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Abstract: The depressed core fiber (DCF), consisting of a low-index solid core, a high-index 
cladding and air surrounding, is in effect a bridge between the conventional step-index fiber 
and the tube-type hollow-core fiber from the point of view of the index profile. In this paper 
the dispersion diagram of a DCF is obtained by solving the full-vector eigenvalue equations 
and analyzed using the theory of anti-resonant and the inhibited coupling mechanisms. While 
light propagation in tube-type hollow-core fibers is commonly described by the symmetric 
planar waveguide model, here we propose an asymmetric planar waveguide for the DCFs in 
an anti-resonant reflecting optical waveguide (ARROW) model. It is found that the anti-
resonant core modes in the DCFs have real effective indices, compared to the anti-resonant 
core modes with complex effective indices in the tube-type hollow-core fibers. The anti-
resonant core modes in the DCFs exhibit similar qualitative and quantitative behavior as the 
core modes in the conventional step-index fibers. The full-vector analytical results for the 
simple-structure DCFs can contribute to a better understanding of the anti-resonant and 
inhibited coupling guidance mechanisms in other complex inversed index fibers. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Inversed index fibers with a low-index core and a high-index cladding such as the tube-type 
hollow-core fibers and hollow-core photonic crystal fibers have attracted a lot of interest in 
the fields of high-capacity telecommunication networks [1-5], high -
power/supercontinuum/ultrafast lasers [6-11], terahertz waveguiding [12,13] and high 
sensitivity optical sensing [14,15]. As opposed to conventional step-index fibers where the 
light is guided in the high-index core region by total internal reflections, light guidance in the 
low-index core region of the inversed index fibers can be explained by other mechanisms 
such as the photonic bandgap effect, inhibited coupling effect and the anti-resonant effect. 
Generally, all optical fibers can be grouped into two types based on the effective refractive 
index (neff) -wavelength (λ) dispersion diagram [2]. For the first type, the neff - λ of the core 
modes lies outside any cladding mode continuum. The photonic bandgap fibers belong to this 
type, as their photonic bandgaps are formed in the periodic dielectric cladding region, the 
coupling between the core modes, which have neff within the bandgaps, and cladding modes 
are forbidden due to their separation in the neff - λ space [3]. The second type is inhibited 
coupling fibers, for which the neff - λ of the core modes lies inside the cladding mode 
continuum, but the coupling between them is minimized due to the high degree of transverse-
field mismatch [6]. Both the photonic bandgap fibers and the inhibited coupling fibers have 
the same anti-resonant nature, which can be described by an anti-resonant reflecting optical 
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waveguide (ARROW) model [2,3,6]. In this model, the planar waveguide acts as a Fabry-
Perot resonator, which allows the anti-resonant light to be reflected back while allowing 
forward transmission of the resonant light [16-19]. 

In a manner similar to photonic bandgap fibers, conventional step-index fibers belong to 
the first type since the neff of the core modes are higher than that of the cladding modes, in 
other words, their modal dispersion space is separated [2]. Compared to conventional step-
index fibers, inversed index fibers have generally a more complex structure and modal 
characteristics. However, there exists a close relationship between them. It has been stated 
that the photonic bandgap fibers exhibit strikingly similar modal behavior with that of the 
conventional fibers, including dispersion curves and field profiles [20,21]. The analogy to 
conventional fibers provides a convenient tool to model the modes of photonic bandgap fibers. 
The question is whether there is a connection between the inhibited coupling fibers and the 
conventional fibers in addition to the photonic bandgap fibers. 

A recent publication Ref. [22] shows that the mode density of anti-resonant elements in an 
inhibited coupling guiding single-ring hollow-core photonic crystal fiber is similar to the 
behavior of conventional multimode fibers. The single-ring hollow-core photonic crystal fiber 
studied in [22] has a ring of 6-8 detached thin tube-type hollow-core waveguides/fibers 
surrounding the hollow core. However, the results of the work were obtained using a scalar 
semi-analytical model, which does not give sufficiently rigorous vector modal analysis. The 
tube-type hollow-core fiber has a simple structure, where the leaky core-type modes are 
supported by the anti-resonant effect [17-19]. In most of the previous works, only the 
fundamental mode or few low-order modes of the tube-type hollow-core fibers were obtained 
with different approximation methods [17,23-25]. 

A depressed core fiber (DCF) is a type of inversed index fibers, described by a three-layer 
fiber model with a low-index solid core, a finite high-index cladding, and surrounding air. 
This fiber structure is different from the M-type fiber [26], although in some papers it has 
been referred to as M-type fiber [27]. The refractive index of the central region of the M-type 
fiber has a minimum value set by the need for the core to have a refractive index equal to or 
lower than that of the surrounding medium, which if the surrounding region is air means that 
the core must also be air. For a DCF the core refractive index is lower than the next outermost 
region but does not need to take on the lowest or minimum value in a three-layer fiber model. 
The M-type fiber can be considered as a leaky waveguide with the anti-resonant structure, in 
which the core mode is leaky with a complex effective refractive index, similar to the case of 
the hollow-core fiber [17,28]. Compared to the M-type fiber, the core mode of the DCF is 
guided by both total internal reflection and anti-resonance guidance, and its core mode has a 
real effective refractive index [27,29-32]. The DCFs have been studied for various 
applications including pulse compression in fiber lasers [29-31], generation of 
supercontinuum [27] and top-hat beams [32], due to their manageable waveguide dispersion 
and exceptional modal field changes. However, these studies in regard to DCFs [27, 29-32] 
were limited to the analysis of a few modes in the strong dispersion region. 

In this paper, the modal dispersion and field distributions of a DCF are calculated and 
analyzed with the vector field functions and eigenvalue equations for the three-layer fiber as 
given in [33-35]. To the best of our knowledge, it is the first report providing a complete 
vector modal dispersion diagram for the DCFs. In the section 2, the ray method is used to 
analyze the mode characteristics in the DCFs, in comparison to asymmetric planar 
waveguides. The possibility of anti-resonant core modes and the positions of the mode 
coupling (resonances) is analyzed using the ARROW model. In section 3, the dispersion 
curves and mode field distributions of the vector modes TE, TM, HE and EH are analyzed, 
along with their comparison for the case of conventional step-index fibers. It is found that the 
waveguiding mechanism of core-type modes in DCFs with a simple structure can be 
explained by the anti-resonant and inhibited coupling effects, similarly to the complex single-
ring hollow-core photonic crystal fibers discussed in Ref. [22]. In section 4, the implications 



of the analytical results for the tube-type hollow-core fibers and single-ring hollow-core fibers 
are discussed.  

 

2. Theory of the DCFs 

Anti-resonant core mode and asymmetric planar ARROW model 

Fig. 1 shows a DCF and its cross section and refractive index profile. The radii of the rod core 
and the tube cladding are r1 and r2 while the surrounding medium (air) is unlimited. The 
refractive index of the rod core region n1 is smaller than the refractive index of the tube 
cladding region n2 but greater than that of the surrounding air n3, as n3 < n1 < n2. 
 

 
Fig. 1. A depressed-core optical fiber and its cross section and refractive index profile. 

 
The high-index tube cladding region of the DCF can be considered as an asymmetric 

planar waveguide, where a high-index core region with the same thickness (d = r2 - r1) as the 
cladding of the DCF is sandwiched between two different low-index regions, as shown in Fig. 
2. It is useful to analyze the DCFs using a ray optics approach. Since the asymmetric planar 
waveguide supports core modes with n1 < neff = n2*sinθ1 < n2 [36] shown in Fig. 2(b), it can 
be deduced that a DCF can support the annular-like (transverse field profile) cladding modes 
with n1 < neff = n2*sinθ1 < n2 guided by the total internal reflections at the inner and outer 
boundaries of the cladding region as shown in Fig. 2(a). The modes with n3 < neff = n1*sinθ1 < 
n1 in the asymmetric planar waveguide are radiation modes with power escaping into the 
higher-index (upper) region (where will form a standing wave field) [36], as shown in Fig. 
2(d). In the DCF an incident ray representing a mode with n3 < neff = n1*sinθ1 < n1, partially 
reflected at the inner boundary of the cladding region and totally reflected at the outer 
boundary of the cladding region, excites multiple path rays reflecting into the core region. 
The light field of these modes with n3 < neff < n1 is distributed in across the entire cross 
section of the DCF, which is similar to the cladding modes in conventional three-layer step-
index fibers [37,38].  

Due to the inversed index distribution in the DCF, the total internal reflection effect does 
not work at the inner boundary of the cladding region. Therefore, there is no core modes 
guided by the total internal reflections like those in conventional step-index fibers.  

The high-index layers can be considered as Fabry-Perot resonators in the ARROW model 
[16]. Analogous to a symmetric planar waveguide in the ARROW model for the tube-type 
hollow-core fibers [18,19], an asymmetric planar waveguide is proposed for the DCFs. 
Indeed, the characteristics of multiple path reflections formed in the DCF shown in Fig. 2(c) 
indicate that the cladding region of the DCF acts as a Fabry-Perot resonator, corresponding to 
an asymmetric planar waveguide shown in Fig. 2(d). In a Fabry-Perot resonator the 
resonances usually occur over a narrow band of wavelengths while the antiresonances are 
spectrally broad [16,39]. The energy of the incident ray can be strongly reflected back to the 
core region at the anti-resonant wavelengths, forming anti-resonant core modes in the anti-
resonant reflecting optical waveguides [16] and the tube-type hollow core fibers [18]. 



Similarly, it can be concluded that DCFs have anti-resonant core modes with the light field is 
mainly confined in the core region, with disc-like transverse field profiles. 

The resonant wavelengths of an asymmetric planar waveguide-like Fabry-Perot resonator 
shown in Fig. 2(d), corresponding to the minimal total energy of all the reflected rays, are 
equal to the cutoff wavelengths of the guided core modes. The cutoff wavelengths for the 
guided core modes TEN and TMN in the asymmetric waveguide can be written as [36]:  

୒,ୡߣ = ଶௗට௡మమି௡భమ
቎୒ାభഏ ୲ୟ୬షభቌ఑ට೙భమష೙యమට೙మమష೙భమቍ቏

, ߢ = ൝1,				for	TE୒	modes	௡మమ௡యమ 			for	TM୒	modes                            (1) 

where N is the mode number. The second term in the denominator of Eq. (1) arises from the 
asymmetry of the waveguide and vanishes for the symmetric case as shown in Ref. [19]. 

  

 
Fig. 2. (a) and (b) show the ray trajectory of a mode with n1 < neff = n2sinθ1 < n2 in a DCF and an 
equivalent asymmetric planar waveguide, respectively. (c) and (d) show the ray trajectory of a mode 
with n3 < neff = n1sinθ1 < n1 in the DCF and the equivalent asymmetric planar waveguide, respectively. 

 

3. Results  

Similar to the conventional step-index fibers, the modes in a DCF are denoted as TE0,N, 
TM0,N, HEm,N and EHm,N, where the numbers ‘0’ and ‘m’ on the left side of the comma in the 
subscript positions are the azimuthal mode number while the number symbols ‘N’ on the right 
side are the radial mode number. The eigenvalue equations for the vector modes in the DCFs 
are shown in Appendix, which were solved by a graphical method. In the calculations, the 
fiber parameters of the studied DCF are assumed as n1 = 1.445, n2 = 1.51, n3 = 1, r1 = 62.5 µm 
and r2 = 125 µm. The parameters correspond to those of the fibers used in our experimental 
work, which will soon be presented in another paper. 

 

3.1 TE/TM modes in DCFs 



Fig. 3(a) shows the dispersion diagram (neff vs. λ) for the modes TE0,N with n1 < neff < n2. 
There are 38 TE0,N modes, from upper to lower as the radial mode number N increases, as 
indicated by the black arrow. All dispersion curves of the TE0,N modes with the purple dashed 
line at n1, but only the modes HE0,N, N = 34, 35, 36, 37 and 38 have their cutoff in the 
investigated spectral range. The wavelengths of the intersect points are approximated as the 
cutoff wavelengths of the TEN modes in the asymmetric planar waveguide calculated by Eq. 
(1), indicated by the red vertical dashed lines. The difference between the wavelength of the 
intersect point for the TE0,N mode and the cutoff wavelength of the TEN mode is less than 1 
nm. Compared to the curves above the horizontal line at n1, the curves bellow n1 show a step-
like decrease as the λ increases, showing periodic strong and moderate index dispersion 
bands. The slopes of the dispersion curves with a strong index dispersion are similar to those 
of the curves above the horizontal line at n1 and that in the equivalent asymmetric waveguide 
(not shown). The slopes of the dispersion curves with a moderate index dispersion in DCFs 
are similar to those of the dispersion curves of the core modes in the conventional step-index 
fiber, as discussed in part 3.3. 

Fig. 3(c) shows the modal intensities and electric field vector distributions at seven 
different points marked A-G (black circle dots) in Figs. 3(a) and 3(b). The electric field vector 
helps to distinguish between different kinds of vector modes and helps to compare the modes 
in the DCF and the conventional step-index fiber, as discussed in following parts. The radial 
maxima in the modal field profiles represent intensity oscillations, and the number of the 
radial maxima is equal to the radial mode number N. In Fig. 3(c) the modal field profile of the 
mode TE0,1 at point A shows one radial maxima in the fiber cladding region r1 < r < r2. The 
TE0,2 at point B shows two radial maxima in the fiber cladding region. 

 

 
Fig. 3. Dispersion curves (neff vs. λ) of TE modes with neff corresponding to (a) n1 < neff < n2, (b) n1-0.001 < 
neff < n1+0.001, n1 = 1.445, n2 = 1.51. (c) shows the modal intensity and electric field vector distributions of 
TE modes whose positions (neff, ߣ) are indicated by the black circle dots in (a) and (b). The red vertical 
dashed lines in (a) and (b) indicate the resonant bands. 



 
In order to count the number of radial maxima in the distributions corresponding to points 

C-G in Fig. 3(c), we draw the normalized intensity distribution along the r-coordinate, as 
shown in Fig. 4. One oscillation peak on a curve in Fig. 4 corresponds to one radial maxima 
in a modal field profile. Similar to the modal field profiles at points A and B, all 37 radial 
maxima are distributed within the fiber cladding region for the mode at point C. The 
oscillation peaks shift from the cladding region to core region one by one along the points C-
G. The modes at points D, F and G exhibit 1, 2 and 3 maxima in the core and 36, 35 and 34 
maxima in the cladding, respectively. The energy is mainly confined in the core region of the 
modes at points D, F and G, as seen in Figs. 4(b), 4(d) and 4(e), where the field intensity in 
the cladding region is almost negligible compared to that in the core region. The mode at 
point E with a very strong index dispersion represents a mode in a transition state from the 
mode at point D to the mode at point F, where the energy is more evenly distributed between 
the core and the cladding regions as seen in Fig. 4(c). There are two peaks in the core region 
and 35 peaks in the cladding region for the mode at point E. 

We propose the following nomenclature for the modes with neff < n1, identified as TE0, n+(N-

n). The subscript ‘n’ denotes the radial number in the core region, while the number ‘N-n’ 
denotes the radial number in the cladding region. Therefore, the modes at points D, F and G 
in Fig. 3(b) with moderate index dispersion can be named as TE0,1+(36), TE0,2+(35) and TE0,3+(34). 
The mode at point E in Fig. 3(b) can be named as [TE0,2+(35)], where the brackets indicate that 
the mode is with a strong effective index dispersion and is in a transition state. It is clear that 
the field profiles of the modes TE0,1+(36), TE0,2+(35) and TE0,3+(34) are similar to that of the 
modes TE0,1, TE0,2 and TE0,3 in conventional step-index fibers, respectively. As discussed, the 
TE0,1+(36), TE0,2+(35) and TE0,3+(34) in the DCF should be formed by the anti-resonant effect of 
the high-index cladding region, therefore, they represent anti-resonant core modes.  

According the above nomenclature, the modes at points I and J on the dispersion curve of 
TE36 indicated by the black triangle dots in Fig. 3(b) are both anti-resonant core modes and 
named as TE0,1+(35) and TE0,2+(34), respectively. The mode transition from the core mode 
TE0,1+(35) at point I to the cladding mode TE0,36 at point H and the mode transition from the 
higher-order core mode TE0,2+(35) at point F to the lower-order core mode TE0,1+(36) at point D 
leads to an anti-crossing phenomenon near the mode [TE0,2+(35)] at point E around the resonant 
bands indicated by the red vertical dashed line. Due to mode reorganization [38, 40-42], the 
anti-crossing phenomenon also takes place for the higher order modes. A similar phenomenon 
is also observed for the TM, HE and EH modes. The anti-crossing phenomenon originates 
from the resonant coupling between the core and the cladding modes, leading to the 
exceptional waveguide dispersion and modal field changes. As shown in Figs. 3 and 4 the 
modal field distribution and effective refractive index dispersion change drastically from the 
points D or F to the point E. The mode [TE0,2+(35)] at point E show similar strong dispersion 
with the cladding modes in the DCF and the modes in the equivalent asymmetric waveguide. 
Therefore, the wavelength position and the dispersion shape of the anti-crossing are related to 
the thickness and the refractive index of the high-index cladding, in accordance with the 
ARROW model and Eq. (1) as discussed in the theory section. Due to the manageable 
waveguide dispersion and modal field changes in a DCF, the generation of supercontinuum 
[27] and top-hat beams [32] can be achieved.  

 
 

 



 
Fig. 4. The left panel (a)-(e) shows the normalized intensity distributions along the r-coordinate for 
the modes shown at points C-G in Fig. 3. The right panel (á')-(é') shows the zoomed-in part of (a)-
(e), delineated by the vertical dashed lines. 
 

The dispersion diagram of TM0,N modes is similar to that of TE0,N modes, as seen in Fig. 5. 
The positions of the intersect points between the dispersion curves of the TM0,N and the 
horizontal line at n1 can be approximated as the cutoff wavelengths of the TMN modes in the 
asymmetric planar waveguide calculated by Eq. (1), indicated by the black vertical dashed 
lines in Figs. 5(a) and 5(b). Fig. 5(c) shows the modal intensity and electric field vector 
distributions of TM modes at points A'-G' indicated by the black squares in Figs. 5(a) and 
5(b). The modes at points A' and B' are TM0,1 and TM0,2, respectively. The points C'-G' are on 
the dispersion curve of TM0,37. The field intensity distributions of TM modes in Fig. 5(c) are 
similar with those of TE modes shown in Fig. 3(c). However, the directions of the electric 
field vector of TM and TE modes are different: the former is parallel to the radial direction 
while the latter is normal in the radial direction.  

Similarly to the nomenclature of the TE modes, the TM modes with neff < n1 can be named 
as TM0,n+(N-n). Therefore, the anti-resonant core modes at points D', F' and G' in Fig. 5(b) with 
a moderate effective index dispersion can be named as TM0,1+(36), TM0,2+(35) and TM0,3+(34), 
respectively. The mode at point E' in Fig. 5(b) can be named as [TM0,2+(35)]. From the modal 
field distributions, it is clear that the anti-resonant core modes TM0,1+(36), TM0,2+(35) and 
TM0,3+(34) are similar to the core modes TM0,1, TM0,2 and TM0,3 in the conventional step-index 
fibers, respectively. 



 

 
Fig. 5. Dispersion curves (neff vs. λ) of TM modes with neff corresponding to (a) n1 < neff < n2, (b) n1-
0.001 < neff < n1+0.001, n1 = 1.445, n2 = 1.51. (c) shows the modal intensity and electric field vector 
distributions of TM modes whose positions (neff, ߣ) are indicated by the black squares in (a) and (b). 
The black vertical dashed lines in (a) and (b) indicate the resonant bands. 

 

3.2 HE/EH modes in DCFs 

The HE or EH are two-fold degenerate modes with the same effective refractive index but 
different field vector directions, similar to the HE/EH modes in conventional step-index fibers. 
Here we only show the results for one of these two-fold degenerate modes. 

Fig. 6 illustrates the dispersion curves of the modes HE1,N and EH1,N (N = 34, 35,…, 38). 
Similar with the TE and TM modes in Figs. 3(b) and 5(b), the neff of HE1,N and EH1,N decrease 
linearly with the increase of λ when neff > n1 while bellow n1 the neff decrease in a step-like 
fashion as λ increases. The curves show periodic strong and moderate index dispersion bands. 
The positions of the intersect points between the dispersion curves of modes HE1,N (EH1,N) 

and the horizontal line at n1 can be approximated as the cutoff wavelengths of the TEN (TMN) 
modes in the asymmetric planar waveguide calculated by Eq. (1), indicated by the red (black) 
vertical dashed lines in Fig. 6. 

 



 
Fig. 6. Dispersion curves (neff vs. λ) of HE1,N (red) and EH1,N (black) modes with neff corresponding to (n1-
0.001 < neff < n1+0.001, n1 = 1.445. The black and red vertical dashed lines indicate the resonant bands. 

 
For HEm,N or EHm,N modes, each radial mode order ‘N’ supports a larger number of 

azimuthal mode orders ‘m’. Fig. 7(a) as an example shows a dispersion diagram of the HEm,N 

modes with m = 1, 2, … and N = 34, 35, …, 38. The curves with the same radial mode order 
‘N’ are shown in the same color. For the sake of clarity, the transparency of the curves has 
been increased toward higher azimuthal mode orders in each group. All these curves form a 
very dense dispersion diagram, where the curves with moderate slopes intersect with those 
having steeper slopes.  

Fig. 7(b) shows the zoomed view of the part indicated by a red rectangle in Fig. 7(a), 
showing the transition of modes HEm,37, m = 1, 2, …. The dispersion curve of the mode 
HEm,37 changing from a steep slope to a moderate slope indicates the formation of an anti-
resonant core-type mode HEm,1+(36) (the nomenclature similar to TE/TM modes). For example, 
the modes HE1,37 at point H1 and HE3,37 at point H3 are transferred into the modes HE1,1+(36) at 
point H2 and HE3,1+(36) at point H4, respectively. Their modal field intensity and electric 
vector distributions are shown in Fig. 7(c). As the azimuthal mode order ‘m’ increases, the 
transition of the cladding-type HEm,37 to anti-resonant core-type HEm,1+(36) will occur at a 
longer wavelength and a smaller effective index at the point where the slope of the dispersion 
curve changes. Therefore, the transition process for the modes with large azimuthal mode 
orders ‘m’ may not be visible in the given range of the dispersion diagram. As an example, 
although the dispersion curve of the mode HE15,37 in Fig. 7(b) intersects the horizontal line 
corresponding to the value n1, it does not change direction abruptly, indicating no mode 
transition in the given range. Two modes at points H5 and H6 on this dispersion curve of the 
mode HE15,37 show similar modal field intensity and electric vector distributions as seen in 
Fig. 7(c). These two modes are both cladding-type modes with energy confined in the 
cladding region, however, their formation mechanisms are likely different. Compared to the 
cladding mode at point H5 with neff > n1 guided by the total internal reflections at both the 
inner and outer boundaries of the cladding region, the cladding mode at point H6 with neff < 
n1 cannot be guided by the total internal reflections at the inner boundary of the cladding 
region. The existence of the cladding modes in the dispersion space below the horizontal line 
at n1 in Figs. 7(a) and 7(b) is likely attributed to the inhibited coupling effects as per 
following discussion.  

The modal field intensity and electric vector distributions of two anti-resonant core modes 
HE1,1+(37) at points H7 and H8 are drawn in Fig. 7(c), showing that for both of the modes the 
field energy is confined in the fiber core region. The intersection of the dispersion curve of 
HE1,1+(37) with that of HE15,37 indicates that the disc-like core modes and the annular-like 
cladding modes can exist in the same dispersion space (neff vs. λ). The same neff indicates that 
the modes have the same longitudinal components of the light field. However, they cannot 



couple with each other since their transverse components of the light field are different, 
corresponding to the inhibited coupling effect [6].  

 

 
Fig. 7. Dispersion curves (neff vs. λ) of HE modes with neff corresponding to (a) n1-0.001 < neff < n1+0.001, 
n1 = 1.445. (b)  partially enlarged image of (a), indicated by the red frame. (c) shows the modal intensity 
and electric field vector distributions of HE modes whose positions (neff, ߣ) are indicated by the circles in 
(b). The black and red vertical dashed lines in (a) and (b) indicate the resonant bands. 

 

3.3 Mode degeneracy in DCFs 

The dispersion curves of several lower order TE, TM, HE and EH modes in the DCF are 
drawn together in the same dispersion diagram, shown in Fig. 8(a). Other higher order modes 
in the DCF are not shown in order to preserve clarity of the diagram. The dispersion diagram 
shows periodic resonant and anti-resonant bands corresponding to the strong and moderate 
index dispersion, and the resonant bands are indicated by the black and red vertical dashed 
lines. Fig. 8(b) displays one of such periodic bands, indicated by the black dashed rectangle. 
The dispersion curves of the anti-resonant core modes in the DCF such as {HE1,1+(36)}, 
{TE0,1+(36), HE2,1+(36) and TM0,1+(36)} and {EH1,1+(36) and HE3,1+(36)} can be respectively grouped 
together. In calculation, the longitudinal components of the light field are very small 
compared to the transverse components of the light field for the anti-resonant core modes. 
Therefore, the modes in each group can be grouped into a single degenerate scalar mode or a 
linear polarized mode, similar to that in the conventional step-index fibers. These 
degeneracies are broken in the resonant bands, where dispersion curves of TE, TM, HE and 
EH modes are separated. 



If the high-index cladding region is removed, the fiber becomes a conventional step-index 
fiber, consisting of a bare core and the surrounding air acting as the fiber cladding, where nco 
= 1.445, ncl = 1, rco = 62.5 um and rcl = ∞. The dispersion curves of the core modes in such a 
step-index fiber were calculated by graphical method. The vector modes in the obtained fiber 
such as {HE1,1}, {TE0,1, HE2,1 and TM0,1} and {EH1,1 and HE3,1} can be respectively grouped 
into linear polarization modes LP0,1, LP1,1 and LP2,1, due to their mode fields being far from 
cutoff [37, 38]. Fig. 8 shows the dispersion curves of modes LPm,n in the step-index fiber in 
orange color, which are overlapped with the moderate dispersion curves of the anti-resonant 
core modes in the DCF. The results indicate that the anti-resonant core modes {HE1,1+(36)}, 
{TE0,1+(36), HE2,1+(36) and TM0,1+(36)} and {EH1,1+(36) and HE3,1+(36)} in the DCF show similar 
qualitative and quantitative behaviour with the corresponding core modes {HE1,1}, {TE0,1, 
HE2,1 and TM0,1} and {EH1,1 and HE3,1} in the conventional step-index fiber. In addition, the 
effective refractive index of the anti-resonant core modes in the DCF can be approximated as 
that of the corresponding LPm,n modes in a conventional step-index fiber.   

 

  
Fig. 8. (a) Dispersion curves (neff vs. λ) of a depressed core fiber. (b)  partially enlarged image of (a), 
indicated by the black dashed frame. The text labels and the corresponding dispersion curves are of 
the same color. The orange solid lines in (a) and (b) are for LPm,n modes in a conventional step-index 
fiber (nco = 1.445, ncl = 1, rco = 62.5 um and rcl = ∞). The black and red vertical dashed lines indicate 
the resonant bands. 

 

4. Discussion 
 

The dispersion diagram of the DCF shows some similar characteristics with the dispersion 
diagram of a single-ring hollow-core anti-resonant fiber given in [22]. Firstly, they both show 



periodic resonant and anti-resonant bands. Secondly, they both show the inhibited coupling 
phenomenon between the core modes and the cladding modes. However, due to the complex 
structure of the single-ring hollow-core anti-resonant fibers, only an approximate scalar 
method was used in [22]. Using the full-vector analytical method in this paper, the transition 
between the cladding modes and the anti-resonant core modes has been demonstrated. The 
degeneracy in the anti-resonant bands and the loss of degeneracy around the resonant bands 
make the dispersion curves of anti-resonant core modes merge together or separate, which 
may correspond to the narrow and wide variations in bands of anti-resonant modes in [22].  

Although the inhibited coupling fiber is different with the photonic bandgap fiber from the 
modal dispersion perspective, both fibers can be viewed as analogous to the conventional 
step-index fibers. Ref. [20] shows that the density of core modes in the bandgap fibers is 
similar to that of the conventional step-index multimode fibers. Our work verified that the 
density of the anti-resonant core modes in the DCF (a inhibited coupling fiber) is equal to that 
of the core modes in the equivalent conventional step-index fiber, since the anti-resonant core 
modes in the former have a one-to-one correspondence to the core modes in the latter.  

The core modes in both DCFs and tube-type hollow-core fibers are formed by the anti-
resonant effect, yet their properties are different. The neff of the core modes in DCFs is higher 
than the refractive index of the surrounding air, therefore they are guided by total internal 
reflections at the outer boundary of the cladding region and they are non-leaky modes with a 
real neff. Compared to the DCFs, the core modes in a tube-type hollow-core fiber are usually 
treated as leaky modes with a complex neff. The leaky modes can be solved by the eigenvalue 
equations in the complex plane, but it is extremely cumbersome. In most of the previous 
works, only the fundamental mode or a few low-order modes of the hollow-core fibers were 
obtained with different approximation methods [17, 23-25]. However, the available results for 
the tube-type hollow-core fibers show some similar characteristics with those for the DCFs. 
Ref. [17] reports step-like dispersion curves for the modes HE1,n+(N-n) (n = 1, 2, 3, 4, where the 
radial number ‘N-n’ in the cladding is not clear), which is similar to the behaviour of the 
HE1,n+(N-n) modes in the DCFs presented here. Therefore, it can be concluded that all other 
modes for the tube-type hollow-core fibers are similar to those in DCFs. Since the tube-type 
hollow-core fiber has a dispersion diagram similar to that of the DCF, the tube-type hollow-
core fibers should be considered as inhibited coupling fibers. 

The anti-resonance derived anti-crossing phenomenon takes place both in the DCF and in 
the hollow-core photonics crystal fibers (for either the photonic bandgap guiding or inhibited 
coupling guiding). The anti-crossing phenomenon has been intensively studied in hollow-core 
photonic crystal fibers for applications such as generation of the multi-octave supercontinuum 
[10], ultrafast nonlinear dynamics optics [11] and the broadband robustly single-mode 
guidance [12]. Therefore, given that DCFs can readily provide manageable waveguide 
dispersion and exceptional modal field changes, they are worthy further study for a wide 
range of applications, in addition to the few existing works such as the generation of the 
supercontinuum [27] and top-hat beams [32]. Furthermore high refractive index coated step-
index fibers have been used for sensing of organic vapors, humidity, voltage, pH, and 
chemical/bio analytes [43] and have a similar refractive index profile to that of DCF which 
suggests the possibility that DCF might also be useful for sensing. Probably because the 
thickness of the coating in these structures is small, the inverted refractive index profile and 
the anti-resonant effect were not observed. Our ongoing works will explore the application of 
the anti-resonant and inhibited coupling characteristics of the DCFs in optical fiber sensing.  

 

5. Conclusion 
 
DCFs were studied analytically in comparison with the conventional step-index fibers and the 
tube-type hollow-core fibers and were found to be a form of anti-resonant and inhibited 
coupling fibers. In this work an asymmetric planar waveguide approach was proposed for the 



DCFs in the ARROW model. It has been shown that the DCFs support annular-like cladding 
modes in the tube cladding region and disc-like anti-resonant core modes in the rod core 
region and both of them were obtained by solving the same group of full-vector eigenvalue 
equations using the graphical method. The calculated dispersion diagram shows periodic 
resonant and anti-resonant bands, where the dispersion curves of the anti-resonant core modes 
intersect with those of the cladding modes. The formation of core-type modes in a low-index 
core region can be explained by both the anti-resonant and inhibited coupling mechanisms. 
The anti-resonant core modes exhibit similar qualitative and quantitative behaviors as those of 
the conventional step-index fibers. The analogy to conventional step-index fibers may provide 
a convenient tool to model the modes of the DCFs (the inhibited coupling fibers). To the best 
of our knowledge, it is the first report on the complete vector modal dispersion diagram 
calculated analytically for an inversed index fiber. Our results can be used to provide a better 
understanding of the anti-resonant and inhibited coupling guidance mechanisms in complex 
inversed index fibers such as hollow-core photonic-bandgap fibers, tube-type hollow-core 
fibers and single-ring hollow-core fibers. 
 
 
Appendix 

Eigenvalue equations for TE, TM, HE and EH modes in DCFs 

From the analysis in Section 2, the modes with n3 < neff < n1 are like the cladding modes in 
three-layer step-index fibers. Therefore, the eigenvalue equations used to calculate the 
effective refractive index of the modes with n3 < neff < n1 in DCFs is the same as that for the 
cladding modes in the three-layer stepped-index fibers, as follows [33]: 

for the TE0,N modes with n3 < neff < n1: ܬመ ቀ݌ܭ௠ + ௥೘ఈమ௎మቁ = ଵ௎మ ቀܭ෡ݍ௠ + ௦೘ఈమ௎మቁ ,m	 = 	0                                    (2) 

for the TM0,N modes with n3 < neff < n1: ܬመ ቀܭ෡݌௠ + ଶଷݏ ௥೘ఈమ௎మቁ = ௦మభ௎మ ௠ݍ෡ܭ) + ଶଷݏ ௦೘ఈమ௎మ),m	 = 	0                            (3) 

for the HEm,N and the EHm,N modes with n3 < neff < n1: ݌௠ଶ + 2ቆ ଶܷଶଶቇଶߙߨ2 ቆ ݊ଶଶ݊ଵ݊ଷቇݔଵݔଶ+ ଶଶݔଵଶݔ ൤ܬመ ൬ܭ෡݌௠ + ଶܷଶ൰ߙ௠ݎ − 1ܷଶ ൬ܭ෡ݍ௠ + ×ଶܷଶ൰൨ߙ௠ݏ ൤ܬመ ൬ܭ෡݌௠ + ଶଷݏ ଶܷଶ൰ߙ௠ݎ − ଶଵܷଶݏ ൬ܭ෡ݍ௠ + ଶଷݏ =ଶܷଶ൰൨ߙ௠ݏ ଵଶݔ ൬ܬመ݌௠ − ௠ܷଶ൰ݍ ൬ܬመ݌௠ − ଶଵݏ ௠ܷଶ൰ݍ + ଶଶݔ ൬ܭ෡݌௠ + ଶܷଶ൰ߙ௠ݎ ൬ܭ෡݌௠ + ଶଷݏ  ଶܷଶ൰ߙ௠ݎ

(4)             
The fiber parameters of the DCF shown in Fig. 1 are r1, r2, n1, n2 and n3. The wavenumber in 
vacuum is: ݇଴ = ߣ/ߨ2 , where ߣ is the wavelength. The propagation parameter is: ߚ =݇଴݊ୣ୤୤. In the equations (2), (3) and (4), the parameters used are as follows: ߙଶ = ௥మ௥భ,                                                               (5) ݑଵ = ට݇଴ଶ݊ଵଶ − ଶݑ	 (6)                                               	,	2ߚ = ට݇଴ଶ݊ଶଶ − ଷ߱		 (7)                                                	,2ߚ = ට2ߚ − ݇଴ଶ݊ଷଶ	,                                                (8) 



ଵܷ = ,	ଵݎଵݑ 	ܷଶ = ,	ଵݎଶݑ 		 ଷܹ = ߱ଷݎଶ,	                              (9) ܬመ = 	 ௃೘ᇲ (௎భ)௎భ௃೘(௎భ)	,                                                     (10) 	ܭ෡ = 	 ௄೘ᇲ (ௐయ)ௐయ௄೘(ௐయ),                                                     (11) ݌௠ = (ଶݎଶݑ)௠ܬ ௠ܻ(ݑଶݎଵ) − (ଵݎଶݑ)௠ܬ ௠ܻ(ݑଶݎଶ),                       (12) ݍ௠ = (ଶݎଶݑ)௠ܬ ௠ܻᇱ (ଵݎଶݑ) − ௠ᇱܬ (ଵݎଶݑ) ௠ܻ(ݑଶݎଶ),                       (13) ݎ௠ = ௠ᇱܬ (ଶݎଶݑ) ௠ܻ(ݑଶݎଵ) − (ଵݎଶݑ)௠ܬ ௠ܻᇱ ௡ݏ (14)                       ,(ଶݎଶݑ) = ௠ᇱܬ (ଶݎଶݑ) ௠ܻᇱ (ଵݎଶݑ) − ௠ᇱܬ (ଵݎଶݑ) ௠ܻᇱ ଶଷݏ (15)                       ,(ଶݎଶݑ) = ௡మమ௡యమ , ଶଵݏ = ௡మమ௡భమ,		                                                  (16) ଵܸଶଶ = ݇଴ଶݎଵଶ(݊ଵଶ − ݊ଶଶ), ଶܸଷଶ = ݇଴ଶݎଶଶ(݊ଶଶ − ݊ଷଶ),                        (17) ݔଵଶ = ௡భమ௎భర௎మరఙబమ௏భమర , ଶଶݔ = ௡యమఈమర௎మరௐయరఙబమ௏మయర ଴ଶߪ (18)                                   , = ቀఉ௠௞బ ቁଶ.                                                    (19) 

The parameters ݑଵ, ,ଶݑ	 	߱ଷ, ଵܷ, 	ܷଶ, 		 ଷܹ  in equations (6)-(9) are phase parameters. The 
functions ܬ௠, ௠ܻ and ܭ௠ in equations (10)-(15) denote the Bessel function of the first kind, 
the Bessel function of the second kind and the modified Bessel function of the second kind. ܬ௠ᇱ , ௠ܻᇱ , and ܭ௠ᇱ denote the derivatives of the corresponding Bessel functions. 

To calculate the TE, TM, HE and EH modes with n1 < neff < n2, the phase parameter u1 in 
the equation (6) needs to be modified as:  ݑଵ = ට2ߚ−݇଴ଶ݊ଵଶ	                                                  (20) 

and ܬመ in the equation (10) need to be modified as: ܬመ = 	− ூ೘ᇲ (௎భ)௎భூ೘(௎భ),		                                                 (21) 

where  ܫ௠ and ܫ௠′ denote the modified Bessel function of the first kind and its derivative. 
The modal intensity and electric field vector distributions can be calculated with the field 

functions shown in Refs. [33-35]. 
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