MXene (Ti3C2Tx) and Carbon Nanotube Hybrid-Supported Platinum Catalysts for the High-Performance Oxygen Reduction Reaction in PEMFC

Xu, Chenxi, Fan, Chanchan, Zhang, Xiaole, Chen, Haotian, Liu, Xiaoteng, Fu, Zhaoming, Wang, Ranran, Hong, Tao and Cheng, Jigui (2020) MXene (Ti3C2Tx) and Carbon Nanotube Hybrid-Supported Platinum Catalysts for the High-Performance Oxygen Reduction Reaction in PEMFC. ACS Applied Materials & Interfaces, 12 (17). pp. 19539-19546. ISSN 1944-8244

[img] Text
Pt_MXene_CNT_ACS_AMI_Final_3.29.pdf - Accepted Version
Restricted to Repository staff only until 9 April 2021.

Download (1MB) | Request a copy
Official URL: https://doi.org/10.1021/acsami.0c02446

Abstract

The metal–support interaction offers electronic, compositional, and geometric effects that could enhance catalytic activity and stability. Herein, a high corrosion resistance and an excellent electrical conductivity MXene (Ti3C2Tx) hybrid with a carbon nanotube (CNT) composite material is developed as a support for Pt. Such a composite catalyst enhances durability and improved oxygen reduction reaction activity compared to the commercial Pt/C catalyst. The mass activity of Pt/CNT-MXene demonstrates a 3.4-fold improvement over that of Pt/C. The electrochemical surface area of Pt/CNT–Ti3C2Tx (1:1) catalysts shows only 6% drop with respect to that in Pt/C of 27% after 2000 cycle potential sweeping. Furthermore, the Pt/CNT–Ti3C2Tx (1:1) is used as a cathode catalyst for single cell and stack, and the maximum power density of the stack reaches 138 W. The structure distortion of the Pt cluster induced by MXene is disadvantageous to the desorption of O atoms. This issue can be solved by adding CNT on MXene to stabilize the Pt cluster. These remarkable catalytic performances could be attributed to the synergistic effect between Pt and CNT–Ti3C2Tx.

Item Type: Article
Uncontrolled Keywords: MXene, synergistic effect, composite catalytic support, oxygen reduction reaction, proton exchange membrane fuel cells
Subjects: F100 Chemistry
H800 Chemical, Process and Energy Engineering
Department: Faculties > Engineering and Environment > Mechanical and Construction Engineering
Depositing User: Elena Carlaw
Date Deposited: 29 Apr 2020 12:09
Last Modified: 29 Apr 2020 12:15
URI: http://nrl.northumbria.ac.uk/id/eprint/42968

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics