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 Abstract— Linear Ramp Slope Compensation (LRC) 
and Quadratic Slope Compensation (QSC) are commonly 
implemented in peak current mode controlled DC-DC 
converters in order to minimize subharmonic and chaotic 
oscillations. Both compensating schemes rely on the 
linearized state-space averaged model (LSSA) of the 
converter. LSSA ignores the impact that switching actions 
have on the stability of converters. In order to include 
switching events, the nonlinear analysis method based on 
Monodromy matrix was introduced to describe a 
complete-cycle stability. Analyses on analogue controlled 
DC-DC converters applying this method show that system 
stability is strongly dependent on the change of the 
derivative of the slope at the time of switching instant. 
However, in a mixed-signal controlled system, the 
digitalization effect contributes differently to system 
stability. This paper shows a full complete-cycle stability 
analysis using this nonlinear analysis method, which is 
applied to a mixed-signal controlled converter.  Through 
this analysis, a generalized equation is derived that reveals 
for the first time the real boundary stability limits, for LRC 
and QSC. Furthermore, this generalized equation allows 
the design of a new compensating scheme which is able to 
increases system stability. The proposed scheme is called 
Polynomial Curve Slope Compensation (PCSC) and it is 
demonstrated that PCSC increases the stable margin by 
30% compared to LRC and 20% to QSC. This outcome is 
proved experimentally by using an interleaved DC-DC 
converter that is built for this work. 
 

Index Terms— Linear Ramp Slope Compensation (LRC), 
Quadratic Slope Compensation (QSC), Stability analysis, 
Subharmonic oscillation, Polynomial Curve Slope 
Compensation (PCSC), Power converters 

I. INTRODUCTION 
eak current mode (PCM) control is a widely used current 
mode control (CMC) method for switching power DC-DC 
converters, offering a number of benefits such as inherent 

cycle-by-cycle current limiting, good current sharing of 
paralleled converters, and better transient response compared to 
voltage mode control [1]. It is well recognized that PCM 
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controlled DC-DC converters suffer from subharmonic 
oscillations in continuous current mode operation when the 
duty cycle exceeds 50%. At this point, system stability is lost, 
resulting in an increase of inductor current and output voltage 
ripple. Subsequently, converter efficiency goes down [2] and 
the risk of higher electromagnetic interference (EMI) goes up 
[3]. In order to eliminate these undesired nonlinear phenomena, 
PCM with linear ramp compensation (LRC) has been 
introduced. Today, LRC is the most well-known and the most 
widely applied technique in industrial applications [4, 5] with a 
large number of commercial analog controllers available on the 
market. LRC products are available either with internal or 
external ramp compensation [6, 7]. In recent years, a few digital 
LRC controllers using a built-in analog comparator have also 
emerged on the market [8]. It is expected that more digital 
controllers with built-in analog comparators will become 
available on the market. That is because these so called 
mixed-signal controllers show high reliability, design 
flexibility and low cost [9, 10]. 

It is common to derive the magnitude and the grade of the 
slope of LRC from the state-space averaging method [11]. The 
disadvantage of state-space averaging is that the analysis 
ignores  information on stability during switching instants (fast 
timescale) [12] and consequently nonlinear behaviors of power 
DC-DC converters are not considered in LRC.  

In order to compensate for the lag of information, predictive 
digital LRC methods have been proposed. One predictive LRC 
method has been presented in [13] in which the inductor current 
is pre-calculated using knowledge of the inductance value. 
Inductor current and output voltage are sampled once per cycle 
and used to predict the desired comparator switch-off threshold. 
Another digital LRC technique introduces the calculation of the 
duty cycle of the next switching period by solving the instant at 
which the sampled current becomes equal to the compensated 
current reference from the outer voltage loop [14]. A technique 
of cycle-by-cycle duty ratio computation in real time has also 
been presented [15] where a time-to-digital converter translates 
information of the last duty ratio into digital code and then 
reconstructs the next duty ratio by using a moving average 
filter. All of these predicted digital LRC methods have in 
common that they predict future values of the duty cycle by 
employing a mathematical model. However, predicting future 
events cannot be regarded as true LRC control since inherent 
characteristics of real-time cycle-by-cycle current limiting 
abilities are lost [16]. 

Another attempt to improve stability is to change the slope 
from LRC to Quadratic Slope Compensation (QSC). The 
frequency bandwidth of the converter using QSC is 
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independent from input and output voltages and therefore the 
typical overcompensation used in LRC to guarantee the 
stability for all load conditions becomes unnecessary in QSC 
[17]. QSCs with and without adaptive slope gradients have 
been reported in [18]. However, the underpinning method 
applied to all LRC and QSC techniques is state-space averaging 
and consequently exact knowledge on how stability is 
influenced during switching events is not available.  

Due to the lag of fast timescale information, stability analysis 
methods have been developed to describe these switching 
events mathematically, in order to determine the complex 
phenomena of bifurcations, chaos, and subharmonics [19-21]. 
In addition, studies on the control of power converters from the 
perspective of switching events have attracted researchers’ 
attentions [22, 23]. To address fast-scale nonlinearities, various 
stability analysis approaches have been applied on the 
piecewise linear dynamical systems, switched or hybrid 
systems, such as discrete map-based modeling [19], Floquet 
theory [24], Lyapunov-based methods [25], and trajectory 
sensitivity approach [26]. And different types of feedback and 
non-feedback control techniques have been suggested applying 
knowledge of the nonlinearity of the converter system [27-29]. 
However, all of the proposed techniques are highly dependent 
on complex mathematical models and therefore cannot be 
easily implemented in practical circuits.  

In order to reflect the use of digital controllers, the 
complete-cycle analysis must also include digitalized variables. 
Therefore, the first part of this paper presents for a first time a 
theoretical complete-cycle analysis that combines continuous 
time and digitalized time, which is applied to a mixed-signal 
controlled converter. In this nonlinear analysis method, 
stability is not only determined by the ON and OFF state of the 
switches but also by the impact of the switching instants. The 
knowledge gained from the analysis has provided the 
derivation of a uniform equation that enables to describe a 
generalized slope compensation including LRC and QSC. This 
generalized equation allows the design of a new compensating 
slope that follows a polynomial function. Thus, the second part 
of this paper proposes a new slope compensation called 
Polynomial Curve Slope Compensation (PCSC). PCSC shows 
superior stability control to both LRC and QSC that increases 
the stable margin by about 30% compared to LRC and 20% 
compared to QSC. 

The paper is structured as follows. Section II describes the 
theoretical fundamentals of a complete-cycle method by using 
the Monodromy matrix. Section III presents the analysis of 
applying the Monodromy matrix to an interleaved power 
DC-DC converter, which combines continuous and digital time 
domains to represent a mixed-signal controller. The section 
derives a generalized equation that describes the 
complete-system stability for LRC and QSC and allows the 
derivation of a new slope compensation method: PCSC. The 
practical implementation of PCSC using a purpose designed 
mixed-signal controller is described in Section IV. Section V 
demonstrates the experimental results of an interleaved boost 
converter employing LRC, QSC and PCSC for comparison. It 
is shown that PCSC extends significantly the stable margin of 
the converter. The final section, Section VI, summarizes the 
conclusions drawn from the investigation and analysis. 

II. NONLINEAR ANALYSIS APPROACH BASED ON 

MONODROMY MATRIX 

A. Methods for the calculation of ramp magnitude in the 
conventional slope compensation 

Subharmonic oscillations associated with peak current 
control can be explained using a graphical approach as shown 
in Fig.1(a). To address this issue and regain stability, the 
approach of slope compensation is commonly applied as shown 
in Fig.1(b). For stable operation, the following relation must be 
satisfied: 
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1ca

ca

m m

m m




  (1) 

Here, m1 and m2 represent the slopes of inductor current 
when switch is on and off respectively and mca is the slope of 
the compensation ramp. Thus, the required slope of this ramp 
can be obtained as: 
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1
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In boost converters, m2 and m1 can be calculated by the 
following expressions: 
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 where, L is the inductance of the power inductor, Vin is the 
input voltage and Vout represent the output voltage of the 
converter. Another approach to avoid the subharmonic 
oscillations observed during peak current mode control is by 
using information of the double pole at half the switching 
frequency [1, 30]. Both methods have been developed by using 
linearized state-space averaging (LSSA) models information on 
input and output voltages and other system parameters that 
affect the stable margin of a system are not included. 

 
(a)                                        (b)                                                      

Fig.1(a) Peak current control without slope compensation 
(b) Peak current control with conventional linear ramp slope 

compensation 

B. Principle of nonlinear analysis method by Monodromy 
matrix 

 
Fig. 2 Diagram of Filippov’s method in stability analysis 

A Monodromy matrix-based approach has been proven to 
provide a better insight of the stability. In this approach the 
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switching events are described analytically by the so called 
saltation matrix [24, 31]. Combining the saltation matrix with 
the state transition matrix which presents the information of the 
switches are in ON or OFF state, a full set of data is obtained 
that can be used for stability analysis. As the Monodromy 
matrix-based approach can be utilized to any converter and any 
controller, it is seen as an enabler tool to develop advanced 
control methods. The principle of the Monodromy 
matrix-based method is presented in this section.  

For any power converter, the actions of various switches 
make the system evolve through different linear time-invariant 
(LTI) subsystems which can be described by a state equation as 
follows: 

 x Ax + Bu  (4) 

where A and B are time-dependent matrices which relate to the 
system parameters, and u represents the external input of the 
system. Equation (4) describes power converters as piecewise 
smooth and the vector field is discontinuous at the switching 
instant. In order to describe the switching instant, the Filippov 
method is applied. The Filippov  method uses the state 
transition matrices before and after each switching event and 
the saltation matrix that describes the behavior of the solution 
during the switching [32]. Fig. 2 illustrates the diagram of the 
Filippov method for stability analysis. The state transition 
matrices (STM) Φ are easily computed based on the 
exponential matrix (5). The expression of the saltation matrix S 
[32, 33] is shown in (6): 

 0( )t te  AΦ   (5) 

 

( ) T

T h
t

 




 


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

f f n
S I

n f   (6) 

where I presents the identity matrix of the same order of state 
variables, h defines the switching condition which relates to the 
control algorithm, n is the normal vector to the switching 
surface ∑ which separates the regions of state vectors fields, 
and f− and f+ denote the vector fields before and after the 
switching instants. S is applied to study the discontinuous 
vector field, by investigating the evolution of vectors crossing 
the switching surface ∑ as shown in Fig.2. The expression of 
the saltation matrix introduces the influence of switching 
events for the system, which is ignored when using LSSA. 
More theoretical description can be found in [2, 32, 33]. 

III. MONODROMY MATRIX APPLIED TO A MIXED-SIGNAL 

(ANALOGUE/DIGITAL) CONTROLLED INTERLEAVED DC-DC 

CONVERTER 

In an interleaved DC-DC converter, there are four 
subsystems depending on the state of the switches and for each 
subsystem, a STM can be derived as Φ1~Φ4. The control 
diagram and key operational waveforms of interleaved boost 
converter with slope compensation are illustrated in Fig.3(a) 
and Fig.3(b) respectively. The output voltage vc and inductor 
currents iL1 and iL2 are chosen as state vectors. The 
corresponding phase portrait orbit of the output voltage and 
inductor currents is shown in Fig.3(c). It demonstrates that the 
state vectors are not smooth in the switching instants and can 
therefore be described with the help of the saltation matrices 

S12~S41. Fig.3(d) presents the derivation of the Monodromy 
matrix M which contains the comprehensive information of the 
system including the slope compensation. The stability of a 
periodic solution is subject to the eigenvalues of this matrix. If 
all the eigenvalues calculated are located in the unit cycle of the 
complex plane, the system can be confirmed as stable; 
otherwise, the system is considered as unstable exhibiting 
various bifurcations determined by the movement trajectory of 
crossing the unit circle. Assuming that there is an initial 
perturbation 

0( )tX , it evolves in one complete period through 

four different STM and four saltation matrices S in sequence. 
For a given system at t0, the system can be proved to be stable 
when this perturbation tends to become zero when t→∞. For a 
periodic orbit with a period of T, the following equation can be 
written [32]: 

 0 0( + ) ( )t T t  X M X  (7) 

  
(a)                                              (b)                         

 

     
(c)                                              (d) 

Fig.3 Interleaved boost converter with slope compensation: (a) topology 
and control diagram (b) key operational waveforms (c) portrait curve of 

input voltage and inductor currents (d) derivation of the Monodromy 
matrix 

A. Derivation of the Monodromy matrix applied to a 
mixed-signal controller 

Previous literature studies only the Monodromy matrix on 
the continuous-time analysis [24, 31]. Due to expected growth 
of mixed-signal controllers in the future, studies must extend 
digital and analog signals within the Monodromy matrix which 
is here reported for the first time. According to equation (6), the 
normal vector n and the term of ∂h/∂t are the key to derive the 
saltation matrix S. 

The interleaved converter has four system states and each 
applies at different subintervals starting from time t=0 and 
ending at t=T. Thus the following right-hand side state 
equations and relevant matrices can be obtained: 
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Fig.4 Mixed-signal controller for interleaved DC-DC converter 

In digitalized control, the effect of sampling and zero-order 
hold (ZOH) makes fundamental changes in the derivation of the 
saltation matrix. It is common to digitalize the slower outer 
loop whereas the faster inner loop is kept in the time domain in 
order to avoid the implementation of high-speed 
analogue-to-digital converter (ADC) [34]. In Fig.4, the output 
voltage vc is therefore sampled and one constant value Vcs(k) is 
send to the controller for one switching period. The relationship 
between the variable vc and sampled value Vcs(k) is: 

 ( ) ( ) [0, ( 0.5) ]
t

At RC
c cs csv V k e V k e t d T


       (18) 

An output of the digital PI controller Vki(k) controls the error 
e(k) that occurs between Vcs(k) and Vref , and Vki(k) can be 
represented as: 
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and 
 ( ))) (( csref vce Vk V K k   (20) 

where KI and Kp represent the gains of the PI controller; Kvc is 
the gain from the sampled output voltage vc; Ts is the switching 
period, mc represents the slope of the compensation ramp, 
Vki(k-1) is the output of the integral from the last period and 
e(k-1) is the last error signal between sampled output voltage 
and reference Vref. Thus the control signal vcon(t) can be 
obtained as follows: 
 ( ) ( )con ki cv t V k m t   (21) 

Assuming that ac represents the amplitude of this compensation 
ramp at the end of each switching period, the following 
expression must be obtained: 

 
c c sa m T  (22) 

In the peak current control algorithm, the switches of the 
DC-DC converter will turn off when the generated control 
signal vcon(t) equals the values of the inductor current iL1 and iL2 
which is illustrated in Fig.3. Therefore, when the duty cycle d is 
bigger than 0.5, the switching functions can be defined as 
݄ሺx, ,ݐ ݇ሻ, which are shown as follows: 
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with KiL is the gain of the analogue inductor current. The 
derivative of the switching condition can be obtained as:  
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From equation (18), Vcs(k) can be represented by vc at the time 
of switching instant, thus 
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Its normal vector to the switching manifold can be given by  
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As the value of td is relatively small to the value of RC, the term 
dt

RCe  becomes 1, thus, sc can be simplified to: 
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Therefore, from the equation (6), the saltation matrices S12 and 
S34 can be obtained as: 
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The pulse of clock signal and the rising edge of the ramp occur 
at the same time, since it is a forced switching action and the 
value of ∂t is small enough to make the result of ∂h/∂t to be 
infinity. In other words, this switching action makes the 
saltation matrixes S23 and S41 to be the identity matrix. 

 
23 41 S S I  (35) 

For the interleaved control algorithm, the time of each 
subinterval can be represented in terms of d and T. The state 
transition matrices are given by the matrix exponential, hence 

 

1

2

3

4

( 0.5)T
1

(1 )T
2

( 0.5)T
3

(1 )T
4

d

d

d

d

e

e

e

e









 






 

A

A

A

A

Φ

Φ

Φ

Φ  (36) 

Thus, the Monodromy matrix M can be calculated by the 
following expression: 

 
1 12 2 23 3 34 4 41cycle        M Φ Φ S Φ S Φ S Φ S  (37) 

The stability of the system can be predicted by investigating the 
movement of eigenvalues of this matrix at different given 
parameters and input conditions. 

B. Investigation on Quadratic Slope Compensation 
(QSC) by Monodromy matrix 

The principle waveforms of LRC and QSC are illustrated in 
Fig.5. QSC has been introduced to achieve higher stable 
operation compared to LRC.  Reference [35] presents the 
stability analysis of this compensation using classical averaging 
modelling method and concludes that the improvement of 
system stability is related to the increased amount of the 
equivalent slope compared with conventional compensation. In 
Fig. 5, ac and am represent the amplitude of slope compensation 
for LRC and QSC respectively and their values are related to 
the compensation effect that determines stable operational 
regions. Using QSC the switching condition can be written to 

   2

( , , ) ( )( ) ( 1)
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p m s iL L

csV kh x t k K K T V K V k
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and its rate becomes 

 2 /m s

h
a d T

t


 

  (39) 

Thus, the term of ∂h/∂t is not only related to the amplitude am 
of the ramp, but also relates to the duty cycle d. According to 
the outcomes of the stability analysis method, the bigger value 
of term ∂h/∂t makes the eigenvalues of the Monodromy matrix 
moving towards the center of the unit cycle which results in an 
extended stable margin. Thus, equation (39) shows new 
knowledge in that if d is above 0.5, the absolute value of this 
term is bigger than its conventional linear counterpart assuming 
identical amplitudes of am and ac. With the help of (39) two new 
statements can be made: 

Statement 1: For d>0.5 and am=ac QSC offers better stability 
control compared to LRC  

Statement 2: For d<0.5 and am=ac LRC offers better stability 
control compared to QSC 

In principle, Statement 2 can be regarded as less relevant as 
no slope compensation is required for PCM controlled 
converter operating at d<0.5. However, many commercial 
controllers apply LRC with a fixed slope regardless the duty 
cycle d. Both findings on the stability limitations of LRC and 
QSC are new knowledge and are reported here for the first time. 
Experimental results will be presented in detail to verify these 
statements.  

 
Fig.5 Principle waveform of QSC and LRC 
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C. Proposed Polynomial Curve Slope Compensation 
(PCSC) control 

When applying the nonlinear analysis method using the 
Monodromy matrix, it can be shown that the system stability is 
strongly relevant with the change of the derivative of the ramp 
at the time of switching instant and not only to the absolute 
magnitude value of the slope instant. However, when and how 
to change the derivative of the slope to realize the best 
compensation performance is still challenging that have not 
been studied in the previous research. Thanks to the knowledge 
gained from the analytical work described above, it allows now 
to develop a generalized slope shape that achieves an optimized 
compensation. As system stability is a function of the 
derivative at the switching instant, a feasible concept is to 
increase the control freedom by introducing a new control 
variable. If the order of the generated curve is able to be varied 
against the time t, the information of order can be introduced in 
the saltation matrix that effectively affects the switching 
instance. This concept leads to a polynomial shape thus the new 
scheme is named Polynomial Curve Slope Compensation 
(PCSC) where the compensation slope is realized by producing 
a curve of an nth powered polynomial over time t. By applying 
this approach, the switching condition can be given as follows: 
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and its rate is: 
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 (41) 

The term ∂h/∂t relates to the duty cycle d, amplitude am and the 
number of order n (n=1,2,3,4…) which is different from the 
previous expressions that relates only to ac (LRC) or to am and 
duty cycle d (QSC). Equation (41) can be termed as general 
equation as it describes (26) for n=1 (LRC) (replacing ac with 
am) and it describes (39) for n=2 (QSC). Equation (41) can be 
nominalized against (25):    

 1 1( ) [ / ] / ( / )n n
m s m sf n,d na d T a T nd      (42) 

 
Fig.6   Proposed Polynomial Curve Slope Compensation (PCSC) 

scheme 
The normalized curves for different duty cycle d and order n are 
presented in Fig.6. This figure allows to find the optimized 

order n at different duty cycles. For example, the figure shows 
that the curve for n=1 is above all others when d<0.5. This 
means that up to this point LRC produces the biggest value of 
the term ∂h/∂t, enabling the largest stable operational region.  In 
the subinterval of [1/2, 2/3] the curve of QSC demonstrates the 
best stability control. Similarly, by calculating the positions of 
the cross points, the best curves can be obtained when n equals 
3, 4 and 5 in the subintervals of [2/3, 3/4], [3/4, 4/5] and [4/5, 1] 
respectively. According to this result, a PCSC control scheme 
for optimized stability control can be constructed as shown in 
Fig.6, which theoretically has the biggest stable operation 
margin at the whole range of the duty cycles. Like LRC or 
QSC, PCSC does not rely on a high fidelity model and therefore 
does not require long calculation times at each switching 
period. This is an advantage for DC/DC converters operating at 
high switching frequencies where processing time is crucial. 
The challenge with PCSC is the generation of the particular 
polynomial shape, which can only be achieved when using 
analogue-to-digital converter (DAC) with high resolutions as 
shown in the following Section IV. 

IV. EXPERIMENTAL SETUP 

A. Developed mixed-signal controller 

For a fully digital peak current controller, the main challenge 
is that the instantaneous waveform of the inductor current must 
be digitalized by a high-speed ADC converter. Given the rapid 
changes in the inductor current, ADCs with high sampling and 
conversion rates and high-performance processors are required. 

To avoid the need to sample the inductor current constantly 
during the switching period, a feasible alternative to the fully 
digital peak current solution is to use mixed-signal 
microcontrollers where the voltage controller utilizes digital 
implementation and the current loop remains in the analogue 
domain. Thereby the discrete threshold value is converted into 
an analog voltage by an internal DAC, to represent the current 
threshold level for the on-chip comparator. However, all 
commercially available mixed-signal controllers have the 
limitations as follows: 

  Only able to produce the common saw-tooth type 
compensation using some specialized peripheral 
circuit. 

 A small number of slope compensation amplitude can 
be set as only a few bits (4 bits) of relevant registers 
are used for the configuration 

 Up to 10 bits resolution DAC which is not able to 
generate sophisticated waveforms. 

 
Fig.7 Diagram of the proposed mixed-signal controller 


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Therefore a new mixed-sigal controller was developed for 

this project. An external high-performance 12-bit DAC 
AD9106 is employed with a common DSP processor, which is 
to generate various types of the compensation slopes with 
high-resolution waveforms. Fig.7 shows the diagram of this 
mixed-signal controller. The DSP processor is used as a master 
unit to achieve the functions of voltage signal sampling, digital 
proportional-integral (DPI) calculating and sending commands 
to the independent on-chip waveform generator AD9106 to 
produce the control signals. This AD9106 is integrated with a 
on-chip pattern memory, which can be used to generate 
complex waveforms. Its internal static random-access memory 
(SRAM) provides the function of direct waveform generation 
based on stored data, with flexible gain and offset adjustments 
using 7-bit registers. Configuration can be achieved via SPI 
communication with the master processor.  

B. Interleaved DC/DC converter 

An interleaved boost converter is built to verify the 
effectiveness of the theoretical analysis and the proposed 
control scheme. Table 1 shows the specification of this 
converter. It can be seen that the converter is designed to 
operate at wide range of the input voltage which enables to 
validate the different compensation techniques at various duty 
cycles. 

All of the components were assembled into a power case and 
a photograph of the full prototype is given in Fig.8. 

 
Fig.8 Photograph of prototype 

V. EXPERIMENTAL SETUP 

A. Linear Ramp Compensation (LRC) 

Fig.9 shows the experimental results from the power converter 
using LRC. The experimental graphs were generated based on 
the measured and stored data using Matlab. Fig.9(a) shows the 
output voltage vc as a function of input voltage variation Vin and 

ramp variation ac. The arrows marked Vin for 7.5V, 9V, 10.5V 
and 12V indicate the start of bifurcation. These points have 
been reflected onto the XY plane to show the area of stable 
operation. Fig 9(b) shows the inductor current iL1 as function of 
input voltage variation Vin and ramp variation ac. This figure 
show more clearly the start of bifurcation. 

 
(a)                                                        

 
 (b) 

Fig.9 Experimental bifurcation diagram of output voltage vc (a) and 
inductor current iL1 (b) at different input voltages vin and ac using LRC 
control 

Fig.10 shows the operational waveforms of interleaved boost 
converter at different input voltages when ac equals 0.15. When 
the input voltage Vin is set at 18V, the waveforms indicate that 
the system is in the stable operation of period-1 as illustrated in 
Fig.10 (a). If the input voltage is reduced to Vin=8V which is 
less than the bifurcation point, the converter exhibits the 
behavior of period doubling bifurcation in the operation of 
period-2, where the frequency of the inductor current becomes 
half of the switching frequency as shown in Fig.10(b). Thus the 
corresponding FFT spectrum curve indicates that the 
fundamental frequency of the inductor current to be 25kHz. 
Fig.10(c) presents the operational waveforms of the converter 
when Vin=6V, the PWM of drive signals become random and 
the continuous wide band frequency FFT spectrum curve 
indicates that the converter is operating in the chaotic state. The 
corresponding calculated locus of eigenvalues shown in 
Fig.10(d) provides the information of the margin of stable 
operation at different given parameters which can be used to 
indicate the system stability to facilitate the practical circuit 
design. 

 
(a) 

TABLE I 
SPECIFICATIONS OF SYSTEM PARAMETERS 

Parameters Value Parameters Value 

Input voltage (V) 5~18 Frequency (kHz) 50 

Output voltage  (V) 24 KiL 1/8.5 

Power rating  (W) 60 Kp1 0.5 

Inductance (µH) 75 Ki1 2000 

Output capacitance (µF) 40 ac(am) 0.05-0.2 

Kvc 1/120   
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the comparison of the stable operational region of all three 
control methods employing the three different compensation 
settings. LRC only provides stable operation in the blue area. 
The olive area shows the extended stable area produced by 
QSC and the red area presents the even further extended stable 
area generated by PCSC compared to QSC. Based on the areas, 
one can approximate that the extended area generated by QSC 
(olive) is 10% of the area generated by LRC (blue) and that the 
even further extended area by PCSC is 20% of the area 
produced by QSC. Thus, PSCS extends the stable region by 
approximately 30% compared to LRC and 20% compared to 
QSC.  

VI. CONCLUSION  
This paper uses a new investigation method to determine the 

effectiveness of mixed-signal controlled compensation circuits 
by applying a nonlinear stability analysis based on the 
Monodromy matrix. With this method it is possible to 
investigate the switching instance behavior which leads to a full 
set of information on system stability at various compensation 
parameters. A comparative study on LRC and QSC control 
schemes reveals why QSC has better compensation 
performances for duty cycles bigger 0.5 and why LRC has 
better compensation performances for duty cycles less than 0.5. 
Knowledge gained from this investigation has led to the 
development of a new compensation method called Polynomial 
Curve Slope Compensation (PCSC). Compared to other 
compensations techniques, PCSC provides best compensation 
effect with an extended stable operational region to boost the 
performance of converter operation, avoiding period-doubling 
bifurcation and chaos. Like LRC and QSC, PSCS is an 
universal method thus it is independent from power levels, 
switching frequencies and applications. Experimental results 
validate the effectiveness of this method on an interleaved 
boost converter utilizing a new mixed-signal controller.  
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