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OPEN

ORIGINAL ARTICLE

Abundant and equipotent founder cells establish and maintain
acute lymphoblastic leukaemia
A Elder1, S Bomken1,2, I Wilson3, HJ Blair1, S Cockell4, F Ponthan1, K Dormon1, D Pal1, O Heidenreich1 and J Vormoor1,2

High frequencies of blasts in primary acute lymphoblastic leukaemia (ALL) samples have the potential to induce leukaemia and to
engraft mice. However, it is unclear how individual ALL cells each contribute to drive leukaemic development in a bulk transplant
and the extent to which these blasts vary functionally. We used cellular barcoding as a fate mapping tool to track primograft ALL
blasts in vivo. Our results show that high numbers of ALL founder cells contribute at similar frequencies to leukaemic propagation
over serial transplants, without any clear evidence of clonal succession. These founder cells also exhibit equal capacity to home and
engraft to different organs, although stochastic processes may alter the composition in restrictive niches. Our findings enhance the
stochastic stem cell model of ALL by demonstrating equal functional abilities of singular ALL blasts and show that successful
treatment strategies must eradicate the entire leukaemic cell population.

Leukemia (2017) 31, 2577–2586; doi:10.1038/leu.2017.140

INTRODUCTION
In recent years, there has been increasing focus on the extent to
which intra-tumour heterogeneity influences the development
and evolution of cancer.1 There is substantial evidence that ALL
samples consist of a genetically heterogeneous subclonal
architecture, with pools of subclones related by Darwinian style
ancestral trees, and that this diversity can be maintained following
xenotransplantation.2–7 These data support a clonal evolution
model whereby individual clones acquire fitness-modulating
mutations, resulting in constant changes to the composition of
the propagating cell population under selection pressure. This has
important clinical implications, as relapse clones often descend
from minor diagnostic or pre-leukaemic clones, which evolve
during disease progression and become enriched through
selection in response to therapy.8,9 Many of these studies into
tumour heterogeneity have looked at a limited subset of genetic
markers, so may not reflect the true complexity of ALL at the
single-cell level. In addition, these genetically distinct subclones
will consist of a multitude of individual cells which may not
contribute equally to disease progression. Our previous results
using limiting dilution analysis demonstrate that B-ALL cells able
to engraft immunodeficient mice are common and not restricted
to populations of specific immunophenotypes.10,11 This is
consistent with a stochastic model of engraftment, whereby most
cells are able to propagate the tumour, as opposed to a rare stem
cell hierarchy. However, previous studies have predominantly
assessed engraftment potential as opposed to fate, so there are
several unanswered questions as to how individual propagating
cells actually collaborate to drive the disease. Although many
blasts have the potential to propagate the disease, is the
leukaemia actually driven by a more limited subset of the bulk
population? Do the engrafting cells differ functionally? Is there
evidence of clonal dormancy or clonal succession over serial

transplants? In addition, it is not known how the composition of
leukaemias may vary at different sites. Insights from solid tumours
have clearly demonstrated spatial heterogeneity within tumours.12

It is generally assumed that leukaemias will be more homo-
geneous in different parts of the body; however, this has not been
studied in detail.
We addressed these questions using cellular barcoding to label

high-risk patient-derived ALL cells with unique, heritable DNA
markers.13,14 This approach allows us to examine cellular
behaviour at the level of individual engrafting blasts as opposed
to bulk populations. Our results demonstrate that the cells which
drive ALL in xenotransplanted mice are both abundant and
functionally equipotent, with every engrafting cell having equal
capability to propagate the leukaemia. Despite this, the composi-
tion of ALL can vary stochastically in different parts of the bone
marrow, suggesting that sampling the leukaemia from a single site
may not be representative of the whole disease.

MATERIALS AND METHODS
See Supplementary Materials for detailed methods.

Barcoding of primograft ALL samples
Oligonucleotides containing the random barcode sequence were annealed
and cloned into a lentiviral vector, pSLIEW.15 The complexity of the library
was validated by Illumina MiSeq sequencing. Virus production and
transduction of primograft material was performed as described
previously.15 Cells were injected into the left femurs of NSG mice.
Engraftment was monitored using the IVIS Spectrum In Vivo Imaging
System (Caliper Life Sciences) and mice were kept until they began to
exhibit clinical symptoms necessitating humane killing. Samples were
collected from the spleen, femurs, tibias and meninges.
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Sequencing and data analysis
Barcode regions were amplified from genomic DNA using primers specific
to the barcode region and sequenced using an Illumina MiSeq. Sequencing
data was analysed using a python script (provided in Supplementary

Materials) to extract barcode sequences and frequencies. Barcodes with
the lowest read counts were removed until all remaining comprised
greater than 0.01% of the total reads. Barcodes above this level were
manually removed if they had single base changes from high frequency

Figure 1. ALL founder cells have equal functional potential. (a) Schematic of experimental design. (b) Distribution of sequencing reads from
barcode plasmid library (left) and SEM cells transduced with barcode library (right). (c) IVIS images showing leukaemic development of
barcoded Ph+ (L4951) sample following intrafemoral transplant. Ten thousand barcoded cells were transplanted. (d) Composition of barcoded
population at varying transplant doses for Ph+ (L4951) ALL sample. All transplant numbers represent the number of barcoded cells
transplanted, which comprised ~ 10% of the total transplanted population. Each pie chart shows barcode composition in spleen sample from
a single mouse. Coloured segments each represent a unique barcode comprising 41% of the total, light grey segment shows all other
barcodes o1%. Colours do not represent the exact same barcode on different pie charts. (e) Graph showing number of barcodes recovered
from Ph+ (L4951) spleen samples at different transplant doses. Each point is a single mouse spleen. (f) Graph showing barcodes recovered
from Ph+ (L4951) spleen following transplant of cell populations containing 10 000 barcoded cells (n= 3) or 10 000 barcoded cells further
diluted 1:10 with unlabelled cells (n= 3). P= 0.174 using two-tailed student’s t-test, error bars show standard deviation.
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barcodes in the same sample, or were identical to higher frequency
barcodes from other mouse samples in the same sequencing run (see
Supplementary Methods for further detail).

Measurement of gene diversity index (G)
R code for the estimation of G is at the web site https://github.com/
ijwilson/diversit-tag.

RESULTS
ALL founder cells are abundant and contribute equally to the
leukaemia
B-ALLs contain high frequencies of cells capable of engrafting and
propagating leukaemia in immunodeficient mice.10,11 However,
these studies purely detail the engraftment potential of B-ALL cells
and do not provide information about the number of founder cells
that actually engraft in bulk transplants and their subsequent fate.
To allow us to map the fate of individual blasts in leukaemia
development, we developed a cellular barcoding method to label
individual cells with unique markers (Figure 1a). We cloned a
random barcode library based on a previously published design13

into a lentiviral vector,15 achieving a complexity of over 100 000
unique barcodes with unbiased composition, which could be
maintained following transduction of the SEM cell line (Figure 1b).
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were transplanted with
varying doses of four barcoded high-risk ALL primograft samples
and engraftment monitored using IVIS imaging (Figure 1c and
Table 1). To reduce the risk of multiple lentiviral integrations, we
limited transduction levels to ~ 10% based on green fluorescent
protein (GFP) expression16 (Supplementary Figure S1a). Our first
question was whether blasts able to engraft and establish the
leukaemia in mice (founder cells) differ in terms of their ability to
contribute to the primary leukaemia and to self-renew over serial
transplants. To look for evidence of this, we first examined the
distribution of recovered barcodes in primary spleen samples.
When we transplanted high numbers (45000) of labelled cells,
spleen samples from two different patient samples had substantial
diversity, with no single barcode representing more than 5% of
the total population (Figure 1d, top panel and Supplementary
Figure S1b). This suggests a high degree of functional homo-
geneity among ALL cells, with the leukaemia driven by many
barcoded cells contributing at similar frequencies, as opposed to
dominance by a few clones. To further support this hypothesis, we
transplanted limiting dilutions of cells. As expected, this led to a
reduced overall complexity, although these spleens still typically
contained 10–20 dominant barcodes at comparable frequencies
as opposed to a single dominant clone (Figure 1d, lower panels).
We calculated engrafting cell frequencies in the spleens of primary
transplants as between 1 in 29 and 1 in 2 across all four samples

(Table 1), based on a barcode detection threshold of 0.01% (see
‘Materials and Methods’ section). This is in line with our previous
estimates of cells with engraftment potential, and demonstrates
that this potential is translated into a high number of founder cells
contributing to the leukaemia. The number of barcodes recovered
increased linearly with the number of cells transplanted
(Figure 1e), suggesting we had not yet reached a saturation point
which limited the maximum number of cells able to engraft. In
support of this, diluting the barcoded cells 1:10 by addition of an
extra 900 000 untransduced cells did not substantially alter the
engraftment frequency (Table 1 and Figure 1f) or the leukaemic
composition of the spleen (Supplementary Figure S1c), demon-
strating that the presence of large numbers of unlabelled cells
does not affect engraftment of the labelled population.
Selected spleen samples were re-transplanted into secondary

and then tertiary recipients to assess self-renewal. The percentage
of GFP-expressing cells fluctuated following secondary transplants
but did not show any consistent change between samples
(Figure 2a), showing that the transduction did not substantially
affect engraftment capability. Secondary recipients showed a
reduction in absolute barcode numbers compared to primary,
however, this was due to loss of rare (o0.5%) barcodes in primary
samples (Figure 2b) resulting from transplantation of cell numbers
too low to preserve the full repertoire of rarer barcodes (low
coverage). Across all samples, all barcodes (57/57) with a
frequency above 1% in the primary sample were detected in
secondary transplants. The spleens of secondary and tertiary
recipients exhibited a similar barcode complexity to that of the
parent sample, with substantial variability in the composition only
occurring at transplant doses lower than the complexity of the
original sample (Figures 2c and d and Supplementary Figure S2).
We also did not observe any minor barcodes in primary
transplants, which became dominant in subsequent recipients
when high enough cell numbers were transplanted to provide
sufficient coverage of the original complexity. These results
demonstrate that ALL founder cells have similar engraftment
potential and long-term self-renewal capacity in xenograft models,
without evidence of clonal succession. Taken together, our data
show that xenografted ALL samples consist of high numbers of
cells able to establish the leukaemia and that each of these
founder cells has a similar capability to drive the leukaemia.
To investigate the ability of different founder cells to engraft

different organs, we collected samples from individual femurs,
tibias and the meninges within the central nervous system (CNS)
and compared their barcode compositions with the correspond-
ing spleen. At low transplant doses, the vast majority of barcodes
detected in the spleen were also found in the bone marrow and
CNS samples and these different sites often, but not always, had
similar compositions (Figures 3a and c and Supplementary
Figure S3). Generally, common splenic barcodes had also

Table 1. Engrafting cell frequencies in primograft ALL samples

Sample Maximum transduction
%

Total cells injected Barcoded
cells

Time to
harvest

Average barcodes recovered (number of
mice)

L-IC
frequency

L4951 Ph+ 10 100 000+900 000
unlabelled

10 000 69 days 662 (3) 1:15

100 000 10 000 71 days 784 (3) 1:13
10000 1000 83 days 155 (3) 1:6
1000 100 90 days 41 (3) 1:2

L4967 Ph+ 5 100 000 5000 42 days 798 (2) 1:6
P929 t(4;11) 1 150 000 1500 78 days 52 (2) 1:29
L707 t(17;19) 5 100 000 5000 36 days 705 (2) 1:7

5 10 000 500 37 days 56 (2) 1:9

Frequencies were calculated by the following formula: (total cells transplanted) × (transduction %)/barcodes recovered from spleen.
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Figure 2. ALL founder cells maintain self-renewal capacity over serial transplants. (a) Change in frequency of GFP+ cells in spleen samples
taken from primary and secondary transplants. Each point represents a single mouse, dashed lines link primary sample to corresponding
secondary recipients. (b) Heat map showing frequency of individual barcodes in primary spleen sample (left hand column) compared to
secondary recipients for Ph+ (L4951) sample. Numbers in brackets show barcoded cells transplanted. Each horizontal band represents a single
barcode. Barcodes at frequencies below 0.01% of the total were considered undetectable in our experimental system. (c, d) Barcode
composition in spleens of secondary and tertiary transplants compared to primary sample. Primary samples were spleens from initial
transplants of 10 000 (c) or 1000 (d) barcoded cells. Numbers below each chart represent the total number of recovered barcodes in that
sample, which were also present in the parent sample. Colours correspond to the same barcode for each mouse within each transplant set (for
example, within c), but not between (for example, c compared to d).
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engrafted other sites: of barcodes which comprised more than 1%
of the labelled spleen populations across all samples, 100% were
also detectable in paired CNS samples, 78% in the injected femur
and 100% in the non-injected femur at frequencies above 0.01%.
This demonstrates that all engrafting barcoded cells have equal
capability to reconstitute the leukaemia in different environments.
By transplanting as few as 10 labelled cells, we demonstrated
directly that reconstitution of the leukaemia at all sites requires
only a single clone (Figure 3d). Together, these data provide a
picture of functional homogeneity of ALL blasts in the absence of
external selection pressures, whereby all founder cells have the
potential to contribute to the disease at all sites.

Leukaemic composition can vary stochastically at different sites
To our surprise, we found some substantial differences in the
barcode composition of different bones, which were particularly
evident when we transplanted higher cell numbers, with each
femur or tibia typically dominated by small numbers of barcoded
founder populations in several different mice (Figures 4a and b
and Supplementary Figure S4). This contrasted with the

composition in different parts of the spleen, which was nearly
identical (Figures 4c and d). To investigate this further, we
quantified the levels of stochastic difference in barcode frequency,
measured by Nei’s gene diversity index G17 (Figure 4e). We first
measured G between different parts of the spleen, which
confirmed that there is no subdivision, whereas the femurs
showed drift away from the composition of the spleens, in
particular at high transplant doses. These differences in the
barcode composition of distinct sites could be caused by a
selection process based on intrinsic growth advantages of specific
founder cells in the given bone marrow environment. Alterna-
tively, stochastic processes may direct barcode composition. In
support of the latter, the dominant barcodes were never the same
in the different bone marrow compartments. Furthermore, the
most frequent barcodes in femurs of secondary transplants were
different to those dominating in the primary mouse, even though
the dominant primary founder populations were detectable in
some secondary recipients at low frequencies (o0.1%) (Figure 4f
and Supplementary Figure S5).
In summary, although all leukaemia propagating cells are

functionally equipotent in the absence of external selective

Figure 3. ALL founder cells have equal capacity to engraft different sites. (a) Heat map showing frequency of individual barcodes in different
organs. Each heat map represents a single mouse. Thousand barcoded Ph+ (L4951) cells were transplanted. All transplant numbers represent
the number of barcoded cells transplanted, which comprised ~ 10% of the total transplanted population. Spleens part 1 and 2 are different
sections of the same spleen. (b, c) Graphs comparing barcode composition in different parts of the spleen with different bone marrow niches
and CNS (meninges). Each coloured bar represents a single barcode with a frequency of at least 1% in at least one sample, light grey area
shows all other barcodes. Colours correspond to the same barcode within each graph but not between different graphs. Hundred barcoded
Ph+ (L4951) cells (b) or 500 barcoded t(17;19) cells (c) were transplanted. (d) Recovery of a single barcode from the injected femur, spleen and
meninges following transplant of 10 barcoded Ph+ (L4951) cells. Images taken using IVIS spectrum (caliper) and produced using Living Image
software.
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Figure 4. Spatial diversity of ALL founder clones at high transplant doses. (a, b) Graphs comparing barcode composition in different parts of
the spleen with different bone marrow niches. Spleen parts 1, 2 and 3 are different sections of the same spleen. Each coloured bar represents
a single barcode with a frequency of at least 2% in at least one sample, light grey area shows all other barcodes. Colours correspond to the
same barcode within each graph but not between different graphs. Ten thousand (a) or 1000 (b) barcoded Ph+ (L4951) cells were
transplanted, which comprised ~ 10% of the total transplanted population. (c, d) Graphs comparing frequency of individual barcodes in the
spleen compared to a different part of the same spleen (c) or the injected femur (d) for a single mouse. Ten thousand barcoded Ph+ (L4951)
cells were transplanted. (e) Table showing Nei’s Gene Diversity Index G, comparing different parts of the spleen and the spleen with the
injected femur. Each number shows G for a single mouse. (f) Pie charts showing barcode composition in the spleen and femurs of a primary
recipient (left box) compared to subsequent secondary recipients (right boxes) for Ph+ (L4951) sample. Individual blocks represent barcodes
above 5% frequency in at least one sample. Selected dominant femoral barcodes are highlighted in the same colour across all samples.
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pressures, our results suggest a model whereby the tendency of
cells to grow focally in restricted sites such as the bone marrow
leads to stochastic spatial heterogeneity, similar to that of solid
tumours.12 The spleen, through its action as a blood filtering
system,18 will sample circulating blasts representing the full
repertoire of engrafting barcoded founder cells in the mouse
without spatial diversity (Figure 5a). In support of this, using
imaging of luciferase-tagged ALL cells, we have previously shown
evidence of local growth at different sites in the mouse, including
in the long bones (Figure 5b).15 This was also evident in the
calvarial bone marrow, in contrast to the spleen where the
leukaemic cells were homogenously distributed (Figure 5c). Given
that we have only looked at the murine tibias and femurs, which
represent around 15% of the total bone marrow mass,19 this
model suggests that the overall composition of the whole mouse

bone marrow will be similar to that of the spleen. In support of
this, the number of recovered barcodes increased when the bone
marrow samples were pooled rather than considered as individual
bones (Figure 5d).

DISCUSSION
Our results have demonstrated that xenografted high-risk ALL
samples consist of high numbers of founder cells and that a
multitude of these founder cells maintain the leukaemia in
primary and secondary mice. These data support and extend our
previous work, which assessed engraftment potential of ALL blasts
based on phenotype11 and limiting dilution analysis.10 Here we
now show that not only are many cells able to engraft (high
abundance of engrafting founder cells), but that these founder

Figure 5. Focal growth of ALL founder clones. (a) Proposed model for growth of ALL founder clones. ALL cells grow focally in the bone
marrow, leading to spatial diversity at high transplant doses. The spleen samples the whole blood supply so will be more representative of the
full repertoire of engrafting cells. (b) Three-dimensional IVIS image showing luciferase-tagged xenografted high hyperdiploid ALL sample,
produced using Living Image software. (c) IVIS images of calvarial bone marrow (top, middle) and spleen (bottom) from Ph+ (L4591)
transplanted mice. Meninges were removed from calvaria before imaging. (d) Chart showing total number of recovered barcodes in the
spleen, individual femurs and tibias, and pooling of all available femurs/tibias, of mice transplanted with varying doses of Ph+ sample. Error
bars show standard deviation for up to three mice.
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cells have similar ability to reconstitute the complete leukaemia in
different organs in the mouse—each cell contributes equally to
the leukaemia without evidence of dominance or succession
(equipotency). Our work complements previous data showing that
xenograft models can support the growth of genetically distinct
subclones by studying clonal diversity at a higher resolution.3,6

Given that we have used samples that have previously been
passaged through mice, we cannot exclude the possibility that
primary ALL samples contain subclones with different properties,
which are unable to engraft mice. However, it has previously been
shown that primary samples also contain high frequencies of
engrafting cells10 and that xenografts can recapitulate the
complexity of the original sample in high-risk patients.4,7 The
ability of all blasts to engraft different organs is particularly
important for treatment of the CNS compartment, as any CNS-
directed therapy will need to eradicate all leukaemic cells rather
than specific CNS engrafting subclones. This confirms the findings
of Williams et al,20 who recently demonstrated that CNS infiltration
is a generic property of ALL blasts.
Importantly and to our initial surprise, we show that leukaemia

can exhibit spatial diversity, with different barcode composition
emerging in different bone marrow sites. It is well established that
solid tumours can vary in clonal composition, both within the
primary tumour and in comparison to sites of metastasis.12 Our
results suggest that this also applies to leukaemia. We propose
that this is related to the tendency of leukaemias to grow focally at
different sites in the mouse, whereas the spleen acts to sample the
total blood volume so is more representative of all engrafting
founder cells. The dominance of certain founder populations
found in some bone marrow sites does not appear to be due to

hard-wired properties of particular cells, as the identity of the
dominant barcodes was not preserved. Instead, we propose this
occurs due to stochastic or chance-based processes, which
originate extrinsic to the cell. These could include founder effects,
whereby the first cells to arrive at a particular site are able to
establish an advantage, or exposure to particular niches, which
may provide a growth advantage. The fact that the dominance
occurred in the marrow of the long bones, but rarely the spleen,
suggests that the microenvironment plays a key part. It has been
established that leukaemia cells are able to modulate the bone
marrow environment using tunnelling nanotubules21 and that
niche remodelling in response to therapy can lead to drug
resistance.22 Furthermore, a recent study demonstrates that in vivo
microenvironments can induce a reversible, dormant, drug-
resistant phenotype in leukaemic blasts.23 Because of insufficient
coverage of rare clones, our system will not detect dormancy at
the founder cell level following transplantation, however, it is
likely that individual daughter cells derived from the different
founders will nest into the endosteal bone marrow niche23 where
they become quiescent. The pattern we observe in the bone
marrow also has some resemblance to that found following
transplant of barcoded haematopoietic stem cells, which become
asymmetrically distributed among different skeletal niches.24 This
spatial heterogeneity has implications for studies examining clonal
diversity in patient samples, as the site which material is taken
from could impact the clonal heterogeneity observed. It is
sometimes assumed that dominant subclones have acquired
advantageous mutations, and that studying their genetics can
identify new therapeutic targets. Our results show that caution
should be taken when interpreting these results. They also imply

Figure 6. Suggested integrated model for genetic subclones and barcoded founder cells. Patient ALL samples consist of multiple genetically
defined subclones (rhombus shapes in top panel), each of which will contain high numbers of individual cells. Following transplantation into
immunocompromised mice, individual blasts from each genetic subclone will engraft and propagate the leukaemia, leading to a multitude of
cells with propagating capacity. Each individual blast will therefore be a potential unit of selection.
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that chance can play a significant role in disease evolution and
relapse, as response to treatment may depend on whether
subclones with potential to develop resistance make it into
protective niches or areas with poor pharmacokinetics before the
start of therapy. This apparent capacity for clonal dominance
without selection pressure also needs to be considered for murine
in vivo functional genomic screening approaches, as dominance
can occur even when cells receive apparently non-functional
constructs. This effect can be limited by taking spleen samples
rather than bone marrow, transplanting high cell numbers
(4100 000) and validating results in multiple mice.
Taken together, our findings support the stochastic stem cell

model in ALL. Although we cannot formally rule out a shallow
stem cell hierarchy with a high frequency of leukaemia-initiating
cells, the combination of the data in this study and our previous
work demonstrating equal leukaemic-initiating capacity in blasts
of all immunophenotypes10 strongly supports the idea that stem
cell potential is a generic property of a high proportion of ALL
blasts. This does not necessarily mean that each of these cells
actually drives the leukaemia in every given situation, merely that
they all have the capability to do so if required. As Till and
McCulloch predicted,25 there is no clearly defined stem cell
hierarchy in the lymphoid lineage and lymphoid cells maintain
their ability for clonal expansion throughout maturation. Malig-
nant cells hijack the pre-B-cell and B-cell receptor checkpoints,
which regulate normal lymphoid development to suppress
negative selection and gain the ability for uncontrolled clonal
expansion.26 Our data shows that this process results in a large
number of potential units of clonal selection and evolution. Our
results complement the previously described model of genetic
subclonal architecture in ALL,3,6 as each genetic subclone will
consist of a multitude of leukaemia propagating cells (Figure 6).
Despite the abundance of units for selection, most ALL genomes
contain fewer than 10–20 mutations, most probably due to the
relatively low genomic instability of ALL.27 The prevalent model of
tumour heterogeneity based purely on these subclonal genetic
differences cannot therefore fully explain the evolution and
development of ALL, especially in the case of relapse. Our data
demonstrate that this process will also have a stochastic
component. The functional status of a cell will depend on a
multitude of factors beyond genetics, including, tumour micro-
environment, epigenetics and cellular signalling networks.28

Indeed, recent work has suggested that crosstalk between
leukaemic blasts and the microenvironment may lead to
epigenetic reprogramming of the blasts under chemotherapy.29

Changes such as these will act in tandem with intrinsic subclonal
differences, which may only become functionally relevant under
selection pressures, to determine the evolution of the disease.
Successful treatment strategies will therefore need to ensure
eradication of all the leukaemic blasts, while also considering
targeting any resistant clones which emerge.
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