}\text{Sr}/^{86}\text{Sr}$ in speleothems (Wortham et al., 2017).

Here we present a LA-MC-ICP-MS method for measuring Sr isotopes on speleothems, based on previously mentioned studies on different sample materials. We show results from two speleothem samples and compare different sampling techniques. Both samples consist of aragonite and have a rather high Sr concentration >300 µg/g, which makes them highly suitable to apply LA-MC-ICP-MS. We also discuss the effects of different tuning parameters and compare results obtained by two different laser systems (a New Wave UP 213 nm laser and a NWR Femto200 laser ablation system).

2. Speleothem samples

The investigated speleothem samples stem from two different caves. Stalagmite GP5 was sampled at Grotte de Piste (Morocco), and stalagmite MAW-4 stems from Mawmluh Cave (Meghalaya, India). Stalagmite GP5 has a total length of 78 cm. A detailed description of the cave and the sample is given in Wassenburg et al. (2012) and Wassenburg et al. (2013). In this study, an approximately 15 cm long part of the sample (Fig. 1) was studied which corresponds to the time span from ca. 800 to 1760 AD. Previous data is published in Wassenburg et al. (2013) and only briefly summarised here. GP5 was precisely dated by the $^{230}\text{Th}/\text{U}$-method. Furthermore, the mineralogy of the sample was investigated by XRD and showed that GP5 is mainly aragonitic, with minor calcitic parts (<2%). Strontium concentrations range from 200 to
500 μg/g, with an average concentration of 426 (±49) μg/g. In some parts, the sample is characterized by mm-scale layering of porous and less porous layers.

Stalagmite MAW-4 (Fig. 1) from Mawmluh cave is a small sample with a total length of 3 cm. The upper part of the sample (~ 15 mm), consists of aragonite, and covers the time span from 1950 to 2006 AD (Wassenburg et al., 2016b). It has an average growth rate of ~293 μm/a, and can thus provide very high resolution. The stalagmite was actively growing at the time of collection (March 2006). The lower part of the sample consists of calcite, the base is dated 395 ± 55 a BP. The calcite-to-aragonite transition is clearly visible by a change in colour from greyish (calcite) to white/beige (aragonite). In the upper aragonitic part, this stalagmite has a relatively high Sr concentration (1458–1729 μg/g, (Wassenburg et al., 2016b), and is thus extremely suitable for Sr isotope measurements by LA-MC-ICP-MS. The calcite section has a Sr concentration of a few hundred μg/g, and was not investigated in this study. For more information about the cave setting and microclimatic conditions, see Breitenbach et al. (2010) and Breitenbach et al. (2015).
Figure 1: [A] Sampling approach for speleothem GP5. The red rectangle indicates the sampling section, blue lines show the LA-MC-ICP-MS linescan positions. The spot analyses were...
performed near the right end of the third linescan as indicated by the blue spots. [B] Sampling approach for speleothem MAW-4. The red rectangle indicates the sampling section. Linescan and spot analyses are similarly indicated as in [A]. All line lengths, widths and distances are on scale.

3. Materials and methods

3.1 Analytical setups

The measurement routine was developed with a NU Plasma MC-ICP-MS (see Table 1 for cup-configuration) coupled with a New Wave UP213 nm Nd:YAG laser ablation system at the Max Planck Institute for Chemistry, Mainz. Measurements were also performed with the MC-ICP-MS coupled to a NWR Femto200 laser ablation system to compare results obtained with two laser ablation systems. The femtosecond laser is less sensitive to matrix effects that may cause isotope fractionation (Poitrasson et al., 2003; Vanhaecke et al., 2010). Prior to laser ablation, the MC-ICP-MS was coupled to a CETAC Aridus II Desolvating Nebulizer system for tuning. The Sr reference solution NIST SRM 987 was used for optimizing the peak shape and coincidence of the individual Sr isotopes (88Sr, 87Sr, 86Sr, 84Sr) and to test the influence of different tuning parameters on ion beam intensity and the 87Sr/86Sr ratio. Several tuning parameters were changed systematically. Tests showed that the gas flows of the Aridus introduction system have a significant effect on the Sr isotope ratios. Furthermore, the torch position and the tuning of the high voltage lenses are important, since they affect the sample introduction into the system and the ion beam inside the mass spectrometer. Finally, the source lenses have been shown to have a significant effect on the 87Sr/86Sr ratio. In order to test the effects of changes in the lens settings, we started with seven measurements of NIST SRM 987 to test the stability of the 87Sr/86Sr ratio over time. In a first step, the lens settings were tuned
for maximum 88Sr intensity. Subsequently, the different source and transfer lens settings were changed systematically. For each lens, three measurements were performed: First, the voltage of the lens was decreased by 10 V, then increased by 20 V, and finally decreased by 10 V to return to the original value. This procedure was performed for all seven source and transfer lenses. Results are presented in Fig. 2 and Supplement A1.

Figure 2: 87Sr/86Sr ratios obtained on reference solution NIST SRM 987. The orange line represents the literature value of 87Sr/86Sr = 0.71034 ± 0.00026 (GeoReM, (Jochum et al., 2005)), the shading in bright orange shows the 2σ standard error. The large fluctuations in the Sr isotope ratio are caused by changes in the settings of the source and transfer lenses of the NU Plasma MC-ICP-MS, marked by the black arrows. Black diamonds represent measurements with the original lens settings, while blue (red) diamonds represent measurements with a 10 V increase (decrease) in lens voltage in comparison to the original lens setting.
Settings were then further optimised with the NU MC-ICP-MS coupled to the LA system. Since the UP213 nm laser ablation system offers higher fluence values (20 – 30 J/cm²) and count rates than the femtosecond laser (0.7 – 0.8 J/cm²), this system allows measurement of samples with comparably low Sr concentrations (>200 µg/g). Potential matrix effects are assessed by comparison with the femtosecond laser. All samples and reference materials have a low Rb content (Table 2). The operating parameters for the MC-ICP-MS and the laser ablation systems are given in Table 3.

3.2. Reference materials

The reference material (RM) JCt-1 was measured to determine the accuracy and precision of the method. This modern marine carbonate sample originates from a recent giant clam and has a \(^{87}\text{Sr}/^{86}\text{Sr}\)-ratio comparable to modern sea water (\(^{87}\text{Sr}/^{86}\text{Sr}\) of 0.70918 ± 0.00001, 2σ, Faure and Mensing (2005)), as confirmed by solution MC-ICP-MS measurements (\(^{87}\text{Sr}/^{86}\text{Sr}\) = 0.70915 ± 0.00005, Ohno and Hirata (2007)). Recently, a more precise \(^{87}\text{Sr}/^{86}\text{Sr}\) ratio of 0.70917 ± 0.00001 has been obtained for JCt-1 by MC-ICP-MS (Weber et al., In Revision). Due to its comparable Sr content of 1400 µg/g (Aizawa, 2008), JCt-1 was chosen as RM for the measurements of samples GP5 and MAW-4. Furthermore, the RMs JCp-1, a modern coral with \(^{87}\text{Sr}/^{86}\text{Sr}\) = 0.70916 ± 0.00002 (Ohno and Hirata (2007)) and MACS-3, a synthetic carbonate pellet (\(^{87}\text{Sr}/^{86}\text{Sr}\) = 0.7075532 ± 0.0000037; Jochum et al. (2011)), were also tested. Both of these RM samples have a very high Sr concentration (7500 µg/g for JCp-1, (Aizawa, 2008), and 6760 µg/g for MACS-3, (Jochum et al., 2012) and are well suited for femtosecond laser analysis. For tuning and test measurements, we used a modern day bivalve shell of *Glycimeris* sp., which has two distinct areas of different Sr concentrations of ca. 1000 and 5000 µg/g.
3.3. Laser ablation sampling method

Multiple LA-MC-ICP-MS measurements were performed perpendicular to the growth axis of the speleothem samples, parallel to and within the same distinct growth layers to check for reproducibility. In order to identify the best method for analysing Sr-isotope ratios in speleothems by LA-MC-ICP-MS, we applied two different sampling methods. First, we used the linescan technique, which has the advantage that a high signal intensity can be maintained for a relatively long measurement interval, improving counting statistics. In contrast, for spot analyses, the signal intensity slowly decreases with ablation depth. However, for spot analyses, mixing of material from different growth layers is excluded. The linescans followed individual growth bands and each of usually three linescans per growth layer had a circular spot size of 80 – 100 µm and a length of 750 µm (except linescan GP5-7, which was 2000 µm). They were scanned with a scan-speed of 5 µm/s, providing about 150 s per linescan measurement. This sampling approach enables us to identify potential changes in the 87Sr/86Sr ratio at a very high spatial resolution. Prior to each analysis, a pre-ablation was performed with a spot size of 110 µm and a scan-speed of 80 µm/s (Table 3). The first 5 s are discarded due to high intensities when the laser starts, which is typical for laser ablation analyses. Spots were analysed with a circular spot size of 100 µm and a dwell time of 120 s. To test the reproducibility of the method, three line scans were placed parallel to each other within the same growth band with less than 50 µm between the end and start of each linescan (Fig. 1). The distance between the measured layers varied between 150 µm and 850 µm for GP5 and 500 µm for MAW-4. The spot analyses of GP5 were performed for a few layers only. Each spot analysis is located near the end of the respective line scan. For correction purposes, RM JcP-1 was measured three times before and after each set of samples (usually six measurements in total).

To compare both laser ablation systems, we performed measurements with different RMs. Since the Sr concentration of JCP-1 is almost six times that of JcT-1, the laser settings for the
UP213 laser ablation system were adjusted to prevent the 88Sr intensity from reaching critical values. We used a laser energy of 60%, a repetition rate of 5 Hz and a spot size of 55 µm. All measurements were performed as spot analyses. To test the robustness of the results, we also applied our standard bracketing approach on J Cp-1 by measuring samples of J Ct-1 before and after J Cp-1. The laser settings for J Ct-1 were chosen as described in Table 3.

Our NWR Femto200 laser ablation system only allows spot sizes up to 65 µm, therefore we only measured RMs with high Sr concentrations, such as J Cp-1 and MACS-3. The laser parameters for these measurements are presented in Table 3. Spot measurements with the femtosecond laser ablation system suffer from a rapid decrease in signal intensity. Thus, all measurements were performed as linescans. We measured three samples of J Cp-1, followed by six measurements of MACS-3 and again three samples of J Cp-1.

4. Correction procedure for LA-MC-ICP-MS

Strontium isotopes were measured on cups H4 (88Sr), H2 (87Sr), Ax (86Sr) and L3 (84Sr) (Table 1). The major advantage of Sr-isotope analysis with LA-MC-ICP-MS is that Sr-isotopes are measured in-situ, without the need of chemical separation. This means, however, that the matrix contains several other isotopes that potentially affect the Sr isotope signal (i.e., 87Rb, but also doubly charged ions, such as 176Yb, 174Yb, 172Yb, 168Yb, 168Er, and molecular interferences, such as Ca-argides and/or -dimers, Table 1). In addition, the Ar gas may contain impurities of Kr, with interfering isotopes of 86Kr and 84Kr (Table 1). Some masses are affected by several interferences. For example, the 84Sr signal on mass 84 may be affected by 84Kr$^+$, 168Er$^{2+}$, 168Yb$^{2+}$ and Ca argides/dimers. Therefore, it is necessary to find another mass that is not affected by other interferences, which can be used to correct for other masses of the same ion using known isotopic abundances. For example, we used mass number 86.5 that is mostly unaffected by other
signals to correct for the Yb-interference by monitoring 173Yb$^{2+}$. Thus, the order of the corrections is important. The correction procedure is outlined in detail below. Fig. 3 shows the magnitude of the individual correction steps on the 87Sr/86Sr ratio for measurements on samples JCt, GP5 and MAW-4.

4.1 Background correction

Potential interferences of 86Kr, 84Kr, 83Kr and 82Kr from minor contaminations in the Ar gas supply are corrected by a blank measurement. For this reason, prior to each analysis an on-peak background correction is performed for 45 s during the laser warm-up time. Then, the median for each signal intensity is calculated and subtracted from the measured signal. This removes all Kr interferences as well as potential remains of Sr from previous measurements.

4.2 Rare-earth elements (REE)

After background correction, different interferences must be eliminated. Doubly-charged isotopes of Er and Yb can be detected on half masses (Table 1). 173Yb is the only isotope measured on cup H1 on half-mass 87.5, and 171Yb is the only one measured on cup L1 on half mass 85.5. Thus, 173Yb and 171Yb can be measured without any interferences. By assuming constant isotope ratios for Yb (Berglund and Wieser (2011), the signal for all Yb isotopes can be calculated. Although Yb is quite rare in speleothem samples (Table 2), this correction may have a minor influence on the 87Sr/86Sr ratios.

The second step is to correct for Er. 167Er is the only isotope measured on ion counter IC-1 on half mass 83.5, and other Er isotopes can be calculated assuming constant isotope ratios in the same way as Yb (Berglund and Wieser (2011). Erbium is uncommon in speleothem samples (Table 2) and this correction is only of minor importance. Several laser ablation studies on other
sample materials did not even correct for rare earth elements (REE) during Sr isotope analysis (e.g. Christensen et al. (1995); Barnett-Johnson et al. (2005); Jochum et al. (2009); Copeland et al. (2010)).

4.3 Molecular interferences

The next step is to correct for molecular interferences of Ca dimers and argides. Since it is impossible to differentiate between the signals resulting from argides and dimers, the relative amounts of each signal are taken into account to correct for those interferences in relation to the signal on mass 82. This mass is used as a reference since it has no other interferences and a potentially higher signal of argides and dimers than mass 83, which is also free of significant interferences (Table 1). As an example, we briefly describe the correction of mass 84 for Ca argides and dimers.

After correcting for background and REEs, the correction for Ca argides is performed by the following relationship:

\[
84_{Ar,corr} = 84_{uncorr} - 82_{uncorr} \times \left(\frac{\sum Ca_{Ar}}{84} / \sum Ca_{Ar} \right) \quad (Eq. 1)
\]

where 84_{Ar,corr} is the corrected signal on mass 84, 84_{uncorr} is the uncorrected signal (besides background and REE correction) on mass 84 and 82_{uncorr} is the signal on mass 82. \(\sum Ca_{Ar} \) is the sum of the relative portion of Ca argides on mass 84, and \(\sum Ca_{Ar} \) is the sum of the relative portion of Ca argides on mass 82, based on their natural occurrence (Berglund and Wieser, 2011). This correction is performed for masses 88, 86, 84 and 83. For the interferences from Ca dimers, the correction is done in a similar way, again using the signal on mass 82 as a reference:

\[
84_{corr} = 84_{Ar,corr} - 82_{uncorr} \times \left(\frac{\sum Ca_{Ca}}{84} / \sum Ca_{Ca} \right) \quad (Eq. 2)
\]
where 84_{Corr} is the corrected signal on mass 84, 84_{Arcorr} is the background corrected intensity on mass 84, REEs and Ca argides, and 82_{uncorr} is the uncorrected signal (besides background and REE correction) on mass 82. ΣCaCa_{84} is the sum of the relative portion of Ca dimers on mass 84 and ΣCaCa_{82} is the sum of the relative portion of Ca dimers on mass 82. This correction is performed for masses 88, 87, 86, 85, 84 and 83 and only applied for signals > 0 V. All other signals remain uncorrected because the intensity of Ca argides and dimers is too small to detect and does not affect the results.

4.4 Mass bias

After correcting the raw signals for interferences, the mass bias needs to be corrected. This correction is performed prior to the correction for the interference of Rb, because the mass bias obtained from the $^{86}\text{Sr}/^{88}\text{Sr}$ ratio is subsequently used to obtain the mass bias corrected $^{85}\text{Rb}/^{87}\text{Rb}$ ratio (section 4.5). Based on the signals corrected for background, REEs, Ca argides and dimers, raw values for the ratios of $^{86}\text{Sr}/^{88}\text{Sr}$, $^{84}\text{Sr}/^{86}\text{Sr}$ and $^{87}\text{Sr}/^{86}\text{Sr}$ are calculated. Then, a mass fractionation factor α is calculated to correct for the instrumental mass fractionation based on the $^{86}\text{Sr}/^{88}\text{Sr}$ ratio and the exponential law described in Ingle et al. (2003):

$$R_{\text{corr}} = R_{\text{meas}} \times \left(\frac{m_{87\text{Sr}}}{m_{86\text{Sr}}} \right)^{\alpha}$$ \hspace{1cm} (Eq. 3)

where m_{87} and m_{86} are the masses of ^{87}Sr and ^{86}Sr. The mass fractionation factor α is calculated as described in Ehrlich et al. (2001):

$$\alpha = \left(\frac{\ln \left(\frac{^{86}\text{Sr}/^{88}\text{Sr}}{^{86}\text{Sr}/^{88}\text{Sr}}_{\text{true}} \right)}{\ln \left(\frac{m_{86}}{m_{88}} \right)} \right)$$ \hspace{1cm} (Eq. 4)

where $(^{86}\text{Sr}/^{88}\text{Sr})_{\text{true}}$ is the accepted value of 0.1194 (Steiger and Jäger, 1977) and m_{88} is the mass of ^{88}Sr.
4.5 Interference of rubidium

The final step in the correction procedure is to correct the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio for the interference of ^{87}Rb. Due to the previous corrections, mass 85 only consists of ^{85}Rb (Table 1), which can be used to calculate the fraction of ^{87}Rb by using the constant ratio of $^{87}\text{Rb}/^{85}\text{Rb} = 0.3857$ (Berglund and Wieser, 2011). This was done following equation 5:

$$^{87}\text{Rb} = \left(\frac{^{87}\text{Rb}}{^{85}\text{Rb}_{\text{Lit}}} \cdot ^{85}\text{Rb}_{\text{meas}}\right) \cdot \left(m_{^{87}}/m_{^{85}}\right)^\alpha$$ \hspace{1cm} (Eq. 5)

where $^{87}\text{Rb}/^{85}\text{Rb}_{\text{Lit}}$ is the literature value (Berglund and Wieser, 2011) (Berglund and Wieser, 2011), $^{85}\text{Rb}_{\text{meas}}$ is the Rb signal on mass 85, corrected for background, REEs and Ca argides/dimers, $m_{^{87}}$ is the mass of ^{87}Rb, $m_{^{85}}$ is the mass of ^{85}Rb, and α is the mass fractionation factor. The correction on $^{87}\text{Sr}/^{86}\text{Sr}$ is then performed using the following equation:

$$^{87}\text{Sr}/^{86}\text{Sr}_{\text{Rb\text{-corr}}} = \left[\left(^{87}\text{Sr}_{\text{uncorr}} - ^{87}\text{Rb}\right)/^{86}\text{Sr}\right] \cdot \left(m_{^{87}}/m_{^{86}}\right)^\alpha$$ \hspace{1cm} (Eq. 6)

where $^{87}\text{Sr}_{\text{uncorr}}$ is the Sr signal on mass 87 corrected for background, REEs and argides/dimers (not for Rb), ^{87}Rb and ^{86}Sr are the corrected signals for Rb on mass 87 and Sr on mass 86, respectively, $m_{^{87}}$ and $m_{^{86}}$ are the masses for Sr and α is the mass fractionation factor. This Rb correction is only considered robust for samples with a Rb/Sr ratio <0.02 (Irrgeher et al., 2016). For samples with higher Rb content, an alternative Rb-correction is necessary (Müller and Anczkiewicz, 2016). All speleothem samples and RMs analysed in this study are below this threshold (Table 2).

4.6 Data processing
After calculating the interference-free \(^{87}\text{Sr}/^{86}\text{Sr}\) ratio, the results are calibrated by standard-bracketing using RMs with well-known \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios, as has been recommended for Sr-isotope analysis (Irrgeher et al., 2016). Furthermore, to avoid effects of individual large peak values, we performed a 2σ outlier test for the median of all \(^{87}\text{Sr}/^{86}\text{Sr}\) values, removing all values deviating >2σ from the median.

Usually, the final \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios obtained for the RMs deviate slightly from the reference values, necessitating an additional correction step. Each sample is therefore bracketed by a set of three individual measurements of a suitable RM. The mean value of the three RMs is calculated, and a correction factor for the sample is calculated according to the following equation:

\[
S_{\text{corr}} = \frac{^{87}\text{Sr}/^{86}\text{Sr}_{\text{true}}}{^{87}\text{Sr}/^{86}\text{Sr}_{\text{meas}}} \quad \text{(Eq. 7)}
\]

where \(^{87}\text{Sr}/^{86}\text{Sr}_{\text{true}}\) is the literature value of the RM and \(^{87}\text{Sr}/^{86}\text{Sr}_{\text{meas}}\) is the measured ratio of the RM. We then use the mean value of the two correction factors from the two sets of RMs (measured prior and subsequent to the sample) and apply it to the measured sample \(^{87}\text{Sr}/^{86}\text{Sr}\) ratio. Since the measurements of the RMs are associated with an uncertainty, error propagation is performed by adding the relative 2σ standard error for the measurement of the RM (2σ Std Error\(_{\text{Ref}}\)) to the relative 2σ standard error of the measured sample (2σ Std Error\(_{\text{Spl}}\)):

\[
2\sigma \text{ Std Error}_{\text{SampleCorr} \%} = \sqrt{(2\sigma \text{ Std Error}_{\text{Ref} \%})^2 + (2\sigma \text{ Std Error}_{\text{Spl} \%})^2} \quad \text{(Eq. 8)}
\]

The 2σ Std Error\(_{\text{Ref}}\) value is calculated from the mean of the relative 2σ standard errors of all RMs, while the 2σ Std Error\(_{\text{Spl}}\) is calculated from the mean of the linescans or spot measurements for each sample layer. By applying the error propagation, the 2σ standard error of each sample usually increases by ± 0.00001 – 0.00002 (0.01 – 0.03 ‰).
5. Results

The results from the speleothem samples obtained with the two sampling methods (linescans and spot analyses, respectively) are presented in Table 2. Due to the extensive correction procedure, we show the effect of each correction step on the $^{87}\text{Sr}/^{86}\text{Sr}$ value for one LA-MC-ICP-MS measurement of JCT-1, MAW-4 and GP5, respectively. The results are presented in Fig. 3. The correction step associated with the largest effect is the background correction and, depending on the sample, the corrections for interferences of Yb and Rb. Corrections for Ca argides and dimers are insignificant for our results.

Figure 3: Influence of the different correction steps on the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of JCT-1 (black diamonds), MAW-4 (squares) and GP5 (triangles). Note that all results are mass bias corrected.
5.1. Influence of tuning parameters on the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio

Our solution MC-ICP-MS measurements show that tuning for maximum Sr intensity does not necessarily lead to a “true” $^{87}\text{Sr}/^{86}\text{Sr}$ ratio, but may deviate from the accepted value of the reference solution NIST SRM 987 ($^{87}\text{Sr}/^{86}\text{Sr} = 0.71034 \pm 0.00026$, GeoReM, Jochum et al. (2005)) on the third or fourth decimal. This can be avoided by tuning the mass spectrometer to obtain the Sr isotope ratio known from the literature (at the expense of signal intensity). The procedure is described in chapter 3.1. While some changes have a large influence on the isotope ratio (e.g. the decrease by 10 V for source lenses V1 and V2), others only have a minor influence, such as the changes at transfer lens H1 (Fig. 2). We note that this might be a specific pattern for our mass spectrometer and may differ in other laboratories. After restoring to the original setting, the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio was comparable to the starting value (Fig. 2).

Figure 4 (data in Supplement A1) shows the evolution of the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio during consecutive days of LA-MC-ICP-MS measurements of RM JCt-1. While the Sr isotope ratio increased during the first measurements, source lens adjustments brought the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio back towards the reference value.
Figure 4: ^{87}\text{Sr}/^{86}\text{Sr} ratios of reference material JCt-1 obtained during different days, showing the tuning influence during the first measurements. The orange line represents the reference value of JCt-1 of ^{87}\text{Sr}/^{86}\text{Sr} = 0.70917 ± 0.00001 (Weber et al., In Revision), the shading in bright orange corresponds to its 2\sigma standard error. Dashed vertical lines separate different days of measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

These results highlight the necessity of the standard-bracketing approach, which corrects the described effects. Nevertheless, we minimised the influence of these effects by tuning the ^{87}\text{Sr}/^{86}\text{Sr} ratio towards the reference value prior to the measurement, or, if necessary, again afterwards.

5.2 Tests with reference materials

5.2.1 Nanosecond LA-MC-ICP-MS
For the nanosecond laser ablation system, we chose the carbonate RMs JCt-1, JCp-1 and MACS-3 and applied the method described above (section 3.3). These RM’s have a large range of Sr concentrations, and we are aware that changes of the laser parameters between different samples can affect the measurements. Nevertheless, all measurements showed sufficient fluence (~ 10 J/cm² for JCp-1 and MACS-3 and > 22 J/cm² for JCt-1) and the obtained $^{87}\text{Sr}/^{86}\text{Sr}$ ratios showed the expected results within error. The mean value of the JCp-1 measurements was $^{87}\text{Sr}/^{86}\text{Sr} = 0.70913 \pm 0.00008$ (n = 3) and agree with the literature value of 0.70916 ± 0.00002 (Ohno and Hirata, 2007). In addition, the uncorrected JCp-1 $^{87}\text{Sr}/^{86}\text{Sr}$ ratio is 0.70914 ± 0.00007 (n = 3) and the uncorrected $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of JCt-1 is 0.70917 ± 0.00005 (n = 5), thus both are indistinguishable from the literature values. The results for MACS-3 provide an average $^{87}\text{Sr}/^{86}\text{Sr}$ value of 0.70753 ± 0.00005 (n = 16), which is in agreement with the literature value of 0.707532 ± 0.0000037 (Jochum et al., 2011).

5.2.2 Femtosecond LA-MC-ICP-MS

In order to further test our methodology, we used a femtosecond laser ablation system on carbonate RM’s with high Sr concentrations (JCp-1 and MACS3) following the method as described in chapter 3.3. All measurements were corrected by the standard bracketing approach yielding $^{87}\text{Sr}/^{86}\text{Sr}$ ratios in agreement with the reference values (Fig. 5). An exception is measurement MACS-3-8, which shows a strongly elevated $^{87}\text{Sr}/^{86}\text{Sr}$ ratio. This sample may have been affected by changes in the Kr signal intensity because unusual peak intensities in ^{84}Kr were observed during the blank measurement. It is thus likely that similar fluctuations occurred during the measurement which affected the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio. The measured raw $^{87}\text{Sr}/^{86}\text{Sr}$ ratios before the standard bracketing correction for JCp-1 are 0.70920 ± 0.00004 (n = 6) and 0.70757 ± 0.00005 for MACS-3 (without MACS3-8, n = 5), in agreement with the literature values. After performing the standard bracketing approach, the average $^{87}\text{Sr}/^{86}\text{Sr}$ ratio is
0.70917 ± 0.00006 for JCp-1 (n = 6) and 0.70752 ± 0.00006 for MACS-3 (without MACS3-8, n = 5).

Figure 5: 87Sr/86Sr ratios of reference materials JCp-1 and MACS-3 obtained by fs-LA-MC-ICP-MS. The red line represents the literature value of MACS-3 of 87Sr/86Sr = 0.7075532 ± 0.0000037 (Jochum et al., 2011), the blue line shows the literature value of JCp-1 of 87Sr/86Sr =0.70916 ± 0.00002 (Ohno and Hirata, 2007), with its 2σ standard error shown as bright blue shading. The error range for the reference value of MACS-3 is too small to be visible in the figure. Note that sample MACS-3-8 was strongly affected by very variable 84Kr intensities during the blank measurement and probably during the sample measurement as well.

5.3 Speleothem GP5

On sample GP5, a total number of 27 different layers were measured (Fig. 6 [A]). In the area between ~116 to 118.5 mm distance from top (DFT) the resolution is high (i.e. less than 100 µm between linescans). Further measurements were performed with a distance of ~1000 µm
between each other. Some measurements suffer from changing mass bias and low intensities \(^{88}\text{Sr} < 1 \text{ V} \), resulting in decreasing values of \(^{87}\text{Sr}^{86}\text{Sr}\) (in particular linescans GP5-17-21, Table 2). The \(^{87}\text{Sr}^{86}\text{Sr}\) ratios generally show only minor variations, ranging from 0.70856 ± 0.00017 to 0.70920 ± 0.00007. The low-resolution measurements from 108.3 to 115.3 mm DFT show a relatively stable Sr isotope composition with \(^{87}\text{Sr}^{86}\text{Sr}\) ratios between 0.70890 ± 0.00011 and 0.70913 ± 0.00008. The average \(^{87}\text{Sr}^{86}\text{Sr}\) ratio of all linescans is 0.70892 ± 0.00006 (n = 79).

36 spot analyses were performed on stalagmite GP5. These were placed near the right end of the third linescan within the same growth layer (Fig. 1). At signal intensities lower than ca. 0.6 V on \(^{88}\text{Sr}\), we found a significant decrease of the \(^{87}\text{Sr}^{86}\text{Sr}\) ratio. Corresponding measurements are marked with double diamonds ♦♦ in Table 2. The \(^{87}\text{Sr}^{86}\text{Sr}\) ratios of the spot measurements from GP5 are presented as circles in Fig. 6 [A]. The results show a similar pattern as the linescans, even though the 2σ standard errors are slightly larger. The \(^{87}\text{Sr}^{86}\text{Sr}\) ratio varies between 0.70872 ± 0.00024 and 0.70907 ± 0.00011. The mean of all spot measurements is \(^{87}\text{Sr}^{86}\text{Sr} = 0.70897 ± 0.00005 \) (n = 32) and in good agreement with the linescan data.

5.4 Speleothem MAW-4

On MAW-4, 24 linescans were performed at a sampling resolution of 500 µm (Fig. 1). The \(^{87}\text{Sr}^{86}\text{Sr}\) ratios are presented in Fig. 6 [B]. While the first two measurements at 8.4 and 8.9 mm DFT are similar, the following measurements show a slightly increasing trend towards higher values, reaching a maximum of 0.70871 ± 0.00004. The 2σ standard error of all measurements is ± 0.00004 with an average \(^{87}\text{Sr}^{86}\text{Sr}\) ratio over all linescans of 0.70867 ± 0.00003 (n = 24).

24 spot analyses were performed on stalagmite MAW-4, placed near the right end of the third linescan within the same growth layer (Fig. 1). Note that layer MAW-4-7 was not measured.
For layer MAW-4-8, a total number of six spot measurements were performed to test the reproducibility. The mean of MAW-4-Spot-8a-c is within error of the mean of MAW-4-Spot-8d-f. Since MAW-4-Spot-8a-f are in perfect agreement, they were combined as a single measurement (MAW-4-Spot-8). The $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of the spot measurements of MAW-4 are presented as circles in Fig. 6 [B]. A pattern, similar to the linescans can be observed with two measurements at 8.4 and 8.9 mm DFT showing lower $^{87}\text{Sr}/^{86}\text{Sr}$ ratios compared to the other values. In contrast to the linescan measurements, this increase is not significant due to larger errors. Nevertheless, an increase and a plateau at the same distance from top is visible for the spot analyses. The 2σ standard error of all measurements is in the range of ±0.00006 to ±0.00008 and therefore higher than for the linescans. The average $^{87}\text{Sr}/^{86}\text{Sr}$ ratio over all spot measurements is 0.70870 ± 0.00002 (n = 24), in agreement with the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio derived from the linescans.
Figure 6: [A] $^{87}\text{Sr}/^{86}\text{Sr}$ ratios are plotted against the distance from top of speleothem GP5. Linescan measurements affected by low signal intensities are marked red. [B] $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of speleothem MAW-4 against distance from top [mm] for the linescan as well as the spot analyses. For better visualization of the error bars, spot analyses data were shifted to the right by 0.05 mm.

6. Discussion

6.1 Linescan versus spot analysis
We used two different laser ablation methods for this study, i.e., linescans along growth bands and spots, to test which is the best approach. In general, the linescan method provides much smaller 2σ standard errors than the spot analysis. For RM JcT-1, the final $^{87}\text{Sr}/^{86}\text{Sr}$ ratio usually has a 2σ standard error in the range of ± 0.00002 – 0.00005 for linescan measurements, representing a total error in the range of 0.003 – 0.01%. For spot analyses, the 2σ standard error was in the range of ± 0.00005 – 0.00007. The 2σ standard error is highly dependent on the Sr concentration of the sample (Fig. 7). The different precision in spot and linescan analyses is caused by: 1) the longer integration time for the linescan approach, and 2) decreasing signal intensity during spot analysis caused by deepening of the laser crater. Therefore, the spot analysis approach might be insufficiently precise to resolve small scale changes in the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio. This is exemplified in MAW-4, where an increase in the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio was significant for the linescan approach, but not for the spot analyses due to larger errors. A disadvantage of the linescan approach, however, is that unwanted sampling of material from different growth layers (with a different $^{87}\text{Sr}/^{86}\text{Sr}$ ratio) may occur. Furthermore, linescans require a larger sample surface compared to spot analysis. We recommend using the linescan approach only for speleothems with a regular (parallel) layering that provides a relatively large sample surface (ca. 3 mm width and length). For speleothems with irregular layering, spot analysis may be the preferable option. Tests with spot analyses showed that higher repetition rates (> 10 Hz) result in a higher signal intensity and precision, which is desirable for samples with relatively low Sr concentration (200-500 µg/g), such as GP5. However, the sample material should be dense and stable enough to resist such a high ablation efficiency. Higher repetition rates also result in deeper lased craters and thus potentially in ablating into different layers. However, for repetition rates in the range of 5 – 10 Hz the depth of the crater should be ≤12 µm and even less for linescan measurements (≤ 2 µm). Thus, this effect should only be important for very slowly growing speleothems.
Figure 7: Scatter plot of ^{88}Sr intensity vs. $^{87}\text{Sr}/^{86}\text{Sr}$ 2σ standard error. The dependency of the $^{87}\text{Sr}/^{86}\text{Sr}$ 2σ standard error on the ^{88}Sr intensity is shown for the linescan measurements of JClt-1, Glycimeris sp., GP5 and MAW-4.

6.2 Nanosecond versus femtosecond laser systems

Ablating RMs JCp-1 and MACS-3 with either a nanosecond or a femtosecond laser gives similar results. While the nanosecond laser provides the advantage of measuring lower concentration samples with higher precision, the femtosecond laser is less vulnerable to fractionation effects and offers better control on the ablation process (Glaus et al., 2010; Koch and Gunther, 2007). In addition, the refractory Sr is generally less affected by matrix, elemental and isotopic fractionation effects in comparison to the volatile Rb (Horn and von Blanckenburg, 2007). However, with our setup, the femtosecond laser approach requires much higher Sr
concentrations (> 1400 µg/g) to achieve sufficient precision. For instance, we were not able to accurately measure JCt-1 and our speleothem samples with the femtosecond laser due to insufficient Sr concentration. In contrast, the standard bracketing approach with JCt-1 and JCp-1 with the nanosecond laser was successful and the data from MACS-3 were similar to literature values. The results from the femtosecond LA-MC-ICP-MS measurements show that our approach can be transferred to other laser ablation systems. The raw measurements of JCp-1 and MACS-3 are in good agreement with literature values and the performance of our standard bracketing approach does not affect the resulting $^{87}\text{Sr}/^{86}\text{Sr}$ significantly. Overall, the $^{87}\text{Sr}/^{86}\text{Sr}$ RM data obtained with both laser ablation systems agree within error and are therefore probably not affected by differences in matrix effects between the different setups.

6.3. Tuning parameters and suitable reference materials

An aspect of major importance identified during the development of the LA-MC-ICP-MS technique is to adjust the tuning after changing the cones to obtain correct $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of a reference solution. Tuning for maximum signal intensity does not always result in the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of the RM (Fig. 2). To achieve the correct $^{87}\text{Sr}/^{86}\text{Sr}$ ratio we adjusted the lens settings. In comparison to the tuning of the high voltage lenses, the source and transfer lenses had a larger effect on stability and reliability of the $^{87}\text{Sr}/^{86}\text{Sr}$ ratios with our NU Plasma MC-ICP-MS (Fig. 2). In addition, the laser ablation system itself alters the $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of the measurements. Since different RMs and samples have variable Sr contents, the laser energy and spot size may have to be adjusted to prevent signal intensities larger than ~10 V on cup H4 (^{88}Sr signal). It is important to use similar measurement parameters for RMs and speleothem samples when the standard bracketing technique is applied. Therefore, it is essential to use a RM with similar Sr concentration and a similar matrix as the speleothem sample. By not using matrix-matched samples and RMs, potential differences in the occurrence of interference may alter the
correction (Irrgeher et al., 2016). In case of different matrices and/or large differences in Sr concentration, the resulting $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of the unknown sample needs to be handled with care and might be less precise. For instance, the use of RM JCt-1 for correcting GP5 measurements was critical, due to low intensities on the sample (1 – 2 V, ^{88}Sr) and high intensities on the RM (up to 8 – 9 V, ^{88}Sr) when using the same laser parameters. Fluence decreases with laser energy and it is not guaranteed that the same measurement parameters are available for all samples and RMs. For speleothem samples with much higher Sr concentration than in this study, JCp-1 and MACS-3 are suitable RMs.

Furthermore, the signal intensity of the Sr isotope measurements is important. Measurements suffering from very low intensities on ^{88}Sr ($\sim < 1$ V) show large errors. A scatter plot of the intensity of the ^{88}Sr-signal against the 2σ standard error for the linescan measurements of JCt-1, the bivalve shell of *Glycimeris* sp., GP5 and MAW-4 (Fig. 7) reveals in particular for GP5 a high dependency on a sufficiently high Sr signal for precise measurements. Intensities of ^{88}Sr below ~1.5 V cause a dramatic shift towards large errors. Similar patterns are visible for JCt-1 and the *Glycimeris* sp. shell. The Sr intensity difference found in MAW-4 is too low to show the effect of signal intensity on the uncertainty. All measurements with low Sr intensities suffer from low counting statistics and the background correction of Kr might be insufficient.

Another effect that can have major detrimental influence on the analysis is progressive clogging of the cones. When a decrease in Sr intensity is observed, it is important to evaluate if this change results from a change of the Sr content in the sample or from clogging of the cones by deposition of Ca. Additional information on the performance of the mass spectrometer is provided by monitoring the mass bias. In our study, the mass bias for the $^{87}\text{Sr}/^{86}\text{Sr}$-ratio was usually between 0.45 – 2.09 % ($R_{\text{corr}}/R_{\text{meas}} = 0.9791 – 0.9955$, Eq. 3). Especially for the linescans of sample MAW-4, the mass bias remained very stable (1.24 – 1.27 %; $R_{\text{corr}}/R_{\text{meas}} = 0.9873 – 0.9877$, Eq. 3). When the mass bias shows increased variability over the day, careful
evaluation of the results is necessary. We observed that a decrease in the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio and an increase in the 2σ standard error is often related to a high mass bias (e.g., for samples GP5-17-21, Table 2).

6.4 Standard bracketing

Our results highlight the importance of the standard bracketing correction scheme for LA-MC-ICP-MS Sr isotope analysis. Prior to the first sample measurements, a test of the standard bracketing method was performed using JCl-1. For this purpose, JCl-1 was used as a RM and also treated as a sample. The raw and corrected results are shown in Fig. 8. The standard bracketing method seems to be generally applicable for $^{87}\text{Sr}/^{86}\text{Sr}$ ratio correction, since the corrected Sr isotope ratios of JCl-1 agree within uncertainties. A similar test performed on the RMs JCp-1 and MACS-3 with the femtosecond LA-MC-ICP-MS setup also showed reliable results (Fig. 5).

Figure 8: Black rhombus show the raw results of the $^{87}\text{Sr}/^{86}\text{Sr}$ LA-MC-ICP-MS linescan measurements performed using JCl-1 as a reference material and a sample. Corrected $^{87}\text{Sr}/^{86}\text{Sr}$
ratios of JCt-1 are shown as red rhombs. Note that the errors increased in comparison to the raw data due to correction via the reference material. The orange line represents the reference value of JCt-1 of 0.70917 ± 0.00001 (Weber et al., In Revision).

6.5 LA-MC-ICP-MS of Sr isotopes on speleothem samples

Traditional Sr isotopes analysis by solution MC-ICP-MS or TIMS requires careful chemical treatment. A recent study by Wortham et al. (2017) presented a speleothem Sr isotope record obtained by LA-MC-ICP-MS. These authors performed linescan measurements parallel to the growth axis of a speleothem from Brazil and traced an increasing $^{87}\text{Sr} / ^{86}\text{Sr}$ ratio over the last two millennia. Their approach is slightly different to ours. While their linescan is performed parallel to the growth axis, we measure three linescans for each growth layer perpendicular to the growth axis, which enables us to test whether results from individual growth layers are reproducible (similar to the Hendy test for stable carbon and oxygen isotopes, Hendy (1971)). In addition, the change of the $^{87}\text{Sr} / ^{86}\text{Sr}$ ratio in the Brazilian speleothem was on the third decimal, which is relatively large. Detecting smaller changes (i.e., on the fourth to fifth decimal), is only possible by conducting a set of measurements perpendicular to the growth axis. Otherwise the obtained $^{87}\text{Sr} / ^{86}\text{Sr}$ ratio is largely influenced by a time-averaging effect. Wortham et al. (2017) used a different sampling approach and do not provide the Sr concentration of their speleothem and the used RM which complicates the comparison of both studies. Nevertheless, they showed that it is possible to track large changes in speleothem Sr isotope ratios using linescans parallel to the growth axis. Our results show that it is also possible to obtain higher precision Sr isotope data by LA-MC-ICP-MS using a set of linescans, as well as spot analyses orientated perpendicular to the growth axis. With the state-of-the-art MC-ICP-MS systems, it is unlikely that small scale changes in Sr isotope composition can be detected by performing a linescan parallel to the growth axis. This is further complicated by the typically
low Sr concentration of speleothems (few hundred µg/g or even less). However, aragonitic
speleothems can have much higher Sr concentrations of several thousand µg/g. Thus, in
aragonitic samples, a linescan parallel to the growth axis may reveal small-scale changes in Sr
isotope composition.

7. Conclusions

We show that LA-MC-ICP-MS is a powerful tool for the analysis of Sr isotopes in speleothems.
Best results are obtained from samples with Sr concentrations of >1000 µg/g. For our setup, the
minimum \(^{88}\text{Sr}\) concentration required to obtain reliable \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios was ca. 300 µg/g. In
order to retrieve reliable results, appropriate tuning of both the mass spectrometer and the laser
ablation system is of great importance. Tuning for maximum intensity does not always result
in correct \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios. We highly recommend to tune for the correct Sr-isotope ratio of a
reference material prior to an analytical session. The Sr concentration of the RM should be in
the same range as that in the samples. In order to account for potential drifts in the mass
spectrometer during an analytical session, we recommend to apply standard bracketing using
appropriate RMs.

Linescans provide higher precision than spot analyses. The latter might be advantageous
however if only a limited surface is available for sampling, for instance in case of a irregular
layering. While speleothem samples tested here contain only low amounts of REEs and Rb,
appropriate correction procedures are required to minimise the influence of interferences from
these elements. In addition, potential interferences resulting from Ca argides and dimers should
be accounted for.

The use of a femtosecond laser ablation system provides a more stable signal intensity and
therefore more precise measurements, but its application on samples with low Sr concentrations
(ca. \(>1400\ \mu g/g\), since measurements with JCt-1 were not precise enough) is not recommended due to lower signal intensities compared to the nanosecond laser leading to less precise results.
Acknowledgements

M. Weber, J.A. Wassenburg, K.P. Jochum and D. Scholz are thankful to the Max Planck Graduate Center and the German Research Foundation (DFG WA3532-1/1 and DFG SCHO 1274/9-1) for funding. S. Breitenbach and D. Scholz acknowledge financial support from the European Union’s Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie grant agreement No 691037 (QUEST). We also thank B. Schwager, B. Stoll, U. Weis, C. Obert, A. Budsky and F. Lugli for assistance in the laboratory. The authors thank the editor Klaus Mezger, Alison Koleszar and one anonymous referee for their thorough reviews and constructive comments, which helped to improve the manuscript.
References

Table 1: NU Plasma collector block assignments used for *in-situ* LA-MC-ICP-MS Sr isotope analysis of speleothems. Collectors H1, H2, H4, Ax and L1 – L5 are Faraday cups, IC-1 is an ion counter.

<table>
<thead>
<tr>
<th>Collector</th>
<th>H4</th>
<th>H2</th>
<th>H1</th>
<th>Ax</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>IC-1</th>
<th>L4</th>
<th>L5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Mass</td>
<td>88</td>
<td>87</td>
<td>86.5</td>
<td>86</td>
<td>85.5</td>
<td>85</td>
<td>84</td>
<td>83.5</td>
<td>83</td>
<td>82</td>
</tr>
<tr>
<td>Double Mass</td>
<td>176</td>
<td>174</td>
<td>173</td>
<td>172</td>
<td>171</td>
<td>170</td>
<td>168</td>
<td>167</td>
<td>166</td>
<td>164</td>
</tr>
<tr>
<td>Isotope of interest</td>
<td>(^{88}\text{Sr})82.58%</td>
<td>(^{87}\text{Sr})7.00%</td>
<td>-</td>
<td>(^{86}\text{Sr})9.86%</td>
<td>-</td>
<td>-</td>
<td>(^{84}\text{Sr})0.56%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Singly-charged interferences</td>
<td>-</td>
<td>(^{87}\text{Rb})27.83%</td>
<td>-</td>
<td>(^{86}\text{Kr})17.28%</td>
<td>-</td>
<td>(^{85}\text{Rb})72.17%</td>
<td>(^{84}\text{Kr})56.99%</td>
<td>-</td>
<td>(^{83}\text{Kr})11.50%</td>
<td>(^{82}\text{Kr})11.59%</td>
</tr>
<tr>
<td>Doubly-charged interferences</td>
<td>(^{176}\text{Yb})12.99%</td>
<td>(^{174}\text{Yb})32.03%</td>
<td>(^{173}\text{Yb})16.10%</td>
<td>(^{172}\text{Yb})21.68%</td>
<td>(^{171}\text{Yb})14.09%</td>
<td>(^{170}\text{Yb})2.98%</td>
<td>(^{168}\text{Yb})0.12%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Molecular interferences</td>
<td>(^{40}\text{Ca})48%</td>
<td>(^{44}\text{Ca})43%</td>
<td>-</td>
<td>(^{40}\text{Ca})46%</td>
<td>-</td>
<td>(^{42}\text{Ca})43%</td>
<td>(^{40}\text{Ca})44%</td>
<td>-</td>
<td>(^{40}\text{Ca})43%</td>
<td>(^{40}\text{Ca})42%</td>
</tr>
<tr>
<td>Molecular interferences</td>
<td>(^{40}\text{Ar})48%</td>
<td>-</td>
<td>-</td>
<td>(^{40}\text{Ar})46%</td>
<td>-</td>
<td>-</td>
<td>(^{40}\text{Ar})44%</td>
<td>-</td>
<td>(^{40}\text{Ar})43%</td>
<td>(^{40}\text{Ar})42%</td>
</tr>
</tbody>
</table>

Note that only collectors used during analysis are shown in this table. Potential interferences affecting the Sr masses are also illustrated along with natural abundances for Sr, Rb, Kr, Yb and Er (Berglund and Wieser (2011). Abundances for molecular interferences of Ca dimers and argides are not
shown for reasons of clarity. Some masses have a large number of potential interferences of Ca argides and dimers (e.g. mass 86 with $^{43}\text{Ca}^{43}\text{Ca}$, $^{40}\text{Ca}^{46}\text{Ca}$, $^{42}\text{Ca}^{44}\text{Ca}$, $^{48}\text{Ca}^{38}\text{Ar}$, $^{46}\text{Ca}^{40}\text{Ar}$). Here, only the two most common molecular interferences are shown. Prior to each analysis, the peak center was determined on mass 84 (L3) using the signal of ^{84}Kr in the gas flow of Ar. Therefore, mass 84 is underlined.
Table 2: Results of the linescan analysis from speleothem samples GP5 and MAW-4. The alignment of the different cups is presented with the corresponding signal intensities. For most sample layers, three runs were performed. For these samples, the mean of all runs is shown.

Sr-concentrations for sample GP5 were taken from Wassenburg et al. (2013) and Sr-concentrations for sample MAW-4 were taken from Wassenburg et al. (2016b).

Not all of the three measurements from each spot were taken into account due to shifts in the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of measurements with low Sr-intensities (approximately below 0.7 V for ^{88}Sr).
<table>
<thead>
<tr>
<th>Sample</th>
<th>Distance from top [mm]</th>
<th>X [µg/g]</th>
<th>Rb [mV]</th>
<th>Rb/Ar *10^3</th>
<th>Yb [mV]</th>
<th>Yb/Ar *10^4</th>
<th>Mass Bias [ppm]</th>
<th>2o Std Err</th>
<th>Value</th>
<th>Distance from top [mm]</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP5-Spot-2</td>
<td>118.2</td>
<td>14.2</td>
<td>0.12</td>
<td>0.08</td>
<td>0.9</td>
<td>3.4</td>
<td>5.29</td>
<td>0.00013</td>
<td>1.8%</td>
<td>GP5-Spot-2</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-10</td>
<td>117.1</td>
<td>10</td>
<td>0.10</td>
<td>0.09</td>
<td>3.5</td>
<td>865</td>
<td>0.70901</td>
<td>0.00013</td>
<td>1.1%</td>
<td>GP5-Spot-10</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-12</td>
<td>116.8</td>
<td>1.4</td>
<td>0.11</td>
<td>0.08</td>
<td>2.7</td>
<td>919</td>
<td>0.70991</td>
<td>0.00014</td>
<td>1.9%</td>
<td>GP5-Spot-12</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-14</td>
<td>116.5</td>
<td>1.7</td>
<td>0.13</td>
<td>0.08</td>
<td>2.7</td>
<td>327</td>
<td>0.70904</td>
<td>0.00011</td>
<td>1.9%</td>
<td>GP5-Spot-14</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-16</td>
<td>115.3</td>
<td>1.6</td>
<td>0.08</td>
<td>0.05</td>
<td>2.7</td>
<td>487</td>
<td>0.70907</td>
<td>0.00011</td>
<td>1.9%</td>
<td>GP5-Spot-16</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-17</td>
<td>114.3</td>
<td>1.1</td>
<td>0.08</td>
<td>0.06</td>
<td>2.6</td>
<td>1116</td>
<td>0.70897</td>
<td>0.00011</td>
<td>1.8%</td>
<td>GP5-Spot-17</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-18</td>
<td>113.3</td>
<td>0.9</td>
<td>0.14</td>
<td>0.10</td>
<td>1.1</td>
<td>441</td>
<td>0.70788</td>
<td>0.00014</td>
<td>2.0%</td>
<td>GP5-Spot-18</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-19</td>
<td>112.3</td>
<td>0.8</td>
<td>0.17</td>
<td>0.22</td>
<td>1.1</td>
<td>179</td>
<td>0.70884</td>
<td>0.00014</td>
<td>1.8%</td>
<td>GP5-Spot-19</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-20</td>
<td>111.3</td>
<td>0.7</td>
<td>0.16</td>
<td>0.22</td>
<td>0.9</td>
<td>136</td>
<td>0.70888</td>
<td>0.00015</td>
<td>1.8%</td>
<td>GP5-Spot-20</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-21</td>
<td>110.3</td>
<td>0.7</td>
<td>0.13</td>
<td>0.19</td>
<td>1.1</td>
<td>285</td>
<td>0.70858</td>
<td>0.00017</td>
<td>2.3%</td>
<td>GP5-Spot-21</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-22</td>
<td>113.1</td>
<td>1.4</td>
<td>0.26</td>
<td>0.18</td>
<td>1.4</td>
<td>435</td>
<td>0.70898</td>
<td>0.00009</td>
<td>1.9%</td>
<td>GP5-Spot-22</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-23</td>
<td>112.1</td>
<td>1.5</td>
<td>0.19</td>
<td>0.13</td>
<td>1.6</td>
<td>~0</td>
<td>0.70913</td>
<td>0.00008</td>
<td>1.8%</td>
<td>GP5-Spot-23</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-24</td>
<td>111.1</td>
<td>1.4</td>
<td>0.16</td>
<td>0.12</td>
<td>1.6</td>
<td>91</td>
<td>0.70909</td>
<td>0.00009</td>
<td>1.1%</td>
<td>GP5-Spot-24</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-25</td>
<td>110.1</td>
<td>1.3</td>
<td>0.16</td>
<td>0.12</td>
<td>1.5</td>
<td>~0</td>
<td>0.70907</td>
<td>0.00009</td>
<td>1.1%</td>
<td>GP5-Spot-25</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-26</td>
<td>109.3</td>
<td>1.3</td>
<td>0.20</td>
<td>0.16</td>
<td>1.7</td>
<td>~0</td>
<td>0.70905</td>
<td>0.00010</td>
<td>1.1%</td>
<td>GP5-Spot-26</td>
<td></td>
</tr>
<tr>
<td>GP5-Spot-27</td>
<td>108.3</td>
<td>1.4</td>
<td>0.23</td>
<td>0.17</td>
<td>1.6</td>
<td>233</td>
<td>0.70893</td>
<td>0.00009</td>
<td>1.1%</td>
<td>GP5-Spot-27</td>
<td></td>
</tr>
<tr>
<td>MAW4-Spot-1</td>
<td>8.4</td>
<td>1729</td>
<td>4.8</td>
<td>0.06</td>
<td>0.01</td>
<td>1181</td>
<td>0.70862</td>
<td>0.00004</td>
<td>1.2%</td>
<td>MAW4-Spot-1</td>
<td></td>
</tr>
<tr>
<td>MAW4-Spot-2</td>
<td>8.9</td>
<td>1629</td>
<td>5.7</td>
<td>0.03</td>
<td>0.01</td>
<td>2295</td>
<td>0.70850</td>
<td>0.00004</td>
<td>1.2%</td>
<td>MAW4-Spot-2</td>
<td></td>
</tr>
<tr>
<td>MAW4-Spot-3</td>
<td>9.4</td>
<td>1526</td>
<td>4.8</td>
<td>0.04</td>
<td>0.01</td>
<td>623</td>
<td>0.70867</td>
<td>0.00004</td>
<td>1.2%</td>
<td>MAW4-Spot-3</td>
<td></td>
</tr>
<tr>
<td>MAW4-Spot-4</td>
<td>9.9</td>
<td>1585</td>
<td>5.0</td>
<td>0.04</td>
<td>0.01</td>
<td>925</td>
<td>0.70870</td>
<td>0.00004</td>
<td>1.2%</td>
<td>MAW4-Spot-4</td>
<td></td>
</tr>
<tr>
<td>MAW4-Spot-5</td>
<td>10.4</td>
<td>1660</td>
<td>4.9</td>
<td>0.06</td>
<td>0.01</td>
<td>1421</td>
<td>0.70870</td>
<td>0.00004</td>
<td>1.2%</td>
<td>MAW4-Spot-5</td>
<td></td>
</tr>
<tr>
<td>MAW4-Spot-6</td>
<td>10.9</td>
<td>1560</td>
<td>4.5</td>
<td>0.06</td>
<td>0.01</td>
<td>149</td>
<td>0.70871</td>
<td>0.00004</td>
<td>1.2%</td>
<td>MAW4-Spot-6</td>
<td></td>
</tr>
<tr>
<td>MAW4-Spot-7</td>
<td>11.4</td>
<td>1595</td>
<td>4.7</td>
<td>0.12</td>
<td>0.02</td>
<td>552</td>
<td>0.70870</td>
<td>0.00004</td>
<td>1.2%</td>
<td>MAW4-Spot-7</td>
<td></td>
</tr>
<tr>
<td>MAW4-Spot-8</td>
<td>11.9</td>
<td>1452</td>
<td>4.2</td>
<td>0.07</td>
<td>0.02</td>
<td>624</td>
<td>0.70869</td>
<td>0.00004</td>
<td>1.2%</td>
<td>MAW4-Spot-8</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Operating parameters of the NU Plasma MC-ICP-MS and the two laser ablation systems.

<table>
<thead>
<tr>
<th>NU Plasma MC-ICP-MS</th>
<th></th>
<th>NWR Femto 200 Laser ablation system</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Power</td>
<td>1300 W</td>
<td></td>
</tr>
<tr>
<td>Argon cooling gas flow rate</td>
<td>13 L/min</td>
<td></td>
</tr>
<tr>
<td>Auxillary gas flow rate</td>
<td>0.93 L/min</td>
<td></td>
</tr>
<tr>
<td>Interface cones</td>
<td>Ni</td>
<td></td>
</tr>
<tr>
<td>Lens settings</td>
<td>Optimized for maximum signal intensity and $^{87}\text{Sr}/^{86}\text{Sr}$ ratio</td>
<td></td>
</tr>
<tr>
<td>Mass resolution</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Mass analyzer pressure</td>
<td>3-5 x 10^{-9} mbar</td>
<td></td>
</tr>
<tr>
<td>Detection system</td>
<td>Nine Faraday collectors and one Ion Counter</td>
<td></td>
</tr>
<tr>
<td>Sampling mode</td>
<td>Time Resolved Analysis</td>
<td></td>
</tr>
<tr>
<td>New Wave UP213 nm Laser ablation system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling approach</td>
<td>Linescan</td>
<td>Linescan</td>
</tr>
<tr>
<td>Wavelength</td>
<td>213 nm</td>
<td>213 nm</td>
</tr>
<tr>
<td>Line length</td>
<td>750 µm</td>
<td>750 µm</td>
</tr>
<tr>
<td>Ar flow rate</td>
<td>0.65-0.79 L/min</td>
<td>0.68-0.78 L/min</td>
</tr>
<tr>
<td></td>
<td>0.65-0.81 L/min</td>
<td>0.68-0.78 L/min</td>
</tr>
<tr>
<td>He flow rate</td>
<td>0.65-0.81 L/min</td>
<td>0.68-0.78 L/min</td>
</tr>
<tr>
<td>Pre-Ablation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>10 Hz</td>
<td>5 Hz</td>
</tr>
<tr>
<td>Translation rate</td>
<td>80 µm/s</td>
<td>60 µm/s</td>
</tr>
<tr>
<td>Beam width</td>
<td>100-110 µm</td>
<td>110 µm</td>
</tr>
<tr>
<td></td>
<td>100-110 µm</td>
<td>110 µm</td>
</tr>
<tr>
<td>Ablation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>10 Hz</td>
<td>5-10 Hz</td>
</tr>
<tr>
<td>Translation rate</td>
<td>5 µm/s</td>
<td>5 µm/s</td>
</tr>
<tr>
<td>Beam width</td>
<td>80-100 µm</td>
<td>100 µm</td>
</tr>
<tr>
<td></td>
<td>80-100 µm</td>
<td>100 µm</td>
</tr>
<tr>
<td>Dwell time</td>
<td>120 s</td>
<td></td>
</tr>
<tr>
<td>Fluence</td>
<td>20-30 J/cm²</td>
<td>20-30 J/cm²</td>
</tr>
<tr>
<td>Data Collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas background</td>
<td>45 s</td>
<td>45 s</td>
</tr>
<tr>
<td>Sample</td>
<td>145 s</td>
<td>85-115 s</td>
</tr>
<tr>
<td>Integration</td>
<td>0.2 s</td>
<td>0.2 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7-0.8 J/cm²</td>
</tr>
</tbody>
</table>
