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Abstract

A crucial challenge to successful flare prediction is forecasting periods that transition between “flare-quiet” and
“flare-active.” Building on earlier studies in this series in which we describe the methodology, details, and results
of flare forecasting comparison efforts, we focus here on patterns of forecast outcomes (success and failure) over
multiday periods. A novel analysis is developed to evaluate forecasting success in the context of catching the first
event of flare-active periods and, conversely, correctly predicting declining flare activity. We demonstrate these
evaluation methods graphically and quantitatively as they provide both quick comparative evaluations and options
for detailed analysis. For the testing interval 2016–2017, we determine the relative frequency distribution of two-
day dichotomous forecast outcomes for three different event histories (i.e., event/event, no-event/event, and
event/no-event) and use it to highlight performance differences between forecasting methods. A trend is identified
across all forecasting methods that a high/low forecast probability on day 1 remains high/low on day 2, even
though flaring activity is transitioning. For M-class and larger flares, we find that explicitly including persistence or
prior flare history in computing forecasts helps to improve overall forecast performance. It is also found that using
magnetic/modern data leads to improvement in catching the first-event/first-no-event transitions. Finally, 15% of
major (i.e., M-class or above) flare days over the testing interval were effectively missed due to a lack of
observations from instruments away from the Earth–Sun line.

Unified Astronomy Thesaurus concepts: The Sun (1693); Solar magnetic fields (1503); Solar flares (1496); Solar
activity (1475); Solar active region magnetic fields (1975); Sunspots (1653); Solar x-ray flares (1816); Astronomy
data analysis (1858); Astronomy data visualization (1968); Astrostatistics tools (1887)

1. Introduction

Forecasting solar flares provides a laboratory with which to
examine the understanding of these energetic events, but
forecasts also serve to protect infrastructure impacted by our
Sun’s variable output on a daily basis. The success of
forecasting, from both an empirical and a physical point of
view, has thus far been measured using statistical evaluations
of correct forecasts with each event considered independently
and equally. Both operationally and physically, however, it is
crucial to understand the transitions from “flare-quiet” to
“flare-active” and back again, as the Sun and its magnetic fields
evolve, generating, storing, and finally releasing free magnetic
energy in the form of energetic events.

A focused workshop on “Benchmarks for Operational Solar
Flare Forecasting Systems” was held in 2017 at the Institute
for Space-Earth Environmental Research (ISEE), Nagoya
University. The primary objective of the workshop was to
compare in a quantitative manner the performance character-
istics of today’s operational flare forecasting methods as a
follow-up to the “All Clear” workshop and its initial
investigation into the methodology of forecast comparisons
(Barnes et al. 2016, hereafter Paper I). For this workshop,
forecasts from 19 different operational flare forecasting
methods were submitted for an agreed-upon testing interval
of 2016 January 1 to 2017 December 31, following agreed-
upon forecast intervals and event definitions described in

The Astrophysical Journal, 890:124 (22pp), 2020 February 20 https://doi.org/10.3847/1538-4357/ab65f0
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-6290-158X
https://orcid.org/0000-0002-6290-158X
https://orcid.org/0000-0002-6290-158X
mailto:shpark@isee.nagoya-u.ac.jp
http://astrothesaurus.org/uat/1693
http://astrothesaurus.org/uat/1503
http://astrothesaurus.org/uat/1496
http://astrothesaurus.org/uat/1475
http://astrothesaurus.org/uat/1475
http://astrothesaurus.org/uat/1975
http://astrothesaurus.org/uat/1653
http://astrothesaurus.org/uat/1816
http://astrothesaurus.org/uat/1816
http://astrothesaurus.org/uat/1816
http://astrothesaurus.org/uat/1858
http://astrothesaurus.org/uat/1858
http://astrothesaurus.org/uat/1968
http://astrothesaurus.org/uat/1887
https://doi.org/10.3847/1538-4357/ab65f0
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab65f0&domain=pdf&date_stamp=2020-02-19
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab65f0&domain=pdf&date_stamp=2020-02-19


Leka et al. (2019a, hereafter Paper II). Results focusing on the
head-to-head comparisons are presented there using multiple
evaluation methodologies, including graphics and quantitative
metrics based on both probabilistic and dichotomous forecasts,
as are often used for forecast validation (Woodcock 1976;
Bloomfield et al. 2012; Barnes et al. 2016; Kubo et al. 2017;
Murray et al. 2017, and references therein). Recognizing the
small sample size and short testing period, it was found in
Paper II that (1) many methods consistently demonstrate skill,
although (2) no single method is “best” across multiple metrics,
and (3) no method performs “well” (i.e., better than 0.5 across
numerous normalized skill scores and validation metrics, where
0.5 is halfway between no skill and perfect). Most importantly,
the required methodology for providing fair and meaningful
comparisons across forecasts was demonstrated, centering
primarily on common testing intervals, event definitions, and
evaluation using a variety of metrics. The question of why
certain methods performed better or worse than others was
examined in Leka et al. (2019b, hereafter Paper III) by means
of grouping the methods in different categories according to
their implementation details. In this context of broad
implementation differences, the behavior and performance of
the methods were evaluated. The results were weak due to both
the nonuniqueness of the categorizations and the small sample
size, but it was found that including prior flare history and
active region evolution likely led to improved performance,
with a further indication that including a human “forecaster in
the loop” (FITL) was also advantageous.

During the workshop, the participants expressed interest in
examining a particular interval in detail, e.g., a case study, in part
due to the fact that NOAA active region (AR) 12673 was fresh
in our memories, having produced at least one flare greater than
or equal to GOES M1.0 level each day for 7 consecutive days
from 2017 September 4. In a cursory manner, we found that
many of the methods failed to predict a high chance of major
flares for the first day of AR 12673ʼs multiday flaring activity.
Yet while some methods subsequently and significantly
increased their forecast probabilities on the second day so that
they successfully predicted the second day of activity, other
methods’ forecasts showed little change for that second day (i.e.,
the event day was missed again) regardless of the large flares that
occurred on the previous day. These different behaviors between
forecasting methods motivated us to explore forecast perfor-
mance over consecutive days with variable event histories.

Case studies are often used by operational facilities during
forecaster training to target a particular known failure. Questions
often asked in case-study examinations include “was the first
flare (of a series over a multiday period) predicted correctly?”
and “did forecast probabilities in fact decrease as flare activity
subsided?” Such case studies can be misleading, however, as a
method’s performance during a particular interval may not
reflect its performance when numerous different intervals are
considered. Here we extend this line of questioning to examine
particular patterns of forecasting behavior using a multiday
analysis; specifically, we examine sets of 2 consecutive days
where at least one of those days includes an event. We test the
hypothesis that including some aspect of prior behavior or
temporal evolution results in forecasts that are able to better
adjust for varying flare activity. To evaluate this hypothesis, we
present a newly developed analysis methodology to quantita-
tively evaluate specific temporally oriented performance char-
acteristics of solar flare forecasts.

2. Methodology

We describe here the input data from the participating
methods and the methodology employed for evaluating
outcome patterns of daily forecasts over consecutive forecast
days, i.e., in the context of the challenges of predicting the first
flaring and flare-quiet days described above. The results are
presented later in Section 3.

2.1. Participating Flare Forecasting Methods

The participants of the ISEE workshop brought 19
operational flare forecasting methods for analysis. Among
them are several methods that have been implemented as
operational flare forecasting systems at space weather Regional
Warning Centres (RWCs), as well as at research institutions.
Note that while no human forecaster intervenes in the forecast
output of any research institution–based methods, in general
there are experienced forecasters at RWCs who take into
account the implemented method outputs and may adjust them
prior to issuing their official forecasts. Details of all participat-
ing flare forecasting methods can be found in Paper II and
references therein. As in Paper III, for reference, we reproduce
an abbreviated version in Appendix A as Table 7, which lists
the methods, relevant publications, and monikers/acronyms
used here. As is clear from the earlier papers and Table 7 here,
not all of the 19 methods are completely independent; in some
cases, they consist of different implementations of the same
general approach (e.g., the four versions of MAG4).
Full-disk daily forecasts were submitted and processed such

that two event definitions were used consistently: 24 hr validity
periods, effectively zero-hour latencies, but then with two
different lower limits of C1.0 and M1.0 in the GOES flare
class; these are referred to here as C1.0+/0/24 and M1.0
+/0/24, respectively. For the methods that did not produce
such full-disk exceedance forecasts, we converted their
region-based forecasts to full-disk forecasts (described in
Appendix B.1. of Paper II) and, when appropriate, combined
category-limited (i.e., C1.0–C9.9, M1.0–M9.9, and X1.0+)
forecasts using conditional probabilities to provide exceedance
forecasts (discussed in Appendix B.2 of Paper II). The testing
interval was 2016 January 1 to 2017 December 31, inclusive.
For each method and event definition, a binary (yes/no) event
list is compiled from recorded GOES flares in the NOAA
Edited Solar Event Lists.19 Most of the methods issue their
forecasts at 00:00 UT, while SIDC issues at 12:30 UT and
NICT issues at 06:00 UT; for the latter two methods, custom
event lists were created for the most consistent comparison
possible with the other methods.
Over the course of the 731 days in 2016–2017, there are 188

event days (25.7%) and 26 event days (3.6%) for C1.0+/0/
24 and M1.0+/0/24, respectively. In the case of missing
forecasts for a method, these days are filled with 0% probability
values; as discussed in Paper II, this is detrimental to the
performance evaluation but is fair for operational purposes.
Probabilistic forecasts can be converted into dichotomous
forecasts by setting a threshold Pth above which a forecast is
classified as forecasting positively for an event. In this study,
two different values of Pth are used. As with Papers II and III,
Pth=0.5 is applied by default, but in addition, we examine the
impact on performance when the threshold reflects the testing

19 ftp://ftp.swpc.noaa.gov/pub/warehouse
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interval climatology instead: Pth=0.257 and 0.036 for C1.0
+/0/24 and M1.0+/0/24, respectively. Note that this event
frequency is very low (as discussed in Paper II), reflecting the
fact that our testing period occurs on the declining phase of a
weak-activity solar cycle. All submitted forecast probabilities,
as well as relevant codes for data processing and analysis, are
freely available (Leka & Park 2019) so that readers may
explore the metrics and effects of varying Pth as desired.

2.2. At-a-glance Performance

We first investigate the overall performance of the daily flare
forecasts from the 19 methods under consideration using a
color-coded diagram of the forecasts in dichotomous form, as
demonstrated in Figure 1. The diagram uses a designated Pth to
color-code the dichotomous forecast outcomes (i.e., hits,
correct nulls, false alarms, misses), and the daily highest
GOES soft X-ray flux is shown as well. The results are
discussed in Section 3.1.

2.3. Two-day Analysis

Examining consecutive-day forecasting patterns enables us
to begin a statistical analysis of that which is of interest in case
studies. We consider three different “event histories” when one
or both of the days includes an event (see Table 1); for
simplicity, we do not consider the no-event/no-event history.
The provided forecasts for each of the 2 days then produce a
“forecast outcome pattern” with four possible outcomes. That
is, the two forecasts for the two-day period are considered as a
unit (as opposed to each flare event being considered
independently).

A goal here is to highlight misforecasting patterns in the
context of the “first event” and “first quiet” (effectively the “last
event”) of a flare-active period. In this context, the two
event-history options are of an event occurring after a period of
quiet (such as when a region begins to be flare-active) during
times of high but possibly varied flare activity and no event
occurring after a flare-active period, meaning in this context the
first flare-quiet day when activity is diminishing.

For this analysis, we extend the graphical summary from the
“at-a-glance” diagram in Figure 1 to the categorizations in
Table 1 and use a radar-plot format to summarize the
performance characteristics of consecutive-day forecasts
(Figure 2). For a specified Pth, we compute the relative
frequency with which a method’s forecasts fall under each
possible outcome pattern. For example, the number of
occurrences of a particular outcome pattern (e.g., the number
of C-H outcomes) is divided by the total number of two-day
forecasts within that particular event-day history (in this case,
no-event/event) over the 2 yr interval (or 13 for M1.0+/0/24
and 66 for C1.0+/0/24). Examples of radar plots and how
they display particular outcomes (perfect, systematically over-
forecasting, etc.) are shown in Figure 2. This presentation
method statistically summarizes some of the important points
of case studies.
For the specific question of how well the methods predict the

first flare/first quiet (which is more explicitly the correct
prediction of a change in activity from quiet to flare-active and
a change in activity from flare-active back to quiet), we can
additionally specify which of the mixed-event outcome patterns
have more or less impact on overall forecast performance.
Successfully forecasting the first flaring day requires that at
best, both the no-event and the following event day are
correctly forecast; if only one of the two days is correctly
forecast, it should at least be the event day rather than the no-
event day. In other words, focusing on the no-event/event
history, good forecasting performance dictates that the
“two-day-correct” outcomes exceed the “two-day-incorrect”
outcomes and the “first-day-incorrect/second-day-correct” out-
comes exceed the “first-day-correct/second-day-incorrect”
outcomes, if using the labels C-H> F-M and F-H>C-M.
For the radar plots, this translates to asymmetric relative
frequencies across particular 180° sectors, i.e., on an analog
clock face, 11:00> 05:00 and 02:00> 08:00, respectively.
Conversely, better performance forecasting of the first flare-
quiet day focuses on the event/no-event history and requires
H-C>M-F (01:00> 07:00) and M-C>H-F (04:00> 10:00).

2.4. Two-day Analysis Plus Categorization

Finally, we ask what implementation factors contribute to
performance for consecutive-day forecasts. In this context, we
examine our original hypothesis that explicitly including
temporal information in the forecasting method would improve
performance, including an improved ability to catch the first-
event/first-no-event transitions. To this end, we focus on a few
of the broad implementation options adopted in Paper III (see
Table 5 in Paper III for the assignment of each forecasting
method according to implementation option) and group the
results by the outcome patterns. In some cases, three options as
presented in Paper III are reduced to binary options here, as
indicated, in order to maximize the sample size. The binary
implementation options (BIOs) that we focus on here are as
follows.
The training interval describes a method’s training data as

“Short,” “Long,” or “Hybrid,” which generally correspond to
Solar Dynamics Observatory (SDO; Pesnell et al. 2012) data
only, multi-solar-cycle training, or a combination (e.g.,
encompassing longer training but then using SDO data for
the forecasts themselves), respectively. For this work, we group
the Short and Hybrid options together.

Figure 1. An example of forecast probabilities (solid line) from an anonymous
flare forecasting method for the M1.0+/0/24 event definition is shown with
the highest GOES soft X-ray flux (dashed line) observed each day over the
interval of 2017 September 1–15. The GOES M1.0 level is marked with a
horizontal dotted line for reference. Each day’s forecast has a color-coded
background shading that indicates one of the resulting dichotomous forecast
outcomes using a Pth=0.5 level: correct null (gray), miss (red), hit (green),
and false alarm (blue).
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Data characterization divides the methods into two broad
groups: “Simple,” which relies on qualitative analysis or
simpler inputs (e.g., sunspot group categories), or “Magnetic/
Modern” quantitative analysis, most often comprised of
photospheric magnetic field data.

Persistence or prior flare activity describes whether a
method qualitatively or quantitatively included persistence or
prior flare activity in computing forecasts (or, alternatively, that
no such information was included).

The evolution of underlying active regions is included
explicitly in some methods, implicitly in others, but not at all
for the majority of methods. Including evolution could take the
form of, for example, tracking the evolution of the sunspot
group class and its impact on flaring rates (as for MCEVOL;
see McCloskey et al. 2016) or the contribution of an FITL in
judging a perceived change in a region’s flaring rate and
adjusting the forecast accordingly.

The BIOs of Yes-Persistence and Yes-Evolution explicitly
include some aspect of time in the construction of the forecasts,
while the other BIOs do not add any temporal dimension. This
broad distinction is the focus of testing our above-stated
hypothesis.

Following Paper III, we utilize a “box-and-whisker”
presentation. However, instead of focusing on skill metrics,
here we focus on the frequency of occurrence of the two-day
forecast outcome patterns in the context of the three two-day
event histories (event/event, no-event/event, and event/no-
event).

2.5. Targeted Questions

The goal of this analysis is to investigate whether/how BIOs
influence the forecast outcome patterns and performance results
with respect to the event histories. Specifically, we examine the
following questions.

1. What is the impact of the BIOs on the independence of
the two-day forecasts (meaning, does the forecast
outcome for the first day significantly influence the
forecast outcome for the second day)?

2. Is there any overall performance difference between BIOs
within each particular categorization?

3. Do any of the BIOs better predict both the first flare and
first quiet?

4. Do those BIOs that explicitly incorporate temporal
information (i.e., Yes-Persistence and Yes-Evolution)
display performance differences as compared to those
BIOs that do not include explicit temporal information?

To address these questions, we analyze the results of the BIO
performance by applying a variety of statistical methods to the
forecast outcome patterns and their frequencies to answer the
specific questions posed above. For example, when evaluating
the influence (independence) of the first-day forecast outcome
to the second-day forecast, we test the performance of the
former in the context of the performance of the latter by
evaluating the probability of rejecting the null hypothesis that
the two are statistically independent. In contrast, when
comparing the forecast performance across BIOs directly, we
employ rank-sum tests, since it is solely a comparative
performance that is of interest. For the four questions here,
the statistical approaches are described in detail in Appendix B.
The data used for this analysis and the box-and-whisker plots
themselves are available (Leka & Park 2019).

3. Results

The analysis methods described above are applied to the
forecasts for the participating methods, and the results are
discussed below.

3.1. At-a-glance Performance Results

Forecast outcome patterns begin to emerge when the time
series of forecasts is presented (Figures 3 and 4; see Figure 1).20

From the GOES traces of the highest daily soft X-ray flux
(Figures 3 and 4, top panels), it is obvious that, overall, activity
is very low, as these 2 years are toward the end of the solar
activity cycle. Most methods successfully predict the long
intervals of no activity (i.e., gray shaded “correct nulls”),
especially for the M1.0+/0/24 definition. Most methods had
some intervals of correct prediction (green), and all methods
had missed events (red) for both event definitions.

Table 1
Outcome Pattern Summary for Consecutive-day Forecast Analysis

Event History If Forecast Is Then Outcome Is Label No. of Instances (% of the Total)

Day 1/Day 2 Day 1/Day 2 Day 1/Day 2 C1.0+/0/24 M1.0+/0/24

Event/Event Yes/Yes Hit/Hit H-H 121 (16.6%) 12 (1.6%)
Yes/No Hit/Miss H-M
No/Yes Miss/Hit M-H
No/No Miss/Miss M-M

No Event/Event Yes/Yes False alarm/Hit F-H 66 (9.0%) 13 (1.8%)
Yes/No False alarm/Miss F-M
No/Yes Correct null/Hit C-H
No/No Correct null/Miss C-M

Event/No Event Yes/Yes Hit/False alarm H-F 67 (9.2%) 14 (1.9%)
Yes/No Hit/Correct null H-C
No/Yes Miss/False alarm M-F
No/No Miss/Correct null M-C

20 Careful examination of Figures 3 and 4 reveals a slight offset in the
temporal axis for SIDC and NICT, where, e.g., red shaded missed event days
occasionally appear one day earlier than other methods. As mentioned in
Section 2.1, custom event lists were created for these two methods due to their
significantly different forecast issuance times. As discussed in Paper II, this will
change the results slightly but provides our best solution to the issue at hand.
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However, even with Pth=0.5, CLIM120 (the previous
120-day-prior-climatology forecast) shows many days of false
alarms (blue) for C1.0+/0/24 (as do MCSTAT and
MCEVOL, to a lesser degree), while NJIT shows many instances
of false alarms for both event definitions. Note that CLIM120
with Pth=0.5 was unable to make any correct M1.0+/0/24

dichotomous forecasts over this testing interval; this is expected
at some level, since the climatological rate is well below the Pth
value chosen. On the other hand, for the C1.0+/0/24
definition, CLIM120 produced many false alarms because the
climatological rate was higher than Pth=0.5 for the first half of
the testing interval, as discussed in Paper II.

Figure 2. Radar plots are used to demonstrate the relative frequency distribution of the two-day forecasting outcome patterns. Shown are idealized cases for (a)
perfect, (b) perfectly incorrect, (c) perfect only on the first day, (d) perfect only on the second day, (e) consistently overforecasting, and (f) consistently
underforecasting. The two-letter axis labels indicate the direction for each of the 12 possible resulting outcome patterns (i.e., four possible combinations for each of the
three event histories, as described in Table 1). The extent of the colored wedges corresponds to the magnitude of the relative frequency indicated by the concentric
dotted circles at intervals of 0.1. The radius of the concentric dotted circles is determined by the square root of the relative frequency to emphasize the lower-frequency
values that dominate in the present context. As an additional guide, the three event histories have color-coded axes: black (event/event), pink (no-event/event), and
yellow (event/no-event). Note that the relative frequencies of the four combinations within each event-history sum to unity.
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Figure 3. The daily dichotomous forecast outcomes for M1.0+/0/24 and Pth=0.5 are shown over the two year testing interval: 2016 (top panel) and 2017 (bottom
panel). Panels (a1) and (a2) trace the highest GOES flux for each day, with the GOES M1.0 level indicated by a dotted line. Two intervals are marked with gray
shading in panel (a2) 2017 April 1–3 and 2017 September 4–10, and discussed in Section 3.1. Panels (b1) and (b2) present the daily forecast outcomes—hits (green),
misses (red), false alarms (blue), and correct nulls (gray)—by method, as labeled.
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Two intervals are highlighted in panel (a2) of Figure 3: 2017
April 1–3 and 2017 September 4–10. These two time periods
present patterns of interest for case studies due to their distinct
commencement, continuation, and cessation of flaring. For the
start of flaring, a no-event day is followed by an event day, and
many methods correctly predict the former and miss the latter
(i.e., C-M). Moving farther into the flaring interval, we have
consecutive event days; for any particular event/event history,
some methods miss the first but succeed or hit for the second
event day (M-H), or vice versa (H-M), while others may miss
both event days (M-M), which is the worst forecast outcome.
Finally, approaching the end of the flaring interval, some
methods correctly forecast the last event day (the “last flare”) and
its following quiet day (H-C), but many follow a correct hit with
a false alarm (H-F), thus not recognizing the cessation of flaring.

As discussed in Paper II, some methods lack high-
probability forecasts, especially for the larger-threshold

M1.0+/0/24 event definition. Many forecasts then register
as misses for Pth=0.5. We examine miss outcomes for larger
events (i.e., M1.0+/0/24) further in Section 3.2 in the context
of Pth=CLIM and still further in Section 3.5. Recognizing that
the timelines of forecast outcomes presented here still essentially
take the form of a case study (or two), we turn next to a statistical
analysis of the trends.

3.2. Two-day Analysis of Forecast Outcome Patterns

As described in Section 2.3, we use a radar-plot format to
analyze the performance of each forecasting method’s outcome
patterns, comparing the results between Pth=0.5 and Pth=
CLIM, as well as between the two event definitions, M1.0+/0/
24 and C1.0+/0/24, respectively, in Figures 5–8.
Referring back to Figure 2, for M1.0+/0/24 and Pth=0.5

(Figure 5), we see a general trend of underforecasting with a
dominance of M-C and C-M outcomes (i.e., corresponding to

Figure 4. Same as Figure 3 but for daily C1.0+/0/24 dichotomous forecasts with Pth=0.5. The GOES C1.0 level is marked with a horizontal dotted line in
panels (a1) and (a2). Note that fewer methods produce forecasts for the C1.0+/0/24 event definition.
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04:00 and 08:00 sectors on an analog clock face, respectively)
as the most frequent outcomes, with some methods additionally
showing a high frequency of M-M. This analysis highlights the
fact that for Pth=0.5, most methods fail almost equally to
forecast both the first flaring day of an increasing-activity
period and the first flare-quiet (i.e., second) day in a decreasing-
activity period. That being said, while there is a varying degree
of event/event-history failure (03:00, 06:00, and 09:00 on the
analog clock analogy, respectively), some methods (ASAP,
MAG4VWF, MAG4VW, MCEVOL, MCSTAT, NICT, and
NOAA) do show a higher H-H frequency of success than M-M
frequency of failure.

The performance changes dramatically with Pth= CLIM=
0.037 (Figure 6), which is a notably low Pth. The trend is now
overforecasting, with most methods correctly forecasting both
days for the event/event history but with a high frequency of
false alarms for the mixed-event histories, i.e., a dominance of
F-H and H-F (02:00 and 10:00 sectors, respectively). There are
now almost no complete failures for the event/event history

(i.e., a low frequency of M-M) and a few methods with almost
perfect H-H results (MCSTAT, MOSWOC, and NOAA).
We next compare the radar plots for the C1.0+/0/24

forecasts with Pth=0.5 (Figure 7) and Pth=CLIM=0.257
(Figure 8); not all methods produce forecasts for this event
definition, and following the approach in Paper II, we leave the
missing radar plots blank. The threshold probability difference
between 0.5 and CLIM is not as extreme as for the M1.0+/0/
24 case; hence, the results are impacted less by the change in
Pth. The same shift from under- to overforecasting is seen,
especially for the mixed-event histories.
Comparing M1.0+/0/24 to C1.0+/0/24 radar plots (for

those methods that produce both), the majority of methods
show a higher frequency of H-H than M-M for C1.0+/0/24,
which was rarely the case for M1.0+/0/24 and Pth=0.5. In
both Pth=0.5 and Pth=CLIM and for both C1.0+/0/24
and M1.0+/0/24, there is a consistently very low frequency
for the two-day-correct outcome patterns in the mixed-event
histories (C-H and H-C in the 11:00 and 13:00 sectors,
respectively).

Figure 5. Radar plots for each flare forecasting method, indicating the relative frequency distribution of the two-day forecasting patterns in the M1.0+/0/24
dichotomous forecasts with Pth=0.5 over the 2016–2017 testing interval. The colors for each method follow those used in Paper II.
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The performance of predicting the first flaring day for M1.0
+/0/24 and Pth=0.5 is, by all accounts, poor across all
methods; only NJIT even weakly registers just one of the
relevant two criteria described in Section 2.3 (i.e., C-H> F-M).
For M1.0+/0/24 and Pth=CLIM, several methods register
weak positive performance according to the criteria (i.e.,
C-H> F-M and F-H> C-M). For C1.0+/0/24 and
Pth=0.5, forecasting the first flaring day shows a modicum
of success only for NJIT and only according to the second of
the two criteria, i.e., F-H> C-M. However, for C1.0+/0/24
and Pth=CLIM, the majority of methods can claim some
success according to at least the second of the two criteria.

Forecasting the first quiet day (or the last flare) for M1.0
+/0/24 and Pth=0.5 shows some promise for DAFFS,
DAFFS-G, MAG4VM, and NJIT by the analogous criteria (i.e.,
H-C>M-F and M-C>H-F), while almost all methods have
some success according to one of the criteria (i.e., M-C>H-F)
due to the prevalence of underforecasting. For M1.0+/0/24
and Pth=CLIM, the situation changes: only NICT succeeds
and only according to the second criterion, M-C>H-F. Turning

to the C1.0+/0/24 definition, the results are similar to those
for M1.0+/0/24 due to underforecasting (for all methods
except NJIT) at Pth=0.5, while at Pth=CLIM, only DAFFS-
G and NICT show some success according to M-C>H-F.

3.3. Two-day Analysis Plus Categorization: Results

The goal of the next analysis is to investigate the two-day
event histories and outcome patterns in the context of
differences in BIOs that summarize specific method differences
suspected of influencing the results. We turn with specific
interest to results from the BIOs that include explicit temporal
information (i.e., Yes-Persistence and Yes-Evolution), as
compared to those that include no temporal information.
The box-and-whisker plots in Figures 9 and 10 show the

relative frequency distribution of the four outcome patterns
(rows) for each of the three event histories (columns) for
the M1.0+/0/24 and C1.0+/0/24 forecasts, respectively,
using Pth=0.5. We describe the results in order of fully
correct (top row), fully incorrect (bottom row), and mixed
errors (one of two days correct, one incorrect; middle

Figure 6. Same as Figure 5 but for M1.0+/0/24 dichotomous forecasts with Pth=CLIM, where CLIM refers to the climatological rate for the testing interval (i.e.,
0.036) of one or more flares occurring for the M1.0+/0/24 event definition over the two year testing interval.
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two rows). Note that this order is according to outcome pattern,
whereas the outcome patterns in Table 1 are listed in order
according to the forecast made. The evaluations here are
initially based on visual inspection of the medians of the box-
and-whisker plots and secondarily based on the interquartile
ranges as well. Throughout, we consider the sample size
context when considering whether a result is strong or weak.

First, regarding the fully correct outcome patterns (top row of
Figures 9 and 10, where a higher frequency is better), we find
differences in the median values between BIOs but at more
remarkable magnitudes for the event/event history than for the
mixed-event histories. In the M1.0+/0/24 event/event history,
the BIOs of Yes-Persistence and Yes-Evolution show better
performance according to the median, but the performance is
similarly improved with the BIOs of Long and Simple. For the
M1.0+/0/24 mixed-event histories, in most cases, the medians
and quartiles are very similar, with only small differences in the
training and data characterization BIOs for the event/no-event
history. For C1.0+/0/24, which has a significantly larger
event-day sample size but a smaller number of methods, the

BIOs of Simple and Yes-Evolution consistently show a slightly
higher frequency (better performance) according to the medians,
but this trend is diluted upon considering the quartile spreads.
Second, we turn to the perfectly incorrect outcomes (bottom

row of Figures 9 and 10, where a lower frequency is better). In
the case of the event/event history, there is a mirror effect as
compared to the fully correct outcomes simply due to the lower
frequency values of the mixed-error outcome patterns. For the
M1.0+/0/24 event/event history (left column), the Yes-
Persistence and Yes-Evolution BIOs show a lower frequency
(better performance); however, similar differences are found in
the median values between the other BIOs, Long versus Short/
Hybrid and Simple versus Magnetic/Modern. For the M1.0
+/0/24 mixed-event histories (middle and right columns),
Yes-Persistence and Yes-Evolution show worse performance
according to higher medians of M-F compared to No-
Persistence and No-Evolution, but the same difference is seen
between Long versus Short/Hybrid as well. For the C1.0+/0/
24 event/event history, the medians are effectively the same
across all BIOs but tending toward worsening performance

Figure 7. Same as Figure 5 but for the C1.0+/0/24 dichotomous forecasts with Pth=0.5.
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(according to higher 75th percentiles of M-M) for the BIOs that
did not include temporal information (e.g., No-Persistence and
No-Evolution). For the C1.0+/0/24 mixed-event histories,
we may argue that the Yes-Persistence and Yes-Evolution BIOs
show a worse performance compared to other BIOs, meaning
that including temporal information leads to a false alarm after
a miss or a miss after a correct null.

Finally, we summarize the mixed-error outcomes for all three
event histories (middle two rows of Figures 9 and 10, where
again, a lower frequency is better). Starting with M1.0+/0/24
and across the three different event histories, “first-day-correct/
second-day-incorrect” outcomes (second row of Figure 9) show
many significant differences between BIOs. Long, Simple, and
Yes-Evolution (but not Yes-Persistence) are advantageous for the
event/event history but lead to more second-day errors for the
event/no-event history. In the no-event/event history, we see a
higher frequency (poorer performance) for Yes-Persistence
and Yes-Evolution compared to the other BIOs. In the case of
“first-day-incorrect/second-day-correct” patterns (third row of

Figure 9), opposite trends are found in the three event histories.
For C1.0+ /0/24, there is a tendency that when a significant
difference does occur between a pair of BIOs for one of the
mixed-event histories, the difference tends to be in the same
direction between that pair for the other of the mixed-event
histories. An improvement in one (e.g., C-M) is reflected in an
improvement in the other (e.g., H-F). Another finding is that
both Short/Hybrid and Magnetic/Modern consistently show a
lower frequency (better performance) with respect to all mixed-
error patterns for the mixed-event histories.
In Figures 11 and 12, the same analysis of the BIOs is applied

using Pth=CLIM. In the case of M1.0+/0/24, improvements
in performance are found for the event/event history by Long and
the event/no-event history by Short/Hybrid, as well as Magnetic/
Modern. Yes-Persistence shows a statistically significant increase
in the median (better performance) for the fully correct outcomes
C-H and H-C in the mixed-event histories. On the other hand, for
C1.0+/0/24, the first-day-correct/second-day-incorrect out-
comes (second row) indicate that Yes-Persistence leads to higher

Figure 8. Same as Figure 5 but for the C1.0+/0/24 dichotomous forecasts with Pth=CLIM, where CLIM refers to the climatological event rate (i.e., 0.257) for
C1.0+/0/24 over the testing interval.
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errors; e.g., for H-F, acting on the first day’s activity leads to
overpredicting when activity declines on the second day.

3.4. Targeted Questions Answered

We apply nonparametric statistical tests and decision trees
(Appendix B) to answer the four questions presented in

Section 2.5. This approach is taken to allow more specific and
quantitative analysis of the visual inspection of the box-and-
whisker plots presented above.
What is the impact of the BIOs on the independence of the

two-day forecasts (meaning, does the forecast outcome for
the first day significantly influence the forecast outcome of the
second day)? For each forecasting method, we test the null

Figure 9. Comparison of the relative frequencies of the two-day forecast outcome patterns in the M1.0+/0/24 dichotomous forecasts with Pth=0.5 between
different groups of methods, as categorized according to the description in the text. Box-and-whisker plots display the 25th (lower edge) and 75th (upper edge)
percentiles, the median (horizontal thick line inside the box), and the minimum and maximum of the sample (whiskers). Note that if the median coincides with either
the 25th or 75th percentile, that box edge will be thicker. Also plotted are the mean (dashed)±standard deviation (dotted) of the median values of relative frequencies
from 100 sets of nine randomly selected methods among all 18 methods except CLIM120. The top row for each of the three event histories is the “correct/correct”
result; hence, a higher frequency is better. All other rows indicate a frequency of results that include forecast errors; hence, lower scores are better.
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hypothesis, stated as, “the forecast outcome on the second day
is independent of the forecast outcome of the first day.”
Employing a special contingency table (see Table 8) that relates
the first- versus second-day forecast outcomes, we calculate the
significance level, specifically the two-sided p-value, from
Fisher’s exact test (Fisher 1970) of the null hypothesis: lower
p-values indicate a lower probability of accepting the null
hypothesis, i.e., a higher likelihood that the day 2 forecast
outcome is in fact being influenced by the outcome of the day 1
forecast. The mean of the p-values across all forecasting

methods in a given BIO is shown in each cell of Table 2 as per
the event definition, Pth value used, and two-day event history.
The sample sizes for the M1.0+/0/24 and C1.0+/0/24

event definitions are significantly different, leading to the very
different magnitudes of p-values between the two. As such, we
only compare relative p-values within each definition sepa-
rately and highlight relatively significant results.
With M1.0+/0/24 and Pth=0.5, we call out Yes-

Evolution for the event/event history and Simple for the
event/no-event history as having the two smallest p-values but

Figure 10. Same as Figure 9 but for the C1.0+/0/24 dichotomous forecasts with Pth=0.5. The mean (dashed)±standard deviation (dotted) of the median values
of relative frequencies are calculated from 100 sets of five randomly selected methods among all 10 available methods for C1.0+/0/24 except CLIM120.
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not yet significant at the p=0.05 level, indicating that their
forecast outcomes across the two days are less likely to be
independent. In Table 3, we present the contingency table
entries across all methods in the BIO for these two cases, with
the expected populations under the null hypothesis shown in
parentheses. It is clear with this demonstration that small p-
values can arise due to overpopulation of either the on-diagonal
or off-diagonal elements.

For M1.0+/0/24 with Pth=CLIM, large p-values are
found in the event/event history across all BIOs due to the fact
that the occurrence frequency of H-H is overwhelmingly higher

than that of the other three outcome patterns. This is
demonstrated in the third set of entries in Table 3. On the
other hand, No-Persistence shows a small p-value of 0.04 for
the event/no-event history due to overpopulation of off-
diagonal elements as shown in Table 3.
For C1.0+/0/24, extremely small p-values (10−6

–10−2)
across the BIOs result from the larger sample size coupled with
either the on-diagonal or off-diagonal totals in the contingency
tables always being much larger than any of the marginal totals.
A tendency is found: for the event/event history, either both
the day 1 and day 2 forecasts are correct or neither of them is

Figure 11. Same as Figure 9 but for the M1.0+/0/24 dichotomous forecasts with Pth=CLIM.
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correct, while for the other mixed-event histories, only one of
the two-day forecasts is correct. This leads us to further test the
hypothesis that the day 1 forecast is more likely to be followed
by the same day 2 forecast than if the two forecasts were
independent of each other. Examining the difference between
the contingency table entries and their expected values under
the null hypothesis, we find across all BIOs that for the event/
event history, the on-diagonal entries (H-H and M-M)
consistently exceed their expected values, while for the
mixed-event histories, the off-diagonal entries (F-H and C-M
for the no-event/event history and M-C and H-F for the event/

no-event history) exceed their expected values. This indicates
that a forecast probability higher/lower than Pth on day 1 tends
to stay higher/lower than Pth on day 2 across all BIOs, as
initially identified in Figure 1. It seems that forecasts do not
respond fast enough (i.e., within 24 hr) to changes in the flaring
history; this is a widespread failure in forecasting methods and
a specific target for improvement.
Is there any overall performance difference between the

BIOs within each particular categorization? This is simply
“who wins?” across all outcome patterns and the implied
forecasting performance between the BIOs looking across the

Figure 12. Same as Figure 10 but for the C1.0+/0/24 dichotomous forecasts with Pth=CLIM.
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event definitions and Pth used. The decision tree associated
with this question (see Appendix B.2) is applied; a higher score
indicates better performance.

As shown in Table 4, for M1.0+/0/24 with Pth=0.5, Long,
Simple, and Yes-Persistence (but not Yes-Evolution) perform
slightly better, with differences in the scores against their
counterpart BIOs of 0.2–0.3. For C1.0+/0/24 with Pth=
0.5, their counterpart groups (i.e., Short/Hybrid, Magnetic, No-
Persistence, and even No-Evolution) perform relatively much
better, with differences in the rank-based scores of 0.5–0.8.

Comparing the performance results across the event defini-
tions and Pth values used, No-Evolution always performs better
thanYes-Evolution, with score differences in the 0.2–1.1 range;
Yes-Persistence performs better than No-Persistence, except in
the case of C1.0+/0/24 with Pth=0.5; and Short/Hybrid
performs better than Long, except in the case of M1.0+/0/24
with Pth=0.5. Relative to the maximum possible difference,
those discussed here are fairly small.

Do any of the BIOs better predict both the first flare and the
first quiet? This question directly addresses one of the
motivations of this study, and we apply the decision tree
(Appendix B.3) to achieve the results shown in Table 5, where
higher totals indicate better performance. We find that Short/
Hybrid,Magnetic/Modern, and No-Evolution attain higher total
scores (2.7–3.0 out of 12), but these scores are equal to or
below 25% of the maximum score possible and hence are not
strong results. It is also found that most BIOs show better
performance for M1.0+/0/24 than C1.0+/0/24 in the
context of the first-flare/first-quiet predictions.

Do those BIOs that explicitly incorporate temporal informa-
tion (i.e., Yes-Persistence and Yes-Evolution) display perfor-
mance differences as compared to those BIOs that do not include
explicit temporal information? To answer this final question, we
reexamine Tables 2–5. We find that Yes-Persistence and Yes-
Evolution show some overall performance differences compared

to the other BIOs, but the differences are not large. With respect
to having a higher frequency of the two-day-correct patterns, as
well as a lower frequency of the error patterns, the performance
comparison between a pair of BIOs in Table 4 shows that Yes-
Persistence performs better forM1.0+/0/24, as well as C1.0
+/0/24 with Pth=CLIM, but Yes-Evolution performs worse
across all event definitions. In addition, the performance
evaluation for the mixed-event histories in Table 5 shows similar
results as in Table 4. In summary, we find weak support for
improvements in performance, particularly in the case of M1.0
+/0/24, by explicitly including persistence or prior flare history
but excluding active evolution.

3.5. Limb Events

Finally, breaking from multiday forecast outcomes, we note
that the first-flare/first-quiet challenges are even more stringent
when faced with very isolated flare events, i.e., when very low
activity is interrupted by a single event day (see Figures 3 and
4). At the Pth=0.5 level, there are four M1.0+/0/24 event
days (of 26 event days, or 15%) for which all methods failed to
provide a “yes” forecast (all methods registered a miss). These
four event days share common traits: (1) only one flare event
occurred on those days, (2) the source active region was located
close to or behind the solar limb, and (3) solar activity was very
low, with few or even no sunspots on the solar disk (see
Figure 13 and Table 6). Examining these four events in some
detail provides insight into the possibility of improving the
forecasting in these situations.
For limb event No. 1, AR 12473 had produced M1.0+ flares

a few days prior but then became quiet. At the Pth=CLIM, the
majority of methods forecast M1.0+/0/24 events to occur,
even though for the prior few days it had only produced low
C-class events. The NJIT solely predicted a significantly higher
probability (>20%) for M1.0+/0/24 when this region was at
the limb (see Figure 13(a)).

Table 2
Two-sided p-values from Fisher’s Exact Test of Independence for Two-day Forecasts

Event Definition Pth Event History Training Interval Input Parameter Persistence Evolution

Long Short/ Simple Magnetic/ Yes No Yes No
Hybrid Modern

M1.0+/0/24 0.5 Event/Event 0.27 0.46 0.25 0.50 0.31 0.43 0.19 0.47

No Event/Event 0.52 0.73 0.48 0.79 0.88 0.44 0.67 0.61

Event/No Event 0.31 0.68 0.18 0.85 0.60 0.45 0.23 0.66

C1.0+/0/24 0.5 Event/Event 2.2×10−6 4.9×10−6 2.2×10−6 4.9×10−6 4.6×10−6 2.0×10−6 3.1×10−6 2.9×10−6

No Event/Event 6.8×10−3 3.7×10−3 2.6×10−3 0.01 6.1×10−3 5.7×10−3 3.4×10−3 8.3×10−3

Event/No Event 6.4×10−3 4.1×10−3 2.6×10−5 0.02 3.1×10−3 7.5×10−3 3.6×10−6 0.01

M1.0+/0/24 CLIM Event/Event 0.92 0.58 0.93 0.53 0.59 0.84 0.89 0.65

No Event/Event 0.11 0.22 0.12 0.23 0.15 0.19 0.13 0.19

Event/No Event 0.12 0.11 0.12 0.11 0.21 0.04 0.16 0.09

C1.0+/0/24 CLIM Event/Event 1.4×10−4 0.02 1.4×10−4 0.02 0.01 1.6×10−4 1.8×10−4 0.01

No Event/Event 3.7×10−4 6.7×10−3 3.9×10−4 6.7×10−3 5.6×10−3 9.1×10−5 5.1×10−4 4.0×10−3

Event/No Event 2.7×10−5 2.0×10−4 4.2×10−5 1.7×10−4 1.2×10−4 5.5×10−5 2.4×10−5 1.4×10−4

Note. The details of the calculation of the p-values are described in Appendix B.1.
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In contrast, limb event No. 2 was an M1.3 event produced
from a fast-growing active region that first appeared close to
the western limb. The NOAA Edited Solar Events archive
provides no information regarding location or source region for
this flare. However, it was observed by both SDO/AIA and
PROBA2/SWAP 174Å (see Figure 13(b)) and was not
associated with the more flare-productive ARs 12570/12572.
In far-side helioseismic maps, a region can be detected at the
appropriate position a few days later.21 The majority of
methods predicted an event to occur at the M1.0+/0/24 level
for the Pth=CLIM threshold but not at Pth=0.5. Any
significant full-disk probability was likely due to other visible
regions and not from the (unassigned) source region itself.

Limb event No. 3 is very similar to event 2 in that the source
region was a fast-growing emerging flux region that first
appeared as it approached the western limb (see Figure 13(c)).
It also appears a few days later in far-side helioseismic maps. In
contrast with limb event No. 2, in this case no forecast method
produced a probability of an M1.0+/0/24 event, even at
Pth=CLIM.

The last flare, limb event No. 4, occurred at the eastern limb
before the source region was directly observable. The active
region was not large enough to detect in the days prior using
presently available far-side helioseismic maps. The NOAA
Solar Region Summary Report indicated the expected return of
AR 12682, which had been a fairly quiet active region on its
prior disk appearance. The source region AR 12685 of limb
event No. 4 produced no further flares and rapidly decayed
with no other active region in the vicinity. Only one method,

the no-skill CLIM120 forecast, produced a full-disk forecast
probability above the test-interval climatology.
In summary, given the small number of M1.0+/0/24 event

days, a significant fraction were missed by all methods at the
Pth=0.5 level. The majority of methods produced forecasts
for an event at the Pth=CLIM level for two of the limb flares
(recognizing that CLIM=0.036 is an extremely low thresh-
old). However, all methods missed forecasting a flare day for
the other two limb events, even in these almost ideal
forecasting conditions (i.e., otherwise quite low activity). It is
sobering to acknowledge that 15% of the event days for larger
flares during this two year period were effectively beyond any
forecast capability we presently have.

4. Summary and Discussion

Solar flare forecasts from a number of operational facilities
worldwide have now been subjected to a set of novel evaluation
methods designed to address specific behavior in the face of
varying flare activity levels. The questions asked arise from the
kind of information targeted in case studies: do the forecasts
correctly identify a period of rising or declining activity? And if
not, are there particular implementation options being used that
exacerbate forecast errors of either kind (misses or false alarms)
when a forecasting method is faced with temporally varying
levels of flare activity? The two year testing interval targeted
here (i.e., 2016–2017) includes a number of distinct periods of
flare activity and quiescence, providing a good laboratory for
this analysis. The performance characteristics of the forecasting
methods under evaluation can be summarized as follows.

1. All methods show a trend that a high/low forecast
probability on day 1 remains high/low on day 2,
regardless of any observed transition between “flare-
quiet” and “flare-active.”

2. Overall forecast performance is improved for M1.0+/0/
24 when persistence or prior flare history are explicitly
included in computing forecasts.

3. Using magnetic/modern data leads to improvement in
catching the first event day, as well as the first no-event
day (for M1.0+/0/24).

4. There are four M1.0+/0/24 event days (of 26 event days,
or 15%) during the two year testing interval for which all
methods failed to provide a “yes” forecast at Pth=0.5.

In more detail, the forecast outcomes are constructed as
dichotomous forecasts by applying a threshold above which the
(mostly) probabilistic output of the forecasting methods is taken
to be a “yes” forecast at the given event definition (e.g., C1.0
+/0/24 or M1.0+/0/24 in this study) or a “no” forecast when
the probability values are below. We default to Pth=0.5 as used
in the earlier papers in this series, which reflects an intuitive
“50/50” threshold such that a forecast probability must be above
0.5 (i.e., 50%) to be considered a forecast of an event. However,
as discussed in Paper II, for larger-magnitude event definitions,
most probabilistic forecast output is concentrated at low
probabilities, and some methods never forecast any high
probabilities. Hence, for most of the analysis methods developed
herein, we also present results for Pth=CLIM (i.e., the
climatological event rate for the testing interval itself).
Because a fairly short period of two years is examined, we

begin with a simple graphical depiction of the forecast
outcomes in light of the full-disk soft X-ray daily maximum
output (Sections 2.2 and 3.1). It is here that patterns of forecast

Table 3
Examples of Contingency Tables for Two-day Forecasts

Second-day Forecast First-day Forecast

Yes-Evolution (Event/Event) Correct Incorrect

M1.0+/0/24 with Pth=0.5 Correct 29 (18.1) 13 (23.9)

p=0.19 Incorrect 2 (12.9) 28 (17.1)

Second-day Forecast First-day Forecast

Simple (Event/No Event) Correct Incorrect

M1.0+/0/24 with Pth=0.5 Correct 4 (17.5) 98 (84.5)

p=0.18 Incorrect 18 (4.5) 8 (21.5)

Second-day Forecast First-day Forecast

Long (Event/Event) Correct Incorrect

M1.0+/0/24 with Pth=CLIM Correct 85 (84.3) 7 (7.7)

p=0.92 Incorrect 3 (3.7) 1 (0.3)

Second-day Forecast First-day Forecast

No-Persistence (Event/No Event) Correct Incorrect

M1.0+/0/24 with Pth=CLIM Correct 9 (31.2) 36 (13.8)

p=0.04 Incorrect 88 (65.8) 7 (29.2)

21 See http://jsoc.stanford.edu/data/farside/Composite_Maps_JPEG/.
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outcomes emerge when methods address distinct, discrete
periods when solar flare activity rises, persists, and declines
again over a short time period. Case studies can be useful, but
any single case study may not be reflective of a method’s
performance when confronted with additional such cases.

As such, we refine the analysis to focus on the critical first-
flare/last-flare (i.e., first-quiet) challenge in the reality of varying
flare activity. Considering two-day intervals with varying event-
history cases, we specifically and statistically evaluate forecast
performance in the context of increasing (no-event followed by
event), continuing (event followed by event), or declining (event
followed by no-event) activity histories. The radar plots presented
in Section 3.2 demonstrate a quick graphical interpretation tool.
From these plots, the general results of underforecasting,
significant frequency of misses, and failure to correctly predict
the first flare/first quiet are exquisitely clear when a probability
threshold of Pth=0.5 is applied. With Pth=CLIM, the
dominant results include general overforecasting and high rates
of false alarms but almost no failures on continuing-activity
periods. Some methods do show an ability to correctly forecast
either the first day only or the second day only, but very few
methods show any ability to correctly forecast both days in the
mixed-event histories (i.e., when flare activity is changing). Many
methods show similar patterns to each other due to their similar
approaches (previously discussed in Papers II and III).

We apply the broad categorization analysis developed in
Paper III to the frequency analysis of the two-day event histories
and outcome patterns in order to investigate the reasons behind
certain patterns of success or failure. Box-and-whisker plots
(Section 3.3) identify two-day forecasting patterns that can be
interpreted in the context of the different implementations. The
higher frequency of M-H when the methods include persistence
or prior flare history is consistent with a forecast “adjustment”

for the second of the two days, according to the event history of
the first day. This can also explain some of the two-day-incorrect
patterns (i.e., F-M and M-F), as the influence of persistence or
prior flare history brings the forecasts out of step with shorter
timescale changes in flare activity.
We additionally ask targeted questions regarding BIOs and

their effects on the independence of two-day forecasts and their
performance (Section 3.4), with an emphasis on successfully
predicting both the first flare and first quiet (last flare).
Nonparametric statistical tests and decision-tree games were
formulated to ingest the input first presented in the box-and-
whisker analysis and provide quantitative answers. We first
identify that for C1.0+/0/24, the day 2 forecast outcome is
significantly affected by the day 1 forecast outcome across all
BIOs in such a way that the two-day forecast probabilities tend
to remain either higher or lower than the Pth for the two-day
period, regardless of changes in the flaring history. We confirm
weak support that including persistence or prior flare activity, as
well as excluding active region evolution, improves the M1.0
+/0/24 forecasts across all three two-day event histories
(Table 4). On the other hand, there is evidence for improved
performance of the M1.0+/0/24 forecasts when flaring
activity is transitioning with the use of magnetic/modern data,
even if it requires a shorter training interval (Table 5).
Except in a few cases, the results of the BIO-based analyses

are not definitive. While small sample size is, of course, one
culprit, another reason (as discussed in Paper III) is that the
BIOs are not completely independent. As an example, the
methods from RWCs (NOAA, SIDC, NICT, and MOSWOC)
all employ human forecasters (i.e., FITL) and, by extension,
use long training series and simple data input but also include
persistence and active region evolution in their forecasts, even
if in a qualitative manner. As a result, differentiation between

Table 4
Performance Comparison between Each Pair of BIOs from the Same Broad Categorization

Event Definition Pth
Training Interval Input Parameter Persistence Evolution

Long Short/ Simple Magnetic/ Yes No Yes No
Hybrid Modern

M1.0+/0/24 0.5 2.0 1.7 2.3 2.0 1.7 1.5 1.9 2.1
C1.0+/0/24 0.5 0.9 1.4 1.1 1.8 1.1 1.9 1.0 1.7
M1.0+/0/24 CLIM 2.4 2.8 1.6 1.6 1.8 1.0 1.4 2.1
C1.0+/0/24 CLIM 1.5 2.4 2.4 2.3 2.3 1.3 1.4 2.5

Total 6.8 8.3 7.4 7.7 6.9 5.7 5.7 8.4

Note. The score of the performance comparison in each cell ranges from 0 to 12. The details of the scoring procedure are described in Appendix B.2.

Table 5
Performance Evaluation of BIOs for Mixed-event Histories

Event Definition Pth
Training Interval Input Parameter Persistence Evolution

Long Short/ Simple Magnetic/ Yes No Yes No
Hybrid Modern

M1.0+/0/24 0.5 0.5 0.9 0.5 1.2 0.9 0.7 0.5 1.0
C1.0+/0/24 0.5 0.5 0.3 0.5 0.3 0.5 0.4 0.5 0.3
M1.0+/0/24 CLIM 0.4 1.3 0.6 1.0 0.6 0.6 0.5 1.1
C1.0+/0/24 CLIM 0.1 0.5 0.2 0.3 0.1 0.3 0.1 0.3

Total 1.5 3.0 1.8 2.8 2.1 2.0 1.6 2.7

Note. The performance score in each cell ranges from 0 to 3; the highest achievable total score is 12. The details of the scoring procedure are described in Appendix B.3.
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overlapping methods in different BIOs is diluted by the lack of
true control groups where only one BIO is modified at a time.

Forecasting for flare events that occur at or behind the solar
limb is known to be problematic. During the two year testing
period here, four M1.0+ limb events were completely missed by
all methods (at the 50% probability level); two of these events
were correctly predicted by the majority of methods, but only at
the Pth=CLIM=0.037 level. For the other two events, all
methods completely failed to produce an “event” forecast, except
one instance of a correct Pth=CLIM=0.037 event forecast
from the full-disk “no-skill” 120-day-prior-climatology method.
To summarize, four of 26 M1.0+ event days in our two year
sample were missed essentially due to a lack of operationally
available observations away from the Earth–Sun line.

We present here new analysis methods by which to evaluate
both existing operational forecasting systems and the research
and development phases of systems yet to be deployed. Specific
challenges have now been presented for the flare forecasting
research community beyond simply improving metrics such as
those presented in Papers II and III. All operational forecasting

methods evaluated here fail to respond adequately to changes in
flaring activity. As has been acknowledged in the research
community (see Bloomfield et al. 2016), targeted efforts are

Figure 13. Summary images for the four at- or behind-the-limb large flares (see text). The location of each event is marked by an arrow on a full-disk composite image
of the Sun obtained from the SDO/HMI line-of-sight magnetic field and SDO/AIA 131 Å (or PROBA2/SWAP 174 Å in panel (b)). The GOES start times and peak
1–8 Å soft X-ray fluxes are also indicated.

Table 6
Summary of Limb Flares on Four Event Days

Flare Source Region

No. Start Time Peak Flux NOAA Number Location

1 2016 Jan 1 23:10 UT M2.3 12473 S25 W82
2 2016 Aug 7 14:37 UT M1.3 Nonea S12 W70b

3 2017 Aug 3 15:37 UT M1.3 Nonea N02 W85
4 2017 Oct 20 23:10 UT M1.1 12685 S12 E88b

Notes. Locations and active region assignments from the NOAA Edited Solar
Events and Solar Region Summary archive (ftp://ftp.swpc.noaa.gov/pub/
warehouse) and the SolarSoft Latest Events catalog (https://www.lmsal.com/
solarsoft/latest_events).
a No region number assigned before or after with which to associate this flare.
See the details in Section 3.5.
b Longitude uncertain in relevant imaging; likely behind the limb.
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needed to specifically improve forecast performance over short-
term variations in solar flare activity.
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Appendix A
Participating Methods and Facilities

In Table 7, we reproduce an abbreviated version of Table 1
from Paper II, listing the methods and facilities involved with
this work and the monikers used to refer to them.

Table 7
Participating Operational Forecasting Methods (Alphabetical by Label Used)

Institution Method/Code Namea Label Reference(s)

ESA/SSA A-EFFORT Service Athens Effective Solar Flare A-EFFORT Georgoulis & Rust (2007)
Forecasting

Korean Meteorological Administration Automatic McIntosh-based Occurrence AMOS Lee et al. (2012)
& Kyung Hee University (Korea) probability of Solar activity

University of Bradford (UK) Automated Solar Activity Prediction ASAP Colak & Qahwaji (2008, 2009)

Korean Space Weather Center Automatic Solar Synoptic Analyzer ASSA Hong et al. (2014),
Lee et al. (2014)

Bureau of Meteorology (Australia) FlarecastII BOM Steward et al. (2011, 2017)

120-day No-Skill Forecast Constructed from NOAA event lists CLIM120 Sharpe & Murray (2017)

NorthWest Research Associates (US) Discriminant Analysis Flare DAFFS Leka et al. (2018)
Forecasting System

GONG+GOES only DAFFS-G

MAG4 (+according to magnetogram source and flare history inclusion) MAG4W

NASA/Marshall Space Flight Center MAG4WF Falconer et al. (2011),

(US) MAG4VW Appendix A in Paper II

MAG4VWF

Trinity College Dublin (Ireland) SolarMonitor.org Flare Prediction MCSTAT Gallagher et al. (2002)
System (FPS) Bloomfield et al. (2012)

FPS with evolutionary history MCEVOL McCloskey et al. (2018)

Met Office (UK) Met Office Space Weather Operations MOSWOC Murray et al. (2017)
Center human-edited forecasts

National Institute of Information and NICT-human NICT Kubo et al. (2017)
Communications Technology (Japan)

New Jersey Institute of Technology (US) NJIT-helicity NJIT Park et al. (2010)

NOAA/Space Weather Prediction NOAA Crown (2012)
Center (US)

Royal Observatory of Belgium Solar Influences Data Analysis Center SIDC Berghmans et al. (2005),
human-generated Devos et al. (2014)

Note.
a If applicable.
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Appendix B
Targeted Analysis of the BIOs

In this section, we delineate the targeted questions posed in
Section 2.5 and describe the analysis method applied. For
targeted questions 2 and 3 specifically, the analysis takes the
form of a decision-tree “game” by which credit is applied
according to a binary “win/loss” outcome, as described below.

B.1. Targeted Question 1

What is the impact of the BIOs on the independence of the
two-day forecasts (meaning, does the forecast outcome for the
first day significantly influence the forecast made for the second
day)? To answer this, we formulate a test of the null hypothesis:
the forecast outcome on day 2 is independent of the forecast
outcome on day 1. In other words, given the overall frequencies
of success on day 1 and day 2, does the frequency of success on
day 2 depend on what was forecast and what occurred on day 1?
To test this null hypothesis, we use Fisher’s exact test on a 2×2
contingency table constructed as shown in Table 8. Here a, b, c,
and d correspond to the occurrence frequencies of the four
outcome patterns in each event history as follows: H-H, M-H,
H-M, and M-M for the event/event history; C-H, F-H, C-M, and
F-M for the no-event/event history; and H-C, M-C, H-F, and
M-F for the event/no-event history. This test assumes that the
marginal totals (i.e., a+b, c+d, a+c, b+d) are held constant.
Fisher’s exact test gives the probability of getting the observed
contingency table (or a more extreme case) under the null
hypothesis. A two-sided p-value is derived from this test for each
forecast method as per the event definition and the two-day event
history. The mean of the p-values across all methods in a given
BIO is shown in each cell of Table 2.

B.2. Targeted Question 2

Is there any overall performance difference between the
BIOs within each particular categorization? To answer the
question, each pair of BIOs from the same categorization are
compared directly. The relative performance in this context
means having a higher frequency of two-day-correct patterns,
as well as a lower frequency of the three error patterns. For this
question, we only compare two BIOs directly and do not
comment on their overall performance, only their relative
performance. As such, we adopt a rank-sum approach applied
to the frequency of forecast outcomes. The relative perfor-
mance is then measured using the Mann–Whitney–Wilcoxon
(MWW) rank-sum test, a nonparametric statistical test of the
difference between two independent samples (Mann &
Whitney 1947). The MWW test involves the calculation of a
statistic (called U) for the two samples, respectively,

= -
+

U R
n n 1

2
, 1x x

x x( ) ( )

where x represents the particular sample, and nx and Rx indicate
the sample size and the sum of the ranks, respectively.
The absolute value of the difference between the U values for
the two samples, i.e., ΔU, is then used to measure the
significance of the difference between the two samples.
Normalization of ΔU to a range [0, 1] is achieved by dividing
it by its maximum possible value for the given sample sizes
(i.e., the product of the two sample sizes). Note that the
maximum value of ΔU is derived from the extreme case that

the two samples are completely separated (e.g., all values from
the first sample are less than all values from the second, or
vice versa). The rank-sum analysis is performed method by
method on the frequency of the forecast outcomes, where the
two samples are the two BIOs being compared.
The comparison and scoring are then carried out for each

event definition, Pth value used, and BIO pair of the categories,
as follows.

1. For each of the three two-day-correct patterns (i.e., H-H,
C-H, and H-C), we calculate the U values for the BIO
pair (e.g., A and B) and compare them (i.e., UA and UB).
(a) If UA> UB, then A will get a score of ( -U UA B∣ ∣)/

( nAnB), while B will get no score, and vice versa.
Next, go to step 2.

(b) If UA=UB, then both A and B will get no score.
Next, go to step 2.

2. For the other nine error patterns (i.e., only first-day-
correct, only second-day-correct, or all two-day-incor-
rect), the opposite rule is applied.
(a) If UA< UB, then A will get a score of ( -U UA B∣ ∣)/

(n nA B), while B will get no score, and vice versa.
Next, go to step 3.

(b) If UA=UB, then both A and B will get no score.
Next, go to step 3.

3. Add all scores for the performance comparisons of all 12
patterns, which are shown in each cell of Table 4 as per
the event definition, Pth value used, and BIO.

In Table 4, the score of the performance comparison in each
cell ranges from 0 to 12.

B.3. Targeted Question 3

Do any of the BIOs better predict both the first flare and first
quiet? This question is answered through comparisons between
two different outcome patterns for the mixed-event histories
only (i.e., C-H versus F-M and F-H versus C-M for the no-
event/event history and H-C versus M-F and M-C versus H-F
for the event/no-event history, as discussed in Section 2.3).
The MWW rank-sum test is used for the comparison as
described in Appendix B.2. The rules of the comparison and
performance evaluation for a given BIO are as follows.

1. For the no-event/event history, the comparison of C-H
versus F-M, as well as F-H versus C-M, is carried out.
(a) The U values (i.e., -UC H and -UF M) of C-H and F-M

are compared.
i. If a given BIO has -UC H > -UF M, then it will get
a score of ( -- -U UC H F M∣ ∣)/( - -n nC H F M). Next,
go to step 1b.

ii. If -UC H � -UF M, then it will get no score. Next,
go to step 1b.

(b) -UF H and -UC M are compared.

Table 8
Contingency Table

First-day Forecast

Correct Incorrect

Second-day Forecast Correct a b

Incorrect c d
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i. If -UF H > -UC M, then it will get a score of
0.5× ( -- -U UF H C M∣ ∣)/( - -n nF H C M). Next, go
to step 2.

ii. If -UF H� -UC M, then it will get no score. Next,
go to step 2.

2. For the event/no-event history, the comparison of H-C
versus M-F, as well as M-C versus H-F, is carried out
analogously.
(a) -UH C and -UM F are compared.

i. If -UH C > -UM F, then it will get a score of
( -- -U UH C M F∣ ∣)/( - -n nH C M F). Next, go to
step 2b.

ii. If -UH C �  -UM F, then it will get no score. Next,
go to step 2b.

(b) -UM C and -UH F are compared.
i. If -UM C > -UH F, then it will get a score of
0.5× ( -- -U UM C H F∣ ∣)/( - -n nM C H F).

ii. If -UM C�  -UH F, then it will get no score.

In Table 5, the performance score in each cell ranges from 0 to 3.

B.4. Targeted Question 4

Do those BIOs that explicitly incorporate temporal informa-
tion (i.e., Yes-Persistence and Yes-Evolution) display perfor-
mance differences as compared to those BIOs that do not
include explicit temporal information? There is no separate
statistical test or decision tree needed to address this question.
We answer by examining Tables 2–5 overall and, in particular,
comparing Yes-Persistence and Yes-Evolution outcomes versus
No-Persistence and No-Evolution and all other BIOs across the
three prior questions.

ORCID iDs

Sung-Hong Park https://orcid.org/0000-0001-9149-6547
K. D. Leka https://orcid.org/0000-0003-0026-931X
Kanya Kusano https://orcid.org/0000-0002-6814-6810
Graham Barnes https://orcid.org/0000-0003-3571-8728
Suzy Bingham https://orcid.org/0000-0002-6977-0885
D. Shaun Bloomfield https://orcid.org/0000-0002-
4183-9895
Aoife E. McCloskey https://orcid.org/0000-0002-
4830-9352
Veronique Delouille https://orcid.org/0000-0001-
5307-8045
Peter T. Gallagher https://orcid.org/0000-0001-9745-0400
Manolis K. Georgoulis https://orcid.org/0000-0001-
6913-1330

Kangjin Lee https://orcid.org/0000-0001-8969-9169
Vasily Lobzin https://orcid.org/0000-0001-5655-9928
Sophie A. Murray https://orcid.org/0000-0002-9378-5315
Rami Qahwaji https://orcid.org/0000-0002-8637-1130
R. A. Steenburgh https://orcid.org/0000-0001-8123-4244
Graham Steward https://orcid.org/0000-0002-9176-2697
Michael Terkildsen https://orcid.org/0000-0002-6290-158X

References

Barnes, G., Leka, K. D., Schrijver, C. J., et al. 2016, ApJ, 829, 89
Berghmans, D., van der Linden, R. A. M., Vanlommel, P., et al. 2005, AnGeo,

23, 3115
Bloomfield, D. S., Gallagher, P. T., Marquette, W. H., Milligan, R. O., &

Canfield, R. C. 2016, SoPh, 291, 411
Bloomfield, D. S., Higgins, P. A., McAteer, R. T. J., & Gallagher, P. T. 2012,

ApJL, 747, L41
Colak, T., & Qahwaji, R. 2008, SoPh, 248, 277
Colak, T., & Qahwaji, R. 2009, SpWea, 7, S06001
Crown, M. D. 2012, SpWea, 10, S06006
Devos, A., Verbeeck, C., & Robbrecht, E. 2014, JSWSC, 4, A29
Falconer, D., Barghouty, A. F., Khazanov, I., & Moore, R. 2011, SpWea, 9,

S04003
Fisher, R. A. 1970, Statistical Methods for Research Workers (14th.;

Edinburgh: Oliver and Boyd)
Gallagher, P. T., Moon, Y.-J., & Wang, H. 2002, SoPh, 209, 171
Georgoulis, M. K., & Rust, D. M. 2007, ApJL, 661, L109
Hong, S., Kim, J., Han, J., & Kim, Y. 2014, AGUFM, 2014, SH21A
Kubo, Y., Den, M., & Ishii, M. 2017, JSWSC, 7, A20
Lee, K., Moon, Y.-J., Lee, J.-Y., Lee, K.-S., & Na, H. 2012, SoPh, 281, 639
Lee, S., Lee, J., & Hong, S. 2014, ASSA GUI User Manual, v1.10, https://

www.spaceweather.rra.go.kr/images/assa/ASSA_GUI_MANUAL_
110.pdf

Leka, K. D., Barnes, G., & Wagner, E. 2018, JSWSC, 8, A25
Leka, K. D., & Park, S.-H. 2019, A Comparison of Flare Forecasting Methods

II: Data and Supporting Code, V1, Harvard Dataverse, https://doi.org/10.
7910/DVN/HYP74O

Leka, K. D., Park, S.-H., Kusano, K., et al. 2019a, ApJS, 243, 36
Leka, K. D., Park, S.-H., Kusano, K., et al. 2019b, ApJ, 881, 101
Mann, H. B., & Whitney, D. R. 1947, The Annals of Mathematical Statistics,

18, 50
McCloskey, A. E., Gallagher, P. T., & Bloomfield, D. S. 2016, SoPh,

291, 1711
McCloskey, A. E., Gallagher, P. T., & Bloomfield, D. S. 2018, JSWSC, 8,

A34
Murray, S. A., Bingham, S., Sharpe, M., & Jackson, D. R. 2017, SpWea,

15, 577
Park, S.-h., Chae, J., & Wang, H. 2010, ApJ, 718, 43
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, SoPh, 275, 3
Sharpe, M. A., & Murray, S. A. 2017, SpWea, 15, 1383
Steward, G., Lobzin, V., Cairns, I. H., Li, B., & Neudegg, D. 2017, SpWea,

15, 1151
Steward, G. A., Lobzin, V. V., Wilkinson, P. J., Cairns, I. H., &

Robinson, P. A. 2011, SpWea, 9, S11004
Woodcock, F. 1976, MWRv, 104, 1209

22

The Astrophysical Journal, 890:124 (22pp), 2020 February 20 Park et al.

https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0001-9149-6547
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0003-0026-931X
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0002-6814-6810
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0003-3571-8728
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-6977-0885
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4183-9895
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0002-4830-9352
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-5307-8045
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-9745-0400
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-6913-1330
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-8969-9169
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0001-5655-9928
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-9378-5315
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0002-8637-1130
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0001-8123-4244
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-9176-2697
https://orcid.org/0000-0002-6290-158X
https://orcid.org/0000-0002-6290-158X
https://orcid.org/0000-0002-6290-158X
https://orcid.org/0000-0002-6290-158X
https://orcid.org/0000-0002-6290-158X
https://orcid.org/0000-0002-6290-158X
https://orcid.org/0000-0002-6290-158X
https://orcid.org/0000-0002-6290-158X
https://doi.org/10.3847/0004-637X/829/2/89
https://ui.adsabs.harvard.edu/abs/2016ApJ...829...89B/abstract
https://doi.org/10.5194/angeo-23-3115-2005
https://ui.adsabs.harvard.edu/abs/2005AnGeo..23.3115B/abstract
https://ui.adsabs.harvard.edu/abs/2005AnGeo..23.3115B/abstract
https://doi.org/10.1007/s11207-015-0833-6
https://ui.adsabs.harvard.edu/abs/2016SoPh..291..411B/abstract
https://doi.org/10.1088/2041-8205/747/2/L41
https://ui.adsabs.harvard.edu/abs/2012ApJ...747L..41B/abstract
https://doi.org/10.1007/s11207-007-9094-3
https://ui.adsabs.harvard.edu/abs/2008SoPh..248..277C/abstract
https://doi.org/10.1029/2008SW000401
https://ui.adsabs.harvard.edu/abs/2009SpWea...7.6001C/abstract
https://doi.org/10.1029/2011SW000760
https://ui.adsabs.harvard.edu/abs/2012SpWea..10.6006C/abstract
https://doi.org/10.1051/swsc/2014025
https://ui.adsabs.harvard.edu/abs/2014JSWSC...4A..29D/abstract
https://doi.org/10.1029/2009SW000537
https://ui.adsabs.harvard.edu/abs/2011SpWea...9.4003F/abstract
https://ui.adsabs.harvard.edu/abs/2011SpWea...9.4003F/abstract
https://doi.org/10.1023/A:1020950221179
https://ui.adsabs.harvard.edu/abs/2002SoPh..209..171G/abstract
https://doi.org/10.1086/518718
https://ui.adsabs.harvard.edu/abs/2007ApJ...661L.109G/abstract
https://ui.adsabs.harvard.edu/abs/2014AGUFMSH21A4089H/abstract
https://doi.org/10.1051/swsc/2017018
https://ui.adsabs.harvard.edu/abs/2017JSWSC...7A..20K/abstract
https://doi.org/10.1007/s11207-012-0091-9
https://ui.adsabs.harvard.edu/abs/2012SoPh..281..639L/abstract
https://www.spaceweather.rra.go.kr/images/assa/ASSA_GUI_MANUAL_110.pdf
https://www.spaceweather.rra.go.kr/images/assa/ASSA_GUI_MANUAL_110.pdf
https://www.spaceweather.rra.go.kr/images/assa/ASSA_GUI_MANUAL_110.pdf
https://doi.org/10.1051/swsc/2018004
https://ui.adsabs.harvard.edu/abs/2018JSWSC...8A..25L/abstract
https://doi.org/10.7910/DVN/HYP74O
https://doi.org/10.7910/DVN/HYP74O
https://doi.org/10.3847/1538-4365/ab2e12
https://ui.adsabs.harvard.edu/abs/2019ApJS..243...36L/abstract
https://doi.org/10.3847/1538-4357/ab2e11
https://ui.adsabs.harvard.edu/abs/2019ApJ...881..101L/abstract
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1007/s11207-016-0933-y
https://ui.adsabs.harvard.edu/abs/2016SoPh..291.1711M/abstract
https://ui.adsabs.harvard.edu/abs/2016SoPh..291.1711M/abstract
https://doi.org/10.1051/swsc/2018022
https://ui.adsabs.harvard.edu/abs/2018JSWSC...8A..34M/abstract
https://ui.adsabs.harvard.edu/abs/2018JSWSC...8A..34M/abstract
https://doi.org/10.1002/2016SW001579
https://ui.adsabs.harvard.edu/abs/2017SpWea..15..577M/abstract
https://ui.adsabs.harvard.edu/abs/2017SpWea..15..577M/abstract
https://doi.org/10.1088/0004-637X/718/1/43
https://ui.adsabs.harvard.edu/abs/2010ApJ...718...43P/abstract
https://doi.org/10.1007/s11207-011-9841-3
https://ui.adsabs.harvard.edu/abs/2012SoPh..275....3P/abstract
https://doi.org/10.1002/2017SW001683
https://ui.adsabs.harvard.edu/abs/2017SpWea..15.1383S/abstract
https://doi.org/10.1002/2017SW001595
https://ui.adsabs.harvard.edu/abs/2017SpWea..15.1151S/abstract
https://ui.adsabs.harvard.edu/abs/2017SpWea..15.1151S/abstract
https://doi.org/10.1029/2011SW000703
https://ui.adsabs.harvard.edu/abs/2011SpWea...911004S/abstract
https://doi.org/10.1175/1520-0493(1976)104<1209:TEOYFF>2.0.CO;2
https://ui.adsabs.harvard.edu/abs/1976MWRv..104.1209W/abstract

	1. Introduction
	2. Methodology
	2.1. Participating Flare Forecasting Methods
	2.2. At-a-glance Performance
	2.3. Two-day Analysis
	2.4. Two-day Analysis Plus Categorization
	2.5. Targeted Questions

	3. Results
	3.1. At-a-glance Performance Results
	3.2. Two-day Analysis of Forecast Outcome Patterns
	3.3. Two-day Analysis Plus Categorization: Results
	3.4. Targeted Questions Answered
	3.5. Limb Events

	4. Summary and Discussion
	Appendix AParticipating Methods and Facilities
	Appendix BTargeted Analysis of the BIOs
	B.1. Targeted Question 1
	B.2. Targeted Question 2
	B.3. Targeted Question 3
	B.4. Targeted Question 4

	References



