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Abstract 

Neuroblastoma is the second-most common solid tumor in children and originates from poorly 

differentiated neural crest-derived progenitors. Although most advanced stage metastatic 

neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly 

differentiated cells frequently arises, leading to refractory disease. A lack of insight into the 

molecular mechanisms that underlie neuroblastoma progression hampers the development of 

effective new therapies for these patients. 

Normal neural crest development and maturation is guided by physical interactions 

between the cell and its surroundings, in addition to soluble factors such as growth factors. This 

mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that 

probe the cellular environment to modulate migration, proliferation, survival and differentiation. 

Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion 

signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy 

resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a 

protein that maintains the progenitor state of embryonic neural crest cells, are closely associated 

with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization 

and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to 

neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting 

proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in 

cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a 

subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in 

independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal 

complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics 

and cell-matrix interactions. 
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Introduction 

Neuroblastoma is one of the most common malignancies in childhood and responsible for 12% of 

cancer associated deaths in children (Maris, 2010; Morgenstern et al., 2013). A lack of insight into 

the molecular mechanisms that contribute to neuroblastoma progression hampers the 

development of effective new therapies (Maris, 2010; Morgenstern et al., 2013; Schramm et al., 

2015). Neuroblastoma is an embryonic tumor derived from pluripotent cells of the neural crest. 

The neural crest is a heterogeneous cell population that arises at the borders of the neuro-

ectoderm during early embryogenesis. Neural crest cells exhibit adaptive plasticity, i.e. the ability 

of phenotypic switching to allow cell-fate changes when necessary (Prasad et al., 2012; Thiery et 

al., 2009; Yang and Weinberg, 2008). These cell fate decisions are largely controlled by cues 

from the tissue microenvironment. In addition to growth factors and other soluble cues, cellular 

processes such as proliferation, migration and differentiation are directed by the mechanical 

crosstalk between cells and their microenvironment (Geiger et al., 2009; Kim et al., 2014; Paszek 

et al., 2005; Wirtz et al., 2011). The physical cross-talk between a cell and the surrounding tissue 

is mediated by cell adhesion sites and cellular protrusions such as lamellipodia and filopodia. 

These structures constantly probe the cellular microenvironment for chemical and mechanical 

cues, and signal to control cytoskeletal dynamics and gene expression. Whereas such signals 

preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-

differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance (Eke et al., 

2012; Kim et al., 2012; Matsushima and Bogenmann, 1992; Ou et al., 2012; Sloan et al., 2006; 

White et al., 2006; Wirtz et al., 2011). Indeed, several studies indicate that altered cell-matrix 

interactions significantly contribute to neuroblastoma pathogenesis (Feduska et al., 2013; Lee et 

al., 2012; Megison et al., 2013; Meyer et al., 2004; Molenaar et al., 2012; Yoon and Danks, 

2009).  

Members of the mammalian TRP channel family play a central role in mechano-signaling 

(Clark et al., 2008c; Lin and Corey, 2005; Numata et al., 2007a, b; Oancea et al., 2006; Orr et al., 

2006). Localized within mechano-sensory structures such as cell adhesions, channel opening is 

induced by membrane stretch and/or cytoskeletal tension. The resulting changes in local ion 

concentrations trigger cytoskeletal responses and regulate gene expression. The importance of 

these channels during embryonic development, tissue homeostasis and tumor progression is now 

widely recognized (reviewed in (Clark et al., 2008c; Delmas and Coste, 2013; Kuipers et al., 

2012; Vrenken et al., 2015)). For instance, TRPM7, a calcium permeable TRP-channel with a 

functional C-terminal kinase domain that localizes to cell adhesion sites, is required during the 

development of embryonic organ systems in mice, zebrafish and Xenopus, and maintains 

stemcell-like features of neural crest progenitor cells (Jin et al., 2008; Jin et al., 2012; Visser et 

al., 2014). Consistently, we identified TRPM7 as a regulator of cell mechanics that drives the 

malignant behavior of neuroblastoma cells by activating developmental programs in vitro and in 
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vivo (Middelbeek et al., 2015). Recent reports have confirmed the association between high 

TRPM7 expression and cancer progression in other tumor types, including pancreatic, 

nasopharyngeal, breast and prostate cancer (Chen et al., 2014; Middelbeek et al., 2012; 

Rybarczyk et al., 2012; Sun et al., 2013). Although little is known about the molecular mechanism 

by which TRPM7 promotes tumor progression, we previously established that TRPM7 regulates 

cellular tension through Ca
2+

- and kinase-dependent interactions with the actomyosin 

cytoskeleton (Clark et al., 2006; Clark et al., 2008a; Clark et al., 2008b). Based on the presence 

of TRPM7 in adhesion structures and because TRPM7 can be activated by mechanical stress, 

this cation channel may act to control cytoskeletal dynamics and downstream signaling pathways 

in response to mechanical cues, to promote the progenitor-like features of neuroblastoma cells 

(Clark et al., 2006; Numata et al., 2007a, b; Oancea et al., 2006; Su et al., 2006). 

 By performing mass-spectrometry on TRPM7 immune complexes, obtained from N1E-

115 neuroblastoma cells expressing HA-tagged TRPM7, we set out to identify the TRPM7 

interactome in neuroblastoma cells. We show that TRPM7 is part of a large cytoskeletal protein 

complex which mostly contains proteins involved in cell protrusion dynamics and adhesion 

formation. By combining a comprehensive literature study with microarray-based gene expression 

analysis, we demonstrate that ~55% of the TRPM7 interactors are associated with cancer 

progression and metastasis formation. Moreover, a number of these components accurately 

predicts neuroblastoma disease outcome in three independent neuroblastoma patient cohorts. 

Together, our results provide further insight into the close interactions between TRPM7 and the 

actomyosin cytoskeleton, and suggest a regulatory role for the TRPM7 interactome in cancer 

progression. 

 
Results & Discussion 

TRPM7 associates with a protein complex that controls cytoskeletal organization  

To define the mechanism by which TRPM7 contributes to neuroblastoma progression, we 

identified proteins in complex with TRPM7 using a proteomic approach (Fig. 1A). The TRPM7 

complex was purified by immunoprecipitation from mouse N1E-115 neuroblastoma cells made to 

express TRPM7-HA (Clark et al., 2006). Associated proteins were resolved by SDS-PAGE. Silver 

staining of the gels revealed several proteins that were strongly enriched in the TRPM7 fraction 

(Fig. 1B). Proteins present in the control and TRPM7 immunoprecipitations were identified by 

nano liquid chromatography tandem mass spectrometry (LC-MS/MS) and proteins were 

considered to specifically interact with TRPM7 when corresponding peptides were exclusively 

detected in the TRPM7 fraction (TRPM7 IP exclusive), or when peptides were detected in both 

control and TRPM7 fractions but showing an iBAQ ratio between TRPM7 and control fraction 

greater than 10 (enriched). This analysis led to the identification of 251 proteins of which 64 

appear to be in a complex with TRPM7 (Table 1 & S1). Proteins were classified according to 

Gene Ontology (GO) annotation for molecular function, cell component and biological process. A 
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distribution of GO terms between the control and TRPM7 fractions showed that the TRPM7 

protein complex is specifically enriched for proteins involved in the organization and biogenesis of 

the actomyosin cytoskeleton (Fig. 1C). This set of proteins includes conventional myosin II and 

several non-conventional myosins (myosins I, V and VI) as well as proteins regulating actin 

dynamics such as components of the Arp2/3 complex, F-actin capping proteins, drebrin, 

tropomyosins, tropomodulin, gelsolin and cofilin. Moreover, a group of structural proteins involved 

in cross-linking and scaffolding the cytoskeleton, including α-actinin4 and plectin, was also 

present (Table 1).  

We were able to confirm a substantial number of interactions between TRPM7 and its 

cytoskeletal interactors by immunoprecipitation and Western blotting (Fig. 2). The interactions 

between TRPM7 and the actomyosin cytoskeleton appear to be highly specific. First of all, none 

of the interactors were found in significant quantities in control immunoprecipitations (Table S1). 

Moreover, actin-binding proteins such as α-actinin1, cortactin, talin and vinculin, which are 

abundantly expressed in these cells and thus likely contaminants in immunoprecipitations, were 

not detected either by mass spectrometry or Western blotting (Table S1, Fig. 2). Finally, the 

detection of myosin IIA, IIB and IIC heavy chain, known substrates of the TRPM7 kinase domain 

(Clark et al., 2006; Clark et al., 2008a; Clark et al., 2008b), further validates our proteomics 

approach. Note that the interaction between TRPM7 and the cytoskeleton is not restricted to 

ectopically expressed TRPM7-HA, as we previously showed that endogenous TRPM7 also 

interacts with the actomyosin cytoskeleton (Clark et al., 2006).  

 

The TRPM7 interactome is a macromolecular complex involved in cell adhesion and protrusion 

formation 

We previously showed that TRPM7 is enriched in invadosome-type adhesions where it may aid in 

the assembly of such structures (Clark et al., 2006). Invadosomes are highly dynamic, matrix 

degrading adhesion structures that act as mechanosensory devices by detecting rigidity and 

topography of the substratum (Gimona et al., 2008; Linder and Wiesner, 2015; Linder et al., 

2011). Consistent with a role for TRPM7 in mechanical regulation of cytoskeletal dynamics, a 

significant number of TRPM7 interactors are known constituents of either the invadosome core, 

such as F-actin, F-actin capping proteins, Arp2/3, gelsolin, cofilin, or the ring, such as nonmuscle 

myosin IIA and tropomyosin (Gimona et al., 2008; Linder, 2007; Linder et al., 2011) (Table 1). 

Moreover, the 'TRPM7 interactome' comprises previously unknown invadosome components, 

including drebrin, myosin IIB and IIC, myosin Va, α-actinin4 and SIPA1-L1/SPAR1 (Fig. 3). The 

observation that many TRPM7 interactors localize to these defined cellular structures supports 

the specificity of our proteomics approach. 

Consistent with the fact that invadosomes are actin-based protrusive structures, many of 

the TRPM7 interactors are known to regulate the dynamic formation of cellular protrusions such 
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as filopodia, neuronal growth cones, dendritic spines and podocytes (Goel et al., 2005; Goswami 

and Hucho, 2008; Kuipers et al., 2012). For instance, the ‘TRPM7 interactome’ component 

calmodulin is a calcium sensor that can activate the serine/threonine phosphatase calcineurin (Li, 

1984). Calcineurin regulates cytoskeletal organization and neurite extension by activation of the 

phosphatase slingshot (SSH2) and its substrate cofillin (CFL1), both of which are present in the 

TRPM7 interactome (Descazeaud et al., 2012; Wang et al., 2005). The vesicle carrier myosin Va 

links long distance microtubule-based cargo transport to short distance actin-based transport and 

is crucial for filopodia and neurite extension (Ali et al., 2008; Desnos et al., 2007; Wang et al., 

1996). Tropomodulin 2, in turn, is an actin-regulatory protein with capping activity that regulates 

actin polymerization and neurite extension (Fath et al., 2011). Many other TRPM7 interacting 

proteins, such as myosin VI (Lewis et al., 2011), drebrin (Ishikawa et al., 1994; Majoul et al., 

2007; Mercer et al., 2010), TAX1BP1 (Morriswood et al., 2007), and SIPA1-L1/SPAR1 (Pak et al., 

2001), have been similarly implicated in the regulation of adhesion dynamics and cell protrusion 

formation. Together, these findings suggest that, as a functional complex located at sites of cell 

adhesion or in cellular protrusions, the TRPM7 interactome may control cytoskeletal organization 

in response to mechanical cues from the tissue microenvironment. 

The functional implications of the interactions between TRPM7 and its cytoskeletal 

binding partners remain incompletely understood. We have shown in the past that inhibition of 

TRPM7 results in the disassembly of invadosomes (Visser et al., 2013), which suggests that 

activity of TRPM7 is involved in maintaining the integrity of the ‘TRPM7 interactome’. This is 

consistent with the general notion that TRP channels act as cytoskeletal scaffolding proteins 

(Clark et al., 2008c; Kuipers et al., 2012). Furthermore, our earlier work revealed that TRPM7 

regulates the activity non-muscle myosin II isoforms through kinase-dependent interactions with 

the myosin II heavy chain,  promoting the assembly of invadosomes. If and how TRPM7 may 

affect the localization and function of other interactome components will be addressed in future 

studies 

 

Components of the ‘TRPM7 interactome’ correlate with human neuroblastoma metastasis 

A recent study by Molenaar et.al. shows that defects in genes encoding regulators of cytoskeletal 

dynamics strongly associate with high-risk neuroblastomas with an aggressive clinical course 

(Molenaar et al., 2012). An extensive literature survey demonstrated that expression of TRPM7 

and many TRPM7 interactors (~55%) have been associated with disease outcome in various 

cancers, although only a minority of these have thus far been implicated in neuroblastoma 

progression (~5%) (Table 1). We therefore tested to what extent components of the TRPM7 

interactome associate with outcome in human neuroblastoma, using microarray-based 

neuroblastoma gene expression datasets. The discovery dataset (Kocak - 649) contained 

expression profiles of 649 primary tumor biopsies, along with clinical information on overall and 
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relapse-free survival (Kocak et al., 2013). Probes for all validated components of the TRPM7 

interactome were present on this microarray. We previously reported that TRPM7 itself 

associates with disease outcome in this dataset (Middelbeek et al., 2015). Additionally, mRNA 

expression of a substantial number of TRPM7 interactors correlate significantly with overall (33 

out of 64) and relapse free survival (30 out of 64) after correction for multiple testing. We 

performed similar analyses using two independent validation cohorts of 88 (Versteeg-88) and 251 

(Oberthuer-251) neuroblastoma patients (Geerts et al., 2010; Oberthuer et al., 2006). In the 

Versteeg-88 and Oberthuer-251 cohorts, respectively 14 out of 60 and 25 out of 35 TRPM7 

interactors present on the array correlate significantly with disease outcome (Table S2). Across 

the three datasets, we observed striking similarities in the co-regulation of genes that associate 

with neuroblastoma disease progression. Expression of 18 interactors were similarly associated 

with disease progression in at least 2 out of 3 datasets (Table 1). Regulators of adhesion 

dynamics and cytoskeletal organization junctional plakoglobin (JUP), myosin light chain 6 

(MYL6), myosin 5A (MYO5A), tropomodulin 2 (TMOD2) are amongst the interactors that 

correlated most significantly with disease outcome (Fig. 4).  

 The TRPM7 interactome comprises proteins that either positively or negatively associate 

with tumor progression. This may seem to be at odds with the notion that high TRPM7 expression 

is generally associated with poor disease outcome. However, TRPM7 may either positively OR 

negatively regulate the activity of its interactors. Similarly, the different interactors of TRPM7 may 

oppositely affect the aggressive features of neuroblastoma cells. Overall, these observations 

suggest that TRPM7 is part of a cytoskeletal complex that controls the dynamic formation and 

function of mechanosensory structures such as cell adhesions and cellular protrusions. This 

complex may function to control neural crest development in response to mechanical cues, but 

when deregulated it could contribute to neuroblastoma disease progression. 

 

Concluding remarks 

There is growing evidence that mammalian TRP channels form large macromolecular complexes 

linked to the actomyosin cytoskeleton (Clark et al., 2008c; Kuipers et al., 2012). Organization of 

TRP channels into large multiprotein complexes (signalplexes) may serve to localize signal 

transduction pathways and/or enhance the rate of signal transmission. By similarity to TRP 

channels in Drosophila photoreceptors (Tsunoda et al., 2001), TRPM7 may function to anchor 

and maintain the integrity of the complex. Additionally, TRPM7 kinase activity and ion 

conductance potentially modulate the activity of cytoskeletal components within the complex. A 

more detailed understanding of the function of the TRPM7 interactome in neuroblastoma may 

offer new strategies for inducing neuroblastoma differentiation and to overcome therapy 

resistance in the patient. 
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Material and Methods 

Constructs and cell lines 

Full length TRPM7 cDNA, cloned into LZRS-neo, was previously described (Clark et al., 2006). 

The recombinant protein contains an HA-tag at the C-terminus. Mouse N1E-115 neuroblastoma 

cells were cultured in DMEM supplemented with 10% FCS and 1% penicillin-streptomycin. N1E-

115 cells stably expressing TRPM7-HA and empty vector control were generated using retroviral 

transduction. Transduced cells were selected by the addition of 0.8 mg/ml G418.  

 

Immunoprecipitation 

N1E-115 control and TRPM7-transduced cells were washed twice in ice-cold PBS and 

subsequently, lysed on ice for 30 min in a buffer containing 50 mM Tris pH 7.5, 300 mM NaCl, 1.5 

mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 1% Triton X-100 and protease inhibitors. The lysate was 

cleared by centrifugation for 30 min at 16000 g. HA-tagged proteins were immunoprecipitated by 

incubating the supernatant with proteinG-sepharose beads that were blocked with 0.5 %w/v BSA 

and precoupled with 12CA5 monoclonal anti-HA antibodies (Sigma Aldrich). The samples were 

incubated on an end-over-end rotor for 3 h at 4 °C. Subsequently, the immunocomplexes were 

washed in MyoII lysis buffer and solubilized in Laemmli buffer.  

 

Mass Spectrometry 

1. Nano LC-MS/MS measurements  

Proteins were separated by SDS-PAGE on 6% and 12% polyacrylamide gels and subsequently, 

detected by silver staining. Gels were sliced into pieces and digested with trypsin overnight at 37 

°C. Peptide mass spectrometric experiments were performed using a nano-HPLC Agilent 1100 

system connected to a 7-Tesla linear quadruple ion trap-Ion Cyclotron Resonance Fourier 

transform (LTQFT) mass spectrometer (Thermo Fisher). Peptides were separated on 15 cm 100 

µm ID PicoTip (New Objective) columns packed with 3 µm Reprosil C18 beads (Dr. Maisch 

GmbH) using a 45 min gradient from 10% buffer B to 35% buffer B (80% acetonitrile in 0.5% 

acetic acid). Peptides eluting from the column tip were electrosprayed directly into the mass 

spectrometer with a spray voltage of 2.1 kV. Peptide selection and fragmentation was set by the 

Xcalibur 1.4 data acquisition software (Thermo Electron). The mass spectrometer was operated 

in the data-dependent mode to sequence the four most intense ions per duty cycle. Briefly, full-

scan MS spectra of intact peptides (m/z 350–1500) with an automated gain control accumulation 

target value of 10
6
 ions were acquired in the Fourier transform ion cyclotron resonance (FT ICR) 

cell with a resolution of 50000. The four most abundant ions were sequentially isolated and 

fragmented in the linear ion trap by applying collisionally induced dissociation using an 

accumulation target value of 20000 (capillary temperature, 150°C; normalized collision energy, 

30%). A dynamic exclusion of ions previously sequenced within 180 s was applied. All 
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unassigned charge states were excluded from sequencing. A minimum of 500 counts was 

required for MS
2
 selection.  

 

2. Proteome data analysis 

Mass spectrometry data were analyzed with the protein identification and quantification 

algorithms embedded in the MaxQuant /Andromeda software (Cox and Mann, 2008). Raw 

spectrum files were converted into peak lists for the top 6 peaks per 100 Da window. Peptides 

and proteins were identified by searching the peak lists against the mouse IPI database (version 

3.88) supplemented with frequently observed contaminants and concatenated with reversed 

copies of all entries. Andromeda (Cox et al., 2011) search parameters for protein identification 

specified a mass tolerance of 6 ppm for the parental peptide and 0.5 Da fragmentation spectra 

and a trypsin specificity allowing up to 3 miscleaved sites. Carboxyamidomethylation of cysteines 

was specified as a fixed modification, and oxidation of methionine were set as variable 

modifications. The required minimal peptide length was set at 6 amino acids. We accepted 

peptides and proteins with a false discovery rate (FDR) better than 0.01. Label-free quantification 

was performed by MaxQuant with iBAQ values reflecting protein abundance (Schwanhausser et 

al., 2011). 

 

3. Functional annotation of identified proteins  

Validated peptides of all samples combined were remapped to mouse IPI database version 3.88 

to remove protein redundancy between different samples using an in-house Perl script. Priority of 

redundant IPI entries was given to Swiss prot, TREMBL, and REFSEQ entries respectively for 

maximising Gene Ontology (GO) annotation of identified proteins. External contaminating 

proteins (keratins, trypsin) were excluded for further analysis. Entrez gene identifiers were 

obtained using the Gene Conversion ID tool of DAVID (http://david.abcc.ncifcrf.gov/). Proteins in 

TRPM7 and control immuniprecipitations were quantified by intensity-based absolute 

quantification (iBAQ) (Schwanhausser et al., 2011), and normalized with median expression 

values. Proteins were considered enriched in the TRPM7 immunoprecipitate when the ratio 

between normalized iBAQ score in TRPM7 and control immunoprecipitates was larger than 10. 

Subsequent GO annotation analysis was performed using the DAVID functional annotation tool. 

First, GO-term enrichment in both TRPM7 and control immunoprecipitates, relative to the mouse 

whole genome, was determined. Next, the number of proteins in TRPM7 and control 

immunoprecipitates, functionally annotated to the most significantly enriched terms in the 

categories 'molecular function', 'biological process' and 'cellular function', were compared. 

Statistical significance was calculated using the fisher exact test and corrected for multiple testing 

(FDR). 
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Western blotting 

Proteins were separated by SDS-PAGE and transferred to nitrocellulose. Subsequently, proteins 

were detected by immunoblotting using anti-α-actinin1 (1:1000; Sigma), anti-cortactin (1:500; 

(Schuuring et al., 1993)), anti-talin (1:500; Sigma), anti-vinculin (1:2000; Sigma), anti-myosin IIA 

(1:1000; Sigma), anti-myosin IIB (1:1000; Sigma), anti-myosin IIC (1:1000; (Golomb et al., 2004)), 

anti-drebrin (1:1000, Progene), anti-p116
Rip

 (1:2000, (Mulder et al., 2004)), anti--actinin4 (1:500, 

K. Cho), and anti-tropomodulin2 (1:1000, Abcam) followed by HRP-conjugated secondary 

antibodies (1:5000; Dako). Antibody-reactive bands were visualized by treating the blots with ECL 

(Amersham) followed by autoradiography. 

 

Microscopy 

N1E-115/TRPM7 cells were seeded on glass coverslips and serum starved (0.1% FCS) overnight 

prior to stimulation with 200nM bradykinin for 15 min. Cells were fixed with 4% paraformaldehyde 

in PBS for 10 minutes at room temperature and subsequently permeabilized with 0.1% triton X-

100 in PBS for 3 minutes. Antibodies were used to reveal the presence of anti-myosin IIA (1:100; 

BTI), anti-myosin IIB (1:100, Sigma), anti-myosin IIC (1:100, (Golomb et al., 2004)), anti-drebrin 

(1:100, Progene), anti-p116
Rip

 (1:200, (Mulder et al., 2004)), anti-α-actinin4 (1:200, K. Cho), anti-

tropomodulin2 (1:100, Abcam) and alexa488-conjugated secondary antibodies (1:1000; 

Molecular Probes). As no antibodies were available against myosin V and SIPA1-L1, GFP- and 

Myc-tagged proteins, respectively, were introduced into N1E-115/TRPM7 cells. Transfections 

were carried out using Fugene HD Transfection Reagent (Roche Applied Science) according to 

manufacturer’s protocol. F-actin was detected using Aleaxa-568 phalloidin (1:100; Molecular 

Probes). Cells were viewed using a Leica TCS SP5 confocal microscope. 

 

Microarray-based patient dataset analysis 

Both the discovery cohort (Kocak-649) and validation cohorts (Versteeg-88 and Oberthuer-251) 

have been previously described and microarray based expression data are publically available). 

Statistical analyses were performed using R2 genomics analysis and visualization platform, 

developed at the department of Oncogenomics, Academic Medical Center in the University of 

Amsterdam (http://r2.amc.nl). For each gene that was analyzed, discovery and validation cohorts 

were dichotomized based on an optimal cut-off value (Kaplanscan). In short, the optimal 

threshold was determined as follows: (1) patient samples were sorted, based on normalized 

expression of the gene of interest; (2) for all possible thresholds, significance of the correlation 

with disease outcome (overall survival, recurrence free survival or bone/bonemarrow metastasis 

free survival) was calculated using the log-rank test; (3) the best performing threshold is used as 

cut-off value to dichotomize the cohort. To correct for multiple testing, p-values were Bonferoni 

http://r2.amc.nl/
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corrected. Survival curves were visualized by Kaplan-Meier plots, using overall survival as 

endpoints, and compared using log-rank tests.  

 

Literature survey 

Association of TRPM7 interactome components with cancer progression was evaluated by an 

online Pubmed search, using Gene ID and cancer, tumor or metastasis as search terms, followed 

by hand screening of titles, abstracts and full text articles. Genes were considered cancer-

associated when shown to correlate with patient outcome in microarray-based gene expression 

profiles or when differential expression in tumor cell models affects tumorigenesis in vitro or in 

vivo. 
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Figure legends 

 

Figure 1. TRPM7 associates with components of the actomyosin 

cytoskeleton 

A) Flow chart for proteomic analysis of the TRPM7 complex. 

B) Detection of TRPM7 associated proteins by silver staining of SDS-PAGE gels. 

HA-tagged TRPM7 was isolated by immunoprecipitation using anti-HA 

monoclonal antibodies (12CA5) from N1E-115 control and TRPM7-transduced 

cells. Proteins were separated by SDS-PAGE on 6% (top) and 12% (bottom) gels 

and subjected to silver staining. Proteins which co-immunoprecipitating with 

TRPM7, are indicated. 

C. TRPM7-HA immunoprecipitates (IP) are enriched for cytoskeletal proteins. Gene 

ontology (GO) analysis was performed on the set of proteins exclusively present or 

enriched (iBAQ > 10) in TRPM7 IP and proteins identified in control IP. GO enrichment, 

relative to the mouse whole genome, was determined for both IPs. GO terms in 

categories 'biological process', 'molecular function' and 'cell component', that were most 

significantly enriched in the TRPM7 IPs, are indicated. The fraction of proteins within the 

IPs, annotated to these terms, are presented in a bar chart. Statistical significance 

between control and TRPM7 IP content was determined by a fisher exact test (*** = p < 

0.0001). 

 

Figure 2. TRPM7 specifically interacts with a cytoskeletal complex 

The interactions between TRPM7 and the actomyosin cytoskeleton are specific. Protein 

complexes were immunoprecipitated from N1E-115 control and TRPM7 overexpressing 
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cells, using anti-HA antibodies (12CA5). Proteins present in immunoprecipitations (IP, 

left) and total lysates (TL, right) were detected by Western blot. Known invadosome 

components are indicated in red. 

 

Figure 3. TRPM7 cytoskeletal interactors localize to invadosomes 

By using confocal microscopy, known (myosin IIA) and novel invadosome 

components were identified in N1E-115 cells that stably overexpress TRPM7. If 

available, antibody staining was performed (myosin IIA, IIB and IIC, drebrin, 

p116Rip, Tropomodulin2 and -actinin4). Alternatively, protein localization was 

evaluated by expression of GPP- or myc-tagged proteins (myosin V and SIPA1-

L1). Actin was visualized by Alexa-568 Phalloidin labeling, to indicate 

invadosome cores (Red). All the tested TRPM7 interactors (green) localized to 

peripheral invadosomes. Scale bars: 5 m. 

 

Figure 4. Expression levels of TRPM7 interactome components correlate 

with disease outcome in a neuroblastoma patient cohorts 

A) Overview of TRPM7 interactome components that correlate with overall 

survival (OS) and recurrence free survival (RFS) in at least two out of three 

patient datasets (Kocak-649, Versteeg-88 and Oberthuer-251). P-values are 

corrected for multiple testing (bonferoni and false discovery rate). n.s. = not 

significant; - = gene not present on array; KM-arm ‘low’ means that low 

expression correlates with poor outcome, ‘high’ means that high expression 

predicts poor outcome in the Kaplan-Meier analysis. P < 0.05 was considered 

significant.  
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B) Kaplan-Meier analysis of overall survival according to mRNA expression 

levels of TRPM7 cytoskeletal interactors. Low expression of JUP, MYL6, MYO5A 

in the Kocak-649 patient dataset, and TMOD2 in the Versteeg-88 patient dataset, 

strongly correlate with poor disease outcome. P-values are based on log-rank 

test and corrected for multiple testing (bonferoni). 

 

Table 1. Overview of TRPM7 interactome components and their association 

with invadosomes and cancer progression 

All 64 TRPM7 interactors (iBAQ score > 10) are categorized by general biological 

function. Components are indicated by protein name, gene symbol and gene ID 

(for mouse and human). Known (+) and novel invadosome components are 

indicated, as well as established associations with cancer progression (CA), as 

was determined by literature search. 1 = associated with neuroblastoma 

progression. 
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Table 1 
      

       Categor
y Protein name Gene Symbol Gene ID Invadosome CA 

   
Mouse Human 

  

A
c
ti

n
 D

y
n

a
m

ic
s
 

Actin, cytoplasmic 1 ACTB 11461 60 + + 

Actin, cytoplasmic 2 ACTG1 11465 71 + 
 

Actin-related protein 2 ACTR2 66713 10097 

 
+ 

 

+ 

Actin-related protein 2/3 complex subunit 1A ARPC1A 56443 10552 + + 

Actin-related protein 2/3 complex subunit 1B ARPC1B 11867 10095 + + 

Actin-related protein 2/3 complex subunit 2 ARPC2 76709 10109 + + 

Actin-related protein 2/3 complex subunit 3 ARPC3 56378 10094 + 
 Actin-related protein 2/3 complex subunit 4 ARPC4 68089 10093 + 
 Actin-related protein 2/3 complex subunit 5 ARPC5 67771 10092 + + 

Actin-related protein 2/3 complex subunit 5-like protein ARPC5L 74192 81873 + 
 Cofilin-1 CFL1 12631 1072 + + 

Drebrin DBN1 56320 1627 novel + 

F-actin-capping protein subunit alpha-1 CAPZA1 12340 829 
 

+
1
 

F-actin-capping protein subunit alpha-2 CAPZA2 12343 830 
 

+ 

F-actin-capping protein subunit beta CAPZB 12345 832     

Gelsolin GSN 227753 2934 + + 

Tropomodulin-2 TMOD2 50876 29767 
 

+ 

Tropomodulin-3 TMOD3 50875 29766     

Tropomyosin alpha-1 chain TPM1 22003 7168 

 
+ 

 

+ 

Tropomyosin alpha-3 chain, isoform 1 & 2 TPM3 59069 7170 + + 

Tropomyosin alpha-4 chain TPM4 326618 7171 + + 

       

M
o

le
c

u
la

r 
m

o
to

rs
 

Myosin light chain 3 MYL3 17897 4634 
  Myosin light chain, regulatory B-like MYL9 67268 10398 
  Myosin light polypeptide 6 MYL6 17904 4637     

Myosin-9 (NMHC IIA) MYH9 17886 4627 + + 

Myosin-10 (NMHC IIB) MYH10 77579 4628 novel 
 Myosin-11 MYH11 17880 4629     

Myosin-14 (NMHC IIC) MYH14 71960 79784 novel 
 Myosin-Ib  MYO1B 17912 4430 

  Myosin-Ic MYO1C 17913 4641     

Myosin-1e MYO1E 71602 4643 
  Myosin Va MYO5A 17918 4644 novel + 

Myosin VI MYO6 17920 4646   + 

       

S
c

a
ff

o
ld

 /
  
  

  
  
  

  
  

  

S
tr

u
c
tu

ra
l 

p
ro

te
in

 Alpha-actinin-4 ATCN4 60595 81 novel + 

Desmoplakin DSP 109620 1832 
 

+ 

LIM and calponin homology domains-containing protein 1 LIMCH1 77569 22998     

LIM domain and actin-binding protein 1 LIMA1 65970 51474 
 

+ 

Myosin phosphatase Rho-interacting protein MPRIP/p116RIP 26936 23164 novel 
 Neurabin-2 PPP1R9B 217124 84687   + 

Plectin PLEC 18810 5339 + + 

E
n

z
y
m

a
ti

c
 

a
c

ti
v
it

y
       Protein phosphatase Slingshot homolog 2 SSH2 237860 85464 

  Signal-induced proliferation-associated 1-like protein 1 SIPA1L1 217692 26037 
  Transient receptor potential cation channel subfamily M member 7 TRPM7 58800 54822 + + 

      

O
th

e
r 

Annexin A2 ANXA2 12306 302 
 

+ 

Calmodulin CALM1 12313 801 
  Fructose-bisphosphate aldolase A ALDOA 11674 226   + 

Junction plakoglobin JUP 16480 3728 
 

+ 

Kinase D-interacting substrate of 220 kDa KIDINS220 77480 57498 
 

+
1
 

Pericentriolar material 1 protein PCM1 18536 5108   + 

Tax1-binding protein 1 homolog TAX1BP1 52440 8887 
 

+ 

       

N
o

n
-c

y
to

s
k

e
le

to
n

-

re
la

te
d

 

116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 20624 9343 
  14-3-3 protein sigma SFN 55948 2810 
 

+
1
 

AT-rich interactive domain-containing protein 1A ARID1A 93760 8289   +
1
 

ELAV-like protein 3 ELAVL3 15571 1995 
  Histone H3.2 HIST1H3E 319151 8353 
  Importin-7 IPO7 233726 10527     
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Importin-9 IPO9 226432 55705 
  Prelamin-A/C LMNA 16905 4000 
 

+ 

Probable ATP-dependent RNA helicase DDX5 DDX5 13207 1655   +
1
 

Protein transport protein Sec16B SEC16B 89867 89866 
  Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 ATP2a2 11938 488 
 

+ 

Transcription intermediary factor 1-beta TRIM28 21849 10155   + 

Ubiquitin carboxyl-terminal hydrolase 15 USP15 14479 9958 
  Voltage-dependent anion-selective channel protein 1 VDAC1 22333 7416 
 

+ 

 












