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ABSTRACT: Phase-pure BiI3 films obtained by versatile gas-phase
iodination of Bi2S3 are investigated as an absorber in photovoltaic
devices. This preparation method leads to highly crystalline BiI3 films
featuring a rhombohedral phase and a high-degree of stacking order. The
films are composed of micrometer-sized flat grains distributed homoge-
neously across the F-doped SnO2 (FTO) substrate, exhibiting an indirect
band gap transition at 1.72 eV. High-level calculations based on G0W0
approximation are used to rationalize the electronic structure of BiI3,
confirming the band gap value estimated experimentally. The films show
p-type conductivity with an acceptor density on the order of 1015 cm−3.
Solar cells with the architecture glass/FTO/TiO2/BiI3/F8/Au, where F8 is
poly(9,9-di-n-octylfluorenyl-2,7-diyl), display a record open-circuit voltage
above 600 mV and overall power conversion efficiency of 1.2% under AM 1.5G illumination. The large open-circuit
potential is rationalized in terms of carrier lifetimes longer than 1 ns as probed by time-resolved photoluminescence
spectroscopy.

Sustainable photovoltaic (PV) technologies beyond Si
solar cells represent huge opportunities in key areas such
as large-scale building integration and competitive

tandem technologies close to 30%.1,2 This strategy requires
new solar absorbers based on earth-abundant materials that
can offer different alternatives to existing CdTe and CuInGa-
(S,Se)2 (CIGS) technologies.

3−6 Hybrid perovskite solar cells
have experienced an unprecedented rise from basic science to a
technology close to commercialization, particularly in the
context of Si-tandem solar cells, although significant challenges
remain in terms of stability.7 Cu2ZnSn(S,Se)4 has been the key
target in the context of earth-abundant CIGS replacement;
however, efficiency remains hindered by a loss mechanism yet
to be fully elucidated.8−10 These developments have led to the
establishment of guiding principles for the design of solar
absorbers based on the concept of “defect-tolerant materials”,
with Bi being one of the elements in these strategies.5,6 Indeed,
Bi3+ and Pb2+ are heavy and highly polarizable cations
associated with large spin−orbit coupling effects, dielectric
constants, and band dispersion, resulting in low recombination
probabilities and better charge separation.5,6,11 Bi compounds
such as methylammonium bismuth iodide, bismuth chalcoha-
lides, bismuth sulfide, silver bismuth sulfide, and bismuth
iodide have been tested as solar absorbers with power
conversion efficiencies up to 6.3%.12−19 Previously, we
reported on BiFeO3 all-oxide solar cells with a record power
conversion efficiency of 4%.18 BiI3 is particularly attractive as a

binary compound composed of low-cost elements and suitable
optoelectronic properties.20

BiI3 fundamental optical transitions have been reported in
the range of 1.67−1.90 eV, featuring capture cross sections
larger than 105 cm−1 for energies above 2 eV.20−23 Addition-
ally, minority carrier lifetime (τh) and electron mobilities (μe)
of 1.54 ns and 250 cm2 V−1 s−1 have been reported in BiI3
single crystals.20,24,25 The current record efficiency of BiI3 thin-
film cells was reported by Hamdeh and co-workers, with a VOC
value below 400 mV and a power conversion efficiency of
approximately 1%, although no statistical analysis of these
performance indicators was reported.17 In contrast to single
crystals, thin films deposited either by solution or physical
vapor deposition are characterized by a shorter τh (250 ps),
which could be a limiting factor in PV performance.20 In this
work, we develop a new methodology for preparing high-
quality rhombohedral BiI3 thin films based on gas-phase
iodination of Bi2S3. The films exhibit a high degree stacking
order with τh values longer than 1 ns as estimated from time-
resolved photoluminescence spectroscopy. PV devices with the
architecture glass/FTO/TiO2/BiI3/F8/Au, where F8 is poly-
(9,9-di-n-octylfluorenyl-2,7-diyl), display a record open-circuit
voltage above 600 mV and overall efficiency of 1.2% under AM
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1.5G illumination. Electronic and vibrational fingerprints of the
phase-pure BiI3 films are rationalized based on calculations
employing G0W0 approximation and density functional
perturbation theory (DFPT).
BiI3 films are prepared by a sequential method starting from

spin coating a Bi(NO3)3 and thiourea precursor solution onto
FTO, followed by thermolysis at 200 °C to produce a
homogeneous Bi2S3 film that is subsequently iodinated upon
exposure to the I2 gas. This methodology was inspired in our

previous report on the fabrication of PbI2 photocathodes,26

although in this case the Bi2S3 is placed above the I2 granules,
which are heated to 200 °C (see Supporting Information
section S3 for further details). The reaction is governed by
Pearson’s hard−soft acid−base principle in which the polar-
izable Bi3+ (soft-acid) spontaneously exchanges a hard S2− base
partner with a polarizable I− (soft-base).27

The structure, morphology, and phase purity of the as-grown
BiI3 films are investigated by X-ray diffraction (XRD) and

Figure 1. Structural and morphological characterization of BiI3 thin films: XRD with the inset depicting the BiI3 unit cell (a), top-view
scanning electron micrograph (b), measured Raman spectrum under 785 nm laser excitation (c), and calculated Raman spectrum employing
DFPT (d).

Figure 2. Transmittance and reflectance spectra of BiI3 thin films (a), Tauc’s plot showing an indirect transition at 1.72 eV (b), band
structure (c), and density of states (DOS) (d) of BiI3 calculated employing the quasiparticle G0W0 approximation.
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Raman spectroscopy (Figure 1). XRD of the film on the FTO
substrate (Figure 1a) reveals crystallization of BiI3 in its
common rhombohedral structure (R3̅, space group: 148). No
peaks due to sulfide, oxide, and oxyiodide are detected. The
high intensity of the (003) peak at ∼12° suggests a high degree
of orientation along the c-axis of the unit cell. The Bi atom is
octahedrally coordinated to I atoms, forming hexagonally
close-packed layers interacting by a weak Van der Waals force
along the c-axis with the Bi atom, effectively occupying two-
thirds of the octahedral sites.28 The SEM image in Figure 1b is
characterized by flake-shaped grains with sizes in the range of
700−1200 nm homogeneously distributed across the substrate.
This growth behavior is similar to that observed for PbI2
films.26

Figure 1c displays the Raman spectrum of BiI3, showing
three distinctive bands assigned to Ag and Eg modes. These
assignments are supported by theoretically calculated spectra
using DFPT, as shown in Figure 1d (the full spectrum is
plotted in Figure s1). The measured and calculated spectra
exhibit remarkable similarity in the range of 80−160 cm−1. The
spectral information below 83 cm−1 cannot be accessed in our
spectrometer. The modes at 98 and 113 cm−1 are LO phonon
modes at the Γ and Z special points, respectively. The nature
of three vibrational modes at 98, 114, and 126 cm−1 is captured
in the movies provided in Supporting Information Movie S1
and Movie 2.
Figure 2a displays the optical transmittance and reflectance

spectra of 230 nm thick BiI3 films on the FTO-coated glass
substrates, showing sharp absorption behavior between 650
and 700 nm. Considering an indirect band gap transition, a
value of 1.72 can be estimated from the Tauc’s plot in Figure
2b. As mentioned previously, there is some debate in the
literature concerning the value of the indirect band gap
transition, which ranges between 1.65 and 1.90 eV, with
reports of direct transitions between 1.8 and 2 eV.20−23 The
dispersion in the reported experimental and computed value of
Eg has been found to depend on the experimental methodology
and computational level.16,20,22,23,29−33 The most detailed
optical study has been reported by Podraza et al., showing an
indirect transition at 1.67 eV,22 which is close to our findings.
On the other hand, the hybrid HSE functional DFT by Lehner
et al. estimated a value of 1.93 eV.16

Figure 2c,d summarizes our estimations of the electronic
structure of BiI3 employing quasiparticle G0W0 approximation
showing that the lowest-energy transition has an indirect
nature with a value of 1.68 eV. Komatsu and Kaifu established
that the temperature dependence of the BiI3 band gap has a
gradient of −3.7 × 10−4 eV/K between 286 and 77 K and −1.8
× 10−4 eV/K between 77 and 6 K.34 On the basis of these
findings, the calculated band gap is expected to decrease to
approximately 1.59 eV at room temperature. It is important to
highlight that G0W0 calculations consistently underestimated
experimental band gap values by 200 meV on average in over
200 materials.35,36 Consequently, the difference in our
computed value and the experimental band gap on our thin
films (Figure 2b) and on single crystals by Podraza et al.22 can
be considered within the error of the method.
Although G0W0 calculations provide accurate accounts of

spin−orbit coupling, band dispersions, and width, this comes
at the expense of high computational costs, which limit
calculating the projected density of states. However, this
information is available with a good level of accuracy from the
elegant work by Lehner et al. employing DFT with hybrid

functionals.16 The conduction band is formed of highly
covalent I 5p and Bi 6p hybridized states split due to spin−
orbit coupling, while the valence band is primarily composed
of an I 5p orbital with a minor contribution from Bi 6s
electrons. Calculations also show that the conduction band is
much more dispersed than the valence band as a result of
spin−orbit coupling promoted by the Bi3+ ion. This results in a
lighter effective mass of electrons in comparison to holes and
thus higher electron mobility. This observation is also
consistent with experimental studies on BiI3 single crystals,
showing effective electron mass 5 times lower than that of
holes and electron mobility up to 250 cm2 V−1 s−1.25 The high
covalent interaction in the conduction band is also responsible
for a substantial in-plane Born effective charge of 5.43. These
optoelectronic features are very attractive in the context of
thin-film PV devices.
Electrochemical impedance spectroscopy in nonaqueous

electrolyte solutions was employed to estimate the doping
density of the films. Analysis based on the Mott−Schottky plot
in Figure s2 confirmed the p-type nature of BiI3, with estimates
of the majority carrier density in the range of 2.8 × 1015−1.4 ×
1016 cm−3, considering the contrast in relative permittivity
between in-plane (ε|| = 8.6) and out-of-plane (ε⊥ = 54).37

These values should be considered as an upper limit as the
effective roughness of the material is not considered in the
calculations. PbI2 films obtained by a similar route were also
characterized by a low doping density.26 The analysis also
shows that the flat band potential (Efb) is located at 1.53 V vs
SHE, placing the valence band maxima (VBM) at approx-
imately 5.97 eV with respect to the vacuum level, which is
close to values obtained from photoemission spectroscopy.16

Considering Eg = 1.72 eV, the conduction band minima
(CBM) is set close to 4.25 eV.
Current−voltage characteristics of 10 devices featuring an

active area of 4 mm2 under AM 1.5G (100 mW cm−2)
illumination are shown in Figure 3a. Devices were designed
with an architecture glass/FTO/TiO2/BiI3/F8/Au, with a BiI3
film thickness of 230 nm. As described in Supporting
Information section S3, electron (TiO2) and hole (F8)
transporting layers were processed by spin-coating. The best-
performing device displayed a power conversion efficiency (η)
of 1.21% with a short-circuit current (JSC), fill factor (FF), and
open-circuit voltage (VOC) of 5.28 mA/cm2, 37.6%, and 607
mV, respectively. These figures of merit represent clear
improvement over the state-of-the-art, in particular, the 200
mV increase in VOC.

17 The external quantum efficiency (EQE)
for the champion cell shows a maximum value close to 35%, as
displayed in Figure 3b. The variation of the key figure of merit
was less than 10%, illustrating the reproducibility in the
preparation method.
The improved device performance with respect to previous

reports can be linked to the device architecture and the quality
of the BiI3 film. Conducting polymers such as polytriarylamine
(PTAA; IP = 5.1 eV) and polyindacenodithiophene-difluor-
obenzothiadiazole (PIDT-DFBT; IP = 5.5 eV) have been
employed as hole transport layers (HTLs) by Lehner et al.16

The HTL with a higher IP resulted in an improvement of VOC
from 220 to 420 mV but at the cost of the short-circuit current
(JSC), leading to only an incremental change in the overall η
from 0.3 to 0.32%.16 Hamdeh et al. used a thin layer of V2O5,
which resulted in JSC of up to 8 mA cm−2 and η of 1.0%;
however, the VOC remained limited to 365 mV.17 The use of
F8 in our devices was inspired by Ganose et al.’s theoretical
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studies on BiSI, suggesting that the high IP value (5.8 eV) of
this polymer offers a better match to the VBM.38 This point
partially accounts for the record VOC values measured in our
devices. Indeed, we have investigated cells employing F8 as the
HTL but following previous protocols in which commercially
available BiI3 powders were spin-coated to the TiO2 surface
(so-called “direct” method).20 The corresponding J−V curves
(Figure s3a) exhibited JSC and FF values that were 10−15%
lower, while the VOC dropped by 56% in comparison to the
devices prepared by our gas-phase iodination method. The
EQE spectra also show significantly lower values at wave-
lengths close to the band edge for the devices prepared via the
direct method (Figure s3b). These results strongly suggest that
the minority carrier lifetime is significantly different in these
two films.
Finally, Figure 3c shows a characteristic time-resolved

photoluminescence measurement of BiI3 prepared by gas-
phase iodination. The data were fitted to a biexponential
function, yielding two lifetime values of around 460 ps and 1.4
ns. These values are comparable to the lifetimes measured on
BiI3 single crystals and significantly longer than those in thin
films reported in previous studies.17,20 It is rather difficult to

quantitatively rationalize the increase in VOC with carrier
lifetime as there is no theoretical framework directly combining
these two parameters. Repins and co-workers provided an
empirical correlation after analyzing a large number of CIGS
devices, showing that VOC is strongly dependent on carrier
lifetime in the range below 10 ns.39 Consequently, the high
quality of the BiI3 thin films generated by our method is key for
achieving record VOC and PCE values. There is significant
room for improvement in device architecture, not only in
terms of better alignment of ETL and HTL layers to the
absorber layer but also in the carrier collection efficiencies.
Indeed, it is anticipated that interfacial recombination at the
boundaries with carrier extracting layers is the main perform-
ance limiting factor in these devices.
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Figure 3. PV performance of glass/FTO/TiO2/BiI3/F8/Au
devices: J−V characteristics of 10 cells under AM 1.5G (100
mW/cm2) illumination (a) and characteristic EQE spectrum (b).
Time-resolved photoluminescence spectrum of the BiI3 films (c).
The purple trace corresponds to the instrument response function
(IRF).
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