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Abstract 28 

Speleothems are well established climate archives. A wide array of geochemical proxies, 29 

including stable isotopes and trace elements are present within speleothems to reconstruct past 30 

climate variability. However, each proxy is influenced by multiple factors, often hampering 31 

robust interpretation. Sr isotope ratios (87Sr/86Sr) can provide useful information about water 32 

residence time and water mixing in the host rock, as they are not fractionated during calcite 33 

precipitation. Laser ablation multi-collector-inductively coupled plasma mass spectrometry 34 

(LA-MC-ICP-MS) has rarely been used for determination of Sr isotope signatures in 35 

speleothems, as speleothems often do not possess appropriately high concentrations of Sr to 36 

facilitate this analysis. Yet the advantages of this approach include rapid data acquisition, higher 37 

spatial resolution, larger sample throughput and the absence of chemical treatment prior to 38 

analysis. We present LA-MC-ICP-MS Sr isotope data from two speleothems from Morocco 39 

(Grotte de Piste) and India (Mawmluh Cave), and we compare linescan and spot analysis 40 

ablation techniques along speleothem growth axes. The analytical uncertainty of our LA-MC-41 

ICP-MS Sr data is comparable to studies conducted on other carbonate materials. The results 42 

of both ablation techniques are reproducible within analytical error, implying that this technique 43 

yields robust results when applied to speleothems. In addition, several comparative 44 

measurements of different carbonate reference materials (i.e. MACS-3, JCt-1, JCp-1), including 45 

tests with standard bracketing and comparison of the 87Sr/86Sr ratios with a nanosecond laser 46 

ablation system and a state-of-the-art femtosecond laser ablation system, highlight the 47 

robustness of the method. 48 

 49 

Keywords: Speleothem; Strontium isotopes; Laser ablation, Multi-collector inductively 50 

coupled plasma mass spectrometry, Femtosecond  51 
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1. Introduction 52 

Speleothems (cave CaCO3 deposits) are well established climate archives and are found 53 

worldwide in karst environments (Asmerom et al., 2010; Cheng et al., 2016; Cruz et al., 2005; 54 

Genty et al., 2003; Hoffmann et al., 2016; Kennett et al., 2012; Luetscher et al., 2015; Wang et 55 

al., 2001). They can be dated with unprecedented precision using the 230Th/U-dating method 56 

(Richards and Dorale, 2003; Scholz and Hoffmann, 2008), and provide a range of climate 57 

proxies that record a number of environmental processes and can be analysed at up to sub-58 

annual resolution. 59 

Oxygen isotopes in speleothems (δ18O values) depend on paleo-temperature and rainfall 60 

properties, such as amount, seasonality and moisture sources (e.g., Fairchild et al., 2006; 61 

McDermott, 2004), whereas carbon isotopes can provide information on soil productivity, 62 

vegetation characteristics and effective rainfall (McDermott, 2004). In addition, trace elements 63 

(e.g., Sr, Mg, P, Ba) may be interpreted in terms of effective infiltration, prior calcite 64 

precipitation, water residence time, source and reservoir effects, weathering processes in the 65 

epikarst zone and soil composition (Ayalon et al., 1999; Fairchild et al., 2000; Fairchild and 66 

Treble, 2009; Verheyden et al., 2000; Wassenburg et al., 2016a; Wassenburg et al., 2016b). 67 

Within the epikarst and soil zone, different sources of trace elements (for example aeolian dust 68 

vs. host rock) may be present and display varying compositions. A change in the dripwater 69 

pathway or in the relative contribution of different sources, may thus affect the dripwater trace 70 

element composition, which often renders their interpretation a challenging task (Banner et al., 71 

1994). 72 

Important information on the influence of different sources of trace elements in dripwaters may 73 

be provided by Sr isotopes, which have been shown to provide additional insights on 74 

precipitation and water residence time in the host rock (Banner et al., 1996; Oster et al., 2010). 75 

In CaCO3, the Sr2+ ion substitutes at the Ca2+ ion sites in the mineral lattices due to their similar 76 
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properties and ionic radii (Banner, 2004). No isotopic fractionation of Sr isotopes is observed 77 

during precipitation of CaCO3 and the incorporation of Sr into the crystal lattice. Thus, the 78 

87Sr/86Sr ratio of carbonates is identical to that of the parent solution (Banner and Kaufman, 79 

1994). 80 

Although the first Sr isotope analyses on speleothems were conducted in 1990 (Avigour et al., 81 

1990), relatively few studies have focused on this topic so far. The main source for Sr in 82 

speleothems is the host rock, but several factors have been proposed to affect Sr isotope ratios: 83 

varying water residence time in the epikarst (Banner et al., 1996); (Oster et al., 2010; Oster et 84 

al., 2014; Verheyden et al., 2000), changes in aeolian input in response to sea-level changes or 85 

atmospheric circulation (Goede et al. 1998; Ayalon et al. (1999); Bar-Matthews et al. (1999); 86 

Li et al. (2005); Zhou et al. 2009), changes in weathering intensity of soil and host rock in 87 

response to rainfall (Avigour et al., 1990), changes in the distance to the shoreline and 88 

incorporation of sea-salt signals (Fisher et al., 2010), as well as mixing of the Sr signals of 89 

different rock types and soils (Frumkin and Stein (2004); Hori et al. (2013). All these studies 90 

either used Thermal Ionization Mass Spectrometry (TIMS, Avigour et al. (1990); Goede et al. 91 

(1998); Frumkin and Stein (2004); Li et al. (2005); Zhou et al. (2009); Hori et al. (2013)), or 92 

solution MC-ICP-MS (multi-collector inductively coupled plasma mass spectrometry, Ayalon 93 

et al. (1999); Bar-Matthews et al. (1999); Verheyden et al. (2000); Fisher et al. (2010); (Oster 94 

et al., 2010; Oster et al., 2014). For both techniques samples need to be drilled/milled, and 95 

require chemical separation prior to mass spectrometric analysis. This is time-consuming, and 96 

limits the achievable spatial resolution of 87Sr/86Sr records. Strontium isotope analysis by laser 97 

ablation (LA-) MC-ICP-MS offers the opportunity to measure the 87Sr/86Sr ratio in-situ at high 98 

spatial resolution and without any prior chemical treatment. Although this technique has been 99 

widely applied to petrological samples (e.g. Christensen et al. (1995); Davidson et al. (2001); 100 

Waight et al. (2002); Bizzarro et al. (2003); Ramos et al. (2004); Jackson and Hart (2006), and 101 
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carbonate and phosphate materials, such as gastropods, otoliths, teeth, clam shells, fine- and 102 

coarse-grained carbonates and corals (Christensen et al. (1995), Ehrlich et al., 2001, Outridge 103 

et al. (2002), Bizzarro et al., 2003, Ramos et al., 2004, Woodhead et al. (2005), Copeland et al. 104 

(2008), it has only recently been used for measuring 87Sr/86Sr in speleothems (Wortham et al., 105 

2017). 106 

Here we present a LA-MC-ICP-MS method for measuring Sr isotopes on speleothems, based 107 

on previously mentioned studies on different sample materials. We show results from two 108 

speleothem samples and compare different sampling techniques. Both samples consist of 109 

aragonite and have a rather high Sr concentration >300 µg/g, which makes them highly suitable 110 

to apply LA-MC-ICP-MS. We also discuss the effects of different tuning parameters and 111 

compare results obtained by two different laser systems (a New Wave UP 213 nm laser and a 112 

NWR Femto200 laser ablation system). 113 

 114 

2. Speleothem samples 115 

The investigated speleothem samples stem from two different caves. Stalagmite GP5 was 116 

sampled at Grotte de Piste (Morocco), and stalagmite MAW-4 stems from Mawmluh Cave 117 

(Meghalaya, India). Stalagmite GP5 has a total length of 78 cm. A detailed description of the 118 

cave and the sample is given in Wassenburg et al. (2012) and Wassenburg et al. (2013). In this 119 

study, an approximately 15 cm long part of the sample (Fig. 1) was studied which corresponds 120 

to the time span from ca. 800 to 1760 AD. Previous data is published in Wassenburg et al. 121 

(2013) and only briefly summarised here. GP5 was precisely dated by the 230Th/U-method. 122 

Furthermore, the mineralogy of the sample was investigated by XRD and showed that GP5 is 123 

mainly aragonitic, with minor calcitic parts (<2%). Strontium concentrations range from 200 to 124 
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500 μg/g, with an average concentration of 426 (±49) μg/g. In some parts, the sample is 125 

characterized by mm-scale layering of porous and less porous layers. 126 

Stalagmite MAW-4 (Fig. 1) from Mawmluh cave is a small sample with a total length of 3 cm. 127 

The upper part of the sample (~ 15 mm), consists of aragonite, and covers the time span from 128 

1950 to 2006 AD (Wassenburg et al., 2016b). It has an average growth rate of ~293 µm/a, and 129 

can thus provide very high resolution. The stalagmite was actively growing at the time of 130 

collection (March 2006). The lower part of the sample consists of calcite, the base is dated 395 131 

± 55 a BP. The calcite-to-aragonite transition is clearly visible by a change in colour from 132 

greyish (calcite) to white/beige (aragonite). In the upper aragonitic part, this stalagmite has a 133 

relatively high Sr concentration (1458–1729 μg/g, (Wassenburg et al., 2016b), and is thus 134 

extremely suitable for Sr isotope measurements by LA-MC-ICP-MS. The calcite section has a 135 

Sr concentration of a few hundred μg/g, and was not investigated in this study. For more 136 

information about the cave setting and microclimatic conditions, see Breitenbach et al. (2010) 137 

and Breitenbach et al. (2015). 138 
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 139 

Figure 1: [A] Sampling approach for speleothem GP5. The red rectangle indicates the sampling 140 

section, blue lines show the LA-MC-ICP-MS linescan positions. The spot analyses were 141 
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performed near the right end of the third linescan as indicated by the blue spots. [B] Sampling 142 

approach for speleothem MAW-4. The red rectangle indicates the sampling section. Linescan 143 

and spot analyses are similarly indicated as in [A]. All line lengths, widths and distances are on 144 

scale. 145 

 146 

3. Materials and methods 147 

3.1 Analytical setups 148 

The measurement routine was developed with a NU Plasma MC-ICP-MS (see Table 1 for cup-149 

configuration) coupled with a New Wave UP213 nm Nd:YAG laser ablation system at the Max 150 

Planck Institute for Chemistry, Mainz. Measurements were also performed with the MC-ICP-151 

MS coupled to a NWR Femto200 laser ablation system to compare results obtained with two 152 

laser ablation systems. The femtosecond laser is less sensitive to matrix effects that may cause 153 

isotope fractionation (Poitrasson et al., 2003; Vanhaecke et al., 2010). Prior to laser ablation, 154 

the MC-ICP-MS was coupled to a CETAC Aridus II Desolvating Nebulizer system for tuning. 155 

The Sr reference solution NIST SRM 987 was used for optimizing the peak shape and 156 

coincidence of the individual Sr isotopes (88Sr, 87Sr, 86Sr, 84Sr) and to test the influence of 157 

different tuning parameters on ion beam intensity and the 87Sr/86Sr ratio. Several tuning 158 

parameters were changed systematically. Tests showed that the gas flows of the Aridus 159 

introduction system have a significant effect on the Sr isotope ratios. Furthermore, the torch 160 

position and the tuning of the high voltage lenses are important, since they affect the sample 161 

introduction into the system and the ion beam inside the mass spectrometer. Finally, the source 162 

lenses have been shown to have a significant effect on the 87Sr/86Sr ratio. In order to test the 163 

effects of changes in the lens settings, we started with seven measurements of NIST SRM 987 164 

to test the stability of the 87Sr/86Sr ratio over time. In a first step, the lens settings were tuned 165 
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for maximum 88Sr intensity. Subsequently, the different source and transfer lens settings were 166 

changed systematically. For each lens, three measurements were performed: First, the voltage 167 

of the lens was decreased by 10 V, then increased by 20 V, and finally decreased by 10 V to 168 

return to the original value. This procedure was performed for all seven source and transfer 169 

lenses. Results are presented in Fig. 2 and Supplement A1. 170 

 171 

Figure 2: 87Sr/86Sr ratios obtained on reference solution NIST SRM 987. The orange line 172 

represents the literature value of 87Sr/86Sr = 0.71034 ± 0.00026 (GeoReM, (Jochum et al., 2005), 173 

the shading in bright orange shows the 2σ standard error. The large fluctuations in the Sr isotope 174 

ratio are caused by changes in the settings of the source and transfer lenses of the NU Plasma 175 

MC-ICP-MS, marked by the black arrows. Black diamonds represent measurements with the 176 

original lens settings, while blue (red) diamonds represent measurements with a 10 V increase 177 

(decrease) in lens voltage in comparison to the original lens setting. 178 

 179 
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Settings were then further optimised with the NU MC-ICP-MS coupled to the LA system. Since 180 

the UP213 nm laser ablation system offers higher fluence values (20 – 30 J/cm2)and count rates 181 

than the femtosecond laser (0.7 – 0.8 J/cm2), this system allows measurement of samples with 182 

comparably low Sr concentrations (>200 µg/g). Potential matrix effects are assessed by 183 

comparison with the femtosecond laser. All samples and reference materials have a low Rb 184 

content (Table 2). The operating parameters for the MC-ICP-MS and the laser ablation systems 185 

are given in Table 3. 186 

 187 

3.2. Reference materials  188 

The reference material (RM) JCt-1 was measured to determine the accuracy and precision of 189 

the method. This modern marine carbonate sample originates from a recent giant clam and has 190 

a 87Sr/86Sr-ratio comparable to modern sea water (87Sr/86Sr of 0.70918 ± 0.00001, 2σ, Faure and 191 

Mensing (2005)), as confirmed by solution MC-ICP-MS measurements (87Sr/86Sr = 0.70915 ± 192 

0.00005, Ohno and Hirata (2007). Recently, a more precise 87Sr/86Sr ratio of 0.70917 ± 0.00001 193 

has been obtained for JCt-1 by MC-ICP-MS (Weber et al., In Revision). Due to its comparable 194 

Sr content of 1400 µg/g (Aizawa, 2008), JCt-1 was chosen as RM for the measurements of 195 

samples GP5 and MAW-4. Furthermore, the RMs JCp-1, a modern coral with 87Sr/86Sr = 196 

0.70916 ± 0.00002 (Ohno and Hirata (2007)) and MACS-3, a synthetic carbonate pellet 197 

(87Sr/86Sr = 0.7075532 ± 0.0000037; Jochum et al. (2011)), were also tested. Both of these RM 198 

samples have a very high Sr concentration (7500 µg/g for JCp-1, (Aizawa, 2008), and 199 

6760 µg/g for MACS-3, (Jochum et al., 2012) and are well suited for femtosecond laser 200 

analysis. For tuning and test measurements, we used a modern day bivalve shell of Glycimeris 201 

sp., which has two distinct areas of different Sr concentrations of ca. 1000  and 5000 µg/g. 202 

 203 
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3.3. Laser ablation sampling method 204 

Multiple LA-MC-ICP-MS measurements were performed perpendicular to the growth axis of 205 

the speleothem samples, parallel to and within the same distinct growth layers to check for 206 

reproducibility. In order to identify the best method for analysing Sr-isotope ratios in 207 

speleothems by LA-MC-ICP-MS, we applied two different sampling methods. First, we used 208 

the linescan technique, which has the advantage that a high signal intensity can be maintained 209 

for a relatively long measurement interval, improving counting statistics. In contrast, for spot 210 

analyses, the signal intensity slowly decreases with ablation depth. However, for spot analyses, 211 

mixing of material from different growth layers is excluded. The linescans followed individual 212 

growth bands and each of usually three linescans per growth layer had a circular spot size of 80 213 

– 100 µm and a length of 750 µm (except linescan GP5-7, which was 2000 µm). They were 214 

scanned with a scan-speed of 5 µm/s, providing about 150 s per linescan measurement. This 215 

sampling approach enables us to identify potential changes in the 87Sr/86Sr ratio at a very high 216 

spatial resolution. Prior to each analysis, a pre-ablation was performed with a spot size of 217 

110 µm and a scan-speed of 80 µm/s (Table 3). The first 5 s are discarded due to high intensities 218 

when the laser starts, which is typical for laser ablation analyses. Spots were analysed with a 219 

circular spot size of 100 µm and a dwell time of 120 s. To test the reproducibility of the method, 220 

three line scans were placed parallel to each other within the same growth band with less than 221 

50 µm between the end and start of each linescan (Fig. 1). The distance between the measured 222 

layers varied between 150 µm and 850 µm for GP5 and 500 µm for MAW-4. The spot analyses 223 

of GP5 were performed for a few layers only. Each spot analysis is located near the end of the 224 

respective line scan. For correction purposes, RM JCt-1 was measured three times before and 225 

after each set of samples (usually six measurements in total). 226 

To compare both laser ablation systems, we performed measurements with different RMs. 227 

Since the Sr concentration of JCp-1 is almost six times that of JCt-1, the laser settings for the 228 
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UP213 laser ablation system were adjusted to prevent the 88Sr intensity from reaching critical 229 

values. We used a laser energy of 60 %, a repetition rate of 5 Hz and a spot size of 55 µm. All 230 

measurements were performed as spot analyses. To test the robustness of the results, we also 231 

applied our standard bracketing approach on JCp-1 by measuring samples of JCt-1 before and 232 

after JCp-1. The laser settings for JCt-1 were chosen as described in Table 3. 233 

Our NWR Femto200 laser ablation system only allows spot sizes up to 65 µm, therefore we 234 

only measured RMs with high Sr concentrations, such as JCp-1 and MACS-3. The laser 235 

parameters for these measurements are presented in Table 3. Spot measurements with the 236 

femtosecond laser ablation system suffer from a rapid decrease in signal intensity. Thus, all 237 

measurements were performed as linescans. We measured three samples of JCp-1, followed by 238 

six measurements of MACS-3 and again three samples of JCp-1. 239 

 240 

4. Correction procedure for LA-MC-ICP-MS 241 

Strontium isotopes were measured on cups H4 (88Sr), H2 (87Sr), Ax (86Sr) and L3 (84Sr) 242 

(Table 1). The major advantage of Sr-isotope analysis with LA-MC-ICP-MS is that Sr-isotopes 243 

are measured in-situ, without the need of chemical separation. This means, however, that the 244 

matrix contains several other isotopes that potentially affect the Sr isotope signal (i.e., 87Rb, but 245 

also doubly charged ions, such as 176Yb, 174Yb, 172Yb, 168Yb, 168Er, and molecular interferences, 246 

such as Ca-argides and/or -dimers, Table 1). In addition, the Ar gas may contain impurities of 247 

Kr, with interfering isotopes of 86Kr and 84Kr (Table 1). Some masses are affected by several 248 

interferences. For example, the 84Sr signal on mass 84 may be affected by 84Kr+, 168Er2+ 168Yb2+ 249 

and Ca argides/dimers. Therefore, it is necessary to find another mass that is not affected by 250 

other interferences, which can be used to correct for other masses of the same ion using known 251 

isotopic abundances. For example, we used mass number 86.5 that is mostly unaffected by other 252 
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signals to correct for the Yb-interference by monitoring 173Yb2+. Thus, the order of the 253 

corrections is important. The correction procedure is outlined in detail below. Fig. 3 shows the 254 

magnitude of the individual correction steps on the 87Sr/86Sr ratio for measurements on samples 255 

JCt, GP5 and MAW-4. 256 

 257 

4.1 Background correction 258 

Potential interferences of 86Kr, 84Kr, 83Kr and 82Kr from minor contaminations in the Ar gas 259 

supply are corrected by a blank measurement. For this reason, prior to each analysis an on-peak 260 

background correction is performed for 45 s during the laser warm-up time. Then, the median 261 

for each signal intensity is calculated and subtracted from the measured signal. This removes 262 

all Kr interferences as well as potential remains of Sr from previous measurements. 263 

 264 

4.2 Rare-earth elements (REE) 265 

After background correction, different interferences must be eliminated. Doubly-charged 266 

isotopes of Er and Yb can be detected on half masses (Table 1). 173Yb is the only isotope 267 

measured on cup H1 on half-mass 87.5, and 171Yb is the only one measured on cup L1 on half 268 

mass 85.5. Thus, 173Yb and 171Yb can be measured without any interferences. By assuming 269 

constant isotope ratios for Yb (Berglund and Wieser (2011), the signal for all Yb isotopes can 270 

be calculated. Although Yb is quite rare in speleothem samples (Table 2), this correction may 271 

have a minor influence on the 87Sr/86Sr ratios. 272 

The second step is to correct for Er. 167Er is the only isotope measured on ion counter IC-1 on 273 

half mass 83.5, and other Er isotopes can be calculated assuming constant isotope ratios in the 274 

same way as Yb (Berglund and Wieser (2011). Erbium is uncommon in speleothem samples 275 

(Table 2) and this correction is only of minor importance. Several laser ablation studies on other 276 
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sample materials did not even correct for rare earth elements (REE) during Sr isotope analysis 277 

(e.g. Christensen et al. (1995); Barnett-Johnson et al. (2005); Jochum et al. (2009); Copeland et 278 

al. (2010)). 279 

 280 

4.3 Molecular interferences 281 

The next step is to correct for molecular interferences of Ca dimers and argides. Since it is 282 

impossible to differentiate between the signals resulting from argides and dimers, the relative 283 

amounts of each signal are taken into account to correct for those interferences in relation to 284 

the signal on mass 82. This mass is used as a reference since it has no other interferences and a 285 

potentially higher signal of argides and dimers than mass 83, which is also free of significant 286 

interferences (Table 1). As an example, we briefly describe the correction of mass 84 for Ca 287 

argides and dimers. 288 

After correcting for background and REEs, the correction for Ca argides is performed by the 289 

following relationship: 290 

84#$%&$$ 	= 	 84)*+&$$ −	82)*+&$$ ∗ /
∑CaAr56

∑CaAr57
8 9 (Eq. 1) 291 

where 84ArCorr is the corrected signal on mass 84, 84uncorr is the uncorrected signal (besides 292 

background and REE correction) on mass 84 and 82uncorr is the signal on mass 82. ΣCaAr84 is 293 

the sum of the relative portion of Ca argides on mass 84, and ΣCaAr82 is the sum of the relative 294 

portion of Ca argides on mass 82, based on their natural occurrence (Berglund and Wieser, 295 

2011). This correction is performed for masses 88, 86, 84 and 83. For the interferences from 296 

Ca dimers, the correction is done in a similar way, again using the signal on mass 82 as a 297 

reference: 298 

84%&$$ = 	84#$%&$$ −	82)*+&$$ ∗ 	/
∑CaCa56

∑CaCa57
8 9  (Eq. 2) 299 
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where 84Corr is the corrected signal on mass 84, 84Arcorr is the background corrected intensity on 300 

mass 84, REEs and Ca argides, and 82uncorr is the uncorrected signal (besides background and 301 

REE correction) on mass 82. ΣCaCa84 is the sum of the relative portion of Ca dimers on mass 302 

84 and ΣCaCa82 is the sum of the relative portion of Ca dimers on mass 82. This correction is 303 

performed for masses 88, 87, 86, 85, 84 and 83 and only applied for signals > 0 V. All other 304 

signals remain uncorrected because the intensity of Ca argides and dimers is too small to detect 305 

and does not affect the results. 306 

 307 

4.4 Mass bias  308 

After correcting the raw signals for interferences, the mass bias needs to be corrected. This 309 

correction is performed prior to the correction for the interference of Rb, because the mass bias 310 

obtained from the 86Sr/88Sr ratio is subsequently used to obtain the mass bias corrected 311 

85Rb/87Rb ratio (section 4.5). Based on the signals corrected for background, REEs, Ca argides 312 

and dimers, raw values for the ratios of 86Sr/88Sr, 84Sr/86Sr and 87Sr/86Sr are calculated. Then, a 313 

mass fractionation factor α is calculated to correct for the instrumental mass fractionation based 314 

on the 86Sr/88Sr ratio and the exponential law described in Ingle et al. (2003): 315 

:+&$$ = 	:;<=> ∗ 	 ?
@5AB$ @5CB$

D E
F
   (Eq. 3) 316 

where m87 and m86 are the masses of 87Sr and 86Sr. The mass fractionation factor α is calculated 317 

as described in Ehrlich et al. (2001): 318 

G = 	HIJ
K

LMNO

LMNNP Q
RMST

K
LMNO

LMNNP Q

UTVW

X IJ?@5C @55
D EP    (Eq. 4) 319 

where (86Sr/88Sr)true is the accepted value of 0.1194 (Steiger and Jäger, 1977) and m88 is the 320 

mass of 88Sr. 321 
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 322 

4.5 Interference of rubidium 323 

The final step in the correction procedure is to correct the 87Sr/86Sr ratio for the interference of 324 

87Rb. Due to the previous corrections, mass 85 only consists of 85Rb (Table 1), which can be 325 

used to calculate the fraction of 87Rb by using the constant ratio of 87Rb/85Rb = 0.3857 326 

(Berglund and Wieser (2011) This was done following equation 5: 327 

:Y5A = 	Z :Y5A

:Y[\]
5^8 ∗	 :Y;<=>

5^ _ ∗ 	?@5A @5^
D E

F
   (Eq. 5) 328 

where 87Rb/85RbLit is the literature value (Berglund and Wieser, 2011)(Berglund and Wieser, 329 

2011)(Berglund and Wieser, 2011), 85Rbmeas is the Rb signal on mass 85, corrected for 330 

background, REEs and Ca argides/dimers, m87 is the mass of 87Rb, m85 is the mass of 85Rb, and 331 

α is the mass fractionation factor. The correction on 87Sr/86Sr is then performed using the 332 

following equation: 333 

`a5A

`abc%&$$
5C8 = 	 d

? `a)*+&$$
5A −	 :Y5A E

`a5C8 e ∗ 	?@5A @5C
D E

F
 (Eq. 6) 334 

where 87Sruncorr is the Sr signal on mass 87 corrected for background, REEs and argides/dimers 335 

(not for Rb), 87Rb and 86Sr are the corrected signals for Rb on mass 87 and Sr on mass 86, 336 

respectively, m87 and m86 are the masses for Sr and α is the mass fractionation factor. This Rb 337 

correction is only considered robust for samples with a Rb/Sr ratio <0.02 (Irrgeher et al., 2016). 338 

For samples with higher Rb content, an alternative Rb-correction is necessary (Müller and 339 

Anczkiewicz, 2016). All speleothem samples and RMs analysed in this study are below this 340 

threshold (Table 2). 341 

 342 

4.6 Data processing 343 
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After calculating the interference-free 87Sr/86Sr ratio, the results are calibrated by standard-344 

bracketing using RMs with well-known 87Sr/86Sr ratios, as has been recommended for Sr-345 

isotope analysis (Irrgeher et al., 2016). Furthermore, to avoid effects of individual large peak 346 

values, we performed a 2σ outlier test for the median of all 87Sr/86Sr values, removing all values 347 

deviating >2σ from the median. 348 

Usually, the final 87Sr/86Sr ratios obtained for the RMs deviate slightly from the reference 349 

values, necessitating an additional correction step. Each sample is therefore bracketed by a set 350 

of three individual measurements of a suitable RM. The mean value of the three RMs is 351 

calculated, and a correction factor for the sample is calculated according to the following 352 

equation: 353 

`a%&$$ = 	

B$Nf

B$RMST
NO8

B$Nf

B$UTVW
NO8

     (Eq. 7) 354 

where 87Sr/86Srtrue is the literature value of the RM and 87Sr/86Srmeas is the measured ratio of the 355 

RM. We then use the mean value of the two correction factors from the two sets of RMs 356 

(measured prior and subsequent to the sample) and apply it to the measured sample 87Sr/86Sr 357 

ratio. Since the measurements of the RMs are associated with an uncertainty, error propagation 358 

is performed by adding the relative 2σ standard error for the measurement of the RM (2σ Std 359 

ErrRef) to the relative 2σ standard error of the measured sample (2σ Std ErrSpl): 360 

2g	`hi	jaaB=;kl<%&$$[%] = 	p?2g	`hi	jaab<q[%]E
7
	+	?2g	`hi	jaaBkl[%]E

7
 (Eq. 8) 361 

The 2σ Std ErrRef value is calculated from the mean of the relative 2σ standard errors of all 362 

RMs, while the 2σ Std ErrSpl is calculated from the mean of the linescans or spot measurements 363 

for each sample layer. By applying the error propagation, the 2σ standard error of each sample 364 

usually increases by ± 0.00001 – 0.00002 (0.01 – 0.03 ‰). 365 
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 366 

5. Results 367 

The results from the speleothem samples obtained with the two sampling methods (linescans 368 

and spot analyses, respectively) are presented in Table 2. Due to the extensive correction 369 

procedure, we show the effect of each correction step on the 87Sr/86Sr value for one LA-MC-370 

ICP-MS measurement of JCt-1, MAW-4 and GP5, respectively. The results are presented in 371 

Fig. 3. The correction step associated with the largest effect is the background correction and, 372 

depending on the sample, the corrections for interferences of Yb and Rb. Corrections for Ca 373 

argides and dimers are insignificant for our results. 374 

 375 

Figure 3: Influence of the different correction steps on the 87Sr/86Sr ratio of JCt-1 (black 376 

diamonds), MAW-4 (squares) and GP5 (triangles). Note that all results are mass bias corrected. 377 
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 378 

5.1. Influence of tuning parameters on the 87Sr/86Sr ratio 379 

Our solution MC-ICP-MS measurements show that tuning for maximum Sr intensity does not 380 

necessarily lead to a “true” 87Sr/86Sr ratio, but may deviate from the accepted value of the 381 

reference solution NIST SRM 987 (87Sr/86Sr = 0.71034 ± 0.00026, GeoReM, Jochum et al. 382 

(2005)) on the third or fourth decimal. This can be avoided by tuning the mass spectrometer to 383 

obtain the Sr isotope ratio known from the literature (at the expense of signal intensity). The 384 

procedure is described in chapter 3.1. While some changes have a large influence on the isotope 385 

ratio (e.g. the decrease by 10 V for source lenses V1 and V2), others only have a minor 386 

influence, such as the changes at transfer lens H1 (Fig. 2). We note that this might be a specific 387 

pattern for our mass spectrometer and may differ in other laboratories. After restoring to the 388 

original setting, the 87Sr/86Sr ratio was comparable to the starting value (Fig. 2). 389 

Figure 4 (data in Supplement A1) shows the evolution of the 87Sr/86Sr ratio during consecutive 390 

days of LA-MC-ICP-MS measurements of RM JCt-1. While the Sr isotope ratio increased 391 

during the first measurements, source lens adjustments brought the 87Sr/86Sr ratio back towards 392 

the reference value. 393 
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 394 

Figure 4: 87Sr/86Sr ratios of reference material JCt-1 obtained during different days, showing 395 

the tuning influence during the first measurements. The orange line represents the reference 396 

value of JCt-1 of 87Sr/86Sr = 0.70917 ± 0.00001 (Weber et al., In Revision), the shading in bright 397 

orange corresponds to its 2σ standard error. Dashed vertical lines separate different days of 398 

measurements. (For interpretation of the references to colour in this figure legend, the reader is 399 

referred to the web version of this article.) 400 

 401 

These results highlight the necessity of the standard-bracketing approach, which corrects the 402 

described effects. Nevertheless, we minimised the influence of these effects by tuning the 403 

87Sr/86Sr ratio towards the reference value prior to the measurement, or, if necessary, again 404 

afterwards. 405 

 406 

5.2 Tests with reference materials 407 

5.2.1 Nanosecond LA-MC-ICP-MS 408 
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For the nanosecond laser ablation system, we chose the carbonate RMs JCt-1, JCp-1 and 409 

MACS-3 and applied the method described above (section 3.3). These RM’s have a large range 410 

of Sr concentrations, and we are aware that changes of the laser parameters between different 411 

samples can affect the measurements. Nevertheless, all measurements showed sufficient 412 

fluence (~ 10 J/cm2 for JCp-1 and MACS-3 and > 22 J/cm2 for JCt-1) and the obtained 87Sr/86Sr 413 

ratios showed the expected results within error. The mean value of the JCp-1 measurements 414 

was 87Sr/86Sr = 0.70913 ± 0.00008 (n = 3) and agree with the literature value of 0.70916 ± 415 

0.00002 (Ohno and Hirata, 2007). In addition, the uncorrected JCp-1 87Sr/86Sr ratio is 0.70914 416 

± 0.00007 (n = 3) and the uncorrected 87Sr/86Sr ratio of JCt-1 is 0.70917 ± 0.00005 (n = 5), thus 417 

both are indistinguishable from the literature values. The results for MACS-3 provide an 418 

average 87Sr/86Sr value of 0.70753 ± 0.00005 (n = 16), which is in agreement with the literature 419 

value of 0.7075532 ± 0.0000037 (Jochum et al., 2011). 420 

 421 

5.2.2 Femtosecond LA-MC-ICP-MS 422 

In order to further test our methodology, we used a femtosecond laser ablation system on 423 

carbonate RM’s with high Sr concentrations (JCp-1 and MACS3) following the method as 424 

described in chapter 3.3. All measurements were corrected by the standard bracketing approach 425 

yielding 87Sr/86Sr ratios in agreement with the reference values (Fig. 5). An exception is 426 

measurement MACS-3-8, which shows a strongly elevated 87Sr/86Sr ratio. This sample may 427 

have been affected by changes in the Kr signal intensity because unusual peak intensities in 428 

84Kr were observed during the blank measurement. It is thus likely that similar fluctuations 429 

occurred during the measurement which affected the 87Sr/86Sr ratio. The measured raw 87Sr/86Sr 430 

ratios before the standard bracketing correction for JCp-1 are 0.70920 ± 0.00004 (n = 6) and 431 

0.70757 ± 0.00005 for MACS-3 (without MACS3-8, n = 5), in agreement with the literature 432 

values. After performing the standard bracketing approach, the average 87Sr/86Sr ratio is 433 
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0.70917 ± 0.00006 for JCp-1 (n = 6) and 0.70752 ± 0.00006 for MACS-3 (without MACS3-8, 434 

n = 5). 435 

 436 

Figure 5: 87Sr/86Sr ratios of reference materials JCp-1 and MACS-3 obtained by fs-LA-MC-437 

ICP-MS. The red line represents the literature value of MACS-3 of 87Sr/86Sr = 0.7075532 ± 438 

0.0000037 (Jochum et al., 2011), the blue line shows the literature value of JCp-1 of 87Sr/86Sr 439 

=0.70916 ± 0.00002 (Ohno and Hirata, 2007), with its 2σ standard error shown as bright blue 440 

shading. The error range for the reference value of MACS-3 is too small to be visible in the 441 

figure. Note that sample MACS-3-8 was strongly affected by very variable 84Kr intensities 442 

during the blank measurement and probably during the sample measurement as well. 443 

 444 

5.3 Speleothem GP5 445 

On sample GP5, a total number of 27 different layers were measured (Fig. 6 [A]). In the area 446 

between ~116 to 118.5 mm distance from top (DFT) the resolution is high (i.e. less than 100 µm 447 

between linescans). Further measurements were performed with a distance of ~1000 µm 448 
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between each other. Some measurements suffer from changing mass bias and low intensities 449 

(88Sr < 1 V), resulting in decreasing values of 87Sr/86Sr (in particular linescans GP5-17-21, 450 

Table 2). The 87Sr/86Sr ratios generally show only minor variations, ranging from 0.70856 ± 451 

0.00017 to 0.70920 ± 0.00007. The low-resolution measurements from 108.3 to 115.3 mm DFT 452 

show a relatively stable Sr isotope composition with 87Sr/86Sr ratios between 0.70890 ± 0.00011 453 

and 0.70913 ± 0.00008. The average 87Sr/86Sr ratio of all linescans is 0.70892 ± 0.00006 (n = 454 

79). 455 

36 spot analyses were performed on stalagmite GP5. These were placed near the right end of 456 

the third linescan within the same growth layer (Fig. 1). At signal intensities lower than ca. 457 

0.6 V on 88Sr, we found a significant decrease of the 87Sr/86Sr ratio. Corresponding 458 

measurements are marked with double diamonds ♦♦ in Table 2. The 87Sr/86Sr ratios of the spot 459 

measurements from GP5 are presented as circles in Fig. 6 [A]. The results show a similar pattern 460 

as the linescans, even though the 2σ standard errors are slightly larger. The 87Sr/86Sr ratio varies 461 

between 0.70872 ± 0.00024 and 0.70907 ± 0.00011. The mean of all spot measurements is 462 

87Sr/86Sr = 0.70897 ± 0.00005 (n = 32) and in good agreement with the linescan data. 463 

 464 

5.4 Speleothem MAW-4 465 

On MAW-4, 24 linescans were performed at a sampling resolution of 500 µm (Fig. 1). The 466 

87Sr/86Sr ratios are presented in Fig. 6 [B]. While the first two measurements at 8.4 and 8.9 mm 467 

DFT are similar, the following measurements show a slightly increasing trend towards higher 468 

values, reaching a maximum of 0.70871 ± 0.00004. The 2σ standard error of all measurements 469 

is ± 0.00004 with an average 87Sr/86Sr ratio over all linescans of 0.70867 ± 0.00003 (n = 24). 470 

24 spot analyses were performed on stalagmite MAW-4, placed near the right end of the third 471 

linescan within the same growth layer (Fig. 1). Note that layer MAW-4-7 was not measured. 472 
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For layer MAW-4-8, a total number of six spot measurements were performed to test the 473 

reproducibility. The mean of MAW-4-Spot-8a-c is within error of the mean of MAW-4-Spot-474 

8d-f. Since MAW-4-Spot-8a-f are in perfect agreement, they were combined as a single 475 

measurement (MAW-4-Spot-8). The 87Sr/86Sr ratios of the spot measurements of MAW-4 are 476 

presented as circles in Fig. 6 [B]. A pattern, similar to the linescans can be observed with two 477 

measurements at 8.4 and 8.9 mm DFT showing lower 87Sr/86Sr ratios compared to the other 478 

values. In contrast to the linescan measurements, this increase is not significant due to larger 479 

errors. Nevertheless, an increase and a plateau at the same distance from top is visible for the 480 

spot analyses. The 2σ standard error of all measurements is in the range of ± 0.00006 to 481 

± 0.00008 and therefore higher than for the linescans. The average 87Sr/86Sr ratio over all spot 482 

measurements is 0.70870 ± 0.00002 (n = 24), in agreement with the 87Sr/86Sr ratio derived from 483 

the linescans. 484 
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 485 

Figure 6: [A] 87Sr/86Sr ratios are plotted against the distance from top of speleothem GP5. 486 

Linescan measurements affected by low signal intensities are marked red. [B] 87Sr/86Sr ratios 487 

of speleothem MAW-4 against distance from top [mm] for the linescan as well as the spot 488 

analyses. For better visualization of the error bars,  spot analyses data were shifted to the right 489 

by 0.05 mm. 490 

 491 

6. Discussion 492 

6.1 Linescan versus spot analysis 493 



26 
 

We used two different laser ablation methods for this study, i.e., linescans along growth bands 494 

and spots, to test which is the best approach. In general, the linescan method provides much 495 

smaller 2σ standard errors than the spot analysis. For RM JCt-1, the final 87Sr/86Sr ratio usually 496 

has a 2σ standard error in the range of ± 0.00002 – 0.00005 for linescan measurements, 497 

representing a total error in the range of 0.003 – 0.01 %. For spot analyses, the 2σ standard error 498 

was in the range of ± 0.00005 – 0.00007. The 2σ standard error is highly dependent on the Sr 499 

concentration of the sample (Fig. 7). The different precision in spot and linescan analyses is 500 

caused by: 1) the longer integration time for the linescan approach, and 2) decreasing signal 501 

intensity during spot analysis caused by deepening of the laser crater. Therefore, the spot 502 

analysis approach might be insufficiently precise to resolve small scale changes in the 87Sr/86Sr 503 

ratio. This is exemplified in MAW-4, where an increase in the 87Sr/86Sr ratio was significant 504 

for the linescan approach, but not for the spot analyses due to larger errors. A disadvantage of 505 

the linescan approach, however, is that unwanted sampling of material from different growth 506 

layers (with a different 87Sr/86Sr ratio) may occur. Furthermore, linescans require a larger 507 

sample surface compared to spot analysis. We recommend using the linescan approach only for 508 

speleothems with a regular (parallel) layering that provides a relatively large sample surface 509 

(ca. 3 mm width and length). For speleothems with irregular layering, spot analysis may be the 510 

preferable option. Tests with spot analyses showed that higher repetition rates (> 10 Hz) result 511 

in a higher signal intensity and precision, which is desirable for samples with relatively low Sr 512 

concentration (200-500 µg/g), such as GP5. However, the sample material should be dense and 513 

stable enough to resist such a high ablation efficiency. Higher repetition rates also result in 514 

deeper lased craters and thus potentially in ablating into different layers. However, for repetition 515 

rates in the range of 5 – 10 Hz the depth of the crater should be ≤12 µm and even less for 516 

linescan measurements (≤ 2 µm). Thus, this effect should only be important for very slowly 517 

growing speleothems. 518 
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 519 

Figure 7: Scatter plot of 88Sr intensity vs. 87Sr/86Sr 2σ standard error. The dependency of the 520 

87Sr/86Sr 2σ standard error on the 88Sr intensity is shown for the linescan measurements of JCt-521 

1, Glycimeris sp., GP5 and MAW-4. 522 

 523 

6.2 Nanosecond versus femtosecond laser systems 524 

Ablating RMs JCp-1 and MACS-3 with either a nanosecond or a femtosecond laser gives 525 

similar results. While the nanosecond laser provides the advantage of measuring lower 526 

concentration samples with higher precision, the femtosecond laser is less vulnerable to 527 

fractionation effects and offers better control on the ablation process (Glaus et al., 2010; Koch 528 

and Gunther, 2007). In addition, the refractory Sr is generally less affected by matrix, elemental 529 

and isotopic fractionation effects in comparison to the volatile Rb (Horn and von Blanckenburg, 530 

2007). However, with our setup, the femtosecond laser approach requires much higher Sr 531 
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concentrations (> 1400 µg/g) to achieve sufficient precision. For instance, we were not able to 532 

accurately measure JCt-1 and our speleothem samples with the femtosecond laser due to 533 

insufficient Sr concentration. In contrast, the standard bracketing approach with JCt-1 and JCp-534 

1 with the nanosecond laser was successful and the data from MACS-3 were similar to literature 535 

values. The results from the femtosecond LA-MC-ICP-MS measurements show that our 536 

approach can be transferred to other laser ablation systems. The raw measurements of JCp-1 537 

and MACS-3 are in good agreement with literature values and the performance of our standard 538 

bracketing approach does not affect the resulting 87Sr/86Sr significantly. Overall, the 87Sr/86Sr 539 

RM data obtained with both laser ablation systems agree within error and are therefore probably 540 

not affected by differences in matrix effects between the different setups. 541 

 542 

6.3. Tuning parameters and suitable reference materials 543 

An aspect of major importance identified during the development of the LA-MC-ICP-MS 544 

technique is to adjust the tuning after changing the cones to obtain correct 87Sr/86Sr ratios of a 545 

reference solution. Tuning for maximum signal intensity does not always result in the 87Sr/86Sr 546 

ratio of the RM (Fig. 2). To achieve the correct 87Sr/86Sr ratio we adjusted the lens settings. In 547 

comparison to the tuning of the high voltage lenses, the source and transfer lenses had a larger 548 

effect on stability and reliability of the 87Sr/86Sr ratios with our NU Plasma MC-ICP-MS 549 

(Fig. 2). In addition, the laser ablation system itself alters the 87Sr/86Sr ratios of the 550 

measurements. Since different RMs and samples have variable Sr contents, the laser energy and 551 

spot size may have to be adjusted to prevent signal intensities larger than ~10 V on cup H4 (88Sr 552 

signal). It is important to use similar measurement parameters for RMs and speleothem samples 553 

when the standard bracketing technique is applied. Therefore, it is essential to use a RM with 554 

similar Sr concentration and a similar matrix as the speleothem sample. By not using matrix-555 

matched samples and RMs, potential differences in the occurrence of interference may alter the 556 
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correction (Irrgeher et al., 2016). In case of different matrices and/or large differences in Sr 557 

concentration, the resulting 87Sr/86Sr ratio of the unknown sample needs to be handled with care 558 

and might be less precise. For instance, the use of RM JCt-1 for correcting GP5 measurements 559 

was critical, due to low intensities on the sample (1 – 2 V, 88Sr) and high intensities on the RM 560 

(up to 8 – 9 V, 88Sr) when using the same laser parameters. Fluence decreases with laser energy 561 

and it is not guaranteed that the same measurement parameters are available for all samples and 562 

RMs. For speleothem samples with much higher Sr concentration than in this study, JCp-1 and 563 

MACS-3 are suitable RMs.  564 

Furthermore, the signal intensity of the Sr isotope measurements is important. Measurements 565 

suffering from very low intensities on 88Sr (~ < 1 V) show large errors. A scatter plot of the 566 

intensity of the 88Sr-signal against the 2σ standard error for the linescan measurements of JCt-567 

1, the bivalve shell of Glycimeris sp., GP5 and MAW-4 (Fig. 7) reveals in particular for GP5 a 568 

high dependency on a sufficiently high Sr signal for precise measurements. Intensities of 88Sr 569 

below ~1.5 V cause a dramatic shift towards large errors. Similar patterns are visible for JCt-1 570 

and the Glycimeris sp. shell. The Sr intensity difference found in MAW-4 is too low to show 571 

the effect of signal intensity on the uncertainty. All measurements with low Sr intensities suffer 572 

from low counting statistics and the background correction of Kr might be insufficient. 573 

Another effect that can have major detrimental influence on the analysis is progressive clogging 574 

of the cones. When a decrease in Sr intensity is observed, it is important to evaluate if this 575 

change results from a change of the Sr content in the sample or from clogging of the cones by 576 

deposition of Ca. Additional information on the performance of the mass spectrometer is 577 

provided by monitoring the mass bias. In our study, the mass bias for the 87Sr/86Sr-ratio was 578 

usually between 0.45 – 2.09 % (Rcorr/Rmeas = 0.9791 – 0.9955, Eq. 3). Especially for the 579 

linescans of sample MAW-4, the mass bias remained very stable (1.24 – 1.27 %; Rcorr/Rmeas = 580 

0.9873 – 0.9877, Eq. 3). When the mass bias shows increased variability over the day, careful 581 
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evaluation of the results is necessary. We observed that a decrease in the 87Sr/86Sr ratio and an 582 

increase in the 2σ standard error is often related to a high mass bias (e.g., for samples GP5-17-583 

21, Table 2). 584 

 585 

6.4 Standard bracketing 586 

Our results highlight the importance of the standard bracketing correction scheme for LA-MC-587 

ICP-MS Sr isotope analysis. Prior to the first sample measurements, a test of the standard 588 

bracketing method was performed using JCt-1. For this purpose, JCt-1 was used as a RM and 589 

also treated as a sample. The raw and corrected results are shown in Fig. 8. The standard 590 

bracketing method seems to be generally applicable for 87Sr/86Sr ratio correction, since the 591 

corrected Sr isotope ratios of JCt-1 agree within uncertainties. A similar test performed on the 592 

RMs JCp-1 and MACS-3 with the femtosecond LA-MC-ICP-MS setup also showed reliable 593 

results (Fig. 5).  594 

 595 

Figure 8: Black rhombs show the raw results of the 87Sr/86Sr LA-MC-ICP-MS linescan 596 

measurements performed using JCt-1 as a reference material and a sample. Corrected 87Sr/86Sr 597 
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ratios of JCt-1 are shown as red rhombs. Note that the errors increased in comparison to the raw 598 

data due to correction via the reference material. The orange line represents the reference value 599 

of JCt-1 of 0.70917 ± 0.00001 (Weber et al., In Revision). 600 

 601 

6.5 LA-MC-ICP-MS of Sr isotopes on speleothem samples 602 

Traditional Sr isotopes analysis by solution MC-ICP-MS or TIMS requires careful chemical 603 

treatment. A recent study by Wortham et al. (2017) presented a speleothem Sr isotope record 604 

obtained by LA-MC-ICP-MS. These authors performed linescan measurements parallel to the 605 

growth axis of a speleothem from Brazil and traced an increasing 87Sr/86Sr ratio over the last 606 

two millennia. Their approach is slightly different to ours. While their linescan is performed 607 

parallel to the growth axis, we measure three linescans for each growth layer perpendicular to 608 

the growth axis, which enables us to test whether results from individual growth layers are 609 

reproducible (similar to the Hendy test for stable carbon and oxygen isotopes, Hendy (1971)). 610 

In addition, the change of the 87Sr/86Sr ratio in the Brazilian speleothem was on the third 611 

decimal, which is relatively large. Detecting smaller changes (i.e., on the fourth to fifth 612 

decimal), is only possible by conducting a set of measurements perpendicular to the growth 613 

axis. Otherwise the obtained 87Sr/86Sr ratio is largely influenced by a time-averaging effect. 614 

Wortham et al. (2017) used a different sampling approach and do not provide the Sr 615 

concentration of their speleothem and the used RM which complicates the comparison of both 616 

studies. Nevertheless, they showed that it is possible to track large changes in speleothem Sr 617 

isotope ratios using linescans parallel to the growth axis. Our results show that it is also possible 618 

to obtain higher precision Sr isotope data by LA-MC-ICP-MS using a set of linescans, as well 619 

as spot analyses orientated perpendicular to the growth axis. With the state-of-the-art MC-ICP-620 

MS systems, it is unlikely that small scale changes in Sr isotope composition can be detected 621 

by performing a linescan parallel to the growth axis. This is further complicated by the typically 622 



32 
 

low Sr concentration of speleothems (few hundred µg/g or even less). However, aragonitic 623 

speleothems can have much higher Sr concentrations of several thousand µg/g. Thus, in 624 

aragonitic samples, a linescan parallel to the growth axis may reveal small-scale changes in Sr 625 

isotope composition. 626 

 627 

7. Conclusions 628 

We show that LA-MC-ICP-MS is a powerful tool for the analysis of Sr isotopes in speleothems. 629 

Best results are obtained from samples with Sr concentrations of >1000 µg/g. For our setup, the 630 

minimum 88Sr concentration required to obtain reliable 87Sr/86Sr ratios was ca. 300 µg/g. In 631 

order to retrieve reliable results, appropriate tuning of both the mass spectrometer and the laser 632 

ablation system is of great importance. Tuning for maximum intensity does not always result 633 

in correct 87Sr/86Sr ratios. We highly recommend to tune for the correct Sr-isotope ratio of a 634 

reference material prior to an analytical session. The Sr concentration of the RM should be in 635 

the same range as that in the samples. In order to account for potential drifts in the mass 636 

spectrometer during an analytical session, we recommend to apply standard bracketing using 637 

appropriate RMs. 638 

Linescans provide higher precision than spot analyses. The latter might be advantageous 639 

however if only a limited surface is available for sampling, for instance in case of a irregular 640 

layering. While speleothem samples tested here contain only low amounts of REEs and Rb, 641 

appropriate correction procedures are required to minimise the influence of interferences from 642 

these elements. In addition, potential interferences resulting from Ca argides and dimers should 643 

be accounted for. 644 

The use of a femtosecond laser ablation system provides a more stable signal intensity and 645 

therefore more precise measurements, but its application on samples with low Sr concentrations 646 
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(ca. >1400 µg/g, since measurements with JCt-1 were not precise enough) is not recommended 647 

due to lower signal intensities compared to the nanosecond laser leading to less precise results.  648 
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Table 1: NU Plasma collector block assignments used for in-situ LA-MC-ICP-MS Sr isotope analysis of speleothems. Collectors H1, H2, H4, Ax 865 

and L1 – L5 are Faraday cups, IC-1 is an ion counter.  866 

 867 

Collector H4 H2 H1 Ax L1 L2 L3 IC-1 L4 L5 

Single Mass 88 87 86.5 86 85.5 85 84 83.5 83 82 

Double Mass 176 174 173 172 171 170 168 167 166 164 

Isotope of interest 88Sr82.58% 87Sr7.00% - 86Sr9.86% - - 84Sr0.56% - - - 

Singly-charged interferences - 87Rb27.83% - 86Kr17.28% - 85Rb72.17% 84Kr56.99% - 83Kr11.50% 82Kr11.59% 

Doubly-charged 176Yb12.99% 174Yb32.03% 173Yb16.10% 172Yb21.68% 171Yb14.09% 170Yb2.98% 168Yb0.12% - - - 

interferences - - - - - 170Er14.91% 168Er26.98% 167Er22.87% 166Er33.50% 164Er1.60% 

Molecular  40Ca48Ca 44Ca43Ca - 40Ca46Ca - 42Ca43Ca 40Ca44Ca - 40Ca43Ca 40Ca42Ca 

interferences 40Ar48Ca - - 40Ar46Ca - - 40Ar44Ca - 40Ar43Ca 40Ar42Ca 

 868 

Note that only collectors used during analysis are shown in this table. Potential interferences affecting the Sr masses are also illustrated along with 869 

natural abundances for Sr, Rb, Kr, Yb and Er (Berglund and Wieser (2011). Abundances for molecular interferences of Ca dimers and argides are not 870 
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shown for reasons of clarity. Some masses have a large number of potential interferences of Ca argides and dimers (e.g. mass 86 with 43Ca43Ca, 871 

40Ca46Ca, 42Ca44Ca, 48Ca38Ar, 46Ca40Ar). Here, only the two most common molecular interferences are shown. Prior to each analysis, the peak center 872 

was determined on mass 84 (L3) using the signal of 84Kr in the gas flow of Ar. Therefore, mass 84 is underlined.  873 
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Table 2: Results of the linescan analysis from speleothem samples GP5 and MAW-4. The 874 

alignment of the different cups is presented with the corresponding signal intensities. For most 875 

sample layers, three runs were performed. For these samples, the mean of all runs is shown. 876 

 877 

♦ Sr-concentrations for sample GP5 were taken from Wassenburg et al. (2013) and Sr-878 

concentrations for sample MAW-4 were taken from Wassenburg et al. (2016b). 879 

♦♦ Not all of the three measurements from each spot were taken into account due to shifts in 880 

the 87Sr/86Sr ratio of measurements with low Sr-intensities (approximately below 0.7 V for 881 

88Sr).   882 
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Table 3: Operating parameters of the NU Plasma MC-ICP-MS and the two laser ablation 884 
systems. 885 

 886 

NU Plasma MC-ICP-MS       
RF Power 1300 W     
Argon cooling gas flow 
rate 13 L/min     
Auxiliary gas flow rate 0.93 L/min     
Interface cones Ni     
Lens settings Optimized for maximum signal intensity and 87Sr/86Sr ratio 
Mass resolution Low     

Mass analyzer pressure 3-5 x 10-9 mbar     
Detection system Nine Faraday collectors and one Ion 

Counter 
  

Sampling mode Time Resolved Analysis   
New Wave UP213 nm 
Laser ablation system      

NWR Femto 200 
Laser ablation system 

Sampling approach Linescan Spot Linescan 
Wavelength  213 nm 213 nm 200 nm 
Line length  750 µm   750 µm 
Ar flow rate 0.65-0.79 L/min 0.68-0.78 L/min 0.77 L/min 
He flow rate 0.65-0.81 L/min 0.68-0.78 L/min 0.77 L/min 
Pre-Ablation       
Frequency 10 Hz 10 Hz 5 Hz 
Translation rate  80 µm/s   60 µm/s 
Beam width 100-110 µm 110 µm 65 µm 
Ablation       
Frequency 10 Hz 5-10 Hz 25 Hz 
Translation rate  5 µm/s   5 µm/s 
Beam width 80-100 µm 100 µm 55 µm 
Dwell time   120 s   

Fluence 20-30 J/cm2 20-30 J/cm2 0.7-0.8 J/cm2 

Data Collection       
Gas background 45 s   45 s 45 s 
Sample 145 s 85-115 s 145 s 
Integration 0.2 s 0.2 s 0.2 s 

 887 


