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ABSTRACT Software-defined networking (SDN) separates the network control plane from the packet
forwarding plane, which provides comprehensive network-state visibility for better network management
and resilience. Traffic classification, particularly for elephant flow detection, can lead to improved flow
control and resource provisioning in SDN networks. Existing elephant flow detection techniques use
pre-set thresholds that cannot scale with the changes in the traffic concept and distribution. This paper
proposes a flow-aware elephant flow detection applied to SDN. The proposed technique employs two
classifiers, each respectively on SDN switches and controller, to achieve accurate elephant flow detection
efficiently. Moreover, this technique allows sharing the elephant flow classification tasks between the
controller and switches. Hence, most mice flows can be filtered in the switches, thus avoiding the need
to send large numbers of classification requests and signaling messages to the controller. Experimental
findings reveal that the proposed technique outperforms contemporary methods in terms of the running

time, accuracy, F-measure, and recall.

INDEX TERMS Software-defined networking, Flow classification, Elephant flow detection

. INTRODUCTION

Software-defined networking (SDN) [1] has generated sig-
nificant interest in industry and academia in recent years.
The most crucial advantage of SDN is the opportunity to
provide intelligence in computer networks. SDN capabilities
include dynamic updates of the forwarding rules, software-
based traffic analysis, and a logically centralized control
network with a global view. These features allow the pos-
sible adoption of machine learning in network management
[2]. However, the continuous growth of data traffic in
terms of volume, velocity, and variety has made network
traffic engineering a challenging task [3]. An accurate flow
detection is vital for establishing appropriate forwarding
strategies for various flow types, particularly for elephant
flows (EFs) in an SDN environment.

Recent measurements conducted in data center net-
works [4], [5] have shown that 80% of the total flows take
less than a few milliseconds and are less than 10 KB in size
(i.e., mice flows, MFs), and that the majority of the traffic
volume is accounted for by the top 10% of large flows (i.e.,
EFs). Any traffic that exceeds a certain threshold per unit
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time (e.g., | MBps) is often considered also an EF [6]. Given
the high rate of EFs in network traffic, their effective control
and rerouting can potentially improve the SDN network
throughput [7]. By contrast, the competition for resources
between MFs and EFs makes MFs to receive insufficient
bandwidth [8]. Hence, EF detection [9] is an essential aspect
of network traffic classification. The SDN controller does
not need to process all flows, as the controller only needs
to consider those EFs that severely impact the network
performance when performing traffic management. If they
are not efficiently managed, the network buffers can be filled
with EFs, thereby leading to queuing delays and packet
drops. Thus, EF detection is essential to easing network
congestion [10].

Several EF detection techniques [6], [7], [11]-[20] have
been previously proposed. However, these techniques are
preconfigured with fixed flow size thresholds in the switch,
which can result in high rates of false positive and false neg-
atives. Moreover, some methods require periodic extraction
of the flow statistics (e.g., [6], [7], [16], [17]) or sampling
packets (e.g., [11]-[15]) from SDN switches, result in a long
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flow detection latency and heavy controller-switch signalling
overhead. Some other techniques require either important
modifications in the switch hardware (e.g., [18]) or applying
end-host inference (e.g., [19], [20]), which make adoption
in existing SDN difficult to achieve.

By considering limitations as mentioned earlier, several
improved EF detection techniques have been proposed [21]—
[24]. However, these techniques are weakened by a slow
convergence for several reasons, including the switch-
controller interaction which requires a high bandwidth and
long detection time. The thresholds of existing detection
approaches are usually preconfigured without any consider-
ation of the changing traffic load or distribution in the SDN
networks, which may cause a high false detection. Flow
detection in SDN also requires accurate real-time detection.
Flow detection techniques based on statistical thresholds can
operate in real-time but with a lower accuracy, and at the
same time increasing the controller workload. This problem
requires a careful trade-off balancing. When performing an
SDN flow prediction, a failure to detect an EF can have
more severe consequences than that for misdetection an MF.
To further improve the accuracy of EF detection, the flow
characteristics must be fully considered.

This paper presents a flow-aware EF detection technique
for SDN. The proposed technique employs a pair of clas-
sifiers that run in tandem on the SDN switches and the
controller, respectively, to share the tasks of classifying
the EFs. Hence, most MFs can be filtered in the switches,
and a large number of classification requests and signaling
messages can be avoided at the controller. Our solution
provides a good trade-off between the overall accuracy
and the controller loads, which is critical for real-time
traffic flow management. Several experiments have also
been conducted on real datasets to measure the improvement
in the controller running time, accuracy, F-measure, and
recall. The key contributions of this paper are as follows.

o Proposing a flow-aware EF detection technique for
SDN that can identify real-time EFs with low timing
overhead and high detection accuracy, recall, and F-
measure.

o Proposing a switch-side count-min (CM) sketch data
stream structure used to filter MFs with commodity
OpenvSwitch software. Moreover, the OpenFlow pro-
tocol is enhanced with extended signalling messages
to handle the CM sketch data processing between
switches and the controller side classifiers.

o Evaluating the performance of the classifiers in real-
time for EF detection using real traces from the Internet
and a data center in a Mininet simulation environ-
ment. The performance results show that our proposed
technique can significantly improve the running time,
accuracy, recall, and F-measure.

The reminder of this paper is organized as follows. A
review of previous related studies is presented in Section II.
Section III describes the framework design of the proposed

2

EF detection technique. An evaluation of the results and a
relevant discussion are detailed out in Section IV. Finally,
Section V provides some concluding remarks regarding this
research and areas of potential future study.

II. BACKGROUND AND RELATED WORK

A. SDN BACKGROUND

The SDN architecture characteristically abstracts the con-
troller and data planes as separate entities, as illustrated
in Figure 1. Programmability is the key characteristic of
an SDN architecture allowing users to develop their cus-
tomized applications. Using advanced policy applications
and services and programmable application program inter-
faces (APIs) provided by the north-bound interface, users
can develop applications of their choice at the application
layer. In addition, the south-bound interface offers a standard
API, such that the SDN controller communicates with
two interfaces, including the south-bound and north-bound
interfaces using the OpenFlow protocol [25], [26].

The SDN controller acts as a network operating system
that views the network topology state comprehensively and
manages OpenFlow switches through a secure communi-
cation channel [28]. Its responsibilities include managing
and controlling how the switches process flows through
the entries in the flow tables. Several variations of SDN
(compatible) controllers have been developed, including the
NOX controller [29], Ryu controller [30], and Floodlight
controller [31]. Centralized control in SDN provides an
architectural basis for open network programmability.

By providing a programmable interface for upper-level
applications, the control plane can implement complex
management functions such as EF detection strategies, load-
balancing switches, and global monitoring of the network
and its changing needs. OpenFlow switches forward mes-
sages based on the flow entry and various counters defined
for maintaining the traffic size or matching the number of
data packets. These counters greatly simplify the collection

Application Plane
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' Northbound API
! (e.g. REST)

Control;Plane

Software Controller
(NOX, POX, OpenDayLight etc.)
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(e.g. OpenFlow)
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Figure 1: SDN architecture
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of traffic statistics for EF traffic detection. The current
factual south-bound protocol OpenFlow provides numerous
control and monitoring mechanisms, which can flexibly
implement flow management effectively and efficiently.
With these features, EF detection in SDN has been rapidly
advanced [9], [32].

B. OVERVIEW OF GENERIC FLOW CONTROL SCHEMES
FOR DIFFERENT APPLICATIONS

A mechanism for controlling the flow of data between a
pair of nodes is known as flow control. This is achieved
by adjusting the transmission and receiving rates of the
data. However, to bolster the quality-of-service (QoS) of the
network with an improved quality-of-experience (QoE) for
users, there is a need for an efficient traffic control strategy
to cater for the ever-increasing traffic bandwidth [33].

The decision-making mechanism applied in the SDN
architecture is the controller, which controls the functions
for all flows within the entire SDN network [34]. Broadly,
the flow control modes can be categorized into the coarse-
grained [35], and fine-grained [36] controls. Several SDN-
based flow control techniques have been proposed to further
improve flow control. For example, in terms of traffic
classification, Wang et al. [37] dealt with the traffic of
unknown applications within the SDN by employing a semi-
supervised machine learning approach in the classification
of the QoS. The engine was able to run in real-time because
only the first several packets of every flow were considered
for feature extraction. Periodic polling for EF detection was
also suggested in [7], which operates by extracting the per-
flow statistics from its edge switches.

C. RELATED WORKS

The current EF detection techniques used in SDN fall into
two main categories according to the detecting location: (i)
switch-based detection and (ii) host-based detection.

1) Switch based detection

A real-time EF detection system was proposed in [21]. The
proposed method is comprised of two stages according to
the statistical thresholding of the flow stream features. The
first stage is to detect suspected EFs based on the statistical
thresholds of multiple flows. The second stage is to identify
EFs from the suspected EF set based on the features from
the first few packets, which can offer timely and accurate
flow classification. In addition, this approach employs a
cost-sensitive learning approach using a C4.5 decision tree
for real-time EF detection and the flow metric measurement.
Chao et al. [23] presented an EF detection method based on
a classification called FlowSeer. FlowSeer uses the features
of the first five packets of a traffic flow to detect the EF.
In FlowSeer, two classifiers are executed, one on the switch
and the other on the controller. The switch-side classifier
acts as a filter to remove most of the MFs, whereas the
controller-side classifier verifies whether the EFs classified
by the switch are genuine.
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An EF prediction-mechanism was reported [24] for data
center networks to address the characteristic traffic demands
within the network. This approach seeks to reduce the
overhead associated with the switch-to-controller communi-
cation by forecasting the EFs and adapting their routing poli-
cies in response to the ever-changing conditional demands
on the network. However, this study has some scalability
limitations when connecting to large-scale networks that
are more complex and dynamic, such as multi-tenant cloud
networks, large virtualized data centers, and Internet-of-
Things (IoT). Huang et al. [22] proposed the arrangement
of a pair of classifiers that respectively run on the controller
and switch. Due to a limited switch computing power, only
rules and decision trees classifiers can be used on the switch
side. The controller, coupled with the switch-side classifier,
accordingly rewrites the classifier rules and updates the
switch flow table.

All approaches mentioned above can reduce the com-
munication between the switches and the controller by
keeping the frequency of transferring EFs statistics for flow
setups to become minimal. Furthermore, by reducing the
switch-controller communication, the workloads of both the
controller and the network, which are the inherent overhead
in the implementation of flow-based networking, can be
reduced. In addition to fixing the threshold value, the EF
detection on switches also requires modifying the switch
hardware. Otherwise, the high detection accuracy of the EF
detection system will be at the expense of a high network
overhead, i.e., switch-controller to detect EF. Moreover, due
to these limitations, achieving a balance among the accuracy,
timeliness, and cost becomes difficult.

2) Host-based detection

Considering the scalability and timeliness of EF detection,
the Mahout architecture [19] deploys a kernel patch in the
terminal host to monitor the traffic statistics generated by
the host and detect the EFs based on the pre-supposed EF
threshold. To reduce the communication overhead, Mahout
informs the controller regarding the EF and prescribes an
in-band mechanism. Specifically, Mahout uses the differ-
entiated service field of the IP header to mark the ele-
phant stream. When the marked elephant stream reaches
the switch, the switch forwards the corresponding packet
towards the controller based on the default flow entry. Like
Mahout, MicroTE [38] can conduct an analysis of all the
network traffic.

By designating the monitoring end-host in each top-of-
rack switch, the network traffic is collected, aggregated,
and reported to the controller in time. However, due to
the invisibility of network traffic generated by the virtual
machines in the end-host, virtual traffic monitoring cannot
be realized by simply deploying a kernel patch. Based on the
monitoring tools such as VSFlow and NetFlow supported by
OVS, EMC?2 [20] recommends using a hypervisor deployed
on the end hosts to collect the traffic statistics. However,
the collected data needs to be sent to the centralized flow
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collector for further analysis, which may also result in an
overhead of the monitoring traffic.

lll. PROPOSED SWITCH-CONTROLLER FOR EF
DETECTION

Elephant traffic detection in SDN must be fast, lightweight,
and non-intrusive (i.e., its impact on the control plane should
be minimal). At the same time, the detector must be able to
accurately differentiate EFs from MFs for an effective flow
migration based on a specific cost argument.

The EF detection process can be split between the con-
troller and switches. Given the limited computational power
of the switches, the classifier on the switch-side must be
lightweight and designed such that it places more emphasis
on a high recall. Therefore, the switch-side classifier can
detect most of the EFs at the expense of false detecting
some of the MFs. Meanwhile, the controller-side has more
computational power and thus uses more features. There-
fore, the classifier on the controller-side must place more
emphasis on a higher F-measure and precision as opposed
to the emphasis on recall for the classifier on the switch-
side.

Figure 2 shows an operation of the proposed technique.
When a new flow arrives, the switch-side classifier pre-
filters the MFs based on the CM sketch algorithm [39].
The controller periodically trains the switch-side CM sketch
model, emphasizing an optimal recall rate, which reduces
the misdetection of potential (i.e., candidate) EFs. The
candidate EFs are forwarded by the switch to the controller
to performs the controller-side of the process. This is
more of a practical streaming classification model using a
very fast decision tree (VFDT) classifier. Once an EF is
recognized, the CM training model is updated and converted
into minimal sets of rules, given the limited nature of the
flow table size of the switch. Figure 3 shows a flow chart
of the EF detection.

The switch-side classifier is based on the CM sketch
algorithm [39]. Because switches have limited computing
power, the training of the classifier is achieved by either
the controller or an off-line server. The CM sketch reports
the state of its performance in terms of delay (i.e., buffer
load), total number of packets handled, and list of hashed
IP source-destination address pair for the EF candidates.
A CM sketch algorithm used in the switch-side provides a

Controller-side

» VFDT Elephant flow
rules
candidates
Mice flow

Figure 2: Proposed EF detection technique.

Non mice flow
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New
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Mice flow
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¥
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a CM sketch algorithm

Is flow a
mice?
No
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the flow to the controller
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the flow as a mice flow into OpenFlow
switch

¥

The controller collects more
features of the flow by VFDT

No $ Yes

elephant?

The controller-side classifier reports
itas a mice flow

The controller-side classifier
reports it as an elephant flow

Figure 3: Flow chart of the EF detection technique.

quadruple of the hashed IP address, the number of packets,
the aggregated packet sizes, and the average delay, which
is forwarded to the controller side. This approach also adds
to the network traffic overhead as the switch-side classifier
needs to communicate with the controller-side classifier.

The controller-side is created using a VFDT classifier
based on the study in [40]. Because it is a multi-commodity
flow problem, the tree needs to be trained using such data
and based on the EF definition. For any given flow identified
by an IP address pair, a set of alternative routes can be
generated by any routing algorithm. Using the total packet
arrival metrics from the switches, the controller predicts the
network delay after a candidate EF passes. Based on these
metrics, it selects the flow and path, which minimizes the
functional cost (with parameters consisting of the maximum
network delay and the number of hops). The selected flow
and a new path are used to create migration instructions,
which are compiled and sent to the switches.

A. SELECTION OF EF FEATURES

Before describing the EF detector architecture, we first need

to define the EF and its features from the flow statistics.
Definition of the EFs: Some studies, e.g., [7], [41] define

an EF based on the bandwidth use over the specified limit
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for a specified time. The features used to accurately describe
these properties are the bandwidth and duration. These can
be estimated based on the number of packets arriving per
time window. Because the definition does not contain any
information on the flow type, such features do not add any
additional information regarding the flow. The time window
in which the packets are captured includes the information
on the average interarrival time of the packets.

Selection of features for a flow classification: It is
highly desirable to use features that do not exhibit a corre-
lation. Most of the models perform poorly in the presence
of multicollinearity, i.e., when other variables can predict
one explanatory variable [42], [43]. In addition, redundant
variables increase the computational cost in terms of time
and storage. The packet characteristics available are flow
end-point identifiers i.e., the IP addresses and ports. The
OpenFlow protocol indicating the type of flow is often
associated with the port numbers. Therefore, the protocol
type and port numbers are correlated. Similarly, properties
related to Ethernet packets and IP packets are strongly
correlated and therefore introduce multicollinearity.

In view of the load balancing flows in the data plane,
the IP address pair is usually adequate to identify the path
of the flow. Port numbers can be included to divide the
flows into smaller sub-flows. In a large flow, one sub-
flow is likely to be dominant. Because the whole flow
may be subjected to rerouting, these sub-flows give little
added information but increase the size and complexity of
the implementation. An EF is also not characterized by its
direction (as per the definition). Most flows are asymmetric
and usually dominated by either uplink or downlink traffic
(in terms of bandwidth and packets). The dominant link
is, by definition, strongly correlated with the total flow. In
the implementation, the IP source and destination addresses
are hashed to form a flow identifier. The hash value is
symmetric for the two IP addresses, and thus gives the same
key regardless of direction. The distinction between the up-
link and down-link packets double the number of flows
and make the estimation computationally more expensive.
Because only the dominant flows are of our interest, there
is no reason to make this distinction.

Each additional feature increases the cost of the traffic
classification (i.e., time and space) to both the switches
and controller while maximizing the orthogonality when
choosing the classification feature set. Thus, the feature set
used for detection of the EF in an SDN environment has
the following two attributes.

1) It is easy to extract using commodity OpenFlow
switches. These features include the packet inter-
arrival time, IP address and port number, packet size
per flow, max and mean packet size, flow duration,
and other flow statistics [44].

2) It is set up for a fast detection before a flow is
concluded. For example, some features such as the
frame length can only be obtained after the flow is
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concluded, thus failing to meet our needs for fast EF
classification.

Therefore, we only consider the flow feature sets collected
by inspecting the IP header. The flow contains the same
five-tuple IP packets {protocol, src_port, dst_ip, src_ip,
dst_port} with each flow distinguishable by statistical fea-
tures such as the IP source and destination addresses, frame
length, and average round trip time of a TCP Stream
(TCP.analysis.ack_RTT) [44].

B. SWITCH-SIDE EF DETECTION

On the switch side, we use a CM sketch [39] to detect
EF (heavy hitter) candidates. This method is fast and
lightweight. As the CM sketch uses hashed IP address pairs,
the IP address pair for the EFs also must be retrieved. The
switch does not store or count the total number of flows,
only the IP addresses. This sampling can be conducted at
a relatively high frequency. After each sampling period, the
result is stored in a data structure containing EFs and all
packets. The arrival process vectors (containing the EF, and
total flows), the flow identifiers (IP address pairs) of the
EFs, and the buffer load data are sent to the controller. We
next describe how the CM sketch technique works.

The CM Sketch: The CM or the Cormode-
Muthukrishnan sketch is a data type suitable for counting
frequencies, which is the frequency of arriving packets
associated with a particular flow [39]. An end-to-end flow
from a network perspective is defined by an IP address pair
(source and destination IP addresses). A hash function of
the IP address pair is used as an identifier in the sketch. For
this purpose, it is convenient to use the IP range function
in the Python package iptools. The hash is generated by
the following:

h = iptools.IPRange (ipsrc,
iphash = h.__hash__ ()

ipdst)

The first step in the CM sketch algorithm for finding
EFs can now be formulated as finding the heavy hitters
in the sketch, which are high-frequency flows among all
available flows. The heavy hitter problem can be formulated
as a sequence of point queries to the sketch, which returns
an approximate frequency related to the index, which is
the hashed pair of IP addresses. For this estimation, the
approximation factor € and failure probability § are set at
the sketch initialization, such that the estimate U; of the true
frequency v; of index ¢ can be presented as Equation (1):

U; < v; + €lvllx (1)

with probability 1 — §, and where ||v||; = X7 v is the
Li-norm. The L;-norm is essentially unknown initially, and
thus the approximation factor is treated as a fraction relative
to the number of packets arriving in the switch. To initiate
the sketch, the values of € and ¢ determine the size, which
is the width w and depth d of the sketch as indicated in
Equations (2) and (3), respectively:
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The natural base e that can be chosen freely for all e > 1.
The width and depth determine the size of the sketch, which
is w x d words. This is illustrated in Figure 4, where each
item ¢ is mapped to one entry in each row j by the hash
function h;, and when an update of c¢; to item i; arrives, c;
is incremented for entry. The cost of such an update is only
related to the depth d of the matrix.

The sketch uses a second hash function to reduce the
required space of the sketch. Therefore, the index key is
further hashed to fit into the sketch width w. Given a prime
number p > w, the hash function can be chosen using
Equation (4):

h(z) = ((ax + b)

where a € {1,...,p—1} and b € {0,...,p} are known as
the c-universal family of hash functions [45].

Since collisions are unavoidable when using a small space
to represent a much larger range of values (i.e., the hash of
the IP addresses), it follows that ¥; > v; for all <. The depth
d of the sketch is made up of d instances using different
hash functions, and taking the minimum over d instances
to give the value ¥; closest to v;. The hashed IP addresses
cannot be retrieved because collisions occur. It is of interest
to capture other features related to the flows identified by
high-frequency arrivals, i.e., the packet length and round-trip
time, representing the delay. For this purpose, two additional
sketches using the same hash functions as the frequency
counting sketch are initiated to aggregate the packet lengths
and round-trip times, respectively.

As shown in Algorithm 1, by letting the sketches run
for the chosen capture time interval of 7, the frequency is
estimated by the frequency sketch. Because the IP addresses
of the hash cannot be reconstructed, the heavy hitters are
found by point queries to the sketch by taking the hash of
the source and destination IP addresses. When the estimated
frequency exceeds a set fraction ¢ of the L;-norm || v |1,
the IP address pairs are saved together with the minimum
of d (the frequency estimates corresponding to their hash
value). For the additional features, the maximum values in
the d arrays are used, rather than the minimum to ensures
that the worst possible characteristics are captured.

mod p) mod w 4

6

Algorithm 1: Extended CM Sketch
Given

: Parameters €, 0,7 and ¢ and a packet
capture stream P.

Let : I = @ be the set of unique IP address pairs.

Initialize: Initiate the three sketches Sy, S;and Sy for
frequency, throughput and delay
respectively, with w = [¢], d = [Iné ],
and determine the prime p.

: The k heavy hitters represented by the
source IP, destination IP, frequency (number
of packets), throughput (sum of the packet
lengths), and average RTT ACK (delay).

1 Generate hash functions (a,b,w, p) according to Eq.

(4) and set time t = 0;
2 while ¢t < 7 do
for each incoming packet in P do
Save IP address in [ indexed by its hash
function value;

5 Update Sy, S¢, and Sy using the same hash

defined initially;

Output

end

Update ¢ with a timestamp;

end

if t > 7 then

10 for all IP address pairs in I, query Sy with the
corresponding hash function (a, b, w, p)

o e 9

11 end

12 else if ©; > ¢||v||, then

13 Save the IP address pair and ¢; into the same hash;
14 Query S; and Sg;

15 Reset t= 0;

16 end

The output from the sketch is a set of relatively high-
frequency flows (a large number of packets per time unit).
However, an EF is typically defined as a flow with a
large throughput for a specific duration of time. The sketch
records the estimated performance and delay, the latter
is a likely effect of such a flow, but does not consider
these parameters when filtering out the flows. By using
these sketches on short time intervals, aggregation makes
it possible to estimate the frequency (i.e., the time aspects
of the flow). After each time interval, the extracted candidate
EF data are sent to the controller-side, and the sketches are
reset for the next aggregation interval.

C. CONTROLLER-SIDE EF DETECTION

The VFDT is a stream-based data mining classification
algorithm that incrementally builds it model as a tree by
the division of nodes into a pair of streams of incoming
data. The tree expands incrementally as more data arrives.
Therefore, the candidate EF data are fed into the VFDT for
flow classification based on the aggregated attributes. The
VEDT is a suitable method because the classification tree
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Each X; in X:
Count Xjj — g njk

New instance (X, y)

Sort it to leaf using HT:
Count Xij— yi : mijk

Single leaf

Splitting check
(1) = nmin

Do not split:
not update HT

Most frequent class at l,:
Gm(Xo)

Calculate G(-) by 7.

Calculate AG(+) njji:
AG(+) = G(X,) - G(Xp)

Figure 5: A flowchart representing the VFDT algorithm
tree [46]

is binary. As with a sketch, the VFDT reads each candidate
EF data point x only once and does not require the input
data to be stored [40].

In the decision tree, each node represents an implemen-
tation of a logical test on a feature from the features of x.
At the same time, each leaf indicates a classification from
which an appropriate label y is assigned to the incoming
data point  as y = VFDT(z). The learning process of
the tree is achieved through a successive replacement of
each leaf with a node, starting from the root. The Hoeffding
tree (HT) [40] algorithm uses the Hoeffding bound (HB)
to train the model using the smallest possible number of
training samples. The VFDT is made of key elements that
include i) an initialization process of a tree beginning with
a single leaf, and ii) a growth process of a tree where a
repeated splitting check is heuristically carried out using
the HB and an evaluation function G(.). Information gain is
used in VFDT to represent G(.). Figure 5 shows the flow
of operations in the VFDT algorithm [46].

The HB is the basis of the VFDT, where for a given se-
quence of independent random variables 0< X7<R bounded
within the range R, the probability of the sample mean
X = L(X14+Xo+- -+ X,,) deviating from its expectation
E(X) by a positive constant e is related to the sample size
n as indicated in Equation (5):

P(X-E(X)>¢) < exp(-2ne?) %)

The HB states that, by consideration of n independent
observations of a random variable with sample mean 7 and §
pre-defined tolerable estimation error, with probability 1-9,
the true mean of the variable is at least 7 — ¢ , where
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c_ [R?1n(1/9) ©)
2n

The VFDT uses the HB to select the attribute to split
as a decision node. Let x, and x; be the attributes with
the highest and second-highest G(.) respectively and AG =
G(24) — G(xp) = 0 be their difference. If AG > ¢ with N
as the number of observed samples in the leaf, and 1 — §
as the probability of x, being the highest value attribute
in G(.) given by HB the leaf is then converted into a
decision node splits on z,. The HB is not dependent on the
distribution of X, which is extremely convenient because
the distributions of the traffic features are complex and vary
with the application.

The HT algorithm aims to guarantee that the selected
attribute with high probability and n examples is the same
as that selected when using a significantly large number
of examples. One major characteristic of the HT algorithm
lies in the possibility of guaranteeing the construction of a
tree that is asymptotically and arbitrarily comparable to the
product of a batch learner. During each step, the attribute
with the highest information gain is chosen as the test
attribute. As the error € decreases with increasing n, the
difference in gain of the two attributes with the highest
information decreases. When this difference falls below e,
the node is split, and testing on the attribute with the next
highest information yields new leaves [40].

In the VFDT, the training sequence uses the EF definition
based on the limits in throughput and duration, scaled to the
time window used for aggregation as conducted by the CM-
sketch. The maximum size of the tree is 2"*1—1, where
h stands for the tree height, which equals the number of
attributes. The VFDT thus produces a flow classification
that can be used for processing and rerouting.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental setup, results and in-depth discussion of
our proposed methods are presented in this section. We
also compare our findings with other contemporary methods
found in the literature.

A. EXPERIMENT SETUP

The simulation was designed based on machine learning
using Python socket programming APIs. The actual hard-
ware used for the simulation included a Dell Inspiron laptop
with a 3.20 GHz Intel i5-4570 CPU and 8 GB of RAM. In
addition, Virtual Box was used as the virtual environment
for loading a Mininet image. An SDN Hub 64-bit tutorial
VM image is used to create a VM in Virtual Box with 4GB
of RAM and a 20GB Hard drive. The Mininet image is a
modified Ubuntu platform with a range of pre-installed and
preconfigured network tools that include a Mininet simula-
tion [47], and OpenvSwitch [48]. The Ryu controller [30]
is installed and used as part of the SDN controllers for
managing the OpenFlow compatible switches.
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The three main steps applied in our experiment are
shown in Figure 6. First, the data are divided into training
and testing sets. Second, the training dataset is initially
classified such that it can handle diverse varieties of traffic
before given to the framework switches/controller sides to
identify the correct attributes. Third, we train our CM sketch
algorithm and VFDT classifiers to differentiate between
EF and MF traffic, respectively. The performance of the
proposed system is evaluated based on certain evaluation
metrics.

Feature
extraction VDT oy

Non mice flow
candidates

Training
data

Mice flow
candidates

Mice flow rules

Elephant flow rules

Figure 6: Experimental setup of the EF detection framework.

1) Datasets

We evaluate the proposed EF detection method on three dif-
ferent real network traffic datasets MAWI [49], UNI1 [49],
and UNI2 [49]. The MAWI dataset (from April 9 to April
20, 2016) was obtained from a world-wide trace. The dataset
comes from the daily tracking of trans-Pacific lines (the link
was upgraded from 100 Mbps to 1 Gbps with a 150 Mbps
committed access rate (CAR)). It has numerous stochastic
factors, which makes the traffic classification more chal-
lenging. For this dataset, we select extensive flows as the
significant flows because they dominate Internet traffic. This
approach is used in our simulation for the measurement
of the EF detection technique. A threshold of 10 MB/sec
is set for the EF in this experiment [23]. In reality, the
number of MFs is usually larger than the number of EFs.
Thus, the MAWI dataset has approximately 10% - 20%
EFs. The UNI1 and UNI2 datasets were captured from data
centers studied in IMC 2010 [5]. EFs constitute ratios of
approximately 2.5% and 5% in the UNI1 and UNI2 datasets,
respectively.

2) Evaluation metrics

The performance metrics for the two-step flow classifica-
tion method are the precision, accuracy, recall, F-measure,
and running time. These metrics are all calculated from a
confusion matrix.

In the confusion matrix, the true positive (7' P) represents
the number of actual positive records that are correctly clas-
sified. By contrast, the true negatives (7'N) is the number of
actual negative records correctly classified. In addition, the
false positives (F'P) is the number of misclassified negative

8

records whereas the false negatives (F'IV) is the number of
misclassified positive records.
1) The accuracy Acc is defined as the percentage of
instances of the correct classification within the total
number of instances.

B TP+ TN

TP+ FP+TN+FN

2) The precision P is the total number of true positives
divided by the sum of the false and true positives. The
higher P reflects the lower number of false positives.

TP
P=——+—+
TP+ FP
3) The recall R is the number of true positives divided

by the sum of the false negatives and true positives.
A high R-value is desired.

TP
"~ TP+FN

4) The F-measure is the harmonic mean of P and R,
which has found widespread use in information re-
trieval and other supervised machine learning tasks.
We also define high F values, as shown in Equation
(10).

Ace

@)

®)

R €))

2PXR
F =
P+R

5) The running time 7., is the time taken to run a single
experiment from start Ts;qp¢ to finish Thpipisn.

(10)

Trun = Tstart — Tfinish (11

B. EXPERIMENTAL RESULTS OF THE SWITCH-SIDE EF
DETECTION

In this subsection, we compare a CM sketch method with
C4.5 in terms of the accuracy, precision, recall, F-measure,
and running time. We then discuss the trade-off of CM
sketch.

1) CM performance comparison
Table 1 compares the results of the CM sketch [39] and
work proposed in [50] on the MAWTI dataset. Hence, the
results show that the CM sketch method outperforms C4.5
by eight times faster in terms of running time. Moreover,
a values of P = 1 indicates zero false positives and an R
of up to 90%. Our method performs better than the C4.5
method in terms of accuracy by up to 2.67%. The improved
accuracy is because the estimated sum of the flow used by
CM sketch is the hashed buckets with the smallest counter
value. It can be determined whether a flow is a heavy hitter
by checking whether its estimated sum falls below a certain
threshold. The absolute change of flow over two epochs can
be similarly used to verify whether a flow is a heavy hitter.
Moreover, our proposed switch-side CM sketch prefilter
is real-time and has low-overhead. The primary rationale
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behind the proposed technique is to ensure the switches and
the controller work together in sharing the EF classification
task such that the majority of the MFs are filtered out by
the CM sketch on switches, and the number of classification
requests to the controller are significantly reduced. Table 2
demonstrates how our proposed flow detection method is
different from other similar techniques.

2) Sketch trade-off

CM sketch uses a hash function to count the frequency in
a sub-linear space and store the number of occurrences in a
stream into a d X w matrix. These parameters determine the
trade-off between the accuracy and space/time constraints.
Each row has an associated hash function. An arriving
element is hashed, and its corresponding row is incremented
by 1. Furthermore, the CM sketch solution might be lightly
slower by waiting until the CM sketch has collected an
adequate number of packets to form an aggregate to send
to the controller side. This time overhead is noticeable if
packets arrive at extremely irregular intervals.

C. EXPERIMENTAL RESULTS OF THE
CONTROLLER-SIDE EF DETECTION

In this subsection, we present the results of a set of
experiments conducted to validate the performance of our
proposed method. First, we present the performance of
the controller-side EF detection for the SDN network. We
then compare it with other methods in terms of accuracy,
precision, recall, F-measure, and running time.

1) Classification accuracy

Accuracy is one of the essential classifiers metrics. To
evaluate the influence of our EF detection method, we
tested its classification accuracy with several training data
sizes ranging from 10,000 to 50,000 on the MAWTI dataset.
Figure 7 shows the accuracy of our purposed classification
for various training sizes. We observed that our EF detection
method on the controller-side achieves a higher accuracy
than the existing EEFD method [21] by up to 0.7%, and the
classification-based EDMAR [22] by up to 0.5%.

Figures 8(a) and 8(b) illustrate the precision and recall of
our method compared to EDMAR [22], FlowSeer [23], and
the Bayes network (BayesNet) [51]. Our method performs
better in terms of accuracy, precision, and recall because
the controller-side classifier becomes more accurate with
an increase in the number of features used. Furthermore,

Table 1: Performance evaluation of switch-side classifiers

Dataset Distance measure CM sketch [39] C4.5 [50]
Average accuracy (%) 97.90 95.23
Running time (s/1000 flow 0.054 0.43
instances)

Recall rate 0.90 0.59
Precision rate 1 0.39
F-measure value 0.95 0.47
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Table 2: EF detection techniques in SDN

Methods Switch-side Controller-side
EEFD [21] — C4.5
FlowSeer [23] C4.5 CVEDT
EDMAR [22] C4.5 C4.5
Proposed method CM sketch VEDT

100
994
98

97

96 -
Our method —
EDMAR method -@-

EEFD method -@-

95
941

934

Classification accuracy(%)

924

91 T T T T T T T
10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of flows

Figure 7: Accuracy with different numbers of flows.

improvement in metrics is slightly due to the efficiency
of the algorithm, early detection, and proper selection of
features from accessible commodity switch features.

In our experiments, the EF detection applied to SDN
achieves a recall rate of up to 98.3%. This high recall rate
suggests that our method can detect most EFs, and only a
few MFs are misidentified as EFs. A comparison of the F-
measure between our method and other existing methods is
shown in Figure 9. It can be observed that the F-measure of
our method is over 96.1%, a significant improvement over
the other methods.

2) VFDT performance comparison

In terms of the amount of times required by different
methods to detect EFs in SDN, our proposed method can
detect EFs within the shortest time among the four methods
(see Figure 10). Furthermore, our method takes less than a
second to detect 10,000 flows, which is adequate to filter
and detect EFs in the SDN network. The results show that
the controller-side classifier function can achieve a better
running time as it is lightweight as it does not store any
dataset points in memory, making it ideal for the detection
of EFs on the controller side. The decision tree model can
be slowly built from scratch, which helps to detect EF at
any point. Whenever a new data section arrives, the testing
and training phase is carried out to keep the data stored
up-to-date. It does not need to read the entire dataset and
instead updates the decision tree to the latest incoming
and collected statistical attributes, thereby consuming less
memory. Furthermore, the use of the switch-side CM sketch
classifier greatly minimizes flows as MFs by about 80%,
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Figure 8: (a) Precision rate and (b) recall rate comparison
with different methods.

while non-MF candidates can only give it to the controller-
side by about 20%, further decreasing the controller-side
load. These features make the VFDT a suitable candidate
to introduce an autonomous decision-maker for the detection
of EFs in SDN networks.

D. CM-VFDT PERFORMANCE COMPARISON

Table 3 shows the overall performance of our proposed
method. We compared the performance of our EF de-
tection method with that of the EDMAR method [22],
FlowSeer [23], and the EEFD method [21]. The experi-
ments were conducted on the MAWI dataset [52], UNI1
Dataset [49], and UNI2 Dataset [49]. We found that our
method performs better than the other methods in recall and
precision. Moreover, our method also performs better than
other existing methods in terms of F-measure, indicating that
our approach achieves a better balance between precision
and recall. The results also show that this study achieves a
higher accuracy and better running time.

The EF detection classifier was trained using a training
flow, as described in Table 4, which summarizes the experi-

10
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Figure 10: Running time comparison with different methods.

mental results. The table shows the ability and efficiency
of our method to detect EFs at the flow-level with an
extremely small FN and high TP for all tests conducted on
the switch/controller side. As the reason for these results, the
CM sketch and VFDT methods apply traffic classification
differently. By definition, EFs are specified on flows based
on their duration and intensity (bandwidth), and the packet
data have no information regarding the flow duration. Thus,
the CM sketch creates an aggregate of packets to approxi-
mate the flow.

However, neither CM sketch nor VFDT has any long-
term memory. Hence, to identify the EF, it is necessary
estimate the duration by sampling the CM sketch and use it
as an input to the VFDT classifier. Moreover, the improved
metrics are due to the efficiency of the lightweight algorithm
used on the switch-side to filter out most of the flows
unlikely to be EFs. The experiments showed that the CM
sketch algorithm is efficient at estimating frequencies of
candidate EF with a fast update and query times, and
low space usage. Finally, the switch-side only forwards
the remaining potential EFs to the controller. The use of
combined CM-VFDT greatly minimizes the classifier-side
load. This technique proves to be a suitable candidate to
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Table 3: Overall performance comparison with existing EF detection methods using MAWI Dataset, UNI1 Dataset and UNI2

Dataset.

Dataset Distance measure MAWT Dataset

UNII1 Dataset UNI2 Dataset

Proposed Proposed Proposed
CM- [22]  [23] [21] CM- [23] CM- [23]
VEDT VEDT VEDT

Average accuracy (%) 98.64 97.53 97.12 92.81 99.78 98.24 98.82 98.35

Running time (s/1000 flow 007 011 023 062 006 043 009 052

instances)

Recall rate 0.98 0.77 0.28 _ 0.99 0.98 0.98 0.75

Precision rate 0.98 035 0.56 _ 0.98 0.97 0.97 0.57

F-measure value 0.98 048 0.37 _ 0.98 0.97 0.97 0.65
Table 4: Confusion matrix of flow-level of the MAWI References
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