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ABSTRACT The pursuit of early diagnosis of cerebral palsy has been an active research area with some
very promising results using tools such as the General Movements Assessment (GMA). In our previous
work, we explored the feasibility of extracting pose-based features from video sequences to automatically
classify infant body movement into two categories, normal and abnormal. The classification was based
upon the GMA, which was carried out on the video data by an independent expert reviewer. In this
paper we extend our previous work by extracting the normalised pose-based feature sets, Histograms of
Joint Orientation 2D (HOJO2D) and Histograms of Joint Displacement 2D (HOJD2D), for use in new
deep learning architectures. We explore the viability of using these pose-based feature sets for automated
classification within a deep learning framework by carrying out extensive experiments on five new deep
learning architectures. Experimental results show that the proposed fully connected neural network FCNet
performed robustly across different feature sets. Furthermore, the proposed convolutional neural network
architectures demonstrated excellent performance in handling features in higher dimensionality. We make
the code, extracted features and associated GMA labels publicly available.

INDEX TERMS Deep learning, feature extraction, classification, infants, pose-based features.

I. INTRODUCTION
Automated human action recognition has been an active area
of research for a number of years [2]. The ability to automati-
cally recognise, analyse and reconstruct complicated motion,
such as human activity, has wide ranging applications includ-
ing content based video indexing, intelligent monitoring,
surveillance, human-computer interaction and virtual reality
[40]. Building upon our previous work [26], we propose that
this technology could be applied to the healthcare domain,
specifically in paediatrics, to aid with the early diagnosis of
movement disorders, such as cerebral palsy.

Cerebral palsy is an umbrella term that covers a group of
lifelong neurological conditions usually caused by a brain
injury occurring before, during or shortly after birth [32].
It is a condition that primarily affects movement, posture
and coordination, although it can manifest in a range of
other complications, such as swallowing difficulties, speech
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problems, vision problems and learning disabilities. The
severity of these symptoms can vary quite significantly,
with some individuals presenting very minor symptoms,
whilst others may be severely disabled. It is estimated that
around 1 in every 400 babies born in the UK develop some
form of cerebral palsy [15], suggesting that there may be as
many as 1,800 new cases of cerebral palsy every year. Whilst
the continual development and enhancement of neonatal care
has provided a significant decline in infant mortality rates,
studies suggest that this has also contributed towards an
increase in the incidence and associated severity of cerebral
palsy [29].

Early diagnosis is seen as key in providing the best possible
outcome for individuals with cerebral palsy, as it can allow for
early intervention care. However, in many cases, diagnosis is
not confirmed until 18 months of age or later for those who
present mild symptoms [25]. Early identification not only
provides a frameworkwhereby the patient can receive the best
possible care, but it also allows for the targeting of resources
and for the deployment of parental support systems [5].
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Additionally, access to health, social and educational services
often rely upon a diagnosis [33].

The means of providing reliable early diagnosis of cere-
bral palsy has been investigated for a number of years, with
some tools, such as the General Movements Assessment
(GMA) [11], producing some very promising results. These
tools evaluate the quality, complexity and spontaneity of the
infant’s movements at a specific window in their develop-
ment, typically 12 to 20 weeks post-term.

Whilst tools like the GMA have the potential to provide an
important understanding of early neurological development,
they are not without their problems. In particular, the ability
to apply these assessments depends upon the availability of
fully trained clinicians. These clinicians require significant
training, as well as years of practical assessment experience
to achieve a suitable level of accuracy. Additionally, given the
manual, time-consuming nature of the assessment, it is highly
susceptible to observer fatigue. Additionally, the assessment
is subjective, with no discernibly quantifiable features present
in the current diagnostic method. The test is also heavily
reliant upon the infant being in a suitable behavioural state
[14]. Tests such as the GMA are typically only used where
there are existing medical concerns, such as prematurity,
stroke, lack of oxygen, or congenital heart disease; they are
not currently used as a screening tool for healthy babies [4].

Given the nature of the problems found in tools such as the
GMA, it is conceivable that the development of automated
systems could help to alleviate some of these issues. It is
highly likely that the production of an automated pipeline
would help to reduce the time and cost associated with current
manual diagnostic practices. Additionally, a system which
is able to quantify an early diagnosis of cerebral palsy has
the potential to aid healthcare professionals in relaying infor-
mation to the patient’s family more reliably. Furthermore,
the development of a suitably reliable automated tool would
mean that the analysis of all babies could be carried out,
helping healthcare professionals establish any additional care
requirements.

Several early works [1], [28], [36] propose the use of auto-
mated systems for cerebral palsy diagnosis. These systems
typically make use of video-based optical flow methods, fre-
quency analysis and background subtraction. However, each
of these methods suffered from a lack of robustness in dealing
with unnecessary information, illumination changes, body
part dimensions, and external influences, such as parental
interaction with the infants. Other methods include using
wearable accelerometers [16], and whilst the tracking can
provide accurate results, the logistics associated with assess-
ing an infant using wearable sensors make them less suitable.
Our focus therefore remains on a vision based approach,
as such we have developed a pipeline based around pose
extraction from 2D RGB footage.

In our pilot study [26], we evaluated the viability of
analysing the pose and the joint specificmovements of infants
as a means of automatically diagnosing movement condi-
tions. We suggest that pose-based analysis presents several

advantages over other methods, such as lower dimensionality
of features, the ability to deal with multiple people in frame,
reduced ambiguity in classification, and the ability to remove
superfluous information from the classification process.

Based upon our encouraging results in pose-based classi-
fication, we suggest that a deep learning method would be
well suited to working with pose-based data in the healthcare
domain. As such, we propose a deep learning classification
framework which makes use of the extracted, normalised
pose-based features. We extend this work by undertaking
additional data pre-processing and normalisation, as well as
carrying out extensive experiments on several deep learn-
ing pipelines in order to determine their feasibility. Our
experiments examine the effectiveness of 3 separate types of
neural network architecture in classification of the extracted
pose-based feature sets.We carry out ablation tests to evaluate
the effect that different dropout rates have upon the classifi-
cation performance of our neural networks. We also perform
a comparison with the results obtained using several tradi-
tional machine learning classifiers to assess the classification
robustness.

We also suggest that by utilising anonymised, unidenti-
fiable, pose-based features, we make the likelihood of col-
laborative working arrangements in the healthcare domain a
more viable possibility. By ensuring that anonymised features
are used in the classification process, our hope is that this
approach has the potential to enhance deep learning frame-
works, such as the one proposed here, through an ever greater
abundance of data availability. As such, we make our code,
the extracted features dataset and annotated labels publicly
available.

II. RELATED WORKS
In this section, we provide an overview of the GMA by
looking at the origins of the test and how it is currently applied
in clinical practice. We discuss several studies which have
attempted to automate the GMA using different methods and
briefly contextualise these studies in relation to our proposed
work.We also examine some state-of-the-art computer vision
pose estimation techniques and observe how these might be
implemented in our proposed diagnostic pipeline.

A. THE GENERAL MOVEMENTS ASSESSMENT
General movements (GMs) are spontaneous movements
which are present from early fetal life through to approx-
imately twenty weeks post-term. GMs engage the whole
body in a diverse range of arm, leg, neck, and trunk move-
ments which vary in intensity over time. In a typically devel-
oping infant, GMs show complexity, variability, frequency,
and have sufficient duration to be observed properly [12].
Prechtl’s ‘Method on the Qualitative Assessment of General
Movements in Preterm, Term and Young Infants’ [10] is the
foundation of the GMA and explores the specific makeup
of infant GMs in detail. Prechtl suggests that, in the case of
infants with an impaired nervous system, GMs lose their com-
plex and variable character, becoming less fluid and smooth.
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Additionally, it is proposed that these infants show a lack of
‘fidgety movements’. The presence of these abnormal GM
patterns is seen as a strong predictor that the infant will go
on to develop cerebral palsy. Zlatanovic et al. [44] emphasize
the importance of early diagnosis of cerebral palsy, suggest-
ing that it enables neurodevelopmental treatment, which can
contribute to improved motor-function ability at a later age,
due to the ‘‘brain plasticity’’ found in developing infants.

B. AUTOMATING THE GMA
Whilst the GMA has proven to be an accurate, non-invasive
and non-intrusive diagnostic tool, it requires a significant
investment of both time and resources to train an assessor.
As such, several studies have been carried out which attempt
to assess the viability of automated GMA. One of the earliest
examples of this is a preliminary study by Adde et al. [1].
In this work, they developed a method which made use of per
frame background subtraction. By removing the background
they created a simple representation which allowed for the
identification and subsequent calculation of the difference
between two frames in a video sequence. A point value per
pixel of 0 or 1 was then assigned to represent the presence of
movement.

Following on from this, Stahl et al. [36] produced a method
using optical flow which predicted cerebral palsy based upon
statistical pattern recognition of the infant’s spontaneous
movements. They incorporated Wavelet frequency decom-
position analysis to determine the time dependent trajectory
signals found in the optical flow data.

Similarly Orlandi et al. [28] utilised large displacement
optical flow (LDOF) to track infant movements and obtain
velocities. They calculated the displacement of each pixel
over 10 frames before extracting features for classification.
The extracted features were used in a binary classification to
determine normal or abnormal GMs using several classifiers.

In [20], a similar LDOF model is used to track infant
movements through a pixelwise representation. The centroid
of motion, rather than the centre of mass or anticipated joint
position, of these tracked movements is manually annotated
and fed into a classification pipeline to determine the like-
lihood of cerebral palsy based upon the proportion of CP
risk-related movements. This approach focuses upon a statis-
tical analysis of the data rather than a predefined set of rules
governing the classification.

C. POSE ESTIMATION TECHNIQUES
Due to the limitations inherent in traditional optical flow
based methods researchers have recently started to evaluate
the effectiveness of pose-based assessment. The automated
estimation of human pose from 2D images is an active
research area, with several significant recent contributions
[6], [13], [17], [37]. With the continued progression in deep
learning techniques, various robust frameworks have been
proposed which can accurately estimate human poses from
2D images. One of the most widely known methods is Open-
Pose by Cao et al. [6], who present an approach to detect

the 2D pose of multiple people from a single RGB image.
This framework produces an output which provides both the
joint positions and orientation of human limbs based upon
a pre-determined set of keypoints. In our pilot study [26]
we made use of the OpenPose framework to examine the
viability of a pose-based approach. We were subsequently
able to establish a robust set of pose-based features which
could be used for classification by several different traditional
machine learning classifiers.

Using a comparable pose-based approach, Chambers et al.
[7] developed a framework to extract posture, kinematic vari-
ables, complexity and symmetry for further analysis. They
suggest that combinations of the extracted features are indica-
tive of heightened neuromotor risk.

Similarly, Moccia et al. [27] proposed a framework for
limb-pose estimation of infants from depth images. They
attempted to exploit spatio-temporal features in an effort to
improve pose estimation performance. By using a detection
and a regression convolutional neural network (CNN) they
performed limb-pose estimation, they then used 3D convolu-
tion to encode connectivity in the temporal domain.

D. HISTOGRAMS FOR HUMAN ACTION RECOGNITION
Histogram-based approaches have seen wide use in sev-
eral fields for a number of years, and have been found to
perform well in visual recognition tasks. Histogram-based
approaches, such as [9], have been successfully implemented
in human action recognition tasks by condensing data into a
lower dimensional range whilst also retaining the most useful
information, providing a full but manageable impression of
the associated data. The combined use of different kinds
of histogram features [38] has improved action recognition
accuracy significantly [23]. 3D histogram features are also
proposed on 3D human video, with the purpose of aiding 2D
recognition [41].

RGBD cameras such as Kinect provide estimated 3D joint
positions using a random forest [34], which can be further
enhanced by introducing human prior knowledge [42], allow-
ing it to be used effectively for motion monitoring [30].
In [39] a histogram-based method was used, in conjunction
with the joint positions extracted from Kinect depth maps,
to undertake classification of human actions into one of ten
indoor activities. This approach allows for the generation
of feature descriptors, which can be used to examine the
distribution of both the orientation and displacement of each
of the joints over a period of time. Additionally, this method
bypasses the need to solve the time misalignment and varia-
tions in speed between two frames, as well as being robust to
differing video durations.

We prefer the use of RGB over RGBD when it comes to
capturing infants’ movement for two reasons, firstly RGB
video is much more accessible as it requires no special-
ist equipment (a camera-phone is sufficient), and secondly,
RGBD requires the emission of infrared light, which may
have a health impact upon infants. Inspired by the suc-
cesses of [39], we propose a technique to produce histogram

51584 VOLUME 8, 2020



K. D. McCay et al.: Abnormal Infant Movements Classification With Deep Learning on Pose-Based Features

representations of infants movements from 2D RGB footage,
and a deep learning algorithm for action classification.

E. DEEP LEARNING METHODS
Recently, researchers have been successfully applying deep
learning frameworks to the task of human action recognition
[22], [24], [43]. These approaches make use of large datasets
to train deep learning models capable of achieving state-of-
the-art classification accuracy. Several studies have attempted
to make use of the general improvements to accuracy pro-
vided by deep learning by applying deep learning frameworks
to similar movement related diagnostic activities [8], [21],
[35]. Whilst the results are promising, the holistic applica-
tion of deep learning in the healthcare domain faces several
challenges, most notably the large amount of data required
for suitable results, and the problem of understandable AI.
Understanding how a framework arrives at a decision is
particularly important in the healthcare domain, and this is
often very difficult, if not impossible to do with an end-to-
end deep learning framework as deep features are typically
incomprehensible for human perception. With this in mind,
our proposed deep learning framework acts simply to clas-
sify the hand-crafted features generated using our previous
method.

III. METHODOLOGY
In this section, we first detail the infant dataset creation
process. We then explain how we extract pose-based features
from the video footage, followed by the deep learning algo-
rithms we propose for classification.

A. DATASET
Given the sensitive nature of the video data required for
the GMA, a significant challenge facing researchers attempt-
ing to automate the process is the availability of publicly
accessible datasets. Since human pose estimation frameworks
are almost exclusively trained and tested using images of
adults, a dataset consisting of images of infants for research
purposes can understandably be difficult to obtain. In an
effort to help researchers in this area the Moving INfants
In RGB-D (MINI-RGBD) [18] synthetic dataset was pro-
duced using the Skinned Multi-Infant Linear (SMIL) [19]
model andmade publicly available. TheMINI-RGBD dataset
maps real-world infant movements to a synthetic SMIL 3D
model in order to generate anonymised, and subsequently
shareable footage. As such, this paper makes use of the
MINI-RGBD dataset, which, at the time of writing, con-
sists of twelve different sequences. Each of the twelve video
sequences was analysed by an experienced GMs assessor.
The assessor classified the videos into one of two categories;
1) those who demonstrate movements indicative of typi-
cally developing infants (Normal); and 2) those who demon-
strate some movements that may be of concern to clinicians
(Abnormal).

B. POSE ESTIMATION AND DATA PRE-PROCESSING
In this paper, the OpenPose framework [6] is used to
extract the 2D poses from each of the twelve videos in the
MINI-RGBD dataset. Each returned pose is represented by
the 2D (x and y) coordinates of 18 landmarks on the body,
which include 14 joints on the body and 4 facial landmarks.
In addition to the 2D coordinates a confidence score for
each joint is also included in the OpenPose output. In our
experiments we only make use of the 14 body joints for fea-
ture extraction, we decided that this was a suitable approach
because the facial landmarks were not as reliable as the body
landmarks due to self occlusion, and analysis of the facial
landmarks did not play as key a role in the GMA on this
synthetic dataset.

The OpenPose output data is then pre-processed prior to
the generation of features for classification. The first stage
in our pre-processing pipeline is to remove any anomalous
joint positions caused by occlusion or inaccuracies in Open-
Pose’s joint assignment process. To do this we use the con-
fidence score as a threshold by which we can judge the
accuracy of OpenPose’s predicted joint position.We calculate
the average confidence score per joint across each video
sequence and subtract an additional 10% from this. In any
framewhere a joint’s confidence score falls below this thresh-
old, we interpolate between the neighbouring frames with
confidence scores higher than the threshold using modified
Akima interpolation [3]. Given a set of control points X =
[x0, x1, . . . , xn] where n is the number of points, the slope
δi on interval between xi and xi+1 can be determined. The
derivative di at the sample point xi, which will be used for
modified Akima interpolation, can be calculated by:

di =
w1

w1 + w2
δi−1 +

w2

w1 + w2
δi (1)

and the weights w1 and w2 are determined by:

w1 = |δi+1 − δi| +
|δi+1 + δi|

2
(2)

w2 = |δi−1 − δi−2| +
|δi−1 + δi−2|

2
. (3)

Applying this approach means that frames in which joint
confidence scores are particularly low are smoothed to create
a more reliable movement between frames of higher confi-
dence on a per joint basis.

In order to further normalise the data and ensure that the
orientation and displacement are comparable between videos
we calculate a pointmid-way between the hip joints (Figure 1,
Joints 9 and 12), which we refer to as the root. We then cal-
culate the mid-line which runs from the neck joint (Figure 1,
Joint 2) to the root. Whilst retaining their relative distance
from one another, all joints are then re-positioned so that the
root is centred on point 0,0 and the calculated mid-line is
aligned with the Y-Axis. This re-positioning and rotation is
carried out on all frames and on all sequences.
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FIGURE 1. The OpenPose output skeleton and associated joint reference
numbers, overlaid on an example input RGB image.

C. POSE-BASED FEATURE SETS
In our earlier work we proposed two new pose-based feature
sets, Histograms of Joint Orientation 2D (HOJO2D) and His-
tograms of Joint Displacement 2D (HOJD2D). These feature
sets consisted of histogram representations which described
different aspects of the extracted pose based features. Build-
ing upon the successful implementation of these features we
repeat our method to extract the same feature sets from the
normalised, pre-processed data. Details of the generation of
these feature sets are as follows:

1) HISTOGRAMS OF JOINT ORIENTATION 2D (HOJO2D)
In this representation the 2D space is segmented into n bins
that denote the prevalent angle of joint orientation. The joint
orientation is computed by calculating the alignment of the
bone connecting a joint and parent joint:

bone = ji − ji−parent . (4)

where ji and ji−parent are the vectors containing the 2D coordi-
nates of the i-th joint and its parent joint. We manually select
the joint range to extract part specific information before a
suitable bin is assigned for each joint per frame. As a result,
the pose is represented by an n bin histogram of normalised
data.

2) HISTOGRAMS OF JOINT DISPLACEMENT 2D (HOJD2D)
In this representation the displacement of each joint is
extracted and recorded every five frames. The displacements
are then associated with a relevant bin, each of which repre-
sents a regular incremental increase. Again, a range of joints
is selected manually for part-based analysis. In this way the

FIGURE 2. The proposed FCNet network architecture consisting of fully
connected (fc) layers and dropout layers.

displacement can be represented by an n bin histogram of
normalised data.

Fused feature sets are then exported for further evaluation
in our classification experiments using the five separate deep
learning architectures discussed in Section III-D.

D. DEEP LEARNING FRAMEWORKS
In this section, we explain the neural network architec-
tures proposed for classifying the pose-based features pre-
sented in Section III-C. In particular, 3 types of network
architectures are proposed. We first introduce a fully con-
nected network architecture in Section III-D.1 which serves
as a basic classification framework. We further propose
1D (Section III-D.2) and 2D (Section III-D.3) convolutional
neural network architectures.

1) FULLY CONNECTED DEEP NETWORKS
Fully connected deep network architectures are considered
a generic framework for handling different problems since
they are robust to different kinds of inputs (such as text,
extracted features, images, videos, etc). Our proposed fully
connected network architecture (Figure 2), namely FCNet,
is designed with gradually decreasing layer sizes. The input
of the network is a 1D vector of the histogram-based fea-
tures. The output of the last fully connected layer is fed into
a softmax layer for classification. To reduce the negative
impact of overfitting, we have constructed a system where
each fully connected layer is followed by a dropout layer.
We evaluate the classification accuracy with different dropout
rate settings and the results are presented in an ablation study
in Section IV-C.

2) 1D CONVOLUTIONAL NEURAL NETWORKS
In the proposed pose-based features, the neighboring val-
ues are actually capturing similar body postures (i.e. with
body part orientation in HOJO2D) and movements (i.e. with
body part displacement in HOJD2D). To exploit the spa-
tial information from the features, we propose two 1D con-
volutional neural network architectures (Figure 3 and 4),
namely Conv1DNet-1 and Conv1DNet-2, to learn the deep
representation for better performance. Due to the relatively
low dimensionality of the input feature vector, both of the
proposed architectures contain two 1D convolution layers.
To further improve the performance, each 1D convolution
layer is followed by a max pooling layer to down-sample
the output, further feeding into a dropout layer to avoid
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FIGURE 3. The proposed Conv1DNet-1 network architecture which
consists of 1D convolution, max pooling and dropout layers.

FIGURE 4. The proposed Conv1DNet-2 network architecture which
consists of 1D convolution, max pooling and dropout layers. Note the
gradually increasing output channel sizes.

overfitting. Similar to FCNet, the input of our network is a
1D vector of the histogram-based features. The output of the
last dropout layer is flattened into a 1D vector and the dimen-
sionality is reduced by a fully connected layer before feeding
into a softmax layer for classification. All the convolutional
layers are using the same set of settings with kernel_size = 3
and stride = 3. For the max pooling layers, kernel_size = 3
and stride = 3 are used.
The main difference between the two networks is that

Conv1DNet-1 (Figure 3) has a constant output channel size
while Conv1DNet-2 (Figure 3) increases the output channel
sizes gradually. We evaluate the difference in performance
between these two architectures in Section IV-B.

3) 2D CONVOLUTIONAL NEURAL NETWORKS
To further exploit the spatial information among different
body parts in the motion, we further propose two 2D convolu-
tional neural network architectures. Recall that the limb-level
and fused features are created by appending the histogram
features of individual body parts resulting in a long 1D vector:

histcombined1D = [histpart1 , histpart2 , . . . , histpartn ] (5)

where histcombined1D is the final feature vector concatenated
from the histogram features extracted from individual body
parts and n is the number of body parts included in this
feature.

To learn the spatial correlation within the 2D convolutional
neural network, the input vector has to be converted into a
2D matrix shape. This is done by reshaping the 1D feature
vector to a 2D matrix with each row containing the histogram
features extracted from a single body part:

histcombined2D =


histpart1
histpart2

...

histpartn

 (6)

FIGURE 5. The proposed Conv2DNet-1 network architecture which
consists of 2D convolution, max pooling and dropout layers.

FIGURE 6. The proposed Conv2DNet-2 network architecture which
consists of 2D convolution, max pooling and dropout layers. Note the
gradually increasing output channel sizes.

The two 2D convolutional neural network architectures
(Figure 5 and 6) we propose, namely Conv2DNet-1 and
Conv2DNet-2, share a common design with two 2D convolu-
tion layers. Similar to the proposed 1D convolutional neural
networks, each 2D convolution layer is followed by a max
pooling layer to down-sample the output and further feed into
a dropout layer to avoid overfitting. The output of the last
dropout layer is flattened into a 1D vector and the dimen-
sionality is reduced by a fully connected layer before feeding
into a softmax layer for classification. All the convolutional
layers are using the same set of settings with kernel_size = 3
and stride = 1. For the max pooling layers, kernel_size = 3
and stride = 2 are used.

The main difference between the two networks is that
Conv2DNet-1 (Figure 5) has a constant output channel size
while Conv2DNet-2 (Figure 5) increases the output channel
sizes gradually. We evaluate the difference in performance
between these two architectures in Section IV-B.

IV. EXPERIMENTAL RESULTS
In this section, we present the experimental results in this
study to evaluate the performance of the proposed motion
classification framework with different deep neural network
architectures. We first compare the classification accuracy
(Section IV-B) obtained from the proposedmethods and base-
line approaches as in [26]. Next, we justify the selection of
the hyper-parameters in the proposed network architectures
by conducting a series of ablation studies (Section IV-C).

A. EXPERIMENTAL SETTINGS AND IMPLEMENTATION
DETAILS
The MINI-RGBD dataset [19] is used in all experiments,
we collected the annotations of all videos from an expe-
rienced GMs assessor in our pilot study [26]. There are
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TABLE 1. HOJO2D feature set: Classification accuracy comparison between our proposed deep learning methods and baseline machine learning methods.

TABLE 2. HOJD2D feature set: Classification accuracy comparison between our proposed deep learning methods and baseline machine learning methods.

12 videos in the dataset and we employ a leave-one-out
cross-validation approach in all of the experiments in this
study. The averaged classification accuracy is then reported.

The proposed deep neural network architectures are imple-
mented in the PyTorch framework. All experiments were run
on a desktop computer with a single NVIDIA TITAN Xp
graphics card. Additional parameters such as epochs = 4000,
learningrate = 0.0005 and batchsize = 3 are used in all tests.

B. CLASSIFICATION ACCURACY - COMPARING WITH
BASELINE APPROACHES
In this section, we compare the performance of our proposed
deep learning frameworks with the baseline approaches.
We obtained the classification accuracy of all methods
in 3 types of input features: 1) HOJO2D, 2) HOJD2D, and
3) fusing (i.e. concatenating) HOJO2D and HOJD2D. Due to
the random initialization of our newly proposed deep learning
frameworks, the performance of the classifier may vary in
different trials. In this section, we report the best performance
of classifiers.

1) HOJO2D
The results are presented in Table 1. In general, the newly pro-
posed deep learning classification frameworks perform bet-
ter, as most of the highest accuracies (highlighted in bold) are
obtained using our methods. In particular, FCNet performs

well consistently achieving 83.33% across all of the different
features. This highlights the generality of the fully connected
neural network. The proposed Conv2D-2 and Conv1D-2with
gradually increasing output channel size in the convolu-
tional layers also demonstrated high performance with most
of the features having the same classification accuracy as
FCNet. Accuracy obtained using Conv1D-1 and Conv2D-1
are lower than the other proposed frameworks, but they are
more consistent and robust than the baseline approaches. For
the baselines, the results are highly inconsistent. While some
of the classification accuracies are high (such as the 8-bin
Arms and 8-bin Limbs features with LDA), classifying some
other features can result in very low accuracy (such as Legs
with 16 bins). In summary, the results demonstrated the high
performance and robustness of the proposed deep learning
frameworks.

2) HOJD2D
The results are presented in Table 2. Again, the newly
proposed deep learning frameworks are more robust and
performed more consistently. Whilst kNN (k=1) and LDA
achieved some of the best accuracies with 91.67% on
the 8-bin Arms feature and 100% on 16-bin Arms fea-
ture, the accuracy on other features are much lower (such
as 50.00% and 41.67% on both Legs features). For our
approaches, FCNet performed well and obtained 91.67%
accuracy in Limbs features whilst achieving 83.33% in the
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TABLE 3. Fusing the HOJO2D and HOJD2D feature sets: Classification accuracy comparison between our proposed deep learning methods and baseline
machine learning methods.

rest of the features. The other deep learning frameworks
are performing in a predictable manner with a smaller
range in classification accuracy variations between 75.00% to
91.67%. This again highlights the robustness of the proposed
deep learning frameworks.

3) FUSED FEATURES - HOJO2D + HOJD2D
The results are presented in Table 3. Since the input feature
size is doubled in this experiment, deep learning frame-
works generally demonstrated a large advantage in process-
ing features in higher dimensionality. In particular,Conv1D-2
achieved an excellent performance by having 91.67% clas-
sification accuracy in 5 out of 6 feature types. Whilst the
LDA method obtained excellent classification accuracy on
the 8-bin Arms and Limbs features, the results obtained in
other features are significantly lower highlighting the incon-
sistency of the baseline methods, with accuracies ranging
from 58.33% to 100%. Conv1D-1 demonstrated a solid per-
formance in achieving 91.67% in 8-bin Legs feature and
83.33% in the rest of the features. FCNet showed a robust
performance again by obtaining 83.33% classification accu-
racy in all feature types. For the 2D convolutional neural
networks Conv2D-1 and Conv2D-2, the performance is once
again consistent, with a small range of accuracy from 75.00%
to 83.33%. We also observe that, in most cases, applying
feature fusion achieved a better classification performance
than the individual histogram features.

In summary, the experimental results on different feature
types highlight the performance gain in both accuracy and
robustness with the use of the proposed deep learning frame-
works over the baseline approaches. The results also show
that FCNet performed in a highly predictable manner with a
relatively simple network architecture.

We also observe that, in general, the 16-bin variant is better
for the proposed deep methods whilst the 8-bin version is
better in the non-deep baseline methods. This is due to the
fact that deep networks can handle features in higher dimen-
sionality than non-deep methods. This also suggests that the
16-bin features are more discriminative, particularly in the
case of joint displacement, where the magnitude of the joint

FIGURE 7. FCNet ablation testing using the fused HOJO2D and HOJD2D
feature sets: The effect of dropout rate on classification performance.

displacement appears to be more consistent for classification
than the joint orientation.

We also note that when the dimiensionality of input
features becomes higher, the benefits of using convolu-
tional neural networks can be observed, as seen when using
Conv1D-1 and Conv2D-1 to classify fused features. This can
be explained by the abstraction power of the convolutional
layers in the network. We believe the performance gain of 2D
convolutional networks will be even greater when the input
features have even higher dimensionality (e.g. by incorpo-
rating time-series movement data).

C. ABLATION STUDIES
We conducted an ablation study to investigate the impact
of the hyper-parameters on the classification performance.
Since we have already compared the effect different layer
sizes have on the proposed 1D (i.e. Conv1D-1, and
Conv1D-2) and 2D (i.e. Conv2D-1, and Conv2D-2) network
architectures in Section IV-B, in this section, we focus on
another hyper-parameter, namely the dropout rate. We picked
the fused features setting in this ablation study, while training
the networks with different dropout rates (i.e. 0.1, 0.3, 0.5,
0.7 and 0.9). The results are plotted in Figures 7 to 11.

The results show that most of the different dropout set-
tings result in similar classification accuracy. In most cases,
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FIGURE 8. Conv1D-1 ablation testing using the fused HOJO2D and
HOJD2D feature sets: The effect of dropout rate on classification
performance.

FIGURE 9. Conv1D-2 ablation testing using the fused HOJO2D and
HOJD2D feature sets: The effect of dropout rate on classification
performance.

FIGURE 10. Conv2D-1 ablation testing using the fused HOJO2D and
HOJD2D feature sets: The effect of dropout rate on classification
performance.

the best performance occurs when the dropout rate equals
0.5 or 0.7, while some good performance can be obtained
when the dropout rate equals 0.3. For themore extreme values
we see a drop in accuracy, with 0.1 being unlikely to produce
the best performance, and 0.9 being likely to produce the
worst performance.

In summary, while there are some variations in the clas-
sification accuracy across different dropout rate settings,
the range of accuracy is relatively small when compared with

FIGURE 11. Conv2D-2 ablation testing using the fused HOJO2D and
HOJD2D feature sets: The effect of dropout rate on classification
performance.

the inconsistent performance from baseline approaches pre-
sented in Section IV-B. This also highlights that our proposed
deep learning frameworks are less sensitive to changes in
hyper-parameters.

V. CONCLUSION
In this work, we proposed five deep learning based frame-
works to classify infant body movement based upon the
pose-based features in our pilot study [26]. We further
extend and enhance the feature extraction and pre-processing
pipeline to facilitate the classification task. The proposed
frameworks are evaluated and compared with the baseline
approaches. Experimental results show that the proposed
fully connected neural network FCNet performed robustly
across different feature sets. Furthermore, the proposed 1D
convolutional neural network architectures demonstrated an
excellent performance in handling features in higher dimen-
sionality. Finally, we conducted an ablation study to jus-
tify the selection of the hyper-parameters in the proposed
frameworks. To stimulate the research in this area, the anno-
tated dataset and the implementation of the deep learning
frameworks will be available to the public as an open-source
project.

Since the video sequences used in this paper are syn-
thetic, the appearance of the images used as an input for the
OpenPose framework differ slightly from that of real-world
video data. As such, evaluating the frameworks using video
data captured from patients is one of our anticipated future
directions. Also, given that the quantity of video sequences
in the MINI-RGBD dataset is relatively small, we hope to
extend this work by classifying a larger dataset. We have been
working closely with local hospitals in an effort to produce
a real-world dataset for future evaluation. The assessment
of our system using a larger dataset will also allow us to
undertake additional quantitative analysis and verification,
enabling calculation of supplementary evaluation metrics
such as sensitivity, specificity, statistical significance levels,
and permutation-based p-values, to measure the competence
of the proposed classifiers.
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In the future, we also will further investigate the feasi-
bility of modelling the temporal information of the input
posture sequence by incorporating Recurrent Neural Net-
works (RNN) in the proposed framework. We also intend
to compare our method with some commonly imple-
mented handcrafted feature extraction methods and fully
non-handcrafted feature extraction methods as a means
of establishing the accuracy, robustness and comparative
interpretability of our proposed method. Our future work
will also incorporate comparisons with other methods
by re-implementing proposed approaches for use on our
real-world dataset, in this way more accurate assessments can
be made than by simply comparing with reported accuracies.
Finally, another interesting future direction could be to eval-
uate the proposed network architectures with other advanced
pose-based features [31].
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