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ABSTRACT:  13 

For conventional titanium matrix composites (TiMCs), there is always a trade-off 14 

issue between enhanced strength and ductility of these materials. In this study, we 15 

explore a new design methodology by reinforcing titanium alloy matrix with 16 

carbonaceous nanomaterials and investigate the mechanisms for achieving a good 17 

balance of their strength and ductility. The TiMCs were synthesized through a 18 

low-cost powder metallurgy route using pre-mixed Ti-6Al-4V (TC4) powders and 19 

various carbon based nanofillers, including graphite powders (GPs), graphene oxide 20 

nanosheets (GONs) and graphene nanoplates (GNPs), and were further rolled at a 21 
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temperature of 1173 K with a deformation of 66.7%. Among these three types of 1 

carbon reinforcing sources, the GNPs are more easily reacted with TC4 matrix and 2 

form more contents of TiC phases after sintering owing to their larger amounts of 3 

defects than those of the GPs and GONs. TiC products are identified to play a 4 

bridging role for not only connecting the TC4 matrix but also forming coherent 5 

interfaces with the TC4 matrix, thus facilitating a strong interfacial bonding of the 6 

composites. The as-rolled GNPs/TC4 composites exhibit a 0.2% yield strength of 7 

1146.36 MPa (with an elongation of ~8.1%), which is 24.6%, 9.22% and 5.62% 8 

higher than those of pure TC4, GPs/TC4 and GONs/TC4 composites. The GNPs/TC4 9 

nanocomposites show a better balance of strength and ductility than those of the other 10 

two types of nanocomposites. The synergetic strengthening mechanisms are identified 11 

to be Orowan strengthening effect, effective load transfer capability of GNPs, and 12 

in-situ formation of interfacial TiC structures, which provide optimum interfacial 13 

microstructures to achieve good mechanical properties of the TiMCs.  14 

 15 

KEYWORDS: Nanocarbon materials, Metal matrix composites, Microstructure, 16 

Mechanical properties, Spark plasma sintering 17 

 18 

1. INTRODUCTION 19 

Compared to the conventional pure metals (such as Cu, Al, Mg and Ti) and their 20 

alloys, metal matrix composites (MMCs) have attracted great interest in recent years 21 

owing to their excellent physical/mechanical properties (including high strength and 22 
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elastic modulus, high hardness, good wear resistance, and good thermal/ electrical 1 

properties) [1-10]. For examples, Cu matrix composites are preferred for electrical 2 

and tribological applications owing to their good electrical and thermal conductivities 3 

[11-13], whereas Al matrix composites are extensively used in aerospace and 4 

automotive industries due to their relatively low density and good workability [2, 5 

14-15]. Titanium matrix composites (TiMCs) have also found wide-range 6 

applications in aerospace, automobile and chemical industries due to their light weight, 7 

high specific strength and excellent corrosion resistance [16-18], however, in many 8 

applications, their mechanical and physical properties need to be further improved. 9 

For this purpose, different 2D or 3D reinforcements such as TiB whiskers, SiC fiber 10 

(or particles), TiC, TiN, ZrO2, Ti5Si3, TiB2 nano/sub-micron particles etc. have been 11 

applied as reinforcements [19-26]. For example, Maja et al. [27] reported that the 12 

sintered Ti-6Al-4V composites with 4 vol.% TiN showed an indentation hardness 13 

value of ~ 7.5 GPa and an elastic modulus of 156 GPa, which are significantly higher 14 

than those of Ti-6Al-4V matrix. Huang et al. [28] demonstrated that hot pressing 15 

sintered 8.5 vol.% TiBw/Ti composite with a network microstructure exhibit a large 16 

elongation of 11.8% and a strength increment of 74.6%.  17 

Among various reinforcing micro-/nano-materials, carbon nanomaterials are 18 

attractive for development of high performance and smart/functional TiMCs for 19 

diverse engineering applications, due to their extraordinary mechanical properties 20 

(such as high strength and elastic modulus), superior physical properties (e.g., low 21 

density, good thermal and electrical properties) and other optical/electrical properties 22 
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[29-33] (see Table 1). Currently there are a few reports available in literature about 1 

the improvement of mechanical properties of pure Ti matrix by introducing graphite 2 

powders (GPs), graphene nanoplates (GNPs) and graphene oxide nanosheets (GONs), 3 

as listed in Table S1. Previously we added 0.3 wt% GONs into pure Ti powders and 4 

reported that tensile strength of the sintered TiMC was increased by 9.7%, compared 5 

to that of sintered pure Ti matrix [34]. However, none of the reported studies are 6 

focused on the reinforcement of Ti alloy matrix using different nanocarbon materials. 7 

It is also unclear which carbonaceous nanomaterial could achieve the best 8 

strengthening/toughening effects in the Ti alloys matrix, and what the detailed 9 

interfacial reactivity/structures between these carbon sources and Ti alloys matrix 10 

could be. Understanding these topics will be beneficial for the optimum design and 11 

development of new types of titanium matrix composites with a synergistic effect of 12 

high strength and good ductility.  13 

Ti-6Al-4V is dominantly used in the aerospace industry because of its excellent 14 

mechanical and physical properties [27, 35]. However, compared with other types of 15 

high strength titanium alloys (such as Ti-1300 and Ti-1400 [36-37], which are 16 

designed and synthesized by Northwest Institute for Nonferrous Metal Research, 17 

China), Ti-6Al-4V alloys with their relatively poor strength and ductility often limit 18 

their wide-range applications as structural components [38]. In order to solve the 19 

above mentioned issues, in this study, we prepare Ti-6Al-4V matrix composites 20 

(TiMCs) reinforced with three different types of carbon sources i.e. GPs, GONs and 21 

GNPs, using low-cost powder metallurgy, effective spark plasma sintering (SPS) and 22 
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hot-rolling processes, and then investigate their microstructural characteristics and 1 

mechanical behaviors. This study focuses on an in-depth understanding of interfacial 2 

structures and enhancement mechanisms of these TiMCs, which provide a guidance 3 

for their successful applications into the industry.  4 

Table 1 Various properties of nanocarbon materials. [29-33] 5 

Properties GPs GNPs Carbon Nanofibers 

Specific gravity 2.25 g/cm3 1.8~2.2 g/cm3 1.8 (AG) ~2.1 (HT) g/cm3 

Resistivity 6000 Ω cm 50 µΩ cm (in-plane) 55(HT)~1000 (AG) µΩ cm 

Thermal conductivity 24.0 W m-1K-1 
5300 W m-1K-1 (in-plane) 

6~30 W m-1K-1 (c-axis) 

20 (AG)~1950 (HT) 

Wm-1K-1 

Transmittance - 
>95% for 2nm thick film 

>70% for 10nm thick film 
- 

Elastic modulus 4.8 GPa 0.5~1TPa (in-plane) 0.4 (AG) ~0.6 (HT) TPa 

Thermal expansion 0.6~4.3 µm/m-°C 
-1×10-6K-1 (in-plane) 

29×10-6K-1 (c-axis) 
-1×10-6K-1(HT; axial) 

Specific Surface area 1.0 m2/g 
Typically 100~1000 m2/g, 

Up to 2600 m2/g 
10~60 m2/g 

Strength - 100~400 GPa 2.7 (AG) ~7.0 (HT) GPa 

Thickness - 0.34 nm - 

Thermal stability < 500 oC (IA) 450~600 oC (IA) 450~650 oC (IA) 

*IA=in air, AG=as grown, HT=heat-treated (graphitic) 

 6 

2. EXPERIMANTAL SECTION  7 

2.1 Raw materials  8 

Commercially available Ti-6Al-4V (well-known as TC4) powders with an 9 

average size of 75 ~ 150 μm (Figure 3a) were purchased from Baoji Haibao Special 10 

Metal Materials Co., Ltd., China. Table S2 lists the characteristics of TC4 powders 11 

and carbon sources. Their microstructures were characterized using a field emission 12 
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scanning electron microscope (FESEM, Zeiss GeminiSEM 500) and a 1 

high-resolution transmission electron microscope (HRTEM, JEOL JEM-2100Plus) 2 

with selected area electron diffraction (SAED). A typical morphology of TC4 3 

spherical powder fabricated using a plasma rotating electrode process is shown in 4 

Figure 3(a).  5 

Graphene nanoplates (GNPs) and graphene oxide nanoplates (GONs) were 6 

purchased from Nanjing Xian-Feng Nano Materials Technology Co. Ltd., China. 7 

Graphite powders (GPs) (＞98% purity, with an average thickness of ~30 nm as 8 

shown in Figure S1, and a length/width of ~ 48 μm as shown in Figures 1(a) ~ 1(c)) 9 

were supplied from Tianjin Kemiou Chemical Reagent Co., Ltd. China. For 10 

comparisons, Figures 1(d) to 1(i) show the morphologies of GONs (with a thickness 11 

of ~10 nm and a length/width ratio of 2~5 μm as shown in Figure S1) and GNPs 12 

(with a thickness of ~ 2 nm and a length/width ratio of 1~3 μm as shown in Figure 13 

S1). The GPs in Figure 1(a) show a rough but thick morphology, nevertheless, the 14 

GONs (Figure 1d) and GNPs (Figure 1g) show large-scale, thin-layered and 15 

wrinkled structures. Comparing Figures 1(b~c) with Figures 1(d~e) and 1(h~i), we 16 

can see that there are many nanoscale defects existed on the edges of GNPs and 17 

GONs, as marked by arrows in these Figures.  18 



7 
 

 1 

Figure 1. (a) ~ (b) TEM, HRTEM images of GPs and (c) corresponding SAED 2 

pattern, (d) ~ (e) TEM, HRTEM images of GONs and (f) corresponding SAED 3 

pattern, (g) ~ (h) TEM, HRTEM images of GNPs and (i) corresponding SAED pattern, 4 

respectively. 5 

 6 

2.2 Fabrication of carbonaceous/TC4 composites  7 

Three different composites, e.g., 0.15 wt% GPs/TC4, 0.15 wt% GONs/TC4 and 8 

0.15 wt% GNPs/TC4 (hereafter, they are named as samples of GPs/TC4, GONs/TC4 9 

and GNPs/TC4), were synthesized via a powder metallurgy route as shown in Figure 10 

2. The detailed synthesis processes are listed as follows. (1) 0.3 g of carbon sources 11 

were added to 300 ml ethanol under an ultrasonic agitation; (2) 200 g of TC4 powders 12 

were added into carbon dispersion with the help of ultrasonic and magnetic stirring at 13 
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a temperature of 323 K; (3) After the above mixed solution was stirred into a semi-dry 1 

state, it was then transferred into a stainless steel jar containing stainless steel milling 2 

balls with diameters of 2, 5, and 8 mm and a mass ratio of 3: 2: 1. The ball-to-powder 3 

weight ratio was 3:1; (4) The jar were agitated using a planetary ball mill at 300 r/min 4 

for 5 hours; (5) After mixing, the resulted composite powders was dried at 353 K in a 5 

vacuum oven at -0.1 MPa and held for 12 hours.  6 

 7 

 8 

Figure 2. Schematic of preparation of carbonaceous nanomaterials reinforced TC4 9 

matrix composites. 10 

 11 

Figure 3 shows morphologies of the prepared composite powders and the initial 12 

TC4 powders. From Figure 3(a), the TC4 powders exhibit spherical shapes with 13 

smooth surfaces (Figure 3a1). However, the obtained composite powders show much 14 

coarser appearance as can be revealed from Figures 3(b, c, d), indicating that the 15 

surfaces of TC4 powders are wrapped with GPs (Figure 3b), or GONs (Figure 3c) 16 

and GNPs (Figure 3d), respectively. An enlarged view shown in Figure 3(b1) reveals 17 

that thick flakes of graphite are adhered on the spherical TC4 powders. Whereas 18 

Figures 3(c1) and 3(d1) show that the GONs and GNPs are not only tightly attached 19 

onto the surfaces of TC4 powders, but also quite transparent and crumpled if 20 

compared with those shown in Figure 3(b1). This clearly indicates that some of the 21 

thin-layered and intact structures of GONs and GNPs are kept after the powder 22 
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metallurgy processes.  1 

Finally, the dried composite powders were loaded into a TZM (with a 2 

composition of Mo-0.5%Ti-0.08%Zr-0.0.2%C) die with an internal diameter of 50 3 

mm and sintered into the bulk samples in an SPS furnace (SPS-80T-20) at 1173 K for 4 

5 min of holding time under an axial pressure of 60 MPa. The size of the SPS 5 

processed cylinder TiMCs billets was Φ 50 mm×23 mm. Afterwards, a hot rolling 6 

process was used to modify and improve morphology and interfacial structures of the 7 

composites. Before the hot rolling process, 6 mm thick cylinder samples were 8 

obtained via the wire-cutting machine. In this work, hot rolling was performed at 1173 9 

K by 66.7% reduction (with four passes) in the thickness direction to obtain fully 10 

densified composites with a final thickness of about 2.0 mm.  11 

 12 

Figure 3. SEM images of (a) Raw TC4 powders, (b) GPs/TC4 powders, (c) 13 

GONs/TC4 powders, (d) GNPs/TC4 powders; (a1), (b1), (c1) and (d1) are enlarged 14 

images of corresponding marked region in Figures 3(a), 3(b), 3(c) and 3(d), 15 

respectively.  16 

 17 

2.3 Characterization  18 

Microstructural characterization of the mixed powders and composites was 19 

carried out using an optical microscope (OM, Axio Vert A1, ZEISS), an FESEM and 20 

a TEM with an energy dispersive spectroscope (EDS). SAED and HRTEM were also 21 

conducted using the same TEM instrument. The TEM samples of the composites were 22 
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prepared by mechanically polishing and ion milling of the sample using a Gatan-691 1 

precision ion polishing system. Prior to performing morphological characterization, 2 

surfaces of the samples were mechanically ground and polished using standard 3 

metallographic procedures. After that, the sample surfaces were etched using the 4 

Kroll's reagent (1 vol.% HF, 3 vol.% HNO3, and 5 vol.% H2O [39]) to reveal the 5 

microstructures. The grain sizes of the as-rolled samples were analyzed using the 6 

electron backscatter diffraction (EBSD) technique.  7 

Raman spectroscopy was used to investigate structures and defects of carbon 8 

nanomaterials, and this was performed at room temperature using a Laser Raman 9 

Spectrometer (LabRAM HR Evolution) with an excitation wavelength of 532 nm. 10 

X-ray photoelectron spectroscope (XPS, Thermo Fisher ESCALAB Xi+) were used to 11 

observe the chemical composition of the carbon source in composites. The size and 12 

morphology of the nanocarbon materials were identified using an atomic force 13 

microscope (AFM, Dimension Icon System, Bruker Instruments). Samples for AFM 14 

imaging were prepared by drop-casting the dispersions of carbon nanomaterials onto a 15 

silicon substrate, which was then allowed to dry in air. Electron probe microanalysis 16 

(EPMA, JXA-8100, JEOL) were used to investigate the chemical reactions which 17 

have occurred at the interfaces between the nanocarbon sources and TC4 matrix.  18 

Tensile testing specimens were cut along the diameter direction and rolling 19 

direction of the as-sintered/as-rolled samples with a gauge length of 50 mm, a width 20 

of 11 mm and a thickness of 2 mm (Figure 8b, inset). The tensile tests were carried 21 

out at room temperature using an MTS810 universal testing machine with a strain rate 22 
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of 1 mm/min. At least three measurements were performed in order to acquire an 1 

average value. Morphologies and compositions of the fractured surfaces were 2 

characterized using the SEM equipped with EDS. In order to study the micro- and 3 

nanoscale fracture behavior of the GNPs/TC4 composites, in-situ tensile tests were 4 

also performed using a miniaturized deformation device within the SEM. The 5 

microscale tensile sample was machined from rolled GNPs/TC4 composites into a flat 6 

dumbbell shape, which had a gauge length of 6 mm and a cross-section of 2 mm×1 7 

mm. A tiny notch (with a depth of 0.02 mm) was pre-made using wire-electrode 8 

cutting on the side of the samples to prepare the fracture position. The prepared 9 

microscale sample was further mechanically and electrochemically polished. During 10 

the entire tensile tests, the process was paused several times in order to observe the 11 

fracture process in real time using the SEM. 12 

 13 

3. RESULTS 14 

3.1 Microstructures of carbonaceous materials  15 

Raman spectroscopy is a powerful nondestructive tool to characterize the 16 

bonding structures and electronic properties of carbon materials including their 17 

disorder and defect structures, defect density and doping levels [40]. The obtained 18 

Raman spectra of composite powders and as-sintered samples are shown in Figure 4. 19 

They all present the characteristic peaks of D band (~1350 cm-1) and G band (~1580 20 

cm-1), which are corresponding to structural defects and degree of graphitization, 21 

respectively. Retention of graphene structures in the composites can be confirmed 22 
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from the presence and intensity of 2D peak. Figure S2 shows the fitted Raman peaks 1 

using a Gaussian function, and the obtained results of detailed Raman parameters are 2 

listed in Table 2. Raman S3/2D integral area ratio (i.e. AS3/A2D, which exhibits a 3 

similar tendency with ratio of ID/IG) is often used to qualitatively and accurately 4 

evaluate the defect levels of the carbon based materials [41]. Higher value of AS3/A2D 5 

means more defect concentration in the carbon materials, and a lower concentration of 6 

graphene structure is retained if a higher AS3/A2D value is obtained based on the 7 

Raman analysis results. Based on the results shown in Figure 4 and Table 2, the 8 

increased AS3/A2D ratios for the samples of GNPs/TC4 and GPs/TC4 after sintering 9 

can be attributed to the reactions of the GNPs and GPs with TC4 matrix. As listed in 10 

Table 2, the AS3/A2D value of the as-sintered GNPs/TC4 is 0.8746, which is 139.6% 11 

higher than that of the corresponding pre-mixed powders (0.3650). For the as-sintered 12 

GPs/TC4, its AS3/A2D value (0.7847) is 63.6% higher than that of the pre-mixed 13 

GPs/TC4 powders (0.4795). The above results are in a good agreement with their 14 

microstructure characteristics shown in Figure 1, where more nanoscale defects 15 

linking with a higher reaction reactivity are found in the GNPs if compared to that of 16 

the GPs. However, for the as-sintered GONs/TC4 sample, a slightly decreased 17 

AS3/A2D value (0.8956) is obtained if compared with that of 0.9584 for the pre-mixed 18 

powders. This is mainly due to the reduction of the GONs into GNPs structure 19 

because of the diminution of oxygen containing functional groups (which has been 20 

verified by the XPS analysis shown in Figure S3) during ball milling and sintering 21 

process [42-45]. This can also be confirmed from the weak and broad 2D peaks 22 
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(located at ~ 2700 cm-1) of GONs/TC4 sample as shown in Figures 4(a) and 4(b). 1 

Furthermore, by comparing Figure 4(c) with Figures 4(a) and 4(b), the defect 2 

structures of carbon sources in their as-rolled forms were apparently destroyed after 3 

rolling, which can be clearly indicated by the increased values of AD/AG and AS3/A2D 4 

as listed in Table 2 after rolling.  It is mainly attributed to the crushed carbon sources 5 

under the large rolling forces and formation of TiC after the hot rolling process.  6 

 7 

Figure 4. Raman spectra of (a) as-received mixture, (b) SPS and (c) hot rolling 8 

processed TiMCs reinforced with three types carbon source, respectively.  9 

Table 2 The detailed Raman spectrum results of samples in this work. 10 

 11 

EPMA analysis result of the as-sintered composites is shown in Figure 5. The 12 

analyzed area is ~ 16 μm×12 μm, which contains agglomerated nanocabron materials 13 

and in-situ formed TiC phases, all embedded inside the TC4 matrix. For the sample of 14 

as-sintered TiMCs, a circle of TiC layer was found to form at the interfaces among 15 

carbon source and Ti matrix (Figure 5). In Figure 5(a), briquets of GPs with a size of 16 



14 
 

~2 μm×4 μm are still remained in the central zone (see carbon mapping in Figure 5a) 1 

and they have ~ 30% proportion of the marked region in Figure 5(a), comparable to 2 

~33% proportion of the residual GONs of the marked region in Figure 5(c). 3 

Furthermore, the EPMA results of GNPs/TC4 shown in Figure 5(b) has similar 4 

patterns with those of the GPs/TC4 in Figure 5(a), except with some unreacted 5 

regions (about 1 μm×1 μm, which is ~ 10% proportion of the marked region in Figure 6 

5b). These results clearly show that the GNPs are much reactive to form TiC with Ti 7 

matrix than GONs and GPs at the same process conditions, which are consistent with 8 

the Raman spectroscopy results shown in Figure 4. 9 

 10 

Figure 5. Electron probe microanalysis of TiMCs sintered at 1173 K. (a) GPs/TC4, (b) 11 

GNPs/TC4 and (c) GONs/TC4, respectively. For quantitative analysis, the area of 12 

remained carbon resources can be estimated from C mappings. 13 

 14 

3.2 Interfacial structures of TC4-carbonous composites  15 

The interface between the reinforcements and matrix plays a significant role in 16 

tailoring the properties of MMCs. Figure 6 shows the representative three interfacial 17 

structures in the GNPs/TC4 composites. There are overlapped and crumpled GNPs 18 

phases embedded inside the Ti matrix (Figure 6a). Distinct lattice fringes of graphene 19 

can be observed from the HRTEM image shown in Figure 6b. The lattice parameter 20 

was measured to be ~ 0.34 nm, corresponding to the interplanar spacing of graphene 21 

(0002) plane. The HRTEM image (Figure 6i) of the white square region in Figure 6a 22 
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shows a distinct GNPs-Ti interface, which confirms the existence of remained GNPs 1 

in the matrix. Furthermore, the SAED result (Figure 6b, inset) reveals that residual 2 

GNPs are nearly intact without apparent defects after the sintering, which are similar 3 

to those in the previous reports [46-47]. 4 

Figure 6(c) shows that the GNPs structures are completely destroyed in the 5 

composite, forming a layer of amorphous carbon film (i.e. destroyed GNPs, 6 

confirmed by SAED in Figure 6f and EDS of point B) and TiC nanoparticles 7 

(denoted by blue arrows and identified by EDS of point C and SAED in Figure 6e). 8 

EDS results (Figure 6d, inset) reveals that the region B contains a high carbon 9 

concentration (94.36 at.%, Table 3) and extremely low concentration of Ti (4.87 at.%). 10 

However, EDS results of region C show that the concentrations of Ti (45.53 at.%) and 11 

carbon (53.07 at.%) are nearly equal, suggesting that the nucleation and growth of TiC 12 

are preferred to occur with the destructed GNPs. Furthermore, bright-field and 13 

dark-field TEM images presented in Figures 6(c) and 6(d) demonstrate that the 14 

second phase particles are embedded in Ti matrix or at the boundary of the amorphous 15 

carbon film. The SAED pattern (Figure 6e) obtained from the second phase particles 16 

can be indexed as TiC crystals along the [110] direction on the basis of a cubic unit 17 

cell.  18 

The interfacial structures of amorphous carbon layer and TiC were further 19 

studied using HRTEM with one of the obtained images shown in Figure 6(g). 20 

Combined with the low magnification TEM image shown in Figure 6(c), it can be 21 

concluded that the destroyed GNPs are well bonded with TiC without apparent gaps 22 
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and impurities. The noise-filtered IFFT image is shown in Figure 6(g) (inset), and the 1 

obtained lattice inter-planar spacing is measured to be ~ 0.26 nm (Figure 6h), which 2 

matches the d-spacing of (111) TiC plane. As reported by Chu et al [47], the formed 3 

interfacial carbide nanoparticles can effectively improve the load-bearing ability of 4 

graphene and thus enhance the mechanical properties of the obtained composites.  5 

A transition layer with an average thickness of ~200 nm can be clearly observed 6 

without apparent micro-voids and gaps around the interfaces as shown in Figure 6(j). 7 

Compared with the EDS results listed in Table 3, the carbon concentration in this 8 

transition layer is distinctly higher than that in the surrounding matrix. This shows 9 

that the GNPs are mostly reacted with Ti matrix to form TiC, which can be further 10 

confirmed by EDS analysis (e.g., see points of D, E, F in Figure 6j). The detailed 11 

interfacial structures between TiC and matrix of GNPs/TC4 were further investigated 12 

using the HRTEM and the results are shown in Figure 6(k). The HRTEM image 13 

reveals that the lattice fringes of TiC (111) intersect with the odd lattice fringes of Ti 14 

(102), having an intersection angle of ~ 77°. The same intersection angle is also 15 

obtained from the Fast Fourier transform (FFT) diffraction pattern (Figure 6k. inset). 16 

A twin-structure like relationship is observed between Ti (102) and TiC (111) as 17 

shown in the inset of Figure 6(k). This clearly shows that the Ti (102) plane shares its 18 

atomic positions with those of the TiC (111) plane at their interfaces, indicating that 19 

the TiC forms a coherent interface with Ti matrix. It was reported that these coherent 20 

interfaces have lower interface energies if compared with those of incoherent 21 

interfaces [48-49]. Therefore, the formation of these coherent TiC-Ti interfaces should 22 
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reduce the interfacial energy and facilitate the generation of strong interfacial bonding 1 

between the TiC particles/layers and Ti matrix. 2 

 3 

Figure. 6 TEM and HRTEM images of GNPs/TC4 composites. (a) A bright field 4 

TEM image, white arrows indicate the remained GNPs. (b) HRTEM image and SAED 5 

(inset) of the remained GNPs located near the Ti matrix (region A). (c) A bright field 6 

TEM image showing amorphous carbon (i.e. destroyed GNPs) film and in-situ formed 7 

TiC nanoparticles in the GNPs/TC4 composites. Blue arrows show the TiC 8 

nanoparticles. (d) The corresponding dark-field TEM image of the Figure 6(c), inset 9 

showing the EDS result of the TiC (point C) and amorphous carbon (point B). The 10 

SAED of (e) TiC and (f) destroyed GNPs (i.e. amorphous carbon) in Figure 6(c). (g) 11 

HRTEM images of remarked interfacial region in Figure 6(c) and (h) the 12 

corresponding IFFT and lattice spacing measurement recorded at the marked region 13 

of TiC in Figure 6(g), (i) HRTEM image of the interface between TiC and TC4 matrix 14 

(the white square region in Figure 6a), (j) TEM image of the TiC nanolayer in the 15 

composites. (k) HRTEM image of interface and interface relationship between TiC 16 

and Ti matrix, inset showing the IFFT of the interfacial region, respectively. 17 

 18 

 19 

 20 

Table 3 Element compositions and possible phases of the regions marked in Figure 6 21 

(at.%). 22 
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Elements Ti Al V C Possible phase 

A - - - 100 GNPs 

B 4.87 0.37 0.40 94.36 Destroyed GNPs 

C 45.53 0.75 9.65 53.07 TiC 

D 48.39 4.90 3.96 42.75 TiC 

E 78.08 12.50 1.23 10.65 Ti  

F 77.13 9.43 1.77 11.67 Ti  

 1 

3.3 Mechanical properties and fracture behavior of the composites  2 

Figure 7 shows mechanical properties of the TC4 matrix composites reinforced 3 

with different carbon sources after the SPS (Figure 7a) and HR (Figure 7b) processes, 4 

and the detailed results are summarized in Table 4. Both the 0.2% yield strength 5 

(0.2% YS) and ultimate tensile strength (UTS) of samples shown in Figures 7(a) and 6 

7(b) are increased when different nanocarbon materials are added into the TC4 matrix. 7 

The 0.2% YS of the as-sintered GNPs/TC4 is ~ 980 MPa, which is 27.78% higher 8 

than ~768 MPa of pure TC4 after the SPS process. As a comparison, the as-sintered 9 

composites of GONs/TC4 and GPs/TC4 have 0.2% YS values of ~ 898 MPa and ~ 10 

836 MPa, respectively, which are ~ 8.4 and ~ 14.7% lower than that of as sintered 11 

GNPs/TC4.  12 

On the other hand, the elongation of as-sintered TC4 is ~ 15.2% and its fractured 13 

surface shows ductile fracture features with many dimples (Figure 8a) and obvious 14 

features of necking (Figure 8a, inset). Nevertheless, the elongation values of the 15 

as-sintered TiMCs are all sharply decreased (Figure 7a and Table 4). The significant 16 

reduction of elongation values shown in Figure 7(a) are attributed to the uncompleted 17 

sintering neck formation. The in-situ formed TiC product and the remained 18 
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nanocarbon materials hinder the rapid diffusion of Ti atoms, thus leading to 1 

uncompleted sintering neck formation at the lower temperature. As it is commonly 2 

reported [43], formation of these uncompleted sintering necks often results in a low 3 

elongation in TiMCs, and relatively poor mechanical properties 4 

These results can also be confirmed by observing the fracture morphologies. 5 

Figures 8(b) to 8(d) show the original spherical shapes of fractured TC4 and cracks 6 

(as marked in Figure 8b), also the clusters of nanocarbon materials within the gaps 7 

among the TC4 matrices. Results indicate that the main fracture modes of the sintered 8 

TiMCs are inter-granular fracture. Furthermore, pulled-out of GNPs can be observed 9 

on the fracture surfaces of the as-sintered composites (Figure 8c1), suggesting that 10 

during the tensile deformation, the load cannot be effectively transferred from the 11 

TC4 matrix to the nanocarbons. The appearance of pulled-out of GNPs or GONs also 12 

demonstrates interfacial sliding between nanocarbons and TC4 matrix. In addition, 13 

clusters of nanocarbon are also observed on the fracture surfaces of the as-sintered 14 

composites, which easily lead to crack generation. Both the pulled-out and 15 

agglomeration of nanocarbons will severely weaken the strengthening effect.  16 

As shown in Figure 7 and Table 4, tensile properties of the as-rolled TiMCs are 17 

much better than those of the as-sintered composites. Both the strength and ductility 18 

of as-rolled TiMCs shown in Figure 7(b) are simultaneously enhanced, which can be 19 

attributed to the improvement of bonding between TC4 particles and matrix (Figures 20 

8f, 8g, and 8h) and the reinforcements (Figure S5) and small sizes of the TC4 matrix 21 

(Figure S6). For the as-rolled GNPs/TC4 composites shown in Figure 7(b), the 22 
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values of 0.2% YS and UTS are increased from ~ 942 MPa and ~ 980 MPa to ~ 1146 1 

MPa and ~ 1269 MPa, which show significant enhancements of 21.7% and 30.5%, 2 

respectively, compared with the as-sintered GNPs/TC4 samples. Meanwhile, the 3 

elongation is also increased up to ~ 350% compared with as-sintered GNPs/TC4 4 

samples. Similar trends can also be observed for the TC4 composites reinforced with 5 

GPs and GONs. The values of 0.2% YS and UTS of GNPs/TC4 composites are 6 

increased up to ~24.6% and ~19% as compared to those of the as-rolled TC4, whereas 7 

those values are 14.1% (17.9%) and 11.0% (12%) for GPs/TC4 (GONs/TC4), 8 

revealing that the GNPs/TC4 composites show a better balance of strength and 9 

ductility than those of the other two nanocomposites, at the similar mass fraction of 10 

carbon nanofillers. The enhanced strengths indicate that GNPs is effective for the 11 

reinforcement in Ti matrix composites.  12 

The fracture surface of the as-rolled GNPs/TC4 shows a typical ductile fracture 13 

mode with a lot of large and deep dimples (Figure 8g and inset image), indicating its 14 

good ductility. Instead of being pulled out as shown in those of as-sintered composites, 15 

the nanocarbons in the as-rolled TiMCs can provide a bridging function to connect 16 

TC4 matrix (Figures 8f1, 8g1 and 8h1), which improve the load transfer capability of 17 

the composite during deformation.  18 

 19 

Figure 7. Engineering stress-strain curves of unreinforced TC4, GPs/TC4, 20 

GONs/TC4 and GNPs/TC4 composites after (a) sintering at 1173 K and (b) HR at 21 

1173 K.  22 
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 1 

Table 4 Tensile properties of as-SPSed and as-Rolled processed TC4 reinforced with 2 

GPs, GONs and GNPs, respectively. 3 

Sample As-SPSed As-Rolled 

 0.2% YS 

(MPa) 

UTS 

(MPa) 
Elongation (%) 

0.2% YS 

(MPa) 

UTS  

(MPa) 

Elongation 

(%) 

Pure TC4 767.50±12 889.90±8 15.2±0.8 920.03±9 1066.00±13 7.6±1.0 

GPs/TC4 835.79±11 963.22±13 3±0.5 1049.56±12 1183.39±10 6.9±1.2 

GONs/TC4 897.68±10 951.11±7 5.4±0.6 1085.40±14 1194.06±9 7.0±0.9 

GNPs/TC4 941.96±9 979.93±11 1.8±0.3 1146.36±10 1269.66±8   8.1±1.2 

 4 

 5 

Figure 8. The fracture surface of the TiMCs after (a~d1) sintering at 1173 K and (e~h1) 6 

HR at 1173 K. (a, e) TC4, (b, b1, b2, f, f1) GPs/TC4, (c, c1, g, g1) GNPs/TC4 and (d, d1, 7 

h, h1) GONs/TC4, respectively. The inset of (b1), (c1) and (d1) shows the EDS 8 

mapping of the unreacted nanocarbon materials, and the inset of (f) and (g) exhibits 9 

the dimples and tearing ridge, which are the ductile fracture characteristics, the orange 10 

inset of (g1) is the EDS result of in-situ formed TiC, respectively.  11 

 12 

To further understand the mechanisms for the improved mechanical properties of 13 

the composites, the in-situ microscale tensile tests were performed within the SEM in 14 

order to observe the real time fracture process of the composites. Figure 9(a) shows 15 

the photograph of the miniaturized tensile device for the tensile test. A notch was 16 

pre-made on the tensile sample to create the stress concentration site (Figure 9c), 17 

which is helpful for the localized crack initiation during the SEM observation. Figure 18 
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9(b) presents the load-displacement curve of as-rolled GNPs/TC4 composite with 1 

several paused stages of ①~⑥, in each of which the crack propagation was captured 2 

using the SEM images, which are shown in Figures 9(c)~(h). It can be seen from 3 

Figure 9(c) that there is no visible structural change up to the yielding point (stage 4 

①). After yielding, the plastic deformation becomes significant and a crack is 5 

initiated from the pre-made notch (stage ②). The crack propagates along a tortuous 6 

path (stage ③~⑤) and ultimately leading to the facture of the composite (stage ⑥). 7 

The similar crack propagation phenomena have also recently been reported in 8 

composites of GNPs/Cu and Ni-CNF/Ti [50-51, 52]. The deflection effect during the 9 

crack propagation helps to dissipate more energy and delay the catastrophic crack 10 

propagation, thus contributing to the enhanced toughening effect and improved 11 

ductility of GNPs/TC4 composites. The in-situ microscale tensile test (Figure S7) 12 

also indicates that the as-rolled GNPs/TC4 composite exhibits a higher strength than 13 

that of the as-rolled GPs/TC4 composite, which shows the similar results compared 14 

with that from the standard tensile test results shown in Figure 7.  15 

To further study failure modes in the as-rolled GNPs/TC4 composites, the 16 

magnified SEM images of cracks are also captured during the in-situ tensile test. 17 

Figures 9(i) and 9(j) reveal that the pulled-out graphene nanoplates are strongly 18 

adhered on the fractured matrix, and some deformed TiC particles are also attached to 19 

the surface of the matrix. Detailed observation of Figure 9(j) shows that that the 20 

exposed GNPs are either nearly pulled out from the matrix or display the serrate edges, 21 

thus implying the fracture of the GNPs. The pulled-out and fracture phenomena of the 22 
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GNPs and deformed TiC particles clearly demonstrate the strong GNPs/TC4 1 

interfacial bonding which can significantly enhance the load transfer capability of 2 

GNPs/TC4 composites. Moreover, metal serrations can be observed at the crack tips 3 

of the GNPs/TC4 composites (Figure 9k), which is a clear evidence of ductile 4 

fracture [53]. These metal serrations can effectively restrain the opening of the crack 5 

and delay the catastrophic fracture of the composites [54-55], which contribute for the 6 

simultaneous enhancement of their strength and ductility.  7 

 8 

 9 

Figure 9. Fracture behaviors of as-rolled GNPs/TC4 composites based on the in-situ 10 

microscale tensile test in SEM. (a) Photograph of deformation device installed in the 11 

SEM chamber. (b) Load-displacement curve with several paused stages. Inset 12 

showing the macrophotograph of the tensile samples before and after in-situ tensile 13 

test. (c~h) SEM images of the crack morphology and propagation at the interrupted 14 

①~⑥ stages marked in Figure 9(b). (i) and (j) Magnified image of the fractured 15 

surfaces of GNPs/TC4 composites. (k) Presence of metal serrations at the crack tips of 16 

the composites, respectively.  17 

4. DISCUSSIONS 18 

4.1 Formation process of interfacial characteristics 19 

Thermodynamic analysis was firstly performed to obtain the Gibbs free energy 20 

of carbide formation at the carbonaceous nanomaterials/TC4 matrix interface. For the 21 

Ti-C system [56], the possible reactions are: 22 
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Ti(s) + C(s)= TiC(s)                           (1) 1 

4Ti(s) + 2C(s)= 2Ti2C(s)                           (2) 2 

5
3 2

9.31 10
10184571.1 41.382 2.425 5.042 ln1G TT T T

T
− −


 = − + +  − − (T＜1939K)        (3) 3 

5
3 2

9.31 10
10160311.5 186.97 2.732 24.79 ln2G TT T T

T
− −


 = − − −  − + (T＞1939K)    (4) 4 

where G  (kJ/mol) and T (K) are the Gibbs free energy and the reaction 5 

temperature, respectively. Sintering and rolling were all performed at a temperature of 6 

1173 K, and clearly TiC can be easily formed owing to its lower Gibbs free energy 7 

(Figure 10b1).  8 

Figures 10(a) and 10(b) schematically show the interface formation mechanisms 9 

of the carbonaceous nanomaterial reinforced TC4 matrix composites based on atomic 10 

view. Three types carbon sources in this work are used to strengthen the TC4 matrix, 11 

but their defects levels and structure integrities of the carbon sources (Figure 4 and 12 

Table 2) before and after sintering are totally different. Hence, all the carbon sources 13 

in the different samples inevitably react with Ti matrix to form TiC phases, where the 14 

amount of TiC and reactive level are quite different according to their defects level 15 

(confirmed by Raman results in Figure 4 and Table 2). For example, the GNPs 16 

possess the highest defects level after sintering, therefore, they could easily react with 17 

TC4 matrix to form TiC if compared with the other carbon sources. For simplicity, 18 

herein we will only focus on the discussions of formation of TiC in the GNPs/TC4 19 

composites. 20 

Previous studies about the Cu matrix composites using reduced oxide graphene 21 

(rGO) and carbon nanotubues (CNTs) as carbon sources have shown that interfacial 22 



25 
 

carbides are preferentially formed at the defective sites of the rGO and CNTs, because 1 

of the highly reactive nature of carbon atoms in these defects (pristine and produced) 2 

regions, as well as easy formation of carbides [45, 57-59]. Therefore, the defect 3 

structures and distribution of carbon sources play critical roles in the nucleation and 4 

growth of carbides. As shown in Figure 1 and Figure 10(a1), some nanoscale defects 5 

are located at edges of the GNPs, which are caused by the oxidation-reduction 6 

fabrication process [32]. Furthermore, the defect densities of the GNPs (Figure S2 7 

and Figure 4) are slightly increased during the ball milling process owing to the 8 

newly generated defects (such as GNPs deformation, fracture, the expansion of the 9 

original defect etc.). When the mixed composite powders are rapidly sintered at 1173 10 

K and held for 5 min, some Ti atoms and carbon atoms are inter-diffused, and Ti 11 

atoms are quickly diffused to the highly reactive and amorphous carbon defects region, 12 

and then react with active carbon atoms of defects region to form TiC particles 13 

(Figure 10b2) or TiC layers (Figure 10b3). Meanwhile, some unreacted GNPs are 14 

kept and still distributed inside/around the TC4 matrix (Figure 10b4) owing to the 15 

short sintering duration. The formed three morphologies at the interfaces in Figures 16 

10(b2, b3 and b4) in this work result in a good combination of mechanical 17 

performance of the TiMCs reinforced with carbonaceous nanomaterials. 18 

 19 

Figure 10. The interface formation mechanism of the TC4 matrix composites 20 

reinforced with carbonaceous nanomaterials. (a) The defect of the GNPs’ edges based 21 

on atomic view, (a1) TEM and calculated d-spacing of original GNPs, showing the 22 
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nanoscale defects, (b) The obtained interfacial structure of the GNPs/TC4 based on 1 

atomic view, (b1) comparison of Gibbs free energy of carbides based on HSC 2 

chemistry soft 6.0 calculation, (b2) and (b3) the reaction products of Ti and carbon (i.e. 3 

GNPs) atoms, and (b4) the remained and distributed GNPs, respectively. 4 

 5 

4.2 Strengthening mechanisms 6 

For titanium alloys materials, impurity elements (such as N, O, C) have 7 

significant influences on the mechanical properties of the composites, and among 8 

them, O and N elements have much higher affinity with Ti matrix than that of C [60]. 9 

However, effects of O and N could be neglected in this study. Firstly the low energy 10 

milling was employed, and the undamaged spherical shape of the TC4 particles 11 

(Figure 3) are observed. Secondly the sintering was carried out in a relatively high 12 

vacuum atmosphere (10-3~10-4Pa) during the SPS. Texture of the composite would 13 

also significantly affect its strength during the rolling. As-rolled TiMCs has normally 14 

produced [0001] texture (Figure S6a-d), which is beneficial to the enhancement of 15 

their strength [61]. While in this study, the obtained composites exhibit comparable 16 

values of Schmid factors with the pure Ti matrix (Figure S6i), indicating that the 17 

GNPs and their in-situ formed microstructures have insignificant influences on the 18 

crystallographic structure of the composites [63]. In fact, the effect of GNPs on the 19 

texture could become significant only when their contents are over 0.2 wt.% in the 20 

TiMCs [62]. Therefore, we can conclude that texture strengthening induced by carbon 21 

sources can be neglected in this study. The similar phenomena has also been reported 22 



27 
 

in other MMCs reinforced with carbonaceous nanomaterials (GNPs, CNTs) in 1 

literature [64-65]. 2 

Herein, the discussions will be mainly focused on three main strengthening 3 

mechanisms of the composites: (1) solution strengthening of carbon atoms; (2) 4 

refinement strengthening; and (3) dispersion strengthening and load transfer 5 

strengthening of in-situ growth of interfacial TiC products and unreacted carbon 6 

source.  7 

(1) Strengthening by solution strengthening  8 

Interstitial carbon is an effective strengthening element and carbon atoms are 9 

preferably confined to α-phase in an α+β titanium alloy. However, further additions of 10 

carbon will have minor contribution to the enhancement of strength when the carbon 11 

concentrations are above its limit (~ 0.05 wt% for α-Ti at room temperature [66]). As 12 

reported in literature, solid solution strengthening (
S ) by carbon interstitial atoms 13 

contributes up to 7 MPa per 0.01 wt% carbon [67]. Based on this, strengthening 14 

contribution in 0.2% YS of TiMCs by carbon additions can be calculated as 35 MPa 15 

for all TC4 composites containing carbon sources above 0.05wt%. All the results 16 

about the strengthening effects in TiMCs have been summarized in Table 5. 17 

(2) Strengthening by grain refinement 18 

A reduction of average grain size after sintering improves the strength of metals, 19 

which can be described using the Hall-Petch relationship, and the increase of strength 20 

(
GR ) can be calculated via the following formula [68]:  21 

0.5 0.5

m( )cGR
K D D

− − = −                (5) 22 
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where K is the Halle-Petch coefficient, and usually shows the average effect of the 1 

grain boundaries in the polycrystal, K=0.68 MPa·m1/2 [34], Dc and Dm are the average 2 

sizes of TiMCs and monolithic TC4 (shown in Figure S6), respectively. The 3 

calculated GR  of TiMCs in comparison with that of the pure TC4 alloy are listed 4 

in Table 5.  5 

(3) Strengthening by TiC and GNPs 6 

As discussed in section 3, there are significant amounts of TiC phases formed 7 

during the sintering and rolling process, which consumes the carbon sources in the 8 

composite. Therefore, Orowan strengthening and load transfer mechanisms can be 9 

used to explain the direct interactions between GNPs or in-situ formed TiC particles 10 

with the matrix or dislocations in GNPs/TC4 composites (named as 
LT O −

), which 11 

can be regarded as synthetical contribution from GNPs and TiC. For simplicity, if the 12 

tensile strength of TiMCs (
c ) is regarded as the summation of pure TC4 strength 13 

(
m ), grain refinement (

GR ), solution strengthening (
S ) and load transfer 14 

(
LT O −

), then we can obtain:  15 

LT O c GR m S    −
= − − −               (6) 16 

The obtained strengthening contribution of the 
m , 

GR , 
S  and 

LT O −
 17 

are summarized in Figure 11. It can be seen that the grain refinement is contributed to 18 

a small portion (2.3 ~ 6.7 MPa) to the composites, and the Orowan strengthening and 19 

load transfer of TiC and carbon sources are dominant for the enhanced strength. When 20 

the GNPs are introduced in TC4 matrix, the enhanced strength by the Orowan 21 

strengthening and load transfer strengthening is 184.6 MPa (obtained using Eq. 6), 22 
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substantially higher than that of GONs/TC4 (128.06 MPa) and GPs/TC4 (92.19 MPa). 1 

Therefore, it can be concluded that the GNPs show the maximum strengthening effect 2 

in TiMCs. The defects of GNPs edges (Figure 1 and Figure 4) can provide the most 3 

active sites for the formation of TiC particles/layers, thus resulting in coherent 4 

interfaces and good interfacial bonding as well as high strength of GNPs. GONs also 5 

shows the similar nanoscale defects sites, however their defect levels are decreased 6 

during the sintering process [43] (shown in Figure 4 and Table 2). As for GPs/TC4 7 

composites, the GPs have a layered structure with multiple graphene sheets bonded by 8 

a weak Wan der Waals force. Moreover, their mechanical and physical properties 9 

across the basal plane (i.e., through thickness direction) are inferior to those obtained 10 

along the basal plane [69], leading to weaker bonding compared with TiMCs 11 

reinforced using GNPs as carbon sources. Therefore, the GPs/TC4 composites possess 12 

the lowest strength among three TiMCs.  13 

 14 

Figure 11. Comparisons of strengthening factors TiMCs in composites. 15 

Table 5 Mechanical strengthening mechanism of as-rolled TiMCs.  16 

Materials 
Grain size 

(μm) 

Grain 

refinement 

(MPa) 

Orowan strengthening and 

load transfer by TiC and 

residual carbon sources 

(MPa) 

Strengthening by 

carbon solution 

strengthening 

(MPa) 

0.2% YS 

(MPa) 

Increased 

0.2% YS 

(MPa) 

TC4 3.009 0 0 0 920.03 0 

0.15GPs/TC4 2.516 2.34 92.19 35 1049.56 129.53 

0.15GNPs/TC4 2.434 6.73 184.60 35 1146.36 226.33 

0.15GONs/TC4 2.538 2.31 128.06 35 1085.40 165.37 

5. CONCLUSIONS 17 
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In summary, graphite powders, graphene oxides and graphene nanoplates were 1 

employed as reinforcements to fabricate the TiMCs using powder metallurgy and hot 2 

rolling processes. The residual carbon sources, TiC nanoparticles/layer are 3 

simultaneously found in the composites, while their proportions depend on internal 4 

defects and reaction activity with TC4 matrix. All the three types carbonaceous 5 

nanofillers significantly improve the mechanical properties of the TiMCs. Especially, 6 

GNPs/TC4 composites show a better balance of strength and ductility than the other 7 

two composites, at the similar mass fraction of carbon nanofillers. The as-rolled 8 

GNPs/TC4 composites exhibits a 0.2% YS and UTS of ~1146 MPa and 1269 MPa, 9 

which have been increased by ~ 24.6% and ~ 19% as compared to those of the 10 

as-rolled TC4, as well as a good elongation of 8.1%. The enhanced strength is linked 11 

closely with the defect density and the formation of coherent TiC-Ti interfaces. The 12 

synergetic strengthening effect due to the Orowan strengthening and load transfer of 13 

GNPs and in-situ formation of interfacial TiC phases have significantly contributed to 14 

the enhanced strength of the TiMCs.  15 
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